中考圆知识点总结复习
中考圆的知识点总结(一)
中考圆的知识点总结(一)中考圆的知识点总结前言在中考数学中,圆是一个重要的知识点,掌握圆的性质和相关计算方法对于提高数学成绩至关重要。
本文将对中考圆相关的知识进行总结和归纳,以帮助同学们更好地掌握和应用。
正文1. 圆的定义和性质•圆的定义:圆是平面上到一个定点距离相等的所有点的集合。
•圆的性质:–圆心:圆上所有点到圆心的距离相等。
–半径:圆心到圆上任意一点的距离为半径。
–直径:通过圆心的两个点组成的线段,长度等于半径的两倍。
–弧:在圆上两个点之间的部分。
–相交:两个圆的交点即为相交的部分。
–切线:与圆只有一个交点的直线。
2. 圆的计算公式•圆的周长:C = 2πr,其中r为半径。
•圆的面积:S = πr²。
3. 圆的相关定理•弧长定理:弧长 = 弧度× 半径长度。
•弧度与度的关系:一周对应的弧度为2π弧度,180°对应π弧度,360°对应2π弧度。
•圆心角定理:圆心角的弧度等于对应的弧的弧度。
•切线定理:切线与半径垂直。
4. 圆的应用•判断点是否在圆的内部、外部或边界上。
•利用圆的性质解决几何问题,如求两个圆的位置关系、求切线等。
•应用圆的计算公式计算周长和面积。
结尾通过对中考圆的知识进行总结和归纳,我们可以更好地掌握和运用圆的相关性质和计算方法。
希望同学们在备考中能够深入理解这些知识,灵活运用,取得优异的成绩!5. 圆与三角形的关系•内切圆:三角形内部与三条边都相切的圆。
•外接圆:三角形三个顶点在圆上的圆。
•正切圆:三角形的一个顶点在圆上,另外两边分别与圆相切的圆。
6. 圆与直线的关系•弧的度数:弧所对圆心角的度数,通常表示为θ。
•弦:圆上两个点之间的线段。
•弦长定理:弦长等于过弧中点的直径的两倍乘以sin(θ/2)。
•弦切角定理:切线与弦的交点所对的圆心角等于弦上所对的弧的圆心角的一半。
7. 圆与平行线的关系•切割线定理:若两条平行线分别与一个圆相交,那么它们所切割出的弦、切线和割线都是相等的。
中考圆的知识点总结总结
中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。
这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。
2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。
圆心角的度数等于对应的弧所对的圆周的度数。
如果圆心角的度数为360度,那么这个角就是周角。
(2)弧圆上的一段弧是圆周的一部分。
圆的周长就是圆周的长度,可以用角度和弧度来表示。
(3)切线和切点切线是一个直线,它与圆相切于一个点。
在圆上,切线与半径的夹角为90度。
(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。
同位角的性质也可以应用到圆上。
(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。
相似的圆的半径之比等于它们的直径之比。
二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。
2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。
3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。
4. 弧长定理同样的圆上,相对的圆周弧长相等。
5. 切线定理切线和半径的夹角为90度。
6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。
7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。
三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。
比如在工程测量中,需要计算环形的周长和面积。
2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。
3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。
四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。
1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。
2024中考数学知识点圆的基础性质公式定理
2024中考数学知识点圆的基础性质公式定理中考数学中圆的基础性质公式定理有以下几个:
一、圆周公式
圆的圆周C=2πr,其中C为圆的圆周长,r为圆的半径。
二、圆的面积公式
圆的面积S=πr2,其中S为圆的面积,r为圆的半径。
三、圆心角公式
圆心角的大小θ等于弧长除以半径:θ=l/r,其中θ为圆心角的大小,圆周长l,半径r。
四、圆切线与圆弦关系
三次角关系:若圆的两条切线和圆弧相切,则圆心角的三个角相等:θA=θB=θC,其中θA,θB,θC分别为圆心角的三个角的大小。
五、圆周弦关系
三次角关系:若圆的两条切线和圆弧相切,则两条切线上有等于圆弧的三次夹角:θA=θB=θC,其中θA,θB,θC分别为圆弧上三次夹角的大小。
六、圆的外接四边形关系
若四边形是圆的外接四边形,则四边形的对角线等于圆的直径:DA=DB=2r,其中DA,DB为四边形的两条对角线,r为圆的半径。
七、半径交点概念
若平面上有两条圆,以及它们的公共外接四边形,它们上的所有的交点都是半径交点,即两圆从它们公共外接四边形的对角线交点开始,向外射线,直到相交,所有相交的点都是它们的半径交点。
八、圆内接四边形关系
若四边形是圆的内接四边形,则四边形的对角线等于圆的直径:DA=DB=2r。
初中数学中考圆的知识点总结归纳(中考必备)
中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr^2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。
中考圆知识点总结复习
初中圆复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
图4图5推论2:圆的两条平行弦所夹的弧相等。
连线中考数学一轮复习系列专题19圆的基本性质
基础知识知识点一、圆的有关概念1. 圆的定义①(动态定义)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点叫做圆心,线段OA叫做半径.以点O为圆心的圆记做“⊙O”.②(静态定义)圆是到定点的距离等于定长的点的集合.即:圆上各点到圆心的距离都等于定长(半径),反之到圆心距离等于半径的点一定在圆上;2.等圆:能够完全重合的圆叫等圆.同圆或等圆的半径相等.3.确定圆的条件确定一个圆有两个基本条件①圆心(定点)——用来确定圆的位置;②半径(定长)——用来确定圆的大小.经过不在同一直线上的三点确定一个圆.知识点二、弦、弧、圆心角等相关概念1. 弦与直径:①弦:连接圆上任意两点的线段叫做弦,记做:弦AB,弦CD等.②直径:经过圆心的弦叫做直径,直径等于半径的2倍.直径是圆中最长的弦.2. 弧与半圆①弧:圆上任意两点之间的部分叫做圆弧,简称弧,用符号“”表示,如以A、B为端点的弧记做AB,②半圆:圆上任意一条直径的两个端点把圆分成两条弧,其中的每条弧都叫做半圆.③劣弧、优弧:小于半圆的弧叫做劣弧,用弧上的两点表示;大于半圆的弧叫做优弧,用弧上三点表示.④等弧:能够完全重合的弧叫等弧.知识点三、弧、弦、圆心角之间的关系1. 圆的旋转不变性把圆绕着圆心旋转任意一个角度,都与原来的图形重合,我们把这种性质称为圆的旋转不变性.圆是中心对称图形,圆心是它的对称中心.2. 弧、弦、圆心角之间的关系定理:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.圆心角的度数与它所对的弧的度数相等.知识点四、垂径定理1. 圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.2. 垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧.如图,用符号语言叙述为:∵ CD为⊙O的直径,CD⊥AB于点E∴ AE=EB,AC BC,AD DB3. 垂径定理基本图形的性质:(1)有4对全等的直角三角形:Rt△CAD与Rt△CBD;Rt△CAM与Rt△CBM;Rt△OAM与Rt△OBM;Rt△MAD与Rt△MBD;特别在Rt△CAD与Rt△CBD中,直径CD是它们公共的斜边,AM、BM是CD上的高.(2)有3个等腰三角形;△CAB、△OAB、△DAB.弦AB是它们的公共底边,直径CD是它们的顶角平分线和底边AB的垂直平分线.(3)有3对弧相等:AC BC,AD BD,CAD CBD.(4)添加辅助线的方法:连接半径或作垂直于弦的直径,是两种重要的添线方法.知识点五.圆周角定理1. 定义:顶点在圆上,并且两边都与圆相交的角叫圆周角.2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半,同弧或等弧所对的圆周角相等,3. 圆周角定理的推论①半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.②圆内接四边形的对角互补.典型例题解析例1.(菏泽)如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则BD弧的度数为_____.例2. (山西)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为( )A.30° B.40° C.50° D.80°例3. (绍兴)把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图,⊙O与矩形ABCD边BC,AD分别相切和相交(E,F是交点).已知EF=CD=8,则⊙O的半径为___________.例4. (黑龙江)直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是.例5. (济南) 如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A. 2. 3 C. 32D.3例6. (安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.例7. 如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C重合),延长BD至E.(1)求证:AD的延长线平分∠CDE;(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.巩固练习1. (湖州)如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A. 35 °B.45°C. 55°D.65°2. 如图所示,在⊙O中,,那么()A.AB>2CD B.AB<2CD C.AB=2CD D.无法比较3. (嘉兴)如图,○O的直径CD垂直弦AB于点E,且CE=2,DE=8则AB的长为()(A)2 (B)4 (C)6 (D)84. (钦州)如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为()A.60° B.45° C.30° D.20°5. (南通)如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_______度.6. (广元)若⊙O的弦AB所对的圆心角∠AOB=50°,则弦AB所对的圆周角的度数为 .7 . (龙岩) 如图,A、B、C是半径为6的⊙O上三个点,若∠BAC=45°,则弦BC= 。
中考圆的复习资料(经典+全)
圆的知识点复习知识点1垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
题型1.在直径为1000mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=800mm,则油的最大深度为 mm.2. 如图,在△ABC中,∠C是直角,AC=12,BC=16,以C为圆心,AC为半径的圆交斜边AB于D,求AD的长。
3. 如图,弦AB垂直于⊙O的直径CD,OA=5,AB=6,求BC长。
CBDA4. 如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长。
知识点2 圆心角:顶点在圆心的角叫做圆心角。
弦心距:过圆心作弦的垂线,圆心与垂足之间的距离叫弦心距。
定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角度数相等,所对的弦相等。
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角度数相等,所对的弧相等。
题型1. 如果两条弦相等,那么()A.这两条弦所对的弧相等 B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等 D.以上答案都不对2.下列说法正确的是()A.相等的圆心角所对的弧相等 B.在同圆中,等弧所对的圆心角相等C.相等的弦所对的圆心到弦的距离相等 D.圆心到弦的距离相等,则弦相等3.线段AB是弧AB 所对的弦,AB的垂直平分线CD分别交弧AB、AC于C、D,AD的垂直平分线EF分别交弧AB、AB于E、F,DB的垂直平分线GH分别交弧AB、AB于G、H,则下面结论不正确的是()A.弧AC=弧CB B.弧EC=弧CG C.EF=FH D.弧AE=弧EC4. 弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____.5. 如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.6. 如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________.7. 如图,已知AB 、CD 为⊙O 的两条弦,弧AD =弧BC , 求证:AB =CD 。
中考圆形知识点总结归纳
中考圆形知识点总结归纳一、圆的定义及性质1. 定义:圆是平面上到一个定点的距离等于定长的点的全体构成的集合。
2. 圆心和半径:圆心是到圆上任一点的距离相等的点;半径是圆心到圆上任一点的距离。
3. 直径:通过圆心并且有圆上两点的线段叫做直径,直径的长度等于两倍的半径。
4. 切线和切点:在圆上的一点处与圆相切的直线叫做切线,切线与圆相切的点叫做切点。
二、圆的周长和面积1. 周长:圆的周长等于直径乘以π(π≈3.14)。
2. 面积:圆的面积等于半径的平方乘以π。
三、角与弧1. 圆心角与弧长的关系:圆心角的度数等于对应圆周的弧长所对应的圆心角的两倍。
2. 弧长的计算:弧长等于圆周长乘以所含圆心角的度数除以360度。
3. 弧度制:1弧度等于半径长所对应的圆心角的弧长。
4. 弧长与扇形面积的计算:扇形面积等于扇形对应的圆心角的弧度除以2π乘以圆的面积。
四、相交圆的位置关系1. 相交圆的位置关系:两个圆相交于两个不同的点,一个点,或者不相交。
2. 内切和外切圆:两个圆内切的位置关系就是一个圆在另一个圆内部,一个圆与另一个圆外切的位置关系就是一个圆的周长与另一个圆的圆心的距离相等。
五、圆的应用1. 圆的模型:圆在自然界中有丰富的应用,例如铁路辙、车轮、橱柜的拉手等都是圆形的。
2. 饼图:根据数据用圆形图示数据的比例和百分比,通过饼图可以直观的看出不同部分所占的比例。
综上所述,圆形是数学中重要的基本图形之一,在日常生活和工作中都有着广泛的应用,掌握圆形的基本概念和性质对于学习和生活都是非常有帮助的。
希望大家能够认真学习圆形知识,掌握相关的计算方法,提高自己的数学能力。
2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)
2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)知识点总结1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
2.垂径定理的推论:推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。
3.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
4.圆周角定理:5.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
6.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
7.三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆。
圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。
8.切线的性质:①圆的切线垂直于经过切点的半径。
②经过圆心且垂直于切线的直线必经过切点。
③经过切点且垂直于切线的直线必经过圆心。
运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。
9. 切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。
2022年最新中考数学知识点梳理 考点17 圆(教师版)
2022年最新中考数学知识点梳理考点总结+真题演练涵盖近年来的中考真题和中考模拟考点17 圆考点总结一、圆的有关概念1.与圆有关的概念和性质1)圆:平面上到定点的距离等于定长的所有点组成的图形.2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.4)圆心角:顶点在圆心的角叫做圆心角.5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.6)弦心距:圆心到弦的距离.2.注意1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;2)3点确定一个圆,经过1点或2点的圆有无数个.3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理:一条弧所对的圆周角等于它所对的圆心角的一半.2.推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等.2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质1)切线与圆只有一个公共点.2)切线到圆心的距离等于圆的半径.3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定1)与圆只有一个公共点的直线是圆的切线(定义法).2)到圆心的距离等于半径的直线是圆的切线.3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.八、正多边形的有关概念正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.正多边形半径:正多边形外接圆的半径叫做正多边形半径.正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.九、与圆有关的计算公式1.弧长和扇形面积的计算:扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为S圆锥侧=12ππ2l r rl⋅=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.真题演练一.选择题(共10小题)1.(2021秋•临河区校级期中)如图,四边形ABCD内接于⊙O,AB为直径,BC=CD,连接AC.若∠DAB=40°,则∠D的度数为()A.70°B.120°C.140°D.110°【分析】根据圆周角定理求出∠BAC,根据圆内接四边形的性质计算即可.【解答】解:∵BC=CD,∴BĈ=CD̂,∵∠DAB=40°,∴∠BAC=12∠DAB=20°,∵AB为直径,∴∠ACB=90°,∴∠B=90°﹣∠BAC=70°,∵四边形ABCD内接于⊙O,∴∠D=180°﹣∠B=110°,故选:D.2.(2021•河北模拟)如图,在△ABC中,AB=AC,AD⊥BC于点D,点M是△ABC内一点,连接BM交AD于点N,已知∠AMB=108°,若点M是△CAN的内心,则∠BAC的度数为()A.36°B.48°C.60°D.72°【分析】过点M作ME⊥AD于点E,根据已知条件可得△ABC是等腰三角形,AD是BC边的中垂线,证明ME∥BC,可得∠NME=∠NBD,由点M是△CAN的内心,可得点M在∠NAC 和∠ANC的角平分线上,设∠NAM=x,∠NBD=y,所以∠BAC=4x,∠NBD=∠NCD=∠NME=y,∠ENM=∠CNM=2y,然后利用∠AMB=108°,列出方程组{y−x=18°2y+x=72°,求解即可得结论.【解答】解:如图,过点M作ME⊥AD于点E,∵AB=AC,AD⊥BC,∴△ABC是等腰三角形,AD是BC边的中垂线,∴NB=NC,∠BAD=∠CAD,∴∠NBD=∠NCD,∵ME⊥AD,AD⊥BC,∴ME∥BC,∴∠NME=∠NBD,∵点M是△CAN的内心,∴点M在∠NAC和∠ANC的角平分线上,∴∠NAM=∠CAM,∠ANM=∠CNM,设∠NAM=x,∠NBD=y,∴∠BAC=4x,∠NBD=∠NCD=∠NME=y,∴∠ENM=∠CNM=∠NBC+∠NCB=2y,∵∠AMB=108°,∴∠AME=∠AMB﹣∠EMN=108°﹣y,在△AEM中,∠EAM+∠AME=90°,∴x+108°﹣y=90°,∴y ﹣x =18°,在△ANM 中,∠NAM +∠ANM =180°﹣108°,∴x +2y =72°,{y −x =18°2y +x =72°, 解得{x =12°y =30°, ∴∠BAC =4x =48°.故选:B .3.(2021•桥东区二模)如图,点O 为△ABC 的内心,∠B =58°,BC <AB ,点M ,N 分别为AB ,BC 上的点,且∠MON =122°.甲、乙、丙三人有如下判断:甲:OM =ON ;乙:四边形OMBN 的面积是定值;丙:当MN ⊥BC 时,△MON 的周长取得最小值.则下列说法正确的是( )A .只有甲正确B .只有丙错误C .乙、丙都正确D .甲、乙、丙都正确【分析】过点O 作OD ⊥BC ,OE ⊥AB 于点D ,E ,根据三角形内心可得OD =OE ,然后证明△DON ≌△EOM ,可得ON =OM ;连接OB ,根据△DON ≌△EOM ,可得四边形OMBN 的面积=2S △BOD ,根据点D 的位置固定,可得四边形OMBN 的面积是定值;过点O 作OF ⊥MN 于点F ,根据ON =OM ,∠MON =122°,可得∠ONM =29°,MN =2NF =2ON cos29°,所以△MON 的周长=2ON (cos29°+1),可得当ON 最小时,即当ON ⊥BC 时,△MON 的周长最小值,进而可得结论.【解答】解:如图,过点O 作OD ⊥BC ,OE ⊥AB 于点D ,E ,∵点O 为△ABC 的内心,∴OB 是∠ABC 的平分线,∴OD =OE ,∵∠B =58°,∴∠DOE =122°,∵∠MON =122°,∴∠DON =∠EOM ,在△DON 和△EOM 中,{∠DON =∠EOMOD =OE ∠NDO =∠MEO,∴△DON ≌△EOM (ASA ),∴ON =OM ,所以甲的判断正确;连接OB ,∵△DON ≌△EOM ,∴四边形OMBN 的面积=2S △BOD ,∵点D 的位置固定,∴四边形OMBN 的面积是定值,所以乙的判断正确;如图,过点O 作OF ⊥MN 于点F ,∵ON =OM ,∠MON =122°,∴∠ONM =29°,∴MN=2NF=2ON cos∠ONM=2ON cos29°,∴△MON的周长=MN+2ON=2ON cos29°+2ON=2ON(cos29°+1),∴当ON最小时,即当ON⊥BC时,△MON的周长最小值,此时,MN不垂直于BC,所以丙的判断错误.综上所述:说法正确的是甲、乙.故选:B.4.(2021•开平区一模)如图所示的正方形网格中,A,B,C三点均在格点上,那么△ABC的外接圆圆心是()A.点E B.点F C.点G D.点H【分析】根据三角形的外接圆圆心的性质即可得到结论.【解答】解:作线段AB和线段BC的垂直平分线,两线交于点G,则△ABC的外接圆圆心是点G,故选:C.5.(2021•河北模拟)已知:直线AB及AB外一点P.如图求作:经过点P,且垂直AB的直线,作法:①以点P为圆心,适当的长为半径画弧,交直线AB于点C,D.②分别以点C、D为圆心,适当的长为半径,在直线AB的另一侧画弧,两弧交于点Q.③过点P、Q作直线.直线PQ即为所求.在作法过程中,出现了两次“适当的长”,对于这两次“适当的长”,下列理解正确的是()A.这两个适当的长相等B.①中“适当的长”指大于点P到直线AB的距离C.②中“适当的长”指大于线段CD的长D.②中“适当的长”指大于点P到直线AB的距离【分析】利用基本作图进行判断.【解答】解:①中“适当的长”指大于点P到直线AB的距离;②中“适当的长”指大于线段CD的长的一半.故选:B.6.(2021•河北模拟)有一题目:已知△ABC外接圆的半径为2,BC=2√3,求∠A的度数.嘉嘉这样求解:如图,作直径CD,点A在BDĈ上,∵CD为直径,∴∠CBD=90°,在Rt△BCD中,∵sin D=BCCD=2√34=√32,∴∠D=60°,∴∠A=∠D=60°.琪琪说:“嘉嘉的答案不全,∠A还有一个不同的值.”下列判断正确的是()A.嘉嘉的答案没有遗漏B.嘉嘉的结果错误,∠A=30°C.琪琪的说法错误D.琪琪的说法正确,还有一个答案为120°【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣60°=120°.故选:D.7.(2021•桥东区二模)下列由实线组成的图形中,为半圆的是()A.B.C.D.【分析】根据圆的有关定义进行解答.【解答】解:根据半圆的定义可知,选项B的图形是半圆.故选:B.8.(2021•桥东区二模)阅读图中的材料,解答下面的问题:已知⊙O是一个正十二边形的外接圆,该正十二边形的半径为1,如果用它的面积来近似估计⊙O的面积,则⊙O的面积约是()A.3 B.3.1 C.3.14 D.π【分析】设AB为正十二边形的边,连接OB,过A作AD⊥OB于D,由正十二边形的性质得出∠AOB=30°,由直角三角形的性质得出AD=12OA=12,求出△AOB的面积=12OB•AD=14,即可得出答案. 【解答】解:设AB 为正十二边形的边,连接OB ,过A 作AD ⊥OB 于D ,如图所示: ∴∠AOB =360°12=30°, ∵AD ⊥OB ,∴AD =12OA =12,∴△AOB 的面积=12OB ×AD =12×1×12=14,∴正十二边形的面积=12×14=3, ∴⊙O 的面积≈正十二边形的面积=3,故选:A .9.(2021•顺平县二模)如图,每个小三角形都是边长为1的正三角形,D 、E 、F 、G 四点中有一点是△ABC 的外心,该点到线段AB 的距离是( )A .√32B .√2C .12D .1【分析】根据等边三角形的性质、等腰三角形的三线合一得到△ABC 为直角三角形,根据直角三角形的外心的位置是斜边的中点解答.【解答】解:∵每个小三角形都是正三角形,∴AM =AN ,MB =BN ,∴AB ⊥MN ,∴△ABC 为直角三角形,∵G 是AN 的中点,GE ∥BC ,∴点E 是△ABC 斜边的中点,∴△ABC 的外心是斜边的中点,即点E ,∴E 到AB 的距离1,故选:D .10.(2021•河北模拟)如图,取正六边形ABCDEF 的各边中点并依次连接,得到正六边形A 1B 1C 1D 1E 1F 1,再取正六边形A 1B 1C 1D 1E 1F 1的各边中点并依次连接,得到正六边形A 2B 2C 2D 2E 2F 2,则正六边形A 2B 2C 2D 2E 2F 2与正六边形ABCDEF 的边长之比为( )A .12B .23C .34D .45 【分析】如图,设AF 1=FF 1=a ,求出AF ,F 2E 2(用a 表示),可得结论.【解答】解:如图,设AF 1=FF 1=a ,∵∠A =120°,AA 1=AF 1=a ,∴A 1F 1=√3a ,∴A 1F 2=F 2F 1=√32a ,∵∠F 2F 1E 2=120°,∴F 2E 2=√3F 2F 1=32a ,∴A 2B 2C 2D 2E 2F 2与正六边形ABCDEF 的边长之比=32a :2a =3:4,故选:C .二.填空题(共5小题)11.(2021•开平区一模)正多边形的外角为120度,边长为m ,则这个正多边形的面积是√34m 2 . 【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解.【解答】解:正多边形的边数是:360÷120=3.等边三角形的边长为2cm ,所以正六边形的面积=12×m ×m ×√32=√34m 2. 故答案为:√34m 2. 12.(2021•路南区二模)如图所示,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC于E ,F ,延长BA 交⊙A 于G ,连结GF 、FE ,当∠D =60°时,∠GFE = 30 °.【分析】先根据平行四边形的性质和平行线的性质得到∠GAD =∠D =60°,然后根据圆周角定理求解.【解答】解:∵四边形ABCD 为平行四边形,∴AB ∥CD ,∴∠GAD =∠D =60°,∴∠GFE =12∠GAE =12×60°=30°.故答案为30.13.(2021•长安区二模)如图,正方形ABCD 和正六边形AEFCGH 均内接于⊙O ,连接HD ;若线段HD 恰好是⊙O 的一个内接正n 边形的一条边,则n = 12 .【分析】连接OH 、OD 、OA ,如图,利用正多边形与圆,分别计算⊙O 的内接正四边形与内接六三角形的中心角得到∠HOA =60°,∠DOA =90°,∠DOH =∠DOA ﹣∠HOA =90°﹣60°=30°,然后计算n .【解答】解:连接OH 、OD 、OA ,如图,∵正方形ABCD和正六边形AEFCGH均内接于⊙O,∴∠HOA=360°6=60°,∠DOA=360°4=90°,∠DOH=∠DOA﹣∠HOA=90°﹣60°=30°,∴n=360°30°=12,即HD恰好是同圆内接一个正十二边形的一边.故答案为12.14.(2021•石家庄模拟)如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是√552,⊙O内一点D的坐标为(﹣2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是√552−√5,最大值是√552+√5.【分析】连接OB,根据垂径定理求出BC,根据勾股定理计算求出OC,根据勾股定理求出OD,求出点D到AB的距离的最值.【解答】解:连接OB,∵OC⊥AB,∴BC=12AB=32,由勾股定理得,OC =√OB 2−BC 2=√552,由勾股定理得,OD =√22+12=√5,当点D 在直线OC 上时,点D 到AB 的距离的最小或最大,∴点D 到AB 的距离的最小值为√552−√5,点D 到AB 的距离的最大值为√552+√5, 故答案为:√552;√552−√5;√552+√5.15.(2021•石家庄一模)如图,已知AB =AC =BE =CD ,AD =AE ,点F 为△ADE 的外心,若∠DAE =40°,则∠BFC = 140 °.【分析】由等腰三角形的性质得出∠BEA =∠BAE =70°,求出∠ABE =40°,连接AF ,EF ,DF ,由三角形外心的性质求出∠EBF =∠FCB =20°,由三角形内角和定理可得出答案.【解答】解:∵∠DAE =40°,AD =AE ,∴∠ADE =∠AED ,∴∠AED =12(180°﹣40°)=70°,∵AB =BE ,∴∠BEA =∠BAE =70°,∴∠ABE =40°,连接AF ,EF ,DF ,∵点F 为△ADE 的外心,∴AF =EF ,AF =DF ,∴点F 在AE 的垂直平分线上,同理点B 在AE 的垂直平分线上,∴∠ABF =∠EBF ,∴∠EBF =12∠ABE =20°,同理∠FCB =20°,∴∠BFC =180°﹣∠FBC ﹣∠FCB =180°﹣20°﹣20°=140°.故答案为:140.三.解答题(共3小题)16.(2021•开平区一模)如图,∠AOB 内有一点P ,PC ⊥OA ,垂足为C ,以P 为圆心PC 为半径画14⊙P ,与OB 交于点E , (1)过点D 作PD 的垂线与OB 交于点M ,连接PM ,过圆心P 作PN ⊥PM 交OA 于点N ,求证△PMN 是等腰直角三角形.(2)若PC =2,∠DPE =15°,计算扇形PEC 的面积(结果保留π).【分析】(1)连接MN .证明△DPM ≌△CPN (ASA ),推出PM =PN ,可得结论.(2)利用扇形面积公式求解即可.【解答】(1)证明:连接MN .∵PM ⊥PN ,∴∠MPN =90°,∵∠CPD =90°,∴∠CPD =∠MPN ,∴∠DPM =∠CPN ,∵DM ⊥PD ,PC ⊥OA ,∴∠PDM =∠PCN =90°,在△PDM 和△PCN 中,{∠PDM =∠PCNPD =PC ∠DPM =∠CPN,∴△DPM ≌△CPN (ASA ),∴PM =PN ,∵∠MPN =90°,∴△PMN 是等腰直角三角形.(2)解:∵∠DPE =15°,∴∠CPE =90°﹣15°=75°,∴S 扇形PEC =75×π×22360=5π6.17.(2021•滦州市一模)如图,AM ∥BN ,AB ⊥BN ,点C 在射线BN 上且∠ACB =50°,BQ ⊥AC于点Q ,点P 是线段QA 上任意一点,延长BP 交AM 于点D ,AB =6.(1)若点P 为AC 中点,求证:△APD ≌△CPB ;(2)当△PBC 为等腰三角形时,求∠PBC 的度数;(3)直接写出△PBC 的外心运动的路径长.【分析】(1)根据全等三角形的判定方法:ASA即可得到结论;(2)分三种情况:当PC=PB时,当BC=BP时,当BC=BP时,分别计算即可;(3)作BC的垂直平分线l1,QC的垂直平分线l2,AC的垂直平分线l3,l2交QC于E,l3交AC于F,设CQ=x,AQ=y,设△PBC外心运动路径长为h,外心一定在直线l1上,根据三角函数可得答案.【解答】解(1)∵P为AC中点,∴PA=PC,∵AM∥BN,∴∠DAC=∠ACB,∵∠BPC=∠APD,∴△APD≌△CPB(ASA).(2)当PC=PB时,∠PBC=∠ACB=50°,当CP=CB时,∠PBC=∠CPB=180°−50°2=65°,当BC=BP时,∠PBC=108﹣2x50=80°,综上:∠PBC=50°或65°或80°.(3)作BC的垂直平分线l1,QC的垂直平分线l2,AC的垂直平分线l3,l2交QC于E,l3交AC于F,设CQ =x ,AQ =y ,∴EF =x+y 2−x 2=y 2,设△PBC 外心运动路径长为h ,外心一定在直线l 1上,∵∠CFT =∠CAB =40°,∴cos40°=(y 2)÷h =AB AC =AQ AB =y 6, ∴y 2÷h =y ÷6, ∴h =3,故△PBC 的外心运动的路径长为3.18.(2021•南皮县一模)如图,射线AM ⊥AB ,O 是AM 上的一点,以O 为圆心,OA 长为半径,在AM 上方作半圆AOC ,BE 与半圆相切于点D ,交AM 于点E ,EF ⊥BO 于点F .(1)求证:BA =BD ;(2)若∠ABE =60°,①判断点F 与半圆AOC 所在圆的位置关系,并说明理由;②若AB =√3,直接写出阴影部分的面积.【分析】(1)由切线长定理可得出答案;(2)①证明△OBA≌△OEF(AAS),由全等三角形的性质得出OF=OA,则可得出答案;②连接OD,则OD⊥BE,由直角三角形的性质求出OD的长,根据扇形的面积公式和三角形的面积公式可得出答案.【解答】(1)证明:∵AM⊥AB,∴BA是半圆的切线,切点为A,又∵BE与半圆相切于点D,∴BA=BD;(2)解:①点F在半圆AOC所在的圆上,理由如下:∵∠ABE=60°,∴∠BEA=30°,又∵OBA=∠OBE=12∠ABE=30°,∴∠OBE=∠OEB,∴OB=OE,又∵∠AOB=∠FOE,∠A=∠F=90°,∴△OBA≌△OEF(AAS),∴OF=OA,∴点F在半圆AOC所在的圆上;②连接OD,则OD⊥BE,∵OB=OE,∴DE=BD=AB=√3,∵∠OBA=30°,∴OD=OA=AB•tan30°=√3×√33=1,2 360=√32−π6.∴S阴影=S△COE﹣S扇形COD=12×√3×1−60π×1。
数学中考复习 圆的相关知识点及习题
圆专题一、圆的相关概念1.圆的定义(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作”O⊙“,读作”圆O“.(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:注意:同圆或等圆的半径相等.2.弦和弧(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作弧AB.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3.圆心角和圆周角(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、圆的对称性1.旋转对称性(1)圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合.(2)圆的旋转对称性⇒圆心角、弧、弦、弦心距之间的关系.2.轴对称性(1)圆是轴对称图形,经过圆心的任一条直线是它的对称轴.(2)圆的轴对称性⇒垂径定理.三、圆的性质定理1.圆周角定理(1) 定理:一条弧所对的圆周角等于它所对的圆心角的一半. (2) 推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.2. 圆心角、弧、弦、弦心距之间的关系(1) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.(2) 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.3. 垂径定理(1) 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2) 推论1:①平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (3) 推论2:圆的两条平行线所夹的弧相等.注意:若“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.注意:应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.F EBA CDOr a 2d O CBA所对的两圆心角相等所对的两条弦相等 所对的两条弧相等所对的两条弦的弦心距相等EO D B A【例1】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>【例2】 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为______.二、圆的性质定理1. 圆周角定理【例3】 如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.【例4】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180︒,70︒,30︒,则PAQ ∠的大小为( )A .10︒B .20︒C .30︒D .40︒【例5】 如图,O ⊙是ABC ∆的外接圆,已知60B ∠=︒,则CAO ∠的度数是( )A .15︒B .30︒C .45︒D .60︒【例6】 如图,已知O 的弦AB CD ,相交于点E ,AC 的度数为60︒,BD 的度数为100︒,则AEC ∠等于ON MHG FE DC BA( ) A .60°B .100°C .80°D .130°【例7】 如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.【例8】 如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.【例9】 如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.【例10】 如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.DCA BBA【例11】 如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65︒.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.【例12】 如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )B.4D.5【例13】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【例14】 如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.2. 圆内接四边形【例15】 如图,O ⊙外接于正方形ABCD ,P 为弧AD 上一点,且1AP =,PB =PC 的长.【例16】 如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点P ,BAPEC BAP DCBAAB BD =,且0.6PC =,求四边形ABCD 的周长.【例17】 如图,AB CD ,是O ⊙的两条弦,它们相交于点P ,连结AD BD 、,已知4AD BD ==,6PC =,求CD 的长.一、点与圆的位置关系4. 确定圆的条件(5) 圆心(定点),确定圆的位置; (6)半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定. 5. 点与圆的位置关系(7) 点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定. (8) 设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有:点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <.如下表所示:C二、过已知点的圆1. 过已知点的圆(1) 经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. (2) 经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个. (3) 过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. (4) 过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.2. 定理:不在同一直线上的三点确定一个圆(1) “不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆; (2) “确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1. 三角形的外接圆(1) 经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. (2) 锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部. 2. 三角形外心的性质(1) 三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; (2) 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.一、点与圆的位置关系【例18】 已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .7二、过三点的圆【例19】 如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【例20】 如图,直角坐标系中一条圆弧经过网格点A B C ,,,其中B 点的坐标为()44,,则该圆弧所在圆的圆心的坐标为 .三、三角形的外接圆及外心【例21】 如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .【例22】 等边三角形的外接圆的半径等于边长的( )倍. ABCD .12【例23】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【例24】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【例25】 已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E . ⑴ 求证:AD 的延长线平分∠CDE ;⑴ 若30∠=︒BAC ,∆ABC 中BC边上的高为2+∆ABC 外接圆的面积.直线与圆的位置关系设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:6. 切线的性质(9) 定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.(10) 注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB 过圆心,AB 过切点M ,则AB l ⊥. ②过圆心,垂直于切线⇒过切点.AB 过圆心,AB l ⊥,则AB 过切点M . ③过切点,垂直于切线⇒过圆心.AB l ⊥,AB 过切点M ,则AB 过圆心.7. 切线的判定(1) 定义法:和圆只有一个公共点的直线是圆的切线; (2) 距离法:和圆心距离等于半径的直线是圆的切线; (3) 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.AB CD El8. 切线长和切线长定理(1) 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. (2) 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三、三角形的内切圆1. 三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3. 直角三角形内切圆的半径与三边的关系设a 、b 、c 分别为ABC △中A ∠、B ∠、C ∠的对边,面积为S ,则内切圆半径为sr p=,其中()12p a b c =++.若90C ∠=︒,则()12r a b c =+-.二、切线的性质及判定【例1】 如图,ABC ∆为等腰三角形,AB AC =,O 是底边BC 的中点,O ⊙与腰AB 相切于点D ,求证AC 与O ⊙相切.lcb acbaO F ED CACBAB A【例2】 已知:如图,ABC ∆内接于O ,AD 是过A 的一条射线,且B CAD ∠=∠.求证:AD 是O 的切线.【例3】 已知:如图,AB 是O ⊙的直径,C 为O ⊙上一点,MN 过C 点,AD MN ⊥于D ,AC 平分DAB ∠.求证:MN 为O ⊙的切线.【例4】 如图,已知OA 是O ⊙的半径,B 是OA 中点,BC OA ⊥,P 是OA 延长线上一点,且PA AC =.求证:PC 是O ⊙的切线.【例5】 已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠DC 为O ⊙的切线;(2)2CD AD BD =⋅.【例6】 如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.C【例7】 如图,已知AB 为⑴O 的弦,C 为⑴O 上一点,⑴C =⑴BAD ,且BD ⑴AB 于B .(1)求证:AD 是⑴O 的切线.(2)若⑴O 的半径为3,AB =4,求AD 的长.【例8】 如图,Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.【例9】 如图,AB 是O ⊙的的直径,BC AB ⊥于点B ,连接OC 交O ⊙于点E ,弦AD OC ∥,弦DF AB⊥于点G .(1)求证:点E 是BD 的中点; (2)求证:CD 是O ⊙的切线;(3)若4sin 5BAD ∠=,O ⊙的半径为5,求DF 的长.【例10】 如图,等腰三角形ABC 中,10AC BC ==,12AB =.以BC 为直径作O ⊙交AB 于点D ,交AC于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是O ⊙的切线; (2)求sin E ∠的值.一、切线长定理1.如图,PA PB ,分别是O 的切线,A B ,为切点,AC 是O 的直径,已知35BAC ∠=︒,P ∠的度数为( ) A .35︒ B .45︒ C .60︒ D .70︒2.如图,PA PB 、分别切O ⊙于A B ,两点,PC 满足AB PB AC PC AB PC AC PB ⋅-⋅=⋅-⋅,且AP PC ⊥,2PAB BPC ∠=∠,求ACB ∠的度数.3.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=,8PA =,那么弦AB 的长是( )A .4B .8C.D.P则OP =( )A .50cm B.cm Ccm D.cm5.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D C E ,,.若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是( )A .9B .10C .12D .146.等腰梯形ABCD 外切于圆,且中位线MN 的长为10,那么这个等腰梯形的周长是________.7.如图,PA PB DE 、、分别切O ⊙于A B C 、、,若10PO =,PDE ∆周长为16,求O ⊙的半径.8.如图,PA PB ,切O 于AB ,,MN 切O 于C ,交PA PB ,于M N ,两点,已知8PA =,求PMN ∆的周长.PB P于G,交AB AC、于MN,则BMN∆的周长为______________.10.如图,已知AB是O⊙的直径,BC是和O⊙相切于点B的切线,O⊙的弦AD平行于OC,若2OA=,且6AD OC+=,求CD的长.补充讲义两圆的公切线(选讲自己了解)9.两圆的外公切线(11)求两圆外公切线长:构造外公切线、圆心距、大圆与小圆半径的差为边的特征直角三角形.如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的外公切线长为:l=,sin2R rdα-=(12)求两圆内公切线长:构造外公切线、圆心距、大圆与小圆半径的和为边的特征直角三角形.10.两圆的内公切线如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的内公切线长l=,sin2R r dα+ =CB AP圆与相似三角形经典证明题1.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3 点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系为.2.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4..Rt.ABC...ACB=90°.D.AB.......BD.....O.AC..E...DE.....BC.......F..BD=BF..1....AC..O....2..BC=6.AB=12...O....5....AB..O......A..O..........C...OC..O..D.BD.....AC.E...AD..1.....CDE..CAD..2..AB=2.AC=2..AE...6. 已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB 于点E..1....AC•AD=AB•AE..2...BD.⊙O....D....E.OB.....BC=2...AC...7.如图所示,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.8. 如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.9. 如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.10......O..AB....OC.AB..CD.OB...F..AB.......E..EF=ED..1....DE..O.....2..OF.OB=1.3..O...R=3.....11....AB .⊙O .....D ......∠BDE =∠CBE .BD .AE ...F .(1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF •DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若PA =AO ,DE =2,求PD 的长和⊙O 的半径.12.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC ,PB :PC =1:2. (1)求证:AC 平分∠BAD ;(2)探究线段PB ,AB 之间的数量关系,并说明理由; (3)若AD =3,求△ABC 的面积.13.已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC . (1)求证:BD 是⊙O 的切线; (2)求证:2CE EH EA =⋅; (3)若⊙O 的半径为5,3sin 5A =,求BH 的长.第13题图FH EOC B A。
(完整版)中考初三圆知识点专题复习
、圆中重要的知识点 1、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 简称2推3定理:此定理中共 5个结论中,只要知道其中 2个即可推出其它3个结论,即:3、如图,已知在O O 中,弦AB CD ,且AB CD ,垂足为H , 0E(1) 求证:四边形OEHF 是正方形.(2) 若CH 3 , DH 9,求圆心0到弦AB 和CD 的距离.以上共4个定理,①AB 是直径 ②AB CD ③ CEDE ④弧BC 弧BD ⑤弧AC 弧AD中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在O O 中,••• AB // CD•••弧 AC 弧 BD例题1、基本概念1. F 面四个命题中正确的一个是( A. 平分一条直径的弦必垂直于这条直径 •平分一条弧的直线垂直于这条弧所对的弦C. 弦的垂线必过这条弦所在圆的圆心 .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2. F 列命题中,正确的是().A.过弦的中点的直线平分弦所对的弧B.过弦的中点的直线必过圆心C.弦所对的两条弧的中点连线垂直平分弦,且过圆心D.弦的垂线平分弦所对的弧例题2、垂径定理1、在直径为 52cm 的圆柱形油槽内装入一些油后,为 16cm, 那么油面宽度AB 是cm.2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是 48cm,那么油的最大深度为 _______ cm.AB 于 E , OF CD 于 F .截面如图所示,如果油的最大深度4、已知:△ ABC内接于O O, AB=AC半径OB=5cm圆心O到BC的距离为3cm,求AB的长.5、如图,F是以O为圆心,BC为直径的半圆上任意一点,A是〒的中点,AD丄BC于D,求证:AD=1 BF.2F例题3、度数问题1、已知:在O O中,弦AB 12cm , 0点到AB的距离等于AB的一半,求:AOB的度数和圆的半径2、已知:O O的半径0A 1,弦AB AC的长分别是J2、J3.求BAC的度数。
中考数学圆知识点总结5篇
中考数学圆知识点总结5篇第1篇示例:数学是中考考试的必考科目,而关于圆的知识点在数学中占有非常重要的地位。
掌握了圆的相关知识,不仅能够在中考中取得更好的成绩,也有助于我们理解和运用数学知识。
下面我们来总结一下关于中考数学圆知识点的内容。
一、圆的基本概念圆是由平面上距离给定点(圆心)的所有点构成的集合,圆心到圆上任意一点的距离称为半径,圆内不经过圆心的线段称为弦,圆内的一段是弦分成的弧,半径的两端和圆上的一点共线,相交于该点的两条切线长度相等等。
二、圆的性质1. 同圆的弦长相等,异圆的弦长不等。
2. 相等圆的半径相等,而且圆周相等。
3. 圆内角、弦的角平分线和半径三者相交于一点。
4. 圆的外接角是对半的,即半径与切线相交于90度,弦与弦的夹角、切线与切线的夹角相等。
5. 内角落在圆弧内的叫做圆心角。
三、圆的相关定理1. 存在唯一的过三点的圆定理(就是圆的唯一性)。
2. 切、割定理(切线与切线、弦、割线各自乘积相等)。
3. 平行/相似判定定理(有什么情况判断两个圆是否平行或相似)。
4. 余弦定理(三角形当中,直角三角形含有的一种特殊情况)。
5. 弦切角定理(描述弦在圆内部与对应的两平行切线的关系)。
6. 余切定理(指两个切线、或一条切线和半径之间的倍率关系)。
7. 切线定理(圆外一点到圆的切线与切点连线的长度之积)。
四、圆的应用1. 圆的相关计算问题:包括求圆周长、面积等。
2. 圆与三角形、正方形/矩形的结合题:针对圆与其他几何形状的相互作用问题。
3. 圆与证明题:利用圆的性质,进行证明题目。
圆的知识点在中考数学中具有非常重要的地位,掌握了圆的相关知识,可以更好地完成相关题目。
在复习中,我们需要通过大量的练习,加深对圆的概念和性质的理解,提高解题的能力和速度。
希望同学们能够认真学习和练习,取得优异的成绩,顺利通过中考。
第2篇示例:中考数学圆知识点总结圆是我们日常生活中常见的几何图形之一,具有许多特殊性质和规律。
专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)
专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
中考圆的知识点总结
中考圆的知识点总结前言中考是每个初中毕业生都要面临的重要考试。
其中,圆的知识点在数学科目中占据着重要的地位。
圆是几何学中的基本形状之一,了解和掌握圆的相关知识是学生们在中考中取得优异成绩的关键之一。
本文将对中考圆的知识点进行总结,以帮助学生们更好地复习和备考。
正文圆的定义与特征•圆的定义:圆是平面上所有距离中心点相等的点的集合。
•圆的符号表示:圆的中心点用大写字母 O 表示,圆的半径用小写字母 r 表示,整个圆用符号 O(r) 表示。
圆的基本要素与术语•圆心:圆的中心点,用大写字母 O 表示。
•半径:从圆心到圆上任意一点的距离,用小写字母 r 表示。
•圆上的点:圆上的任意一点,与圆心的距离等于半径。
圆的性质与定理1.直径:通过圆心并且在圆上的一条线段,其长度等于圆的半径的两倍。
2.弦:在圆上连接两点的线段。
3.弧:在圆上连接两点的弧。
4.切线:与圆只有一个交点的直线,与圆的切点处于圆的外部。
5.弦切定理:如果一条弦经过圆心,那么它一定是直径。
6.切线切割定理:切线与圆的切点处的切割线段长度相等。
7.弦心定理:一条弦中点连线与该弦对应的圆心连线垂直且相等。
圆的计算公式与应用1.圆的周长公式:C = 2πr(其中,C 表示圆的周长,r 表示圆的半径)。
2.圆的面积公式:A = πr²(其中,A 表示圆的面积,r 表示圆的半径)。
结尾通过本文的总结,我们对中考圆的相关知识点进行了梳理和归纳。
掌握圆的定义、特征、基本要素与术语,以及圆的性质与定理,可以更好地理解和运用圆的知识。
此外,熟悉圆的计算公式与应用,可以帮助学生们在解题中更加准确地计算圆的周长和面积。
希望本文对学生们的中考备考有所帮助,祝愿大家取得优异成绩!。
中考数学圆知识点总结5篇
中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。
二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。
2. 切线性质:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。
4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。
圆锥椭圆的两焦点是圆锥的底面圆心和顶点。
双曲线类似。
三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。
如圆形广场、圆形剧场等。
2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。
这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。
3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。
这些元件的形状和布局对于电子设备的功能和性能有着重要影响。
4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。
对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。
四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。
我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。
2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。
3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。
中考圆知识点经典总结
圆知识点学案考点一、圆的相关概念1、圆的定义在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”考点二、弦、弧等与圆有关的定义(1)弦连接圆上任意两点的线段叫做弦。
(如图中的AB)(2)直径经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。
(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧考点四、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
考点五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弦心距从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
考点六、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
中考数学圆知识点归纳
中考数学圆知识点归纳1.基本概念-圆:由平面上距离固定点的所有点构成的集合。
-圆心:圆的中心点,用O表示。
-半径:圆心到任意一个点的距离,用r表示。
-直径:通过圆心并且两端点在圆上的线段,其长度为2r。
-弦:连接圆上任意两点的线段。
-弧:圆上两点之间的一段弧。
-弧长:圆的周长。
-弦长:弦的长度。
-切线:只与圆相交于一个点的直线。
-弦切角:以一个弦为直角边的角。
-弦割角:以一个切线和弦为直角边的角。
2.圆的性质-圆上任意两点与圆心的距离相等。
-圆上任意一点到圆心的距离等于半径的长度。
-直径是圆的一条特殊的弦,其长度是任意弦长的两倍。
-圆切线与半径垂直。
-圆切线与切点之间的弦是弦切角的平分线。
-圆切线与半径的夹角等于弦割角。
3.弦长定理-弦长定理:在同一个圆或等圆的两条弦上,如果有一条弦分别与这两条弦垂直,则这两条弦的乘积等于弦的和与弦的差的乘积。
即a*b=c*d,其中a、b为弦的长度,c、d为弦的长度。
4.弧长与扇形面积-弧长:扇形所对的弧的长度,记为L。
-弧长公式:弧长L=rθ,其中r为半径,θ为弧所对的圆心角的度数。
-扇形面积:扇形所对的圆心角所包含的面积,记为S。
-扇形面积公式:扇形面积S=(1/2)r²θ,其中r为半径,θ为弧所对的圆心角的度数。
5.圆周角-圆周角:以圆心为顶点的角。
-弧度制:圆周角的度数换算为弧度的形式,1弧度=180°/π。
-弧度公式:弧长L=rθ,其中r为半径,θ为圆周角的弧度数。
6.相交弦与切线关系-相交弦的性质:-相交弦的线段积相等:如果两条相交弦AD与BC在圆上,且E为相交弦的交点,则AE*DE=BE*CE。
-斜弦的性质:如果两条斜弦在圆上且互不相交,且两条斜弦分别与同一条直径AB相交于两个点C和D,则角ACD+∠ABD=180°。
-弦割弦定理:若弦AB与弦CD相交,则AB/CD=(AD/BC)^2-切线的性质:-切线长度:切线长等于圆心到切点的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角∴2AOB ACB ∠=∠图4图5BD2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注意:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O 中, ∵四边ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠九、切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线2、性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:BABAO即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线 ∴PA PB =;PO 平分BPA ∠十一、圆幂定理1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P ,∴PA PB PC PD ⋅=⋅推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线∴ 2PA PC PB =⋅3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图)。
即:在⊙O 中,∵PB 、PE 是割线∴PC PB PD PE ⋅=⋅十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图:12O O 垂直平分AB 。
即:∵⊙1O 、⊙2O 相交于A 、B 两点∴12O O 垂直平分ABDBA十三、圆的公切线 两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO =(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和十四、圆内正多边形的计算 (1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n Rl π=;(2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r ππ+(2)圆柱的体积:2V r h π=3、圆锥侧面展开图lOC 1D 1(1)S S S =+侧表底=2Rr r ππ+(2)圆锥的体积:213V r h π=十六、内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c ,则内切圆的半径r=2cb a -+ 。
(3)S △ABC =)(21c b a r ++,其中a ,b ,c 是边长,r 是内切圆的半径。
(4)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
如图,BC 切⊙O 于点B ,AB 为弦,∠ABC 叫弦切角,∠ABC=∠D 。
C考点一:与圆相关概念的应用利用与圆相关的概念来解决一些问题是必考的内容,在复习中准确理解与圆有关的概念,注意分清它们之间的区别和联系.1.运用圆与角(圆心角,圆周角),弦,弦心距,弧之间的关系进行解题BO A D【例1】已知:如图所示,在△ABO中,∠AOB=90°,∠B=25°,以O为圆心,OA长为半径的圆交AB于D,求弧AD的度数.【例2】如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为().A. 30°B. 45°C. 50°D.60°2.利用圆的定义判断点与圆,直线与圆、圆与圆的位置关系【例3】已知⊙O的半径为3cm,A为线段OM的中点,当OA满足:(1)当OA=1cm时,点M与⊙O的位置关系是 .(2)当OA=时,点M与⊙O的位置关系是 .(3)当OA=3cm时,点M与⊙O的位置关系是 .【例4】⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是().A. 相交B. 相切C. 相离D. 无法确定【例5】两圆的半径分别为3cm和4cm,圆心距为2cm,那么两圆的位置关系是______________.3.正多边形和圆的有关计算【例6】已知正六边形的周长为72cm,求正六边形的半径,边心距和面积.4.运用弧长及扇形面积公式进行有关计算【例7】如图,矩形ABCD中,BC=2,DC=4,以AB为直径的半圆O与DC相切于点E,则阴影部分的面积为(结果保留).5.运用圆锥的侧面弧长和底面圆周长关系进行计算【例8】已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径长的比是 .考点二:圆中计算与证明的常见类型1.利用垂径定理解题垂径定理及其推论中的三要素是:直径、平分、过圆心,它们在圆内常常构成圆周角、等分线段、直角三角形等,从而可以应用相关定理完成其论证或计算.【例1】在⊙O中,弦CD与直径AB相交于点P,夹角为30°,且分直径为1∶5两部分,AB=6,则弦CD 的长为 .A. 2B. 4C. 4D. 22.利用“直径所对的圆周角是直角”解题“直径所对的圆周角是直角”是非常重要的定理,在解与圆有关的问题时,常常添加辅助线构成直径所对的圆周角,以便利用上面的定理.【例2】如图,在⊙O的内接△ABC中,CD是AB边上的高,求证:∠ACD=∠OCB.3.利用圆内接四边形的对角关系解题圆内接四边形的对角互补,这是圆内接四边形的重要性质,也揭示了确定四点共圆的方法.【例3】如图,四边形ABCD为圆内接四边形,E为DA延长线上一点,若∠C=45°,AB=2,则点B到AE的距离为________.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB的延长线上,且有∠BAP=∠BDA.求证:AP是半圆O的切线.题库BOAPC一. 选择题:1. ⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥R ,则P 点 [ ] A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为[ ] A 、2或3 B 、3 C 、4 D 、2 或43.如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是[ ]° ° ° °4.在⊙O 中,弦AB 垂直并且平分一条半径,则劣弧AB 的度数等于[ ] ° ° ° °5.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是[ ] A、相离 B、相切 C、相切或相交 D、相交 6、如图,PA切⊙O 于A,PC交⊙O 于点B、C ,若PA =5,PB =B C,则PC的长是[ ] A、10 B、5 C、25 D、357.如图,某城市公园的雕塑是由3个直径为1m 的圆两两相垒立在水平的地面上,则雕塑的最高点到地面的距离为[ ] A .232+ B.233+ C.222+ D. 223+8、已知两圆的圆心距是9,两圆的半径是方程2x 2-17x+35=0的两根,则两圆有[ ]条切线。