高分子化学与物理基础

合集下载

高分子化学与物理基础第二版教学反思

高分子化学与物理基础第二版教学反思

高分子化学与物理基础第二版教学反思背景介绍高分子化学与物理基础是化学专业中一门非常重要的课程,其对学生未来从事材料、化工等领域的研发工作都具有很大的指导意义。

本文主要对经过多年改良更新后的高分子化学与物理基础第二版进行教学反思及总结,为今后的教学提供参考。

教学内容高分子化学与物理基础第二版是一本关于高分子基础知识的教材,内容上主要包含了高分子的基本概念、高分子结构、高分子物理性质、合成和加工等方面的内容。

在教学过程中,我们重点关注学生对高分子材料的理解和应用能力的培养。

为此,在课堂上主要采用了讲授、案例分析以及实践操作几种教学方式,并配合了一些相关实验进行辅助教学。

可以肯定的教学效果经过多年的教学实践,我们可以肯定的是,通过高分子化学与物理基础第二版的教学,学生的高分子材料知识掌握程度得到了很大的提高。

在期末考试中,学生的平均分以及及格率都明显高于以前教学的结果。

此外,在学生实践操作中,学生整体表现也较为出色,能够有比较好的理解并进行实际应用。

可以改进的地方虽然教学的效果比较好,但是总还是有一些需要改进的地方。

具体来说,可以从以下几个方面进行改进:1.教学过程需要更加生动有趣。

虽然我们尽量采用了紧密结合实际应用的案例分析和实践操作,但是课堂的教学仍然存在一些枯燥乏味的问题。

今后需要进一步完善课堂教学内容,增加生动有趣的教学案例和实践操作。

2.课程内容需要更新。

随着新技术的不断涌现,以前的知识点是否仍然适用于当前的高分子材料研究,需要我们进行进一步的调整和更新。

今后需要及时关注新的高分子材料研究成果,并及时更新教学内容。

3.学生自主学习能力需要提升。

虽然我们在教学中注重学生的实践操作,但是对于一些学生而言,自主学习能力还有待提高。

今后需要鼓励学生更多地参与教学实践操作,提高自主学习能力。

总结高分子化学与物理基础第二版是一门非常重要的课程,其对学生未来从事材料、化工等领域的研发工作都具有很大的指导意义。

高分子化学与物理基础名词解释

高分子化学与物理基础名词解释

单体:能通过相互反应生成高分子的化合物。

高分子或聚合物:由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。

相对分子质量低于1000的称为低分子。

相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。

相对分子质量大于1 000 000的称为超高相对分子质量聚合物。

主链:构成高分子骨架结构,以化学键结合的原子集合。

侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。

支链可以较小,称为侧基;也可以较大,称为侧链。

聚合反应:由低分子单体合成聚合物的反应称做~.重复单元:聚合物中组成和结构相同的最小单位称为~,又称为链节。

结构单元:构成高分子链并决定高分子性质的最小结构单位(或原子组合)称为~单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。

连锁聚合(Chain Polymerization ):活性中心引发单体,迅速连锁增长的聚合。

烯类单体的加聚反应大部分属于连锁聚合。

连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。

逐步聚合(Step Polymerization ):无活性中心,单体官能团之间相互反应而逐步增长。

绝大多数缩聚反应都属于逐步聚合。

加聚反应(Addition Polymerization ):即加成聚合反应, 烯类单体经加成而聚合起来的反应。

加聚反应无副产物。

缩聚反应(Condensation Polymerization ):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。

该反应常伴随着小分子的生成。

线型聚合物:指许多重复单元在一个连续长度上连接而成的高分子.热塑性塑料(Thermoplastics Plastics):是线型可支链型聚合物,受热即软化或熔融,冷却即固化定型,这一过程可反复进行。

聚苯乙烯(PS )、聚氯乙烯(PVC )、聚乙烯(PE )等均属于此类。

热固性塑料(Thermosetting Plastics):在加工过程中形成交联结构,再加热也不软化和熔融。

高分子化学与物理基础

高分子化学与物理基础

单体:能够形成聚合物中结构单元的小分子化合物。

高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。

由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。

缩聚物:通过缩聚反应得到的聚合物。

低聚物:相对分子质量在102-104的分子。

凝胶点:开始出现凝胶时的临界反应程度。

官能团:单体分子中能参见反应并能表征反应类型的原子或原子团。

官能度;一个分子上参加反应的官能团数。

(1) CH2=CH-Cl,氯原子的诱导效应和共轭效应作用相反,且均较弱,所以离子聚合困难,只能自由基聚合。

(2) CH2=C(Cl)2,结构不对称,同时比氯乙烯多一个氯原子,诱导作用加强,可进行阴离子和自由基聚合。

(3) CH2=CH-CN,氰基为吸电子基团,可降低双键的电子云密度,可进行阴离子和自由基聚合,在一定条件下还可进行陪位聚合。

(4) CH2=CH(CN)2,两个氰基的诱导吸电子作用过强,只能进行阴离子聚合。

(5) CH2=CHCH3,甲基可产生供电超共轭效应,但强度不大,同时聚合产生的烯丙基自由基稳定,不会增长为大分子,故不发生自由基和离子聚合,只在特殊的络合引发剂作用下进行配位聚合。

(6) CH2=C(CH3)2,两个甲基能产生较强的给电子效应,可进行阳离子聚合。

在一定条件下可发生配位聚合。

(7) CH2=CH-C6H5,共轭体系,π电子流动性大,易极化,可发生自由基、阴离子、阳离子聚合。

(8) CF2=CF2,四个氟原子均产生吸电子诱导作用,但结构对称,机化度小,同时氟原子体积小,可发生自由基聚合。

(9) 两个吸电子基产生很强的吸电子诱导作用,只可进行阴离子聚合。

(10) CH2=C(CH3)CH=CH2,共轭体系,π电子流动性大,发生自由基、阴离子、阳离子聚合。

1.什么是自由基聚合、阳离子聚合和阴离子聚合?解:自由基聚合:通过自由基引发进行链增长得到高聚物的聚合反应。

高分子化学与物理基础(魏无忌)答案

高分子化学与物理基础(魏无忌)答案

高分子化学与物理基础(魏无忌)答案《高分子化学》习题与解答第一章、绪论习题与思考题1. 写出下列单体形成聚合物的反应式。

注明聚合物的重复单元和结构单元,并对聚合物命名,说明属于何类聚合反应。

(1)CH2=CHCl; (2)CH2=C (CH3)2; (3)HO(CH2)5COOH;(4); 2CH2CH2(5)H2N(CH2)10NH2 + HOOC(CH2)8(6)OCN(CH2)6NCO + HO(CH2)2OH ;2. 写出下列聚合物的一般名称、单体和聚合反应式。

CH3 2(1)(2)23 3(3)2)6NHOC(CH2)4(4))25(5)2 3 3(6)3.3(1)聚丙烯晴(2)丁苯橡胶(3)涤纶(4)聚甲醛(5)聚氧化乙烯(6)聚砜4. 解释下列名词:(1)(2)(3)(4)高分子化合物,高分子材料结构单元,重复单元,聚合度;分子量的多分散性,分子量分布,分子量分布指数;线型结构大分子,体型结构大分子;(5)均聚物,共聚物,共混物;(6)碳链聚合物,杂链聚合物。

5. 聚合物试样由下列级分组成,试计算该试样的数均分子量Mn和重均分子量Mw及分子量分布指数。

1 20.5 0.21×104 1×1053 40.2 0.15×101×105 66. 常用聚合物分子量示例于下表中。

试计算聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、顺丁橡胶及天然橡胶的聚合度,并根据这六种聚合物的分子量和聚合度认识塑料、纤维和橡胶的差别。

7. 高分子化合物的制备方法有哪几类?试分别举例说明之。

8. 高分子科学的主要研究内容是什么?为什么说它既是一门基础科学,也是一门应用科学?习题与思考题1.解:(1) 加聚反应ln*****Cl结构单元和重复单元都是:(2)加聚反应H2CH3nCH2(CH3)H2CH3结构单元和重复单元都是:H3H2CH3(3) 缩聚反应nHO(CH2)5COOHH2)5C结构单元和重复单元都是(4) 开环聚合反应n*****H2O(CH2)5CH2*****结构单元和重复单元都是:(5)缩聚反应*****H2OnH2N(CH2)10NH2 +HOOC(CH2)8COOHH2)10NHC(CH2)8C结构单元:(6)加聚反应HN(CH2)10NH和C(CH2)8CnOCN(CH2)6NCO + HO(CH2)2H2)6H2)2结构单元:H2)6和2)2重复单元:H(CH2)6NHH2)2O2.解: (1)聚甲基丙烯酸甲酯单体为甲基丙烯酸甲酯H3nCH2C(CH3)(*****2CCOOCH3(2) 聚丙烯酸甲酯单体为丙烯酸甲酯nCH2CH(*****2COOCH3(3) 聚己二酸乙二酯(尼龙66)单体为乙二胺和乙二酸H2N(CH2)6NH2 +nHOOC(CH2)42)6NHCO(CH2)42n-1)H2O (4) 聚己内酰胺单体为己内酰胺或氨基己酸nH2)5H2)5C或nH2N(CH2)6CH2)5COH + (n-1)H2O(5) 聚异戊二烯单体为异戊二烯nCH2(CH3)CHH2C(***** ]n(6) 聚碳酸酯单体为双酚A和光气CH3nHOH3OH+nCOCl2CH3OOCl+(2n-1)HClnCCH33.解:(1) 单体为丙烯腈nCHCHC(2)单体为丁二烯和苯乙烯CH2H2CH2nCH2H2+nCH2nH2*****H2(3) 单体为对苯二甲酸和乙二醇*****+*****2OH*****2OH*****2OCCHCHC(4) 单体为甲醛nCH2O2O(5) 单体为环氧乙烷或单体为乙二醇或单体为氯乙醇(6) 单体为4.解:(7)高分子化合物,高分子材料;高分子化合物指的是由多种原子以相同的,多次重复的结构单元通过共价键连接起来46的,分子量是10~10的大分子所组成的化合物。

高分子化学与物理基础

高分子化学与物理基础

第一章绪论习题1. 说明下列名词和术语:(1)单体,聚合物,高分子,高聚物单体:能够形成聚合物中结构单元的小分子化合物。

高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。

由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。

(2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子碳链聚合物:聚合物主链完全由碳原子构成的聚合物。

杂链聚合物:主链除碳外还含有氧、氮、硫等杂原子的聚合物。

元素有机聚合物:主链不含碳,而侧基由有机基团组成的聚合物。

无机高分子;主链和侧基均无碳原子的高分子。

(3)主链,侧链,侧基,端基主链:贯穿于整个高分子的链称为主链。

侧链:主链两侧的链称为侧链。

侧基:主链两侧的基团称为侧基。

端基:主链两端的基团称为端基。

(4)结构单元,单体单元,重复单元,链节结构单元:高分子中多次重复的且可以表明合成所用单体种类的化学结构。

重复单元:聚合物中化学组成相同的最小单位,又称为链节。

单体单元:聚合物中具有与单体相同化学组成而不同电子结构的单元。

(5)聚合度,相对分子质量,相对分子质量分布聚合度:高分子链中重复单元的数目称为聚合度。

相对分子质量:重复单元的相对分子质量与聚合度的乘积即为高分子的相对分子质量。

对于高分子来说,通过聚合反应获得每一大分子相对分子质量都相同的聚合物几乎是不可能的,这种聚合物相对分子质量的多分散性又称为聚合物相对分子质量分布,可用重均相对分子质量与数均相对分子质量的比值表示其分布宽度。

(6)连锁聚合,逐步聚合,加聚反应,缩聚反应加聚反应:单体通过相互加成而形成聚合物的反应。

缩聚反应:带有多个可相互反应的官能团的单体通过有机化学中各种缩合反应消去某些小分子而形成聚合物的反应。

连锁聚合:在链引发形成的活性中心的作用下,通过链增长、链终止、链转移等基元反应在极短时间内形成高分子的反应。

逐步聚合:通过单体上所带的能相互反应的官能团逐步反应形成二聚体、三聚体、四聚体等,直到最终在数小时内形成聚合物的反应。

高分子化学和物理

高分子化学和物理

高分子化学和物理高分子化学是研究大分子化合物的化学、结构、性质和合成方法等方面的学科。

它是材料科学和工程领域中十分重要的一门学科,具有广泛的应用前景。

高分子物理是研究高分子材料的物理性质和现象的学科。

高分子物理对于理解高分子材料的结构和性质、控制高分子材料的结构和性质以及开发新的高分子材料等方面都有重要意义。

高分子化合物是由许多重复单元组成的大分子化合物。

高分子材料是由高分子化合物构成的材料。

高分子材料具有许多优良的性质,例如高强度、高韧性、耐磨性、耐化学腐蚀性等,被广泛地应用于汽车、电子、医疗、航空、建筑等领域。

高分子化学是研究高分子化合物的物理、化学和结构等方面的学科。

高分子化学的研究对象包括高分子的合成方法、结构、形态、性质、应用等方面。

高分子的分类方法有许多种,例如按链长分为超分子、超高分子、大分子等;按功能划分为物理性能、化学性质、热力学、动力学等。

高分子的结构也有许多种分类方法,例如按分子量、聚合度、极性等。

高分子的合成方法主要有四种:自由基聚合、阳离子聚合、阴离子聚合和羧酸聚合。

自由基聚合是最常用的一种,其反应机理是通过光、热或化学作用激发单体分子中的一个自由基,然后它就能够和另一个单体分子中的自由基发生反应,形成一个链长增大一个单体分子的高分子分子。

阳离子聚合和阴离子聚合是在带正离子或带负离子的引聚体存在下,通过捕获共轭共振偶极子或异极子与单体成立活泼质子化合物并释放出引聚学界、产生引聚反应的一种聚合方法。

羧酸聚合是在含有羧酸官能团的单体中,通过官能团的缩合作用发生聚合反应。

高分子的应用非常广泛,既包括常见的聚乙烯、聚丙烯等塑料材料,也包括更加高级的聚二甲基硅氧烷、聚酰亚胺、聚醚酮等高温材料。

这些高分子材料在汽车、电子、医疗、航空、建筑等领域中都有广泛的应用。

高分子材料的结构和形态与其性质有密切关系。

高分子材料的分子结构、平衡结晶结构和非平衡结构(例如玻璃态结构)对材料的力学性能、导电性能、光学性能等都具有重要影响。

高分子化学与物理基础ppt课件

高分子化学与物理基础ppt课件

1926年 瑞典化学家斯维德贝格等人设计出一种超离心机,用它测量出蛋白质 的分子量:证明高分子的分子量的确是从几万到几百万。 1926年 美国化学家Waldo Semon合成了聚氯乙烯,并于1927年实现了工业化生 产。 1930年 聚苯乙烯(PS)发明。 1932年 Hermann Staudinger总结了自己的大分子理论,出版了划时代的巨著 《高分子有机化合物》成为高分子化学作为一门新兴学科建立的标志。 1935年 杜邦公司基础化学研究所有机化学部的Wallace H. Carothers合成出聚酰 胺66,即尼龙。尼龙在1938年实现工业化生产。 1930年 德国人用金属钠作为催化剂,用丁二烯合成出丁钠橡胶和丁苯橡胶。 1940年 英国人T. R. Whinfield合成出聚酯纤维(PET)。 1940年代 Peter Debye 发明了通过光散射测定高分子物质分子量的方法。 1948年 Paul Flory 建立了高分子长链结构的数学理论。 1953年 德国人Karl Ziegler与意大利人Giulio Natta分别用金属络合催化剂合成 了聚乙烯与聚丙烯。 1955年 美国人利用齐格勒-纳塔催化剂聚合异戊二烯,首次用人工方法合成了 结构 与天然橡胶基本一样的合成天然橡胶。 1956年 Szwarc提出活性聚合概念。高分子进入分子设计时代。 1971年 S. L Wolek 发明可耐300℃高温的Kevlar。 1970'以后 高分子合成新技术不断涌现,高分子新材料层出不穷。
OH + CH2O
OH OH
CH2OH
OH
OH
CH2
OH ,CH2O
OH CH2
OH
OH
CH2 n
CH2 O CH2
OH CH2

考研高分子化学及物理讲义

考研高分子化学及物理讲义

高分子物理部分1、什么是嵌段共聚物?试举一个嵌段共聚物的实例,并说明其合成方法及共聚物性能?2、什么是接枝共聚物?试举一个接枝共聚物的实例,并说明其合成方法及共聚物性能?3、指出高分子溶剂是良溶剂、θ溶剂和劣溶剂的条件?4、简述取代基对高分子链柔顺性的影响?5、简述分子间作用力对聚合物凝聚态结构和性能的影响?6、简述高分子运动的特点?简述影响高分子结晶能力的因素?7、什么是结晶速度?简述温度对结晶速度的影响?用什么方法可以得到透明的聚合物材料?8、简述高聚物的熔化和低分子熔化的相似点和区别?9、怎样能够制取强度和韧性均较好的纤维材料?10、以HIPS为例说明共混高聚物对热性能和力学性能的影响?11、什么是理想溶液?简述高分子溶液与理想溶液的区别?12、结合非晶态高聚物的温度-形变曲线分析高聚物的两种转变和三种力学状态?为什么非晶态高聚物随温度变化出现三种力学状态和两种转变?13、用自由体积理论解释玻璃化转变现象?14、简述玻璃化温度的影响因素?三、图表类高分子化学部分1、分子量与转化率关系:2、自由基聚合速率:转化率—时间曲线:中期:自动加速现象3、聚合过程中速率变化类型4、分子量分布:歧化终止数量分布函数和质量分布函数:偶合终止数量分布函数(曲线1)和质量分布函数(曲线2):5、理想共聚和交替共聚共聚物瞬时组成与单体组成的关系:6、非理想非恒比共聚(左图)与有恒比点的非理想共聚(右图):7、共聚物组成与转化率的关系:8、四种聚合方法的比较9、乳液聚合动力学曲线示意图:10、常用烯类单体对聚合类型的选择11、自由基聚合和离子聚合的特点比较12、自由基聚合和缩聚机理特征的比较13、分子量分布曲线不同反应程度下线形缩聚物分子量的数量分布曲线(左图)和质量分布曲线(右图)高分子物理部分1、聚合物的结晶速度与温度的关系:2、结晶聚合物和小分子晶体在加热熔融过程中比热容随温度的变化曲线:3、4、在同一坐标系中画出牛顿流体、假塑性流体、膨胀性流体粘度随剪切速率的关系图(左图):聚合物零切粘度与分子量的关系曲线(右图)5、聚合物的比容随温度的变化曲线(左图)非晶态聚合物模量随温度的变化曲线(右图):6、玻璃化温度与相对分子质量之间的关系(左图):两种交联天然橡胶,样品1的交联度大于样品2的交联度,在同一坐标系中画出温度--形变曲线(右图):7、非晶态聚合物的应力应变曲线(左图):应力—应变曲线(右图):8、对如下四种聚合物施加一恒定应力,然后除去应力,形变--温度曲线(发展和恢复过程)9、交联和线性聚合物的应力松弛曲线(左图):结晶聚合物的应力应变曲线(右图):10、储能模量、损耗模量及损耗角的正切值随温度的变化曲线:储能模量、损耗模量及损耗角的正切值随作用频率的变化曲线:(教材P150)补充:1、聚合物--溶剂体系的相图2、特性粘度的求法:3、非晶态聚合物的温度—形变曲线4、线性非晶态聚合物的蠕变及回复曲线:5、蠕变与温度和外力的关系(左图):硫化橡胶拉伸和回缩的应力--应变曲线(中图):聚合物的形变—温度曲线和内耗温度曲线(右图):6、聚合物5种类型应力—应变曲线:7、聚合物应力—温度、应力—应变曲线:8、聚合物熔体和溶液的普适流动曲线:(教材P203)9、切变速率—分子量—粘度的关系(左图):分子量对聚合物流动曲线的影响(中图):分子量分布对聚合物流变曲线的影响(右图):四、计算类高分子化学部分1、聚合物分子量与聚合度的关系M=DP•M0 或M=X n•M0例:M=n•M0;M=2n•M0;(注意M0的计算方法)2、自由基聚合速率方程:动力学链长:无链转移时聚合度:或链转移下的聚合度:例:在100毫升无阻聚物存在的甲基丙烯酸甲酯中,加入0.0242克过氧化二苯甲酰,并在60℃下聚合。

高分子化学与物理基础(第二版)第7章高分子的结构(可编辑)

高分子化学与物理基础(第二版)第7章高分子的结构(可编辑)

高分子化学与物理基础(第二版)第7章高分子的结构第7章高分子的结构1高分子的近程结构2高分子的远程结构3高分子链的均方末端距4高分子的分子间作用力与聚集态5高分子的晶态结构第7章高分子的结构6高分子的结晶度与物理性能7 高分子的结晶行为和结晶动力学8高分子的非晶态结构9高分子的取向态结构1 0高分子的液晶态结构1 1高分子共混体系的聚集态结构第7章高分子的结构高分子的结构决定了其物理性能。

通过对高分子的结构以及分子运动的研究,发现高分子结构与性能之间的内在联系,就能够从性能的角度指导高分子的合成和高分子材料的成型加工,使高分子材料更好地满足实际应用的要求。

因此,研究高分子结构是高分子设计和材料设计的重要基础。

7.1 高分子的近程结构1高分子的化学组成2结构单元的键接方式3高分子链的构造---线型、支化和交联4共聚高分子的组成与结构5高分子链的构型7.1.1 高分子的化学组成7.1.1.1 碳链高分子这类高分子的共同特点是可塑性较好,化学性质比较稳定,不易水解,但是力学强度一般,而且由于碳氢键和碳碳键的键能较低,高分子的耐热性较差。

7.1.1.2 杂链高分子该类高分子一般由逐步聚合反应或者开环聚合得到。

相对于碳链高分子,它们的耐热性和强度明显提高,但是由于主链上含有官能团,容易发生水解、醇解和酸解等副反应,化学稳定性较差。

7.1.1 高分子的化学组成7.1.1.3 元素有机高分子元素有机高分子一方面保持了有机高分子的可塑性和弹性,另一方面还具有无机物的优良热稳定性,因此可以在一些特殊的场合使用。

缺点是强度较低。

7.1.1.4 无机高分子分子链(包括主链和侧基)完全由无机元素组成,不含碳原子。

例如聚硫、聚硅等。

这类高分子的耐高温性能优异,但同样存在强度较低的问题。

7.1.2 结构单元的键接方式高分子链一般由结构单元通过共价键重复连接而成。

例如a-烯烃双烯类单体聚合时结构单元的键接方式会更加复杂。

如2-氯丁二烯的自由基聚合有三种加成方式。

高分子化学与物理

高分子化学与物理

《高分子化学与物理》考试大纲本<<高分子化学与物理>>考试大纲适用于高分子化学与物理专业的硕士研究生入学考试。

高分子化学与物理是化学学科的基础理论课。

高分子化学内容主要包括连锁聚合反应、逐步聚合反应和聚合物的化学反应等聚合反应原理,要求考生熟悉相关高分子化学的基本概念,掌握常用高分子化合物的合成方法、合成机理及大分子化学反应,能够写出主要聚合物的结构式,熟悉其性能并且能够对给出的现象给以正确、合理的解释。

高分子物理内容主要包括高分子的链结构与聚集态结构,聚合物的分子运动,聚合物的溶液性质以及聚合物的流变性能、力学性能、介电性能、导电性能和热性能等,要求考生熟悉相关高分子物理的基本概念,掌握有关聚合物的多层次结构及主要物理、机械性能的基本理论和基本研究方法。

考生应具备运用高分子化学与物理的知识分析问题、解决问题的能力。

一、考试内容高分子化学部分(一)绪论1.高分子的基本概念;2.聚合物的命名及分类;3.分子量;4.大分子微结构;5.聚合物的物理状态;6.聚合物材料和强度。

(二)自由基聚合1.自由基聚合机理;2.链引发反应;3.聚合速率;4.分子量和链转移反应;5.分子量分布6.阻聚与缓聚7.聚合热力学8.可控/活性自由基聚合(三)自由基共聚合1.共聚物的类型和命名2.二元共聚物的组成3.竟聚率的测定和影响因素4.单体和自由基的活性5.Q-e概念(四)聚合方法1.本体聚合2.溶液聚合3.悬浮聚合4.乳液聚合(五)阳离子聚合1.阳离子聚合的单体;2.阳离子引发体系;3.阳离子聚合机理;4.影响阳离子聚合的因素;5.聚异丁烯和丁基橡胶。

(六)阴离子聚合1.阴离子聚合的单体;2.阴离子引发体系和引发;3.阴离子聚合引发剂和单体的匹配4.活性阴离子聚合5.丁基锂的缔合现象和定向聚合作用(七)开环聚合1.环烷烃开环聚合热力学2.杂环开环聚合机理和动力学特征3.环氧烷烃的阴离子开环聚合4.其他环醚的阳离子开环聚合;5.三聚甲醛(三氧六环)的阳离子开环聚合;6.环酰胺开环聚合;7.环硅氧烷的开环聚合8.羰基化合物的聚合(八)配位聚合1. 聚合物的立体异构现象1.配位聚合的基本概念2.Ziegler-Natta引发剂3.丙烯的配位聚合4.乙烯的配位聚合5.极性单体的配位聚合6.茂金属引发剂7.共轭二烯烃的配位聚合(九)逐步聚合反应1.缩聚反应;2.线形缩聚反应机理;3.线形缩聚动力学;4.影响线型缩聚物聚合度的因素及控制方法;5.分子量的分布;6.逐步缩合的实施方法;7.重要线型逐步聚合物;8.体型缩聚。

高分子物理与化学基础

高分子物理与化学基础

均聚反应,均聚物。
共聚合反应,共聚物。 共聚物不是几种单体各自均聚物的混合物。
第 五 章
链 式 共 聚 合 反 应
二元共聚物根据两单体单元在分子链上的排列方式可分四类:
(1)无序(规)共聚物 两种单体单元的排列没有一定顺 序,A单体单元相邻的单体单元是随机的,可以是A单体单元, 也可以是B单体单元。
(iv)可以溶液方式直接成品。
3.9 自 由 基 聚 合 反 应 的 实 施 方 法
缺点: (i)单体被溶剂稀释,聚合速率慢,产物分子量较低; (ii)消耗溶剂,溶剂的回收处理,设备利用率低,导致 成本增加; (iii)溶剂很难完全除去; (iv)存在溶剂链转移反应,因此必须选择链转移常数小 的溶剂,否则链转移反应会限制聚合产物的分子量; (v)溶剂的使用导致环境污染问题。
Mw = ∑WiMi =
∑wiMi
= ∑wi
∑niMi 2
∑niMi
Wi = wi/w ,wi = niMi
多分散系数(d)
表征聚合物的多分散程度, 也叫分子量分布(molecular weight distribution, MWD)。
d = Mw / M n
3.1
链 式 聚 合 反 应 概 述
Polymerization
单 体
Monomer
能够进行聚合反应,并构成高分子基本结构组成单元 的小分子。
1.2
结构单元
高 分 子 基 本 概 念
Constitutional Unit
构成高分子主链,并决定主链结构的最小原子组合。
重复单元
Constitutional Repeating Unit, CRU
+ H2C CH X

高分子化学与物理

高分子化学与物理

高分子化学与物理引言高分子化学与物理是研究高分子材料的科学,高分子材料是由相同或不同化学结构单元通过共价键或物理相互作用力相连接而成的大分子化合物。

高分子材料在日常生活中广泛应用,包括塑料、橡胶、纤维等。

了解高分子化学与物理的基本原理对于理解高分子材料的性质和应用具有重要意义。

高分子化学高分子材料的基本概念高分子材料是由大分子化合物构成的材料,其主要成分是高分子化合物。

高分子化合物由一个或多个单体通过化学反应合成而成,具有长链状结构。

高分子材料的性质主要取决于高分子化合物的结构和组成。

高分子化合物的合成方法高分子化合物的合成方法多种多样,常用的包括聚合反应、缩合反应和交联反应。

聚合反应是指通过单体之间的共价键形成高分子链的反应,常见的聚合反应有自由基聚合和离子聚合等。

缩合反应是指通过化学反应将两个或多个分子连接在一起形成高分子链的反应,常见的缩合反应有酯交换和酰胺反应等。

交联反应是指通过化学反应将高分子链之间形成交联结构的反应,常见的交联反应有热交联和辐射交联等。

高分子链的构象与结构高分子链的构象与结构对高分子材料的性质具有重要影响。

高分子链的构象指的是高分子链相对于平均位置的空间排列方式,常见的构象有线性、分支、环状等。

高分子链的结构指的是各个单体之间的连接方式,常见的结构有均聚、共聚、交替共聚等。

高分子物理高分子材料的力学性质高分子材料具有良好的力学性质,包括弹性、塑性、刚性等。

高分子材料的力学性质与高分子链的构象和结构密切相关。

线性高分子材料一般具有较好的弹性,在外力作用下能够恢复到原来的形状。

分支高分子材料和交联高分子材料一般具有较好的塑性,能够在外力作用下发生形变。

刚性高分子材料一般由高分子链的结构决定,链的刚性越高,材料的刚性越高。

高分子材料的热学性质高分子材料的热学性质包括热膨胀、热导率和热稳定性等。

高分子材料的热膨胀性是指在温度升高时材料的体积增加程度,与材料的结构有关。

高分子材料的热导率一般较低,与材料的分子结构和链的运动方式有关。

高分子化学与物理考研科目

高分子化学与物理考研科目

高分子化学与物理考研科目
考研高分子化学与物理专业的科目主要包括以下几个方面:
1.高分子物理:包括高分子结构与性质、聚合物物理化学、高分
子链的构象和运动、高分子物理性质的测量与表征等内容。

2.高分子化学:包括重要高分子的结构、性质、合成方法和应用等,如聚合反应、高分子合成反应机理、高分子物理化学的定量关系等。

3.材料与表征:包括高分子材料的制备、性能评价与测试,如高
分子材料的拉伸、压缩、弯曲、热性能测试,材料的微观结构表征等。

4.高分子化学与物理基础:包括有机化学、物理化学等相关基础
知识,如化学平衡、动力学、量子化学、光化学等。

5.高分子材料应用:包括高分子材料在电子、电气、汽车、航空
航天等领域的应用及相关技术。

这些科目一般是考研高分子化学与物理专业的核心科目,对于考
研学生来说,掌握这些科目的基本原理和知识是非常重要的。

还可以
根据个人的实际情况选择相应的选修课程,如高分子化学与材料、高
分子化学工程等。

高分子化学与物理-第1章-绪论

高分子化学与物理-第1章-绪论
纤维制品的舒适性和环保性是当前研究的热点,旨在提 高其性能和降低对环境的负面影响。
涂料与粘合剂
01
涂料是一种能够涂覆在物体表面 并形成保护膜的高分子材料,具 有装饰和保护作用。
02
粘合剂是一种能够将两个物体粘 结在一起的物质,广泛应用于建 筑、机械、电子等领域。
05
高分子化学与物理的未来发展
高分子材料的绿色化
高分子结晶学
高分子结晶的结构与形态
01
描述高分子结晶的结构特点,以及不同形态的高分子结晶的形
成机制。
高分子结晶的成核与生长
02
研究高分子结晶的成核和生长过程,以及成核剂和生长因子对
高分子结晶形成的影响。
高分子结晶的动力学与热力学
03
探讨高分子结晶的动力学和热力学性质,如结晶速率、晶体熔
点和热稳定性等对高分子结晶性质的影响。
高分子化学与物理-第1章绪论
• 绪论 • 高分子的基本概念 • 高分子化学与物理的基本理论 • 高分子材料 • 高分子化学与物理的未来发展
01
绪论
高分子化学与物理的定义
01
02
03
高分子化学
研究高分子化合物的合成、 反应、结构和性能的化学 分支。
高分子物理
研究高分子物质的结构、 运动和转变的物理分支。
塑料的回收和再利用是当前研究的热 点,旨在减少环境污染和资源浪费。
橡胶
01
02
03
04
橡胶是一种具有高弹性和耐摩 擦性能的高分子材料,常用于 制造轮胎、密封件、减震器等

天然橡胶主要来源于橡胶树, 而合成橡胶则是由多种单体聚 合而成,如丁苯橡胶、顺丁橡
胶等。
橡胶的硫化是制造橡胶制品的 重要过程,通过硫化可以使其 具有更好的力学性能和耐久性

高分子化学与物理基础(第二版) 第8章 高分子的分子运动、力学状态

高分子化学与物理基础(第二版) 第8章 高分子的分子运动、力学状态

8.6.1 结晶熔融过程与熔点
8.6.1 结晶熔融过程与熔点
8.6.2 结晶温度对熔点的影响
利用结晶温度对结晶的影响,可以在成型加工过程中对 结晶高分子进行热处理,调节或控制高分子的结晶形态,使 其能够满足不同的性能要求。热处理方法包括退火和淬火。
8.6.3 晶片厚度与熔点的关系
晶片厚度主要受结晶条件的影响,如果高分子结晶完善 程度比较高,晶片厚度增大,结晶熔点会相应提高;结晶不 完善会导致晶片厚度变小,结晶熔点降低。
8.3.2.3 等黏态理论
8.3.2 玻璃化转变理论
8.3.2.4 松弛过程理论
8.4 影响玻璃化转变温度的因素
1 链结构 2 分子量 3 支化、交联和结晶 4 共聚 5 共混
8.4 影响玻璃化转变温度的因素
6 分子间作用力 7 外界条件 8 调节玻璃化转变温度的方法
8.4.1 链结构
8.4.1.1 主链结构 8.4.1.2 取代基 (1)不对称取代
则既可以降低也可以升高高分子的 。
8.5 玻璃化转变温度下的次级转变
次级转变所涉及的分子运动机理一般包括以下几类: (1)侧基的旋转和构象转变 (2)主链中杂原子基团的运动 (3)主链的碳-碳链节以主链为轴的转动
8.6 结晶高分子的熔融转变
1 结晶熔融过程与熔点 2 结晶温度对熔点的影响 3 晶片厚度与熔点的关系 4 链结构对熔点的影响 5 共聚物的熔点 6 杂质对高分子熔点的影响
随着升温(或降温)速率的变化,测得的 也在变化。 8.4.7.3 外力作用频率
8.4.8 调节玻璃化转变温度的方法
8.4.8.1 增塑 在高分子中加入增塑剂的主要目的是为了降低高分子的
温度和加工温度,因为加入增塑剂后可以使分子链之间的 相互作用力减弱。

高分子化学与物理基础知识点

高分子化学与物理基础知识点

高分子化学与物理基础知识点
1. 高分子的定义和分类
高分子是由许多重复单元通过共价键连接而成的大分子。

根据来源,高分子可分为天然高分子和合成高分子;根据性能和用途,高分子可分为塑料、橡胶、纤维、涂料、胶粘剂等。

2. 高分子的结构
高分子的结构包括一级结构(近程结构)和二级结构(远程结构)。

一级结构指的是高分子链中原子的化学组成和排列方式,如头尾结构、顺反异构等;二级结构指的是高分子链的形态,如伸直链、螺旋链、折叠链等。

3. 高分子的合成
高分子的合成方法包括加聚反应、缩聚反应、开环聚合等。

其中,加聚反应是通过单体分子间的加成反应形成高分子的方法;缩聚反应是通过单体分子间的缩合反应形成高分子的方法。

4. 高分子的物理性能
高分子的物理性能包括力学性能、热性能、电性能、光学性能等。

其中,力学性能是高分子材料最重要的性能之一,包括拉伸强度、弯曲强度、冲击强度等。

5. 高分子的溶液性质
高分子在溶液中的性质包括溶解过程、溶剂选择、分子量测定等。

高分子的溶解过程一般分为溶胀和溶解两个阶段;溶剂选择要考虑高分子的极性、分子量、溶液的黏度等因素。

以上是高分子化学与物理的一些基础知识点,希望对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博尔特
伊辛巴耶娃
高分子家族
高分子家族 涂料 粘合剂 弹性体 塑料 合成纤维 天然聚合物 生物系统
General Characteristics 一般性质
➢Insulation 绝缘
➢High Elasticity 高弹性
➢Easy molding 易加工 ➢High Toughness 高韧性
美国人利用齐格勒-纳塔催化剂聚合异戊二烯,首次用人工方法合成 了结构与天然橡胶基本一样的合成天然橡胶。
S.L Wolek 发明可耐300oC高温的Kevlar
1980s 基团转移聚合 1990s 原子自由基转移聚合
早期的塑料之王—赛璐珞
由“象牙问题”引发的研究
一个多世纪前,当利用骨头、蹄脚、龟甲等生产“天然塑料物质” 制品被摒弃之时、象牙的需要量却不断增加。当时为了获取象牙, 每年要杀死2万头以上的的大象。出乎意外的是苏格兰传教士和 研究者李温士敦(David Livingstone,1813-1871)博士却认为大 象的供给是消耗不完的。幸好英国的史毕尔(Daniel Spill)和帕克 斯(Alexander Parkes)及美国的J.W.海厄特(J.W.Hyatt)与I.S.海厄 特(I.S.Hyatt)兄弟俩并未为上述见解所禁锢。他们试图通过研究 发明代用的物质以解决这一“象牙问题”,因而导致了赛璐珞的 出现。
美国人古德伊尔(Charles Goodyear)发现天然橡胶与硫磺共热后 明显地改变了性能,使它从硬度较低、遇热发粘软化、遇冷发 脆断裂的不实用的性质,变为富有弹性、可塑性的材料。
美国的海厄特(John Wesley Hyatt,1837-1920)把硝化纤维、樟脑 和乙醇的混合物在高压下共热,制造出了第一种人工合成塑料 “赛璐珞”(cellulose)。
铁路
高速公路
电子封装
衬层 烧蚀层
弹头
推 进 剂
发动机壳 (复合材料)
菲尔普斯
全运会比赛时所选用的泳衣只能是速比涛(speedo)、蓝七十(blueseventy)、耐 克(nike)三个品牌已被列入国际泳联于今年6月19日所公布的批准泳衣清单内的 产品,以及国产品牌泳衣。其它品牌的快速泳衣不得使用。
➢Transparency 透明
➢Extremely light weight 重量轻
➢Chemical resability 色彩
最早的“天然塑料物质”
高分子材料的发现和应用经过了从天然高分子材料的 直接使用,到天然高分子材料的改造再利用,再到化学 合成高分子材料的过程。2500多年前,南美印地安人将 天然橡胶树汁涂覆在脚上,依赖空气中的氧连接天然橡 胶树汁中的长链分子使其变硬,制成了早期的"靴子"。
在一个多世纪前,依赖天然塑料物质--毛发、蹄脚、
角质物等为原料,生产各式各祥的梳篦、风挡、刷把、
钮扣等传统工艺产品。显然塑料工业的产生与发展也与 其它化学化工产品一样。经历了一段自身发展的过程.
毛发、蹄脚、角质物、羽毛等纤维蛋白都是含有高
硫量的聚合物。它们对于溶剂和化学品是不溶性的,相
对说来不起化学作用。这些天然塑料物质浸入热水中而 后冷却至室温可以成型。在钮扣生产中,牛蹄脚是常常 易于获得的一种固体材料。18世纪时老的制造工艺为热 压模技术所代替,它通过磨碎蹄脚用热压模制造钮扣, 因为存在于跷脚中的天然胶适合作为模压扣的胶结剂
瑞典化学家斯维德贝格等人设计出一种超离心机,用它测量出蛋白质 的分子量:证明高分子的分子量的确是从几万到几百万。
美国化学家Waldo Semon合成了聚氯乙烯,并于1927年实现了工业化生 产。
聚苯乙烯(PS)发明
施陶丁格(Hermann Staudinger)总结了自己的大分子理论,出版了划时 代的巨著《高分子有机化合物》成为高分子化学作为一门新兴学科建 立的标志。
游泳世锦赛刚在罗马落下帷幕,高科技泳衣帮助泳池名将一共打破三十多项世 纪纪录,其中在已经创造的单项世界纪录中(不包括接力):JAKED01和 ARENAX-GLIDE“军团”并驾齐驱,都是打破了13项世界纪录。JAKED泳衣以 允许运动员凭证免费领取一件的营销策略及其泳衣的高科技功效成为泳将们的 “新宠”,
高分子化学与物理基础
高分子科学
高分子科学是当代发展最迅速的学科之 一
高分子科学既是一门应用科学,又是一 门基础科学
高分子科学已经发展成高分子化学和高 分子物理两个主要分支
高分子材料的应用





科技 我国高分子工业振兴
外壳
集成电路板(电路板 黏 合剂 导热胶 灌封胶等 等)
光盘
构件
Count Hilaire de Chardonnet用硝化纤维素的溶液进行纺丝,制 得了第一种人造丝。
美国人贝克兰(Leo Baekeland)用苯酚与甲醛反应制造出第一种 完全人工合成的塑料--酚醛树酯。
高分子材料发展史大事记
1920
1926 1926 1930 1932
1935
施陶丁格(Hermann Staudinger)发表了"关于聚合反应"(Uber Polymerization)的论文提出:高分子物质是由具有相同化学结构的单体 经过化学反应(聚合),通过化学键连接在一起的大分子化合物,高分子 或聚合物一词即源于此。
杜邦公司基础化学研究所有机化学部的卡罗瑟斯(Wallace H. Carothers, 1896-1937)合成出聚酰胺66,即尼龙。尼龙在1938年实现工业化生产。
高分子材料发展史大事记
1930 1940 1940s 1948 1950s
1955
1971
德国人用金属钠作为催化剂,用丁二烯合成出丁钠橡胶和丁苯橡胶。
英国人温费尔德(T.R.Whinfield,1901-1966)合成出聚酯纤维(PET)。 Peter Debye 发明了通过光散射测定高分子物质分子量的方法。 Paul Flory 建立了高分子长链结构的数学理论。 德国人齐格勒(Karl Ziegler)与意大利人纳塔(Giulio Natta)分别用金属 络合催化剂合成了聚乙烯与聚丙烯。
高分子材料发展史大事记
人类在长期的生产斗争中获得了利用天然有机材料的丰富知识,这些天然有机材
料包括蚕丝、羊毛、皮革、棉花、木材以及天然橡胶等。它们的化学结构有很大的 共同点,都是由天然高分子化合物所组成,因此它们可统称为天然高分子物或天然 高聚物材料。
15世纪 1839
1869
1887 1909
美洲玛雅人用天然橡胶做容器,雨具等生活用品。
相关文档
最新文档