七年级初一数学期末复习典型考题必讲
七年级上册数学全册期末复习资料

七年级上册数学全册期末复习资料精典专题一有理数课本-中考-奥数一、单元典型题例1.有理数的分类易错题(1)π不是有理数;(2)0既不是正数,也不是负数;(3)-a是负数吗?2.有理数的大小比较3.利用绝对值的定义求值已知|a|=3,|b|=5,且a<b,求a-b的值4.逆用数学公式、法则若x+y<0,xy<0,x>y,则有()A x>0,y<0,x的绝对值较大;B x>0,y<0,y的绝对值较大;C x<0,y>0,x的绝对值较大;D x<0,y>0,y的绝对值较大.5.利用绝对值的非负性求值若|x-1|+|y+3|=0,求x+y的值6.有理数混合运算计算|-15|+15(-1)2013-52(-0.2)3二. 单元基础检测得分1.(济宁)在数轴上到原点距离等于2的点所表示的数为()A 2B -2C D不能确定2.若|a-2|+(b+3)2=0,则(a+b)2013的值为()A -1B 1CD 520133.下列说法:(1)绝对值等于与它本身的数是正数;(2)近似数2.34万精确到百分位;(3)-a+b与a-b 互为相反数;(4)一个数的倒数等于它的本身,这样的有理数有两个;(5)a2=(-a)2;(6)若|a|>b,则a2>b2,其中正确的个数有()A 2个 B 3个 C 4个 D 5个4.5.(盐城中考)6. 计算 -(-1)+32-21)(⨯+|-2|= 7.(永州)已知0=+bba a ,则ab ab 的值为 。
8. 2(-3)2-4×(-2)+10 9. (-30)×)1036531(--10 ])1(4[41)25.2(134--⨯⨯---11 若ab>0,a+b<0,且|a|=5,|b|=2,,则a 3+b 2的值是多少?12.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)三、有理数的计算提高版例1.求和2012...3211...432113211211++++++++++++++例2.已知a 、b 、c 都不等于0,且||||||||abc abc c c b b a a +++的最大值为m ,最小值为n ,求2012(m+n+1)的值。
七年级数学期末真题必刷常考60题(30个考点专练)(原卷版)

期末真题必刷常考60题(30个考点专练)一.正数和负数(共2小题)1.(2022秋•市中区期末)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,他从A处出发去看望B、C、D处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A到B记为A→B{1,4},从B到A记为:B→A{﹣1,﹣4},其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C { ,},C→B{ ,};(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程.(3)若图中另有两个格点M、N,且M→A{1﹣a,b﹣3},M→N{6﹣a,b﹣2},则A→N应记为什么?直接写出你的答案.2.(2022秋•黄埔区校级期末)“十一”黄金周期间,某风景区在8天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日8日1.2﹣0.20.8﹣0.40.60.2■﹣1.2人数变化(单位:万人)(1)10月1日至5日这五天中每天到该风景区游客人数最多的是10月日;(2)若9月30日的游客人数为2万人,求10月1日至6日这六天的游客总人数是多少?(3)若9月30日的游客人数为2万人,10月8日到该风景区的游客人数与9月30日的游客人数持平,那么表中“■”表示的数应该是多少?二.数轴(共3小题)3.(2022秋•广州期末)如图,点O,A,B,C在数轴上的位置如图所示,O为原点,AC =2,OA=OB,若点C所表示的数为a,则点B所表示的数为()A.﹣a+2B.﹣a﹣2C.a+2D.a﹣24.(2023春•杨浦区期末)在数轴上,如果点A所表示的数是﹣1,那么到点A距离等于4个单位的点所表示的数是.5.(2022秋•清苑区期末)有理数a,b在数轴上对应的点如图所示,若b﹣a=3,且|a|=2|b|,则a的值是.三.绝对值(共2小题)6.(2022秋•桐柏县校级期末)如果,那么|1﹣m|﹣|m﹣2|=.7.(2022秋•丰泽区校级期末)若用点A、B、C分别表示有理数a、b、c,如图:(1)判断下列各式的符号:a+b0;c﹣b0;c﹣a0(2)化简|a+b|﹣|c﹣b|﹣|c﹣a|四.有理数大小比较(共1小题)8.(2022秋•邹城市校级期末)比较大小:﹣﹣(﹣).五.有理数的加减混合运算(共1小题)9.(2022秋•昌图县期末)把﹣(﹣3)﹣4+(﹣5)写成省略括号的代数和的形式,正确的是()A.3﹣4﹣5B.﹣3﹣4﹣5C.3﹣4+5D.﹣3﹣4+5六.有理数的乘法(共1小题)10.(2022秋•黔西南州期末)绝对值小于3的所有整数的积是.七.有理数的乘方(共1小题)11.(2022秋•金华期末)下列对于式子(﹣3)2的说法,错误的是()A.指数是2B.底数是﹣3C.幂为﹣9D.表示2个﹣3相乘八.有理数的混合运算(共2小题)12.(2022秋•滕州市校级期末)如图所示的程序图,当输入﹣1时,输出的结果是.13.(2023秋•萧县期中).九.列代数式(共6小题)14.(2022秋•岳阳期末)菜场上西红柿每千克a元,白菜每千克b元,学校食堂买20kg西红柿,30kg白菜共需元.15.(2022秋•阳曲县期末)下面是用棋子摆成的“小屋子”.摆第1个这样的“小屋子”需要5枚棋子,摆第2个这样的“小屋子”需要11枚棋子,摆第n个这样的“小屋子”需要枚棋子.16.(2022秋•惠安县期末)x表示一个两位数,y表示一个三位数,把x放在y的左边组成一个五位数,则这个五位数表示为.17.(2022秋•方城县期末)如图,有一种塑料杯子的高度是10cm,两个以及三个这种杯子叠放时高度如图所示,第n个这种杯子叠放在一起的高度是cm(用含n 的式子表示).18.(2022秋•东城区期末)如图(图中长度单位:m),阴影部分的面积是m2.19.(2022秋•连山区期末)国庆前夕,我国首个空间实验室“天宫一号”顺利升空,同学们倍受鼓舞,开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a、b的代数式表示该截面的面积S;(2)当a=2.2cm,b=2.8cm时,求这个截面的面积.一十.代数式求值(共2小题)20.(2022秋•泰山区期末)按图中程序运算,如果输入﹣1,则输出的结果是()A.1B.3C.5D.7 21.(2022秋•肃州区期末)|x﹣1|+|y+3|=0,则x+y=.一十一.同类项(共2小题)22.(2022秋•南昌期末)若a m﹣2b n+7与﹣3a4b4是同类项,则m﹣n的值为.23.(2022秋•东洲区期末)若﹣x6y2m与x n+2y4是同类项,那么n+m的值为.一十二.合并同类项(共2小题)24.(2022秋•海港区校级期末)下列运算正确的是()A.3a﹣2a=1B.a+a2=a3C.3a+2b=5ab D.7ab﹣6ba=ab25.(2022秋•凤凰县期末)下列计算正确的是()A.7x+x=7x2B.5y﹣3y=2C.4x+3y=7xy D.3x2y﹣2x2y=x2y一十三.去括号与添括号(共1小题)26.(2022秋•温州期末)﹣(a﹣b)去括号得()A.a﹣b B.﹣a﹣b C.﹣a+b D.a+b一十四.整式的加减(共3小题)27.(2022秋•甘肃期末)教材中“整式的加减”一章的知识结构如图所示,则A和B分别代表的是()A.整式,合并同类项B.单项式,合并同类项C.系数,次数D.多项式,合并同类项28.(2022秋•离石区期末)小文在做多项式减法运算时,将减去2a2+3a﹣5误认为是加上2a2+3a﹣5,求得的答案是a2+a﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2+a﹣4C.a2+a﹣4D.﹣3a2﹣5a+6 29.(2022秋•新抚区期末)下列运算中,正确的是()A.3a+b=3ab B.﹣3a2﹣2a2=﹣5a4C.﹣3a2b+2a2b=﹣a2b D.﹣2(x﹣4)=﹣2x﹣8一十五.整式的加减—化简求值(共2小题)30.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.31.(2022秋•南昌期末)如果关于x、y的代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试化简代数式,再求值.一十六.等式的性质(共4小题)32.(2022秋•开福区期末)下列变形中,不正确的是()A.若a﹣3=b﹣3,则a=bB.若,则a=bC.若a=b,则D.若ac=bc,则a=b33.(2022秋•嘉陵区校级期末)下列运用等式的性质对等式进行的变形中,错误的是()A.若a=b,则=B.若a=b,则ac=bcC.若a(x2+1)=b(x2+1),则a=bD.若x=y,则x﹣3=y﹣334.(2022秋•榕城区期末)根据等式的性质,下列变形正确的是()A.若,则a=bB.若,则3x+4x=1C.若ab=bc,则a=cD.若4x=a,则x=4a35.(2022秋•定陶区期末)下列利用等式的性质,错误的是()A.由a=b,得到1﹣2a=1﹣2bB.由ac=bc,得到a=bC.由,得到a=bD.由a=b,得到一十七.一元一次方程的定义(共1小题)36.(2022秋•越秀区校级期末)下列方程中,一元一次方程共有()①;②;③x﹣22=﹣3;④x=0.A.1个B.2个C.3个D.4个一十八.一元一次方程的解(共4小题)37.(2022秋•垫江县期末)若关于x的方程3x﹣7=2x+a的解与方程4x+3a=7a﹣8的解互为相反数,则a的值为()A.﹣2.5B.2.5C.1D.﹣1.2 38.(2022秋•阳春市期末)若x=1是方程ax+2x=1的解,则a的值是()A.﹣1B.1C.2D.﹣39.(2022秋•孝南区期末)关于x的一元一次方程mx+1=2的解为x=﹣1,则m=.40.(2023春•衡南县期末)已知x=﹣1是方程2x+m=1的解,则m的值为.一十九.解一元一次方程(共2小题)41.(2022秋•利川市期末)下列解一元一次方程的过程正确的是()A.方程x﹣2(3﹣x)=1去括号得x﹣6+2x=1B.方程3x+2=2x﹣2移项得3x﹣2x=﹣2+2C.方程去分母得2x+1﹣1=3xD.方程分母化为整数得42.(2022秋•滕州市校级期末)已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于.二十.由实际问题抽象出一元一次方程(共2小题)43.(2022秋•昆都仑区校级期末)为做好疫情防控工作,学校把一批口罩分给值班人员,如果每人分3个,则剩余20个;如果每人分4个,则还缺25个,设值班人员有x人,下列方程正确的是()A.3x+20=4x﹣25B.3x﹣25=4x+20C.4x﹣3x=25﹣20D.3x﹣20=4x+2544.(2022秋•榆次区校级期末)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共有x人,则可列方程为()A.8x+3=7x﹣4B.8x﹣3=7x+4C.=D.二十一.一元一次方程的应用(共2小题)45.(2022秋•姑苏区校级期末)如图,在数轴上,O为原点,点A对应的数为2,点B对应的数为﹣12.在数轴上有两动点C和D,它们同时向右运动,点C从点A出发,速度为每秒4个单位长度,点D从点B出发,速度为每秒6个单位长度,设运动时间为t秒,当点O,C,D中,其中一点正好位于另外两点所确定线段的中点时,t的值为.46.(2022秋•五常市期末)“幻方”最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.二十二.认识立体图形(共1小题)47.(2022秋•沈河区校级期末)若一个棱柱有12个顶点,且所有侧棱长的和为30cm,则每条侧棱长为cm.二十三.点、线、面、体(共1小题)48.(2022秋•陈仓区期末)数学老师可以用粉笔在黑板上画出图形,这个现象说明.二十四.展开图折叠成几何体(共1小题)49.(2022秋•清苑区期末)在学习《展开与折叠》这一课时,老师让同学们将准备好的正方体或长方体沿某些棱剪开,展开成平面图形.其中,阿中同学不小心多剪了一条棱,把一个长方体纸盒剪成了图①、图②两部分.根据你所学的知识,回答下列问题:(1)阿中总共剪开了几条棱?(2)现在阿中想将剪断的图②重新粘贴到图①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,他有几种粘贴方法?请在图①上画出粘贴后的图形(画出一种即可);(3)已知图③是阿中剪开的图①的某些数据,求这个长方体纸盒的体积.二十五.专题:正方体相对两个面上的文字(共2小题)50.(2022秋•达川区校级期末)如图是一个正方体纸盒的展开图,正方体的各面标有数1,2,3,﹣3,A,B,相对面上的两个数互为相反数,则A=.51.(2022秋•新会区期末)一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=m+n,B=|m﹣1|,D=(3+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.二十六.直线、射线、线段(共2小题)52.(2022秋•罗湖区期末)直线、线段、射线的位置如图所示,下图中能相交的是()A.B.C.D.53.(2022秋•兴山县期末)如图,已知四个点A、B、C、D,根据下列要求画图:(1)画线段AB;(2)画∠CDB;(3)找一点P,使P既在直线AD上,又在直线BC上.二十七.两点间的距离(共4小题)54.(2022秋•罗湖区期末)如图,C是线段AB的中点,D是线段AC的中点,已知线段CD=3cm,则线段AB=cm.55.(2022秋•禹城市期末)如图,已知点C为线段AB上一点,AC=12cm,CB=8cm,D、E分别是AC、AB的中点.求:(1)求AD的长度;(2)求DE的长度;(3)若M在直线AB上,且MB=6cm,求AM的长度.56.(2022秋•清苑区期末)课上,老师提出问题:如图,点O是线段AB上一点,C,D分别是线段AO,BO的中点,当AB=10时,求线段CD的长度.(1)下面是小明根据老师的要求进行的分析及解答过程,请你补全解答过程;思路方法解答过程知识要素未知线段已知线段…因为C,D分别是线段AO,BO的中点,所以CO =AO,DO =.因为AB=10,所以CD=CO+DO=AO+==.线段中点的定义线段的和、差等式的性质…(2)小明进行题后反思,提出新的问题:如果点O运动到线段AB的延长线上,CD的长度是否会发生变化?请你帮助小明作出判断并说明理由.57.(2022秋•甘肃期末)阅读感悟:数学课上,老师给出了如下问题:如图1,一条直线上有A、B、C、D四点,线段AB=8cm,点C为线段AB的中点,线段BD=2.5cm,请你补全图形,并求CD的长度.以下是小华的解答过程:解:如图2,因为线段AB=8cm,点C为线段AB的中点,所以BC=AB=cm.因为BD=2.5cm,所以CD=BC﹣BD=cm.小斌说:我觉得这个题应该有两种情况,小华只考虑了点D在线段AB上,事实上,点D还可以在线段AB的延长线上.完成以下问题:(1)请填空:将小华的解答过程补充完整;(2)根据小斌的想法,请你在备用图中画出另一种情况对应的示意图,并求出此时CD 的长度.二十八.度分秒的换算(共1小题)58.(2022秋•秦都区校级期末)角度换算:26.8°=°′.二十九.角的计算(共1小题)59.(2022秋•大足区期末)如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC的度数;(2)过点O作射线OD,若∠AOD=∠AOB,求∠COD的度数.三十.作图—基本作图(共1小题)60.(2022秋•鄄城县期末)已知线段a,b,点A,P位置如图所示.(1)画射线AP,请用圆规在射线AP上依次截取AB=a,BC=b;(保留作图痕迹,不写作法)(2)在(1)所作图形中,若M,N分别为AB,BC的中点,在图形中标出点M,N的位置,再求出当a=4,b=2时,线段MN的长.。
七年级数学必考题

七年级数学必考题一、有理数的运算1. 计算:公式解析:去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
所以公式。
然后按照从左到右的顺序计算:公式,公式。
2. 计算:公式解析:先计算指数运算,根据幂的运算法则,公式,公式。
则原式变为:公式。
接着进行乘除运算:公式,公式。
最后进行加减运算:公式。
二、整式的加减1. 化简:公式解析:合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
对于公式的同类项:公式。
对于公式的同类项:公式。
所以化简结果为:公式。
2. 先化简,再求值:公式,其中公式解析:先去括号:原式公式。
再合并同类项:对于公式的同类项:公式。
对于公式的同类项:公式。
化简结果为:公式。
当公式时,代入求值:把公式代入公式得:公式。
三、一元一次方程1. 解方程:公式解析:移项,把含有公式的项移到等号一边,常数项移到等号另一边,移项要变号。
得到公式。
合并同类项:公式。
2. 某班有学生45人,会下象棋的人数是会下围棋人数的3.5倍,两种棋都会及两种棋都不会的人数都是5人,求只会下围棋的人数。
解析:设会下围棋的有公式人,则会下象棋的有公式人。
根据全班人数可列方程:公式。
这里公式是会下棋的人数总和,减去两种棋都会的5人(因为这部分人被重复计算了一次),再加上两种棋都不会的5人就等于全班总人数45人。
合并同类项得:公式,解得公式。
只会下围棋的人数为:会下围棋的人数减去两种棋都会下的人数,即公式人。
四、几何图形初步1. 如图,已知线段公式,点公式在线段公式上,公式,点公式是线段公式的中点,求线段公式的长。
解析:首先求出公式的长度,因为公式,公式,所以公式。
又因为点公式是线段公式的中点,所以公式。
那么公式。
2. 一个角的补角比它的余角的3倍少20°,求这个角的度数。
解析:设这个角的度数为公式度。
七年级初一数学期末复习典型考题必讲

+:进位 -:借位
×:进位 ÷:分别除
6 .3 1 3 3 1 9 4 8 5 0 2 9 1 4 0 2 9 90
基本概念
B
O 95
A
5x
2x
D
C
E
2x2 15x21
A
B 21 9 8
45或15 1
已知BOC= AOC , BOC=15 2
5x1
5x3y5x3y 538
m2,n1
A
x mx
nx
一元一次方程(一) 解各种类型的
一元一次方程
• (1) 5x+3=-7x+9
x 1
•
(2)
3(7 x1) 7x1 73
• (3)
x 3 3x 4 5 15
2 x 5
21 x 5
例:一套家具的成本是5500元,加几成定出 的售价,后来在优惠条件下,按售价的72℅降 低价格售出6336元?
例:某种商品因换季准备打折出售,如
果按定价的七五折出售将赔25元,而
按定价的九折出售将赚20元,这种商
品的定价是多少元?
.某材料供应商对顾客实行如下优惠办法: 一次购买金额不超过1万元,不予优惠;一次购买超 过1万元,但不超过3万元,给予9折优惠;一次购买 超过3万元的,其中3万元9折优惠,超过3万元的部 分8折优惠。 某厂因库容原因,第一次在该供应商处购买材料 付款7800元,第二次购买付款26100元,如果他 是一次购买同样数量的材料,可少付金额多少元?
• (4) 3x212x12x1
6
2
4 5 x 9
28
4[3(x1)3]2x3 32 2
x 1.72x 1 0.7 0.3
期末复习(压轴题49题)—2023-2024学年七年级数学下学期期末考点(北师大版)(解析版)

z 期末复习(压轴题49题20个考点)一.规律型:数字的变化类(共1小题)1.为了求1+2+22+23+…+22011+22012的值,可令S =1+2+22+23+…+22011+22012,则2S =2+22+23+24+…+22012+22013,因此2S ﹣S =22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是( )A .52013﹣1B .52013+1C .D . 【答案】D【解答】解:令S =1+5+52+53+ (52012)则5S =5+52+53+…+52012+52013,5S ﹣S =﹣1+52013,4S =52013﹣1,则S =.故选:D .二.同底数幂的乘法(共1小题) 2.阅读材料:求1+2+22+23+24+…+22013的值.解:设S =1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S =2+22+23+24+25+…+22013+22014 将下式减去上式得2S ﹣S =22014﹣1即S =22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).【答案】见试题解答内容【解答】解:(1)设S =1+2+22+23+24+ (210)将等式两边同时乘2得:2S =2+22+23+24+…+210+211,将下式减去上式得:2S ﹣S =211﹣1,即S =211﹣1,则1+2+22+23+24+…+210=211﹣1;z (2)设S =1+3+32+33+34+…+3n ①,两边同时乘3得:3S =3+32+33+34+…+3n +3n +1②,②﹣①得:3S ﹣S =3n +1﹣1,即S =(3n +1﹣1),则1+3+32+33+34+…+3n =(3n +1﹣1).三.多项式乘多项式(共1小题)3.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片 张.【答案】见试题解答内容【解答】解:(a +2b )(a +b )=a 2+3ab +2b 2.则需要C 类卡片3张.故答案为:3.四.完全平方公式(共3小题)4.已知a ﹣b =b ﹣c =,a 2+b 2+c 2=1,则ab +bc +ca 的值等于 .【答案】见试题解答内容【解答】解:∵a ﹣b =b ﹣c =,∴(a ﹣b )2=,(b ﹣c )2=,a ﹣c =, ∴a 2+b 2﹣2ab =,b 2+c 2﹣2bc =,a 2+c 2﹣2ac =, ∴2(a 2+b 2+c 2)﹣2(ab +bc +ca )=++=, ∴2﹣2(ab +bc +ca )=, ∴1﹣(ab +bc +ca )=, ∴ab +bc +ca =﹣=﹣. 故答案为:﹣.z 5.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a +b )6= .【答案】见试题解答内容【解答】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 66.回答下列问题(1)填空:x 2+=(x +)2﹣ =(x ﹣)2+(2)若a +=5,则a 2+= ;(3)若a 2﹣3a +1=0,求a 2+的值. 【答案】见试题解答内容【解答】解:(1)2、2.(2)23. (3)∵a =0时方程不成立,∴a ≠0,∵a 2﹣3a +1=0两边同除a 得:a ﹣3+=0,移项得:a +=3,∴a 2+=(a +)2﹣2=7. 五.平方差公式的几何背景(共1小题)7.如图,边长为m +4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.z【答案】见试题解答内容【解答】解:设拼成的矩形的另一边长为x ,则4x =(m +4)2﹣m 2=(m +4+m )(m +4﹣m ),解得x =2m +4.故答案为:2m +4.六.整式的混合运算(共1小题)8.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =bB .a =3bC .a =bD .a =4b 【答案】B 【解答】解:左上角阴影部分的长为AE ,宽为AF =3b ,右下角阴影部分的长为PC ,宽为a ,∵AD =BC ,即AE +ED =AE +a ,BC =BP +PC =4b +PC ,∴AE +a =4b +PC ,即AE ﹣PC =4b ﹣a ,∴阴影部分面积之差S =AE •AF ﹣PC •CG =3bAE ﹣aPC =3b (PC +4b ﹣a )﹣aPC =(3b ﹣a )PC +12b 2﹣3ab ,则3b ﹣a =0,即a =3b .解法二:既然BC 是变化的,当点P 与点C 重合开始,然后BC 向右伸展,设向右伸展长度为X ,左上阴影增加的是3bX ,右下阴影增加的是aX ,因为S 不变,∴增加的面积相等,z ∴3bX =aX ,∴a =3b .故选:B .七.函数的图象(共4小题)9.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (分)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元;(2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A .1个B .2个C .3个D .4个【答案】C【解答】解:依题意得A :(1)当0≤x ≤120,y A =30, (2)当x >120,y A =30+(x ﹣120)×[(50﹣30)÷(170﹣120)]=0.4x ﹣18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70﹣50)÷(250﹣200)](x ﹣200)=0.4x ﹣30,所以当x ≤120时,A 方案比B 方案便宜20元,故(1)正确;当x ≥200时,B 方案比A 方案便宜12元,故(2)正确;z 当y =60时,A :60=0.4x ﹣18,∴x =195,B :60=0.4x ﹣30,∴x =225,故(3)正确;当B 方案为50元,A 方案是40元或者60元时,两种方案通讯费用相差10元,将y A =40或60代入,得x =145分或195分,故(4)错误;故选:C .10.在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )A .B .C .D . 【答案】C 【解答】解:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选:C .11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;z ④兔子在途中750米处追上乌龟.其中正确的说法是 .(把你认为正确说法的序号都填上)【答案】见试题解答内容【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x ﹣200(40≤x ≤60),y 2=100x ﹣4000(40≤x ≤50),当y 1=y 2时,兔子追上乌龟,此时20x ﹣200=100x ﹣4000,解得:x =47.5,y 1=y 2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.12.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 分钟.【答案】见试题解答内容【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),z 所以他从单位到家门口需要的时间是(分钟).故答案为:15.八.二次函数的图象(共1小题) 13.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .【答案】A 【解答】解:当F 在PD 上运动时,△AEF 的面积为y =AE •AD =2x (0≤x ≤2),当F 在AD 上运动时,△AEF 的面积为y =AE •AF =x (6﹣x )=﹣x 2+3x (2<x ≤4),图象为:故选:A .z 九.平行线的性质(共2小题)14.如图,将长方形ABCD 沿线段EF 折叠到EB 'C 'F 的位置,若∠EFC '=100°,则∠DFC '的度数为( )A .20°B .30°C .40°D .50°【答案】A【解答】解:由翻折知,∠EFC =∠EFC '=100°,∴∠EFC +∠EFC '=200°,∴∠DFC '=∠EFC +∠EFC '﹣180°=200°﹣180°=20°,故选:A .15.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120°,∠BCD =80°,则∠CDE = 度. 【答案】见试题解答内容【解答】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF ∥DE ,∴∠BCF +∠ABC =180°,∴∠BCF =60°,∴∠DCF =20°,∴∠CDE =∠DCF =20°.故答案为:20.z十.三角形的面积(共4小题)16.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A .5B .4C .3D .2【答案】A【解答】解:满足条件的C 点有5个,如图平行于AB 的直线上,与网格的所有交点就是.故选:A . 17.如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是 .【答案】见试题解答内容【解答】方法1解:∵△ABC 的三条中线AD 、BE ,CF 交于点G ,∴S △CGE =S △AGE =S △ACF ,S △BGF =S △BGD =S △BCF ,∵S △ACF =S △BCF =S△ABC=×12=6,z ∴S △CGE =S △ACF =×6=2,S △BGF =S △BCF =×6=2,∴S 阴影=S △CGE +S △BGF =4.故答案为4.方法2设△AFG ,△BFG ,△BDG ,△CDG ,△CEG ,△AEG 的面积分别为S 1,S 2,S 3,S 4,S 5,S 6,根据中线平分三角形面积可得:S 1=S 2,S 3=S 4,S 5=S 6,S 1+S 2+S 3=S 4+S 5+S 6①,S 2+S 3+S 4=S 1+S 5+S 6② 由①﹣②可得S 1=S 4,所以S 1=S 2=S 3=S 4=S 5=S 6=2,故阴影部分的面积为4.故答案为:4.18.如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积 .【答案】见试题解答内容【解答】解:如图,连接AB 1,BC 1,CA 1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB 1=S △ABC =1,S △A 1AB 1=S △ABB 1=1,∴S △A 1BB 1=S △A 1AB 1+S △ABB 1=1+1=2,同理:S △B 1CC 1=2,S △A 1AC 1=2,∴△A 1B 1C 1的面积=S △A 1BB 1+S △B 1CC 1+S △A 1AC 1+S △ABC =2+2+2+1=7.故答案为:7.z 19.如图,对面积为s 的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A n B n ∁n ,则其面积S n = .【答案】见试题解答内容【解答】解:连接A 1C ;S △AA 1C =3S △ABC =3S ,S △AA 1C 1=2S △AA 1C =6S ,所以S △A 1B 1C 1=6S ×3+1S =19S ;同理得S △A 2B 2C 2=19S ×19=361S ; S △A 3B 3C 3=361S ×19=6859S ,S △A 4B 4C 4=6859S ×19=130321S , S △A 5B 5C 5=130321S ×19=2476099S ,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n 次后,得到△A n B n ∁n , 则其面积Sn =19n •S .十一.三角形内角和定理(共3小题)20.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是( )A.0个B.1个C.2个D.3个【答案】C【解答】解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)z在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠Az 在△BCP 中利用内角和定理得到:∠P =180﹣(∠PBC +∠PCB )=180﹣(180°+∠A )=90°﹣∠A ,故成立.∴说法正确的个数是2个.故选:C .21.已知△ABC 中,∠A =α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C =90°+;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C = ;请你猜想,当∠B 、∠C 同时n 等分时,(n ﹣1)条等分角线分别对应交于O 1、O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C = (用含n 和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O 2B 和O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC +∠O 2CB =(∠ABC +∠ACB )=(180°﹣α)=120°﹣α;∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=180°﹣(120°﹣α)=60°+α;在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O n ﹣1B 和O n ﹣1C 分别是∠B 、∠C 的n 等分线,∴∠O n ﹣1BC +∠O n ﹣1CB =(∠ABC +∠ACB )=(180°﹣α)=﹣. ∴∠BO n ﹣1C =180°﹣(∠O n ﹣1BC +∠O n ﹣1CB )=180°﹣(﹣)=+.z 故答案为:60°+α;+.22.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.【答案】见试题解答内容【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =∠ABC ,∠A 1CA =∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即∠ACD =∠A 1+∠ABC ,∴∠A 1=(∠ACD ﹣∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD ﹣∠ABC ,∴∠A 1=∠A ,∴∠A 1=m °,∵∠A 1=∠A ,∠A 2=∠A 1=∠A , …以此类推∠A 2013=∠A =°. 故答案为:.十二.全等图形(共1小题)23.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°【答案】B【解答】解:在△ABC与△EDC中,,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.z十三.全等三角形的判定(共3小题)24.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【答案】D【解答】解:∵AB=AC,D为BC中点,在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS)∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE(SSS;在△BOD和△COD中,,∴△BOD≌△COD(SAS);在△AOC和△AOB中,,∴△AOC≌△AOB(SSS);故选:D.25.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有 ①②③(填序z号).【答案】见试题解答内容【解答】解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)z ∴△ACN ≌△ABM (ASA )(③正确)∴CN =BM (④不正确).所以正确结论有①②③.故填①②③.26.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =BD ,EN =CE ,得到图③,请解答下列问题:(1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是 ;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; 【答案】见试题解答内容【解答】解:(1)①BD =CE ;②AM =AN ,∠MAN =∠BAC ,∵∠DAE =∠BAC ,∴∠CAE =∠BAD ,在△BAD 和△CAE 中∵∴△CAE ≌△BAD (SAS ),∴∠ACE =∠ABD ,z ∵DM =BD ,EN =CE ,∴BM =CN ,在△ABM 和△ACN 中,∵∴△ABM ≌△ACN (SAS ),∴AM =AN ,∴∠BAM =∠CAN ,即∠MAN =∠BAC ;十四.全等三角形的判定与性质(共12小题) 27.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68 【答案】A【解答】解:∵AE ⊥AB 且AE =AB ,EF ⊥FH ,BG ⊥FH ,∴∠EAB =∠EF A =∠BGA =90°,∵∠EAF +∠BAG =90°,∠ABG+∠BAG=90°,z ∴∠EAF =∠ABG ,在△EF A 和△AGB 中,,∴△EF A ≌△AGB (AAS ),∴AF =BG ,AG =EF .同理证得△BGC ≌△CHD 得GC =DH ,CH =BG .故FH =F A +AG +GC +CH =3+6+4+3=16故S =(6+4)×16﹣3×4﹣6×3=50.故选:A .28.如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .a 2B .a 2C .a 2D .a 2【答案】D【解答】解:过E 作EP ⊥BC 于点P ,EQ⊥CD 于点Q ,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,z∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.29.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC ,其中结论正确的有( )zA .1个B .2个C .3个D .4个 【答案】D【解答】解:∵△ABD 、△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE ≌△DBC ,∴∠BAE =∠BDC ,∵∠BDC +∠BCD =180°﹣60°﹣60°=60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°,∴②正确;在△ABP 和△DBQ 中,, ∴△ABP ≌△DBQ (ASA ),∴BP =BQ ,∴△BPQ 为等边三角形,∴③正确;∵∠DMA =60°,∴∠AMC =120°,∴∠AMC +∠PBQ =180°,∴P 、B 、Q 、M 四点共圆,z ∵BP =BQ ,∴,∴∠BMP =∠BMQ ,即MB 平分∠AMC ;∴④正确;综上所述:正确的结论有4个;故选:D .30.如图,在正方形ABCD 中,如果AF =BE ,那么∠AOD 的度数是 .【答案】见试题解答内容【解答】解:由ABCD 是正方形,得AD =AB ,∠DAB =∠B =90°.在△ABE 和△DAF 中,, ∴△ABE ≌△DAF (SAS ),∴∠BAE =∠ADF .∵∠BAE +∠EAD =90°,∴∠OAD +∠ADO =90°,∴∠AOD =90°,故答案为:90°.31.如图,△ABC 和△EBD 中,∠ABC =∠DBE =90°,AB =CB ,BE =BD ,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE =CD ;(2)求证:AE ⊥CD ;(3)连接BM ,有以下两个结论:①BM 平分∠CBE ;②MB 平分∠AMD .其中正确的有 ② (请写序号,少选、错选均不得分).z【答案】见试题解答内容【解答】(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBE =∠DBE +∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD , ∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .z∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△CBM ≌△EBM ,则AB =BD ,显然不可能,故①错误.故答案为②.32.(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD .求证:EF =BE +FD ;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立? (3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】见试题解答内容【解答】证明:(1)延长EB 到G ,使BG =DF ,连接AG .z∵∠ABG =∠ABC =∠D =90°,AB =AD ,∴△ABG ≌△ADF .∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =∠BAD .∴∠GAE =∠EAF .又∵AE =AE ,∴△AEG ≌△AEF .∴EG =EF .∵EG =BE +BG .∴EF =BE +FD(2)(1)中的结论EF =BE +FD 仍然成立.(3)结论EF =BE +FD 不成立,应当是EF =BE ﹣FD . 证明:在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵AB =AD ,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.33.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案】见试题解答内容【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC ,∴△DAB≌△F AC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.z34.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.) 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】见试题解答内容【解答】证明:(1)①∵∠ADC =∠ACB =∠BEC =90°,∴∠CAD +∠ACD =90°,∠BCE +∠CBE =90°,∠ACD +∠BCE =90°. ∴∠CAD =∠BCE .∵AC =BC ,∴△ADC ≌△CEB (AAS ).②∵△ADC ≌△CEB ,∴CE =AD ,CD =BE .∴DE =CE +CD =AD +BE .解:(2)∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE.又∵AC =BC ,∴△ACD ≌△CBE (AAS ).∴CE =AD ,CD =BE .∴DE =CE ﹣CD =AD ﹣BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE =BE ﹣AD (或AD =BE ﹣DE ,BE =AD +DE 等).∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE ,又∵AC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,CD =BE ,∴DE =CD ﹣CE =BE ﹣AD .35.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】见试题解答内容【解答】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,z∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形.36.在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.【答案】见试题解答内容【解答】解:(1)DF=EF.(2)猜想:DF=FE.证明:过点D作DG⊥AB于G,则∠DGB=90°.∵DA=DB,∠ADB=60°.∴AG=BG,△DBA是等边三角形.z ∴DB =BA .∵∠ACB =90°,∠ABC =30°,∴AC =AB =BG .在Rt △DBG 和Rt △BAC 中,∴Rt △DBG ≌Rt △BAC (HL ).∴DG =BC .∵BE =EC ,∠BEC =60°,∴△EBC 是等边三角形.∴BC =BE ,∠CBE =60°.∴DG =BE ,∠ABE =∠ABC +∠CBE =90°.∵∠DFG =∠EFB ,∠DGF =∠EBF ,在△DFG 和△EFB 中,∴△DFG ≌△EFB (AAS ).∴DF =EF .(3)猜想:DF =FE .过点D 作DH ⊥AB 于H ,连接HC ,HE ,HE 交CB 于K ,则∠DHB =90°.∵DA =DB , ∴AH =BH ,∠1=∠HDB .∵∠ACB =90°,∴HC =HB .在△HBE 和△HCE 中,∴△HBE ≌△HCE (SSS ).∴∠2=∠3,∠4=∠BEH .∴HK ⊥BC .∴∠BKE =90°.∵∠ADB =∠BEC =2∠ABC ,z ∴∠HDB =∠BEH =∠ABC .∴∠DBC =∠DBH +∠ABC =∠DBH +∠HDB =90°,∠EBH =∠EBK +∠ABC =∠EBK +∠BEK =90°.∴DB ∥HE ,DH ∥BE .∴四边形DHEB 是平行四边形.∴DF =EF .37.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合)连接DC ,以DC 为边在BC上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 在等边△ABC 边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】见试题解答内容z 【解答】解:(1)AF =BD ;证明如下:∵△ABC 是等边三角形(已知),∴BC =AC ,∠BCA =60°(等边三角形的性质);同理知,DC =CF ,∠DCF =60°;∴∠BCA ﹣∠DCA =∠DCF ﹣∠DCA ,即∠BCD =∠ACF ;在△BCD 和△ACF 中,, ∴△BCD ≌△ACF (SAS ),∴BD =AF (全等三角形的对应边相等);(2)证明过程同(1),证得△BCD ≌△ACF (SAS ),则AF =BD (全等三角形的对应边相等),所以,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF =BD 仍然成立;(3)Ⅰ.AF +BF ′=AB ;证明如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立.新的结论是AF =AB +BF ′;证明如下:在△BCF ′和△ACD 中,,∴△BCF ′≌△ACD (SAS ), ∴BF ′=AD (全等三角形的对应边相等);又由(2)知,AF =BD ;∴AF =BD =AB +AD =AB +BF ′,即AF =AB+BF ′.z 38.操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:线段BM 、MN 、NC 之间的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.AN =NC (如图②);②DM ∥AC (如图③).附加题:若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.【答案】见试题解答内容【解答】解:(1)BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连接DM 1由已知条件知:∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠ABD =∠ACD =90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∴∠MDM 1=(120°﹣∠MDB )+∠M 1DC =120°.又∵∠MDN =60°,∴∠M 1DN =∠MDN =60°.∴△MDN ≌△M 1DN .∴MN =NM 1=NC+CM 1=NC +MB .z (2)附加题:CN ﹣BM =MN证明:如图,在CN 上截取CM 1,使CM 1=BM ,连接MN ,DM 1∵∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠DBM =∠DCM 1=90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∵∠BDM +∠BDN =60°,∴∠CDM 1+∠BDN =60°.∴∠NDM 1=∠BDC ﹣(∠M 1DC +∠BDN )=120°﹣60°=60°.∴∠M 1DN =∠MDN . ∵ND =ND ,∴△MDN ≌△M 1DN . ∴MN =NM 1=NC ﹣CM 1=NC ﹣BM,即MN =NC ﹣BM .z 十五.角平分线的性质(共1小题)39.如图,△ABC 的三边AB 、BC 、CA 长分别为40、50、60.其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .【答案】见试题解答内容【解答】解:过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,∵OA ,OB ,OC 是△ABC 的三条角平分线,∴OD =OE =OF ,∵△ABC 的三边AB 、BC 、CA 长分别为40、50、60,∴S △ABO :S △BCO :S △CAO =(AB •OD ):(BC •OF ):(AC •OE )=AB :BC :AC =40:50:60=4:5:6.故答案为:4:5:6.十六.线段垂直平分线的性质(共1小题) 40.如图,△ABC 中,AB =AC ,∠BAC =54°,点D 为AB 中点,且OD ⊥AB ,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为度.【答案】见试题解答内容z 【解答】解:法一:如图,连接OB 、OC ,∵∠BAC =54°,AO 为∠BAC 的平分线,∴∠BAO =∠BAC =×54°=27°,又∵AB =AC ,∴∠ABC =(180°﹣∠BAC )=(180°﹣54°)=63°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =27°,∴∠OBC =∠ABC ﹣∠ABO =63°﹣27°=36°,∵AO 为∠BAC 的平分线,AB =AC ,∴△AOB ≌△AOC (SAS ),∴OB =OC ,∴点O 在BC 的垂直平分线上,又∵DO 是AB 的垂直平分线,∴点O 是△ABC 的外心,∴∠OCB =∠OBC =36°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE =CE , ∴∠COE =∠OCB =36°, 在△OCE 中,∠OEC =180°﹣∠COE ﹣∠OCB =180°﹣36°﹣36°=108°.法二:证明点O 是△ABC 的外心,推出∠BOC =108°,根据OB =OC ,推出∠OCE =36°可得结论.故答案为:108.z 十七.等腰三角形的性质(共4小题)41.如图,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )A .2.5秒B .3秒C .3.5秒D .4秒 【答案】D【解答】解:设运动的时间为x cm ,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动, 当△APQ 是等腰三角形时,AP =AQ ,AP =20﹣3x ,AQ =2x即20﹣3x =2x ,解得x =4(cm ).故选:D .42.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n = 9 .【答案】见试题解答内容【解答】解:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A,…,∵∠BOC =9°,z ∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°n <90°,解得n <10.由于n 为整数,故n =9.故答案为:9.43.如图所示,AOB 是一钢架,且∠AOB =10°,为了使钢架更加坚固,需在其内部添加一些钢管EF ,FG ,GH …,添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.【答案】见试题解答内容【解答】解:∵添加的钢管长度都与OE 相等,∠AOB =10°,∴∠GEF =∠FGE =20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.44.如图,△ABC 中AB =AC ,BC =6,点P 从点B 出发沿射线BA 移动,同时,点Q 从点C 出发沿线段AC 的延长线移动,已知点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线垂足为E ,当点P 、Q 在移动的过程中,线段BE 、DE 、CD 中是否存在长度保持不变的线段?请说明理由.【答案】见试题解答内容【解答】解:(1)如图,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP =CQ ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴证得△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=3,∴CD=CF=;(2)分两种情况讨论,得ED为定值,是不变的线段,如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,z∵△PBF为等腰三角形,∴PB=PF,BE=EF,∴PF=CQ,∴FD=DC,∴ED=EF+FD=BE+DC=BC=3,∴ED为定值,同理,如图,若P 在BA的延长线上,z作PM ∥AC 的延长线于M ,∴∠PMC =∠ACB ,又∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠PMC ,∴PM =PB ,根据三线合一得BE =EM ,同理可得△PMD ≌△QCD ,所以CD =DM ,∵BE =EM ,CD =DM ,∴ED =EM ﹣DM =﹣DM =+﹣DM =3+DM ﹣DM =3, 综上所述,线段ED 的长度保持不变.十八.等边三角形的性质(共1小题)45.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉如图正三角形纸板边长的)后,得图③,④,…,记第n (n ≥3)块纸板的周长为P n ,则P n﹣P n ﹣1的值为( )zA .B .C .D . 【答案】C【解答】解:P 1=1+1+1=3,P 2=1+1+=,P 3=1+++×3=,P 4=1+++×2+×3=, …∴P 3﹣P 2=﹣==, P 4﹣P 3=﹣==,则Pn ﹣Pn ﹣1==.故选:C .十九.轴对称-最短路线问题(共3小题)46.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( )。
初一数学试卷期末必考题型

#### 一、选择题题型特点:选择题通常考察学生对基础知识的掌握程度,包括概念、公式、性质等。
典型题目:1. 已知直角三角形中,一个锐角是30°,那么另一个锐角是()A. 60°B. 30°C. 90°D. 45°解析:在直角三角形中,两个锐角之和为90°,已知一个锐角是30°,则另一个锐角为90° - 30° = 60°。
答案为A。
2. 下列数中,有理数是()A. √2B. πC. 3/4D. 无理数解析:有理数是可以表示为两个整数比的数,3/4可以表示为两个整数的比,因此是有理数。
答案为C。
#### 二、填空题题型特点:填空题考察学生对公式、概念的理解和应用。
典型题目:1. 若a > b,那么()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 1 < b + 1D. a - 1 > b - 1解析:若a > b,则a + 1 > b + 1,因为给a和b同时加上同一个正数,不等号方向不变。
答案为A。
2. 下列代数式中,同类项是()A. 3x^2B. 2x^3C. 5x^2yD. 4xy解析:同类项是指含有相同字母且相同指数的项,3x^2和2x^3都含有x,但指数不同,因此不是同类项。
5x^2y含有x和y,而4xy只含有x和y,因此它们也不是同类项。
答案为D。
#### 三、解答题题型特点:解答题考察学生的综合应用能力,包括对公式的运用、解题步骤的规范、逻辑推理等。
典型题目:1. 解方程:3x - 5 = 2x + 1解析:(1)将方程中的x项移到一边,常数项移到另一边,得到:3x - 2x = 1 + 5(2)合并同类项,得到:x = 6答案:x = 62. 一辆汽车从甲地开往乙地,以60km/h的速度行驶了2小时,然后以80km/h的速度行驶了3小时。
初一数学重点题型归纳

初一数学重点题型归纳一、有理数相关1. 概念辨析题- 比如说判断“一个数不是正数就是负数”,这就是典型的坑人题。
实际上还有0呢,0既不是正数也不是负数。
这种题就像是在玩文字游戏,一不小心就掉进去了。
- 还有像“绝对值等于它本身的数是正数”,这也是错的,因为0的绝对值也等于它本身呀。
做这种题就像当侦探,得把所有的可能性都考虑到。
2. 有理数运算题- 混合运算那是重点中的重点。
像“计算:- 2^2+(-3)×[(-4)^2 + 2]-(-3)^3÷(-1)^2023”。
这里面要特别注意运算顺序,先算乘方,再算乘除,最后算加减。
就像盖房子,得一层一层来,先打好乘方这个地基,不然肯定会算错。
而且符号也很容易出错,负号就像调皮的小怪兽,随时可能把你的答案变得面目全非。
二、整式相关1. 整式的加减- 化简求值题是常考的。
例如“已知A = 3x^2 - 2x+1,B = 5x^2 - 3x - 2,求A - B的值,其中x = 2”。
首先要正确地进行整式的减法运算,把同类项合并好。
这就好比整理玩具,相同类型的玩具(同类项)要放在一起。
然后再把x = 2代入求值。
要是同类项合并错了,那就像把玩具放错了盒子,最后答案肯定不对。
2. 单项式与多项式的概念题- 比如“判断单项式-(2π x^2y)/(3)的系数和次数”。
系数就是数字因数,这里是-(2π)/(3),次数是所有字母的指数和,x的指数是2,y的指数是1,所以次数是3。
这种题就像给单项式这个小生物做体检,要准确找出它的各种特征。
三、一元一次方程相关1. 解方程题- 像“解方程:3(x - 2)+1 = x-(2x - 1)”。
这一步一步去括号、移项、合并同类项、系数化为1,就像走迷宫一样,每一步都得小心。
去括号的时候,如果括号前面是负号,括号里的各项都要变号,就像进了一个魔法门,符号都会变。
移项的时候也要注意变号,这是很多同学容易出错的地方,就像搬家的时候东西不能搬错地方。
七年级数学上册期末高频试题必杀(90题)含答案

七年级数学上册期末高频试题必杀(90题)含答案一.选择题1.﹣3的相反数是()A.﹣B.C.﹣3D.3【答案】D【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:D.2.﹣3的倒数为()A.﹣B.C.3D.﹣3【答案】A【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:A.3.﹣3的绝对值是()A.3B.﹣3C.D.﹣【答案】A【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【答案】B【解答】解:4 400 000 000=4.4×109,故选:B.5.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<bC.﹣b<a<﹣a<b D.﹣b<b<﹣a<a【答案】C【解答】解集:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.6.如果|a|=﹣a,下列成立的是()A.a>0B.a<0C.a≥0D.a≤0【答案】D【解答】解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则a≤0.故选:D.7.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)【答案】C【解答】解:A、0.05019≈0.1(精确到0.1),所以此选项正确;B、0.05019≈0.05(精确到百分位),所以此选项正确;C、0.05019≈0.050(精确到千分位),所以此选项错误;D、0.05019≈0.0502(精确到0.0001),所以此选项正确;本题选择错误的,故选:C.8.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或2【答案】D【解答】解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选:D.9.下列各组数中,互为相反数的是()A.2与B.﹣1与(﹣1)2C.(﹣1)2与1D.2与|﹣2|【答案】B【解答】解:∵2与互为倒数,不是互为相反数,故选项A错误,∵(﹣1)2=1,∴﹣1与(﹣1)2互为相反数,故选项B正确,∵(﹣1)2=1,∴(﹣1)2与1不是互为相反数,故选项C错误,∵|﹣2|=2,∴2与|﹣2|不是互为相反数,故选项D错误,故选:B.10.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg【答案】B【解答】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.11.下列说法不正确的是()A.0既不是正数,也不是负数B.一个有理数不是整数就是分数C.1是绝对值最小的数D.0的绝对值是0【答案】C【解答】解;A、0既不是正数,也不是负数,故A正确;B、有理数分为整数和分数,故B正确;c、0是绝对值最小的数,故C错误;D、|0|=0,故D正确;故选:C.12.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克【答案】C【解答】解:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,因为24.75<24.80<25.25,故只有24.80千克合格.故选:C.13.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣4B.﹣1C.0D.4【答案】B【解答】解:∵|m﹣3|+(n+2)2=0,∴m﹣3=0且n+2=0,∴m=3,n=﹣2.则m+2n=3+2×(﹣2)=﹣1.故选:B.14.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.5【答案】C【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.15.如果收入80元记作+80元,那么支出20元记作()A.+20元B.﹣20元C.+100元D.﹣100元【答案】B【解答】解:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为﹣20元.故选:B.16.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2D.3x2y﹣2yx2=x2y【答案】D【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.17.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,7【答案】C【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选:C.18.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1B.4C.7D.9【答案】C【解答】解:由题意得:x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1=7.故选:C.19.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3B.﹣x2+x﹣1C.﹣x2+5x﹣3D.x2﹣5x﹣13【答案】C【解答】解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选:C.20.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm2【答案】B【解答】解:矩形的面积是:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).故选:B.21.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【答案】B【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选:B.22.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,3【答案】A【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.23.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A.4m+7n B.28mn C.7m+4n D.11mn【答案】A【解答】解:∵一个足球需要m元,买一个篮球需要n元.∴买4个足球、7个篮球共需要(4m+7n)元.故选:A.24.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c【答案】B【解答】解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.25.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【答案】A【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.26.右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元【答案】C【解答】解:设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.27.下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=5【答案】D【解答】解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.28.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5【答案】D【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.29.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C.x=﹣3D.x=2【答案】A【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.30.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x名工人生产螺钉,则下面所列方程正确的是()A.1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.2×1000(26﹣x)=800x【答案】C【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.31.解方程1﹣,去分母,得()A.1﹣x﹣3=3x B.6﹣x﹣3=3x C.6﹣x+3=3x D.1﹣x+3=3x 【答案】B【解答】解:方程两边同时乘以6得6﹣x﹣3=3x.故选:B.32.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2B.﹣2C.D.﹣【答案】A【解答】解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.33.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣2【答案】B【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.34.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B 港相距x千米.根据题意,可列出的方程是()A.B.C.D.【答案】A【解答】解:设A港和B港相距x千米,可得方程:.故选:A.35.下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若,则2a=3b D.若x=y,则【答案】B【解答】解:A、根据等式性质1,x=y两边同时加5得x+5=y+5;B、根据等式性质2,等式两边都乘以c,即可得到ac=bc;C、根据等式性质2,等式两边同时乘以2c应得2a=2b;D、根据等式性质2,a≠0时,等式两边同时除以a,才可以得=.故选:B.36.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=【答案】A【解答】解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故选:A.37.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54B.6C.﹣10D.﹣18【答案】B【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选:B.38.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60°B.75°C.90°D.95°【答案】C【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选:C.39.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【答案】D【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.40.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段【答案】C【解答】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选:C.41.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【答案】C【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.42.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°【答案】D【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选:D.43.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°【答案】C【解答】解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故选:C.44.如图是一个正方体的展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.梦B.的C.国D.中【答案】A【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:A.45.下列图形中,是圆锥侧面展开图的是()A.B.C.D.【答案】B【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.46.在时刻8:30,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70°D.60°【答案】B【解答】解:8:30,时针指向8与9之间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,∴此时刻分针与时针的夹角正好是2×30°+15°=75°.故选:B.47.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC 等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 【答案】C【解答】解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选:C.48.如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→BC.A→C→E→F→B D.A→C→M→B【答案】B【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.二.填空题49.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.50.比较大小:(用“>或=或<”填空).【解答】解:∵>,∴<;故答案为:<.51.如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2=.【解答】解:∵ab=1,c+d=0,m=﹣1,∴2ab﹣(c+d)+m2=2﹣0+1=3.52.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣353.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.【解答】解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.32.定义a※b=a2﹣b,则(1※2)※3=.【解答】解:根据题意可知,(1※2)※3=(1﹣2)※3=﹣1※3=1﹣3=﹣2.故答案为:﹣2.54.按照如图所示的操作步骤,若输入的值为3,则输出的值为.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.55.在数轴上与表示﹣2的点距离3个单位长度的点表示的数是.【解答】解:在数轴上与表示﹣2的点距离3个单位长度的点表示的数是﹣2+3=1或﹣2﹣3=﹣5.56.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w,则+=(直接写出答案).【解答】解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0.57.若单项式2x2y m与x n y3是同类项,则m+n的值是.【解答】解:由同类项的定义可知n=2,m=3,则m+n=5.故答案为:5.58.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=.【解答】解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.59.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.【解答】解:设该用户居民五月份实际用水x立方米,故20×2+(x﹣20)×3=64,故x=28.故答案是:28.60.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.【解答】解:法一:设x=0.45…,则x=0.45+1/100 x,解得x=45/99=5/11法二:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,99x=45解方程得:x==.故答案为:.61.如图,三角板的直角顶点在直线l上,若∠1=40°,则∠2的度数是.【解答】解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°,∵∠1=40°,∴∠2=50°.故答案为50°.62.如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=.【解答】解:∵长方形ABCD中,AD∥BC,∴∠CEF=∠EFG=56°,∴∠CEF=∠FEG=56°,∴∠BEG=180°﹣∠CEF﹣∠FEG=180°﹣56°﹣56°=68°.故答案是:68°.63.把15°30′化成度的形式,则15°30′=度.【解答】解:∵30′=0.5度,∴15°30′=15.5度;故答案为:15.5.64.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是.【解答】解:能解释这一实际应用的数学知识是:两点确定一条直线,故答案为:两点确定一条直线.三.解答题65.计算(1);(2).【解答】(1)解:,=,=﹣7+18﹣12,=﹣1;(2)解:,=,=,=.66.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.67.有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.【解答】解:(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,当y=﹣1时,原式=﹣2×(﹣1)3=2.因为化简的结果中不含x,所以原式的值与x值无关.68.已知A=y2﹣ay﹣1,B=2y2+3ay﹣2y﹣1,且多项式2A﹣B的值与字母y的取值无关,求a的值.【解答】解:2A﹣B=2(y2﹣ay﹣1)﹣(2y2+3ay﹣2y﹣1)=2y2﹣2ay﹣2﹣2y2﹣3ay+2y+1=(2﹣5a)y﹣1,∵多项式与字母y的取值无关,∴2﹣5a=0,2=5a,a=.69.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?【解答】解:(1)根据题意:规定向东为正,向西为负:则(+15)+(﹣4)+(+13)+(﹣10)+(﹣12)+(+3)+(﹣13)+(﹣17)=﹣25千米,故小王在出车地点的西方,距离是25千米;(2)这天下午汽车走的路程为|+15|+|﹣4|+|+13|+|﹣10|+|﹣12|+|+3|+|﹣13|+|﹣17|=87,若汽车耗油量为0.4升/千米,则87×0.4=34.8升,故这天下午汽车共耗油34.8升.70.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:﹣3﹣2﹣1.501 2.5与标准质量的差值(单位:千克)筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)【解答】解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐重5.5千克;(2)列式1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克),故20筐白菜总计超过8千克;(3)用(2)的结果列式计算2.6×(25×20+8)=1320.8≈1321(元),故这20筐白菜可卖1321(元).71.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a 0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.72.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km2km﹣4km﹣3km10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km 的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?【解答】解:(1)5+2+(﹣4)+(﹣3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的南边10千米处.(2)(5+2+|﹣4|+|﹣3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5﹣3)×1.8]+10+[10+(4﹣3)×1.8]+10+[10+(10﹣3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.73.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?【解答】解:(1)方案①需付费为:200×20+(x﹣20)×40=(40x+3200)元;方案②需付费为:(200×20+40x)×0.9=(3600+36x)元;(2)当x=30元时,方案①需付款为:40x+3200=40×30+3200=4400元,方案②需付款为:3600+36x=3600+36×30=4680元,∵4400<4680,∴选择方案①购买较为合算.74.某市为鼓励市民节约用水,特制定如下的收费标准:若每月每户用水不超过10立方米,则按3元/立方米的水价收费,并加收0.2元/立方米的污水处理费;若超过10立方米,则超过的部分按4元/立方米的水价收费,污水处理费不变.(1)若小华家5月份的用水量为8立方米,那么小华家5月份的水费为元;(2)若小华家6月份的用水量为15立方米,那么小华家6月份的水费为元;(3)若小华家某个月的用水量为a(a>10)立方米,求小华家这个月的水费(用含a的式子表示).【解答】解:(1)由题意,得8×(3+0.2)=25.6(元)故答案是:25.6;(2)由题意,得10(3+0.2)+(15﹣10)(4+0.2)=53(元)故答案是:53;(3)3×10+4(a﹣10)+0.2a=4.2a﹣10.∴小华家这个月的水费为(4.2a﹣10)元75.小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k元,木地板的价格为每平方米2k元,那么小王一共需要花多少钱?【解答】解:(1)木地板的面积为2b(5a﹣3a)+3a(5b﹣2b﹣b)=2b•2a+3a•2b=4ab+6ab=10ab(平方米);地砖的面积为5a•5b﹣10ab=25ab﹣10ab=15ab(平方米);(2)15ab•k+10ab•2k=15abk+20abk=35abk(元),答:小王一共需要花35abk元钱.76.为了提高业主的宜居环境,在某居民区的建设中,因地制宜规划修建一个广场(图中阴影部分).(1)用含m、n的代数式表示该广场的周长;(2)用含m、n的代数式表示该广场的面积;(3)当m=6,n=8时,求出该广场的周长和面积.【解答】解:(1)C=6m+4n;(2)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(3)把m=6,n=8,代入周长6m+4n=6×6+4×8=68,把m=6,n=8,代入面积3.5mn=3.5×6×8=168.77.小明房间窗户的装饰物如图所示,它们由两个四分之一圆组成(半径相同).(1)请用代数式表示装饰物的面积(结果保留π);(2)请用代数式表示窗户能射进阳光部分面积(结果保留π);(3)若a=1,b=,请求出窗户能射进阳光的面积的值(取π=3)【解答】解:(1)装饰物的面积=•π•(b)2=πb2;(2)窗户能射进阳光部分面积=ab﹣πb2;(3)a=1,b=,ab﹣πb2=1×﹣×3×()2=.所以窗户能射进阳光的面积为.78.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本书的高度为cm,课桌的高度为cm;(2)当课本数为x(本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离(用含x的代数式表示);(3)桌面上有55本与题(1)中相同的数学课本,整齐叠放成一摞,若有18名同学各从中取走1本,求余下的数学课本高出地面的距离.【解答】解:(1)书的厚度为:(88﹣86.5)÷(6﹣3)=0.5cm;课桌的高度为:86.5﹣3×0.5=85cm.故答案为:0.5;85;(2)∵x本书的高度为0.5x,课桌的高度为85,∴高出地面的距离为85+0.5x(cm).故答案为:(85+0.5x)cm;(3)当x=55﹣18=37时,85+0.5x=103.5cm.故余下的数学课本高出地面的距离是103.5cm.79.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物每满100元返购物券30元销售(不足100元不返券,购物券全场通用).但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?【解答】解:(1)设书包单价为x元,则随身听的单价为(4x﹣8)元.根据题意,得4x﹣8+x=452,解得:x=92,4x﹣8=4×92﹣8=360.答:书包单价为92元,随身听的单价为360元.(2)在超市A购买随身听与书包各一件需花费现金:452×80%=361.6(元).因为361.6<400,所以可以选择超市A购买.在超市B可花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计花费现金:360+2=362(元).因为362<400,所以也可以选择在B超市购买.因为362>361.6,所以在超市A购买更省钱.80.张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.【解答】解:设李明上次购买书籍的原价和是x元,由题意得:0.8x+20=x﹣12,解得:x=160.答:李明上次购买书籍的原价和是160元.81.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?【解答】解:设哥哥追上弟弟需要x小时.由题意得:6x=2+2x,解这个方程得:.∴弟弟行走了=1小时30分<1小时45分,未到外婆家,答:哥哥能够追上.82.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?【解答】解:设应先安排x人工作,根据题意得:+=1化简可得:+=1,即:x+2(x+2)=10解可得:x=2答:应先安排2人工作.83.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)【解答】解:设支援拔草的有x人,由题意得:31+x=2[18+(20﹣x)].84.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB 的中点,求DE的长.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.85.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.【解答】解:设AB=2x,BC=3x,CD=4x,∴AD=9x,MD=x,则CD=4x=8,x=2,MC=MD﹣CD=﹣4x==×2=1.86.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC=2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.87.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使P A+PC的值最小.【解答】解:如图所画:(1)(2)(3)(4).89.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.90.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠BOC=∠AOB=45°,∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°,∠BOD=3∠DOE,∴∠DOE=15°,∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°,故答案为75°.。
期末真题必刷(常考60题)—2023-2024学年七年级数学下学期期末考点(人教版)解析版

期末真题必刷(常考60题36个考点专练)一.算术平方根(共2小题)1.(2023春•通榆县期末)一个正数x 的两个不同的平方根分别是21a −和2a −+.(1)求a 和x 的值;(2)化简:2|||3|a x a x +−−+.【分析】(1)根据一个正数的两个平方根互为相反数可得关于a 的方程,解出即可得到a 的值,代入求得x 的值.(2)根据(1)中求得的a 的值去绝对值即可.【解答】解:(1)由题意,得(21)(2)0a a −+−+=,解得1a =−.22(21)(3)9x a ∴=−=−=;(2)原式2|1|93(1)9|=−+−−⨯−+296=+−1=.【点评】本题考查平方根的知识,难度不大,关键是掌握一个正数的两个平方根互为相反数.2.(2023春•焦作期末)小梅用两张同样大小的长方形硬纸片拼接成一个面积为2900cm 的正方形,如图所示,按要求完成下列各小题.(1)求长方形硬纸片的宽;(2)小梅想用该正方形硬纸片制作一个体积3512cm 的正方体的无盖笔筒,请你判断该硬纸片是否够用?若够用,求剩余的硬纸片的面积;若不够用,求缺少的硬纸片的面积.【分析】(1)设长方形的长为xcm ,宽为ycm ,列出方程即可求出x 与y 的值.(2)求出该立方体的边长为8cm ,然后求出5个边长为8cm 的正方形的面积.【解答】解:(1)设长方形的长为xcm ,宽为ycm ,2x y ∴=,且2900x =30x ∴=,15y ∴=,(2)该正方体的棱长为:8cm =,共需要5个边长为8cm 的面,总面积为:258320⨯=,∴剩余的纸片面积为:2900320580cm −=,【点评】本题考查算术平方根与立方根的应用,解题的关键是根据面积为2900cm 的长方形该纸片的边长为30cm ,本题属于基础题型.二.立方根(共3小题)3.(2023春•浏阳市期末)一个正方体的体积扩大为原来的8倍,则它的棱长为原来的( )A .2倍B .4倍C .3倍D .8倍【分析】根据正方体的体积公式计算并判断即可.【解答】解:设原正方体的棱长为a ,则体积为3a ,∴将体积扩大为原来的8倍,为38a ,∴2a =,∴它的棱长为原来的2倍,故选:A .【点评】本题考查了正方体的体积和立方根的应用,熟练应用立方根和正方体的体积计算方法是解答本题的关键.4.(2023春•怀安县期末)已知正数x 的两个平方根分别是31a −和5a +,负数y 的立方根与它本身相同.(1)求a ,x ,y 的值;(2)求9x y −的算术平方根.【分析】(1)根据平方根和立方根的定义进行求解即可;(2)先求出代数式的值,然后怎根据算术平方根的定义进行求解即可.【解答】解:(1)依题意,得3150a a −++=,解得1a =−,314a ∴−=−,54a +=,2416x ∴==.负数y 的立方根与它本身相同,1y ∴=−;(2)当16x =,1y =−时,9169(1)25x y −=−⨯−=,9x y ∴−的算术平方根为5.【点评】本题考查平方根和立方根.熟练掌握一个正数的两个平方根互为相反数,是解题的关键.5.(2023春•射阳县期末)已知31x +的平方根为2±,21y −的立方根为3的值.【分析】首先依据平方根和立方根的定义求得x 、y 的值.【解答】解:31x +的平方根为2±,21y −的立方根为3,314x ∴+=,2127y −=,1x ∴=,14y =,∴4=.【点评】本题主要考查的是平方根和立方根的定义,熟练掌握相关定义是解题的关键.三.无理数(共1小题)6.(2023春•长沙期末)下列各数为无理数的是( )A .0.618B .227C D【分析】明确无理数是无限不循环小数;有理数分为整数和分数.【解答】解:3−,0.618∴;227 故选:C .【点评】本题考查实数的分类,明确无理数是无限不循环小数;有理数分为整数和分数.题目难度较小,多为考卷中第一题.四.实数(共1小题)7.(2023春•安顺期末)实数2023.2023−0π−,411,0.15中,有理数的个数为a ,无理数的个数为b ,则a b −的值是( )A .1B .3C .5D .7 【分析】根据实数的分类可得5a =,2b =,即可求解.4=,有理数有2023.2023−,0411,0.15,有5个,无理数有π−,有2个,即5a =,2b =,3a b ∴−=.故选:B .【点评】本题主要考查了实数的分类,熟练掌握实数的分类方法是解题的关键.五.实数与数轴(共1小题)8.(2023春•讷河市期末)为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点0)到达点A ,点A 对应的数是( )A .πB .3.14C .π−D . 3.14−【分析】由圆的周长等于线段OA 的长度,从而可得答案. 【解答】解:直径为1个单位长度的圆的周长为1222r πππ=⨯=, ∴点A 对应的数是π, 故选:A .【点评】本题考查的是实数与数轴,无理数在数轴上的表示,理解实数与数轴上的点一一对应是解本题的关键.六.估算无理数的大小(共1小题)9.(2023春•芜湖期末)实数a 在数轴上的对应点A 的位置如图所示,||3|b a a =+−.(1)求b 的值;(2)已知2b +的小数部分是m ,8b −的小数部分是n ,求221m n ++的平方根.【分析】(1)根据A 点在数轴上的位置,可以知道23a <<,根据a 的范围去绝对值化简即可;(2)先求出2b +,得到它的整数部分,用2b +减去整数部分就是小数部分,从而求出m ;同理可求出n .然后求出221m n ++,再求平方根.【解答】解:(1)由图可知:23a <<,0a ∴>,30a −>,3b a a ∴=−3=;(2)2325b +==−2b ∴+的整数部分是3,532m ∴==.88(3835b −=−=−=+8b ∴−的整数部分是6,561n ∴==.2212()12(21)13m n m n ∴++=++=⨯+=,221m n ∴++的平方根为.【点评】本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个.七.实数的运算(共2小题)10.(2023春•清丰县校级期末)对于实数a 、b ,定义{min a ,}b 的含义为:当a b <时,{min a ,}b a =;当a b >时,{min a ,}b b =,例如:{1min ,2}2−=−.已知min ,}a a =,min ,}b =a 和b 为两个连续正整数,则2a b −的值为( )A .1B .2C .3D .4【分析】根据a ,b 的范围,然后再代入求出2a b −的值即可.【解答】解:{30min }a a =,min }b =a ∴<b >a ,b 是两个连续的正整数.5a ∴=,6b =.22564a b ∴−=⨯−=.故选:D .【点评】本题主要考查用新定义解决数学问题及实数的运算,正确理解新定义是求解本题的关键.11.(20232|【分析】本题涉及立方根、绝对值、二次根式3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.2|9322=−+10=【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、绝对值、二次根式等考点的运算.八.解二元一次方程(共1小题)12.(2023春•门头沟区期末)将321x y +=写成用含x 的代数式表示y 的形式,y = .【分析】把x 看作已知数求出y 即可.【解答】解:方程321x y +=, 解得:132x y −=, 故答案为:132x − 【点评】此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y .九.二元一次方程的应用(共1小题)13.(2023春•武汉期末)蔬菜大王小明牛年春节前欲将一批蔬菜运往外地销售,若用2辆A 型车和1辆B 型车载满蔬菜一次可运走10吨,用1辆A 型车和2辆B 型车载满蔬菜一次可运走11吨.现有蔬菜31吨,计划同时租用A 型车x 辆,B 型车y 辆,一次运完,且恰好每辆车都载满蔬菜.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满蔬菜一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A 型车需租金100元/次,1辆B 型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.【分析】(1)设1辆A 型车载满蔬菜一次可运送a 吨,1辆B 型车载满蔬菜一次可运送b 吨,根据“用2辆A 型车和1辆B 型车载满蔬菜一次可运走10吨,用1辆A 型车和2辆B 型车载满蔬菜一次可运走11吨”,即可得出关于a ,b 的二元一次方程组,解之即可得出结论;(2)根据一次运送31吨蔬菜,即可得出关于x ,y 的二元一次方程,根据x ,y 均为正整数,即可得出各租车方案;(3)利用总租金=每辆车的租金⨯租车数量,可分别求出三种租车方案的租车费,比较后即可得出结论.【解答】解:(1)设1辆A 型车载满蔬菜一次可运送a 吨,1辆B 型车载满蔬菜一次可运送b 吨,依题意得:210211a b a b +=⎧⎨+=⎩,解得:34a b =⎧⎨=⎩. 答:1辆A 型车载满蔬菜一次可运送3吨,1辆B 型车载满蔬菜一次可运送4吨.(2)依题意得:3431x y +=,3143y x −∴=. 又x ,y 均为正整数,∴91x y =⎧⎨=⎩或54x y =⎧⎨=⎩或17x y =⎧⎨=⎩, ∴该物流公司共有3种租车方案,方案1:租用9辆A 型车,1辆B 型车;方案2:租用5辆A 型车,4辆B 型车;方案3:租用1辆A 型车,7辆B 型车.(3)方案1所需租车费为100912011020⨯+⨯=(元);方案2所需租车费为10051204980⨯+⨯=(元);方案3所需租车费为10011207940⨯+⨯=(元).1020980940>>,∴费用最少的租车方案为:租用1辆A 型车,7辆B 型车,最少租车费为940元.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程;(3)利用总租金=每辆车的租金⨯租车数量,分别求出三种租车方案的租车费.十.二元一次方程组的解(共2小题)14.(2023春•西华县期末)若关于x ,y 的二元一次方程组21,21x y k x y k +=−⎧⎪⎨⎪+=+⎩的解互为相反数,则k 的值为 .【分析】根据互为相反数的两个数和为0可得0x y +=,再将已知方程组相减可得2x y −=,进而解方程组求出x 和y 的值,再将x 和y 的值代入方程组中的其中一个方程即可求出k 的值.【解答】解:因为关于x ,y 的二元一次方程组21,21x y k x y k +=−⎧⎪⎨⎪+=+⎩的解互为相反数,所以0x y +=,方程组2121x y k x y k +=−⎧⎨+=+⎩①②, ②−①,得2x y −=,解方程组02x y x y +=⎧⎨−=⎩,得:11x y =⎧⎨=−⎩, 将1x =,1y =−代入①得,121k −=−,解得0k =.故答案为:0.【点评】本题考查了二元一次方程组的解,解决本题的关键是掌握二元一次方程组的解法.15.(2023春•铁岭期末)已知关于x ,y 的方程组2735418x y k x y k +=+⎧⎨+=+⎩的解也是方程2311x y +=的解,求k 的值.【分析】把方程组中的两个方程相减,得到23311x y k +=+,然后根据同解方程的定义,列出关于k 的方程,解答即可.【解答】解:2735418x y k x y k +=+⎧⎨+=+⎩①②, ②−①得:23311x y k +=+,关于x ,y 的方程组2735418x y k x y k +=+⎧⎨+=+⎩的解也是方程2311x y +=的解, 31111k ∴+=,0k ∴=.【点评】本题主要考查了求二元一次方程组中的参数,解题关键是理解同解方程的定义.十一.解二元一次方程组(共1小题)16.(2023春•新化县期末)定义一种新运算“※”,规定x ※2y ax by =+,其中a 、b 为常数,且1※25=,2※13=,则2※3= .【分析】由已知条件,根据所给定义可得到关于a 、b 的方程组,则可求得a 、b 的值,再代入计算即可.【解答】解:根据题意,得:4523a b a b +=⎧⎨+=⎩,解得:11a b =⎧⎨=⎩, 则x ※2y x y =+,2∴※232311=+=,故答案为:11.【点评】此题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解本题的关键. 十二.由实际问题抽象出二元一次方程组(共3小题)17.(2023春•丹江口市期末)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”意思是:用绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?设绳子长x 尺,长木长y 尺,则所列方程组正确的是( )A . 4.5112x y x y −=⎧⎪⎨−=⎪⎩ B . 4.521y x y x −=⎧⎨−=⎩ C . 4.5112x y y x −=⎧⎪⎨−=⎪⎩ D . 4.521x y y x −=⎧⎨−=⎩【分析】根据“用绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,”,即可得出关于x ,y 【解答】解:用绳子去量长木,绳子还剩余4.5尺,4.5x y ∴−=;将绳子对折再量长木,长木还剩余1尺, ∴112x y +=. ∴所列方程组为 4.5112x y x y −=⎧⎪⎨+=⎪⎩, 即 4.512x y x y −=⎧⎪⎨−=⎪⎩, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.18.(2023春•前郭县期末)我国古典数学文献《增删算法统宗⋅六均输》中有一个“隔沟计算”的问题:“甲乙隔沟牧放,二人暗里参详,甲云得乙九只羊,多乙一倍之上,乙说得甲九只,两家之数相当,二人闲坐恼心肠,画地算了半晌”其大意为:甲、乙两人一起放牧,两人心里暗中数羊.如果乙给甲9只羊,那么甲的羊数为乙的2倍;如果甲给乙9只羊,那么两人的羊数相同,请问甲,乙各有多少只羊?设甲有羊x只,乙有羊y只,根据题意,可列方程组为.【分析】设甲有羊x只,乙有羊y只,根据“如果乙给甲9只羊,那么甲的羊数为乙的2倍;如果甲给乙9只羊,那么两人的羊数相同”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲有羊x只,乙有羊y只.“如果乙给甲9只羊,那么甲的羊数为乙的2倍”,92(9)x y∴+=−;“如果甲给乙9只羊,那么两人的羊数相同”,99x y∴−=+.联立两方程组成方程组92(9)99x yx y+=−⎧⎨−=+⎩.故答案为:92(9)99x yx y+=−⎧⎨−=+⎩.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.19.(2023春•杜尔伯特县期末)某中学七年级(1)班去体育用品商店买一些篮球和排球,供班上同学进行体育锻炼时使用,共买了2个篮球和6个排球,花570元,并且每个排球比篮球便宜25元.(1)求篮球和排球的单价各是多少;(2)商店里搞活动,有两种套餐,①套餐打折:五个篮球和五个排球为一套餐,套餐打八折;②满减活动:满999减100,满1999减200;两种活动不重复参与,学校打算购买14个篮球,12个排球,请问如何安排更划算?【分析】(1)设篮球单价为每个x元,排球单价为每个y元,根据买了2个篮球和6个排球,花570元,并且每个排球比篮球便宜25元,列方程组求解即可得到答案;(2)分别计算两种活动方案费用比较即可得到答案.【解答】解:(1)设篮球单价为每个x元,排球单价为每个y元,由题意可得2526570y xx y=−⎧⎨+=⎩,解方程组得9065xy=⎧⎨=⎩,答:篮球每个90元,排球每个65元;(2)若按照①套餐打折购买费用为:2(590565)0.84902651730⨯+⨯⨯+⨯+⨯=(元),若参加②满减活动购买费用为:149012652040⨯+⨯=(元),又20401999>,所以20402001840−=(元).而18401730>,所以选择套餐①所花费用比选择套餐②所花费用低.答:选用套餐①购买更划算.【点评】本题考查二元一次方程组解决实际应用问题及择优方案问题,解题的关键是根据题意找到等量关系式.十三.二元一次方程组的应用(共1小题)20.(2023春•仓山区校级期末)“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.自2019年正式亮相后,相关特许商品投放市场,持续热销.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如表:(1)求此款“冰墩墩”和“雪容融”玩具的零售价格;(2)某单位欲购买这两款玩具作为冬奥知识竞赛活动的奖品,要求“雪容融”的数量恰好等于“冰墩墩”的数量的2倍,且购买总资金不得超过9000元,请根据要求确定该单位购买“冰墩墩”玩具的最大数量.【分析】(1)分别设出冰墩墩和雪容融的单价,根据题中的等量关系列出方程组,解方程组,最后作答.(2)设出冰墩墩玩具为m个,列出不等式,取最大整数解即可.【解答】解:(1)设“冰墩墩”和“雪容融”玩具的单价分别为x、y元,则1004014800 1606023380x yx y+=⎧⎨+=⎩,解方程组得:11875xy=⎧⎨=⎩,答:“冰墩墩”和“雪容融”玩具的单价分别为118、75元.(2)设“冰墩墩”玩具的数量为m个,则“雪容融”玩具为2m个.则1187529000m m+⋅…,解得:225033.5867m≈…,正整数m最大为33,答:该单位购买“冰墩墩”玩具的最大数量为33.【点评】本题主要考查了二元一次方程组和一元一次不等式的应用,读懂题意,列出对应的方程组或不等式是解题的关键.十四.解一元一次不等式(共1小题)21.(2023春•惠安县期末)如果关于x的方程328x a x+=+的解是正数,那么a的取值范围是.【分析】把a看作常数,表示出方程的解,由方程的解为正数求出a的范围即可.【解答】解:方程移项合并得:228x a=−+,解得:4x a=−+,由方程的解为正数,得到40a−+>,解得:4a<.故答案为:4a<.【点评】此题考查了一元一次方程的解,以及解一元一次不等式,方程的解即为能使方程左右两边相等的未知数的值.十五.一元一次不等式的整数解(共1小题)22.(2023春•琼海期末)不等式353x x−<+的非负整数解有个.【分析】先移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.【解答】解:移项,得:335x x−<+,合并同类项,得:28x <, 系数化为1,得:4x <,则此不等式的非负整数解有0、1、2、3,共4个, 故答案为:4.【点评】本题主要考查一元一次不等式的整数解,解题的关键是熟练掌握解一元一次不等式的步骤和依据. 十六.由实际问题抽象出一元一次不等式(共1小题)23.(2023春•铁西区期末)如图1,一个容量为3500cm 的杯子中装有3200cm 的水,将四颗相同的玻璃球放入这个杯中,结果水没有满,如图2.设每颗玻璃球的体积为x 3cm ,根据题意可列不等式为( )A .2004500x +<B .2004500x +…C .2004500x +>D .2004500x +…【分析】水的体积4+个玻璃球的体积3500cm <.【解答】解:水的体积为3200cm ,四颗相同的玻璃球的体积为4x 3cm , 根据题意得到:2004500x +<. 故选:A .【点评】本题考查的是由实际问题抽象出一元一次不等式,解此类题目的关键是读懂图意. 十七.一元一次不等式的应用(共1小题)24.(2023春•高安市期末)“一盔一带”安全守护行动是公安部在全国开展的一项安全守护行动,也是营造文明城市,做文明市民的重要标准,“一盔”是指安全头盔,电动自行车驾驶人和乘坐人员应当戴安全头盔,某商场欲购进一批头盔,已知购进8个甲型头盔和6个乙型头盔需要630元,购进6个甲型头盔和8个乙型头盔需要700元.(1)购进1个甲型头盔和1个乙型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,则最多可购进乙型头盔多少个? (3)在(2)的条件下,若该商场分别以58元/个、98元/个的价格销售完甲,乙两种型号的头盔200个,能否实现利润不少于6190元的目标?若能,请给出相应的采购方案;若不能,请说明理由. 【分析】(1)根据题意列二元一次方程组并求解即可;(2)设乙型头盔m 个,根据所需费用=数量⨯单价,计算甲、乙头盔总费用列不等式,求得乙型头盔m 的最大值;(3)根据利润=单件利润⨯数量,列不等式,求出乙型头盔m 的取值范围,结合(2)中答案确定m 的取值范围,即可得出可选方案.【解答】解:(1)设购进1个甲型头盔需要x 元,购进1个乙型头盔需要y 元.根据题意,得8663068700x y x y +=⎧⎨+=⎩,解得,3065x y =⎧⎨=⎩;答:购进1个甲型头盔需要30元,购进1个乙型头盔需要65元; (2)设购进乙型头盔m 个,则购进甲型头盔(200)m −个, 根据题意,得:6530(200)10200m m +−…, 解得:120m …,m ∴的最大值为120;答:最多可购进乙型头盔120个; (3)能,根据题意,得:(5830)(200)(9865)6190m m −−+−…; 解得:118m …;118120m ∴……;m 为整数,m ∴可取118,119或120m −的值分别为82,81或80;因此能实现利润不少于6190元的目标,该商场有三种采购方案: ①采购甲型头盔82个,采购乙型头盔118个; ②采购甲型头盔81个,采购乙型头盔119个; ③采购甲型头盔80个,采购乙型头盔120个.【点评】本题考查二元一次方程组和不等式的综合应用题,解题的关键是根据题意列方程组并求解,同时注意在确定方案时所设未知数应取整数. 十八.解一元一次不等式组(共3小题)25.(2023春•东洲区期末)已知关于x 的不等式组314(1)x x x m −<−⎧⎨<⎩无解,则m 的取值范围是( )A .3m …B .3m >C .3m <D .3m …【分析】先按照一般步骤进行求解,因为大大小小无解,那么根据所解出的x 的解集,将得到一个新的关于m 不等式,解答即可.【解答】解:解不等式314(1)x x −<−,得:3x >, 不等式组无解,3m ∴…,故选:A .【点评】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x a >,)x a <,没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).26.(2023春•安顺期末)已知不等式组1215x x <⎧⎨−−⎩…,其解集在数轴上表示正确的是( )A .B .C .D .【分析】分别求出每一个不等式的解集,根据口诀:同大取大,同小取小,大小小大中间找,大大小小找不到确定不等式组的解集,即可得出答案. 【解答】解:解不等式215x −−…得,2x −…, ∴原不等式组的解集为21x −<….故选:C .【点评】本题考查解一元一次不等式组,正确求出每一个不等式的解集是基础,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解答本题的关键.27.(2022秋•芦淞区期末)解不等式组1212324x x x x −−⎧⎪⎨⎪+<−+⎩…,并把它的解集表示在数轴上.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:1212324x x x x −−⎧⎪⎨⎪+<−+⎩①②…, 解不等式①,得:1x −…, 解不等式②,得:1x <, ∴该不等式组的解集为11x −<…,其解集在数轴上表示如下所示:.【点评】本题解一元一次不等式组、在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法是解题的关键.十九.一元一次不等式组的整数解(共2小题) 28.(2023春•吕梁期末)若关于x 的方程321123ax x +−−=的解为正数,且a 使得关于y 的不等式组3131y y a +>⎧⎨−<⎩恰有两个整数解,则所有满足条件的整数a 的值的和是( ) A .0B .1C .2D .3【分析】根据方程321123ax x +−−=的解为正数,且a 使得关于y 的不等式组3131y y a +>⎧⎨−<⎩恰有两个整数解,可以求得a 的取值范围,然后即可写出满足条件的整数a 的值,再将它们相加即可. 【解答】解:由方程321123ax x +−−=可得,543x a =−, 方程321123ax x +−−=的解为正数, ∴5043a >−, 43a ∴<, 由31y +>得2y >−, 由31y a −<得13a y +<, a 使得关于y 的不等式组3131y y a +>⎧⎨−<⎩恰有两个整数解,∴这两个整数解为1−,0,1013a +∴<…, 解得12a −<…, 由上可得413a −<<, ∴所有满足条件的整数a 的值为0,1, 011+=,∴所有满足条件的整数a 的值和为1,故选:B .【点评】本题考查一元一次不等式组的整数解、解一元一次方程,解答本题的关键是求出a 的取值范围. 29.(2023春•海州区期末)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程13x −=的解为4x =,而不等式组1123x x −>⎧⎨−<⎩的解集为25x <<,不难发现4x =在25x <<的范围内,所以方程13x −=是不等式组1123x x −>⎧⎨−<⎩的“关联方程”.(1)在方程①3(1)9x x +−=;②470x −=;③112x x −+=中,不等式组2213(2)4x x x x −>−⎧⎨−−⎩…的“关联方程”是 ;(填序号)(2)若关于x 的方程26x k −=是不等式组312121223x x x x +⎧⎪⎪⎨−+⎪−⎪⎩……的“关联方程”,求k 的取值范围;(3)若关于x 的方程7302x m +−=是关于x 的不等式组2221x mm x m m +⎧>⎪⎨⎪−+⎩…的“关联方程”,且此时不等式组有4个整数解,试求m 的取值范围.【分析】(1)先求出方程的解和不等式组的解集,再判断即可; (2)先求出不等式组的解集,然后再解方程求出62k x +=,最后根据“关联方程”的定义列出关于k 的不等式组,进行计算即可;(3)先求出不等式组的解集,不等式组有4个整数解,即可得出413m <…,然后求出方程的解为67x m =−,根据“关联方程”的定义得出7863m <…,即可得出7463m <<.【解答】解:(1)①3(1)9x x +−=, 解得:3x =, ②470x −=, 解得:74x =, ③112x x −+=, 解得:1x =,()221324x x x x −>−⎧⎪⎨−−⎪⎩①②…, 解不等式①得:1x >, 解不等式②得:5x …,∴原不等式组的解集为:15x <…,∴不等式组2213(2)4x x x x −>−⎧⎨−−⎩…的“关联方程”是:①②,故答案为:①②;(2)312121223x x x x +⎧⎪⎪⎨−+⎪−⎪⎩①②……,解不等式①得:1x −…, 解不等式②得:7x …,∴原不等式组的解集为:17x −……, 26x k −=,解得:62k x +=, 关于x 的方程26x k −=是不等式组312121223x x x x +⎧⎪⎪⎨−+⎪−⎪⎩……的“关联方程”,6172k +∴−……, 解得:88k −……;(3)关于x 的方程7302x m +−=, 解得:67x m =−,2221x mm x m m +⎧>⎪⎨⎪−+⎩①②…, 解不等式①得:0x >, 解不等式②得:31x m +…,∴原不等式组的解集为:031x m <+…,不等式组有4个整数解, ∴整数的值为1,2,3,4,4315m ∴+<…,413m ∴<…, 关于x 的方程7302x m +−=是关于x 的不等式组2221x mm x m m +⎧>⎪⎨⎪−+⎩…的“关联方程”, ∴6706731m m m −>⎧⎨−+⎩…,解得:7863m <…. m ∴的取值范围是7463m <<. 【点评】本题考查了解一元一次不等式组,一元一次方程的解,理解材料中的不等式组的“关联方程”是解题的关键.二十.规律型:点的坐标(共2小题)30.(2023春•殷都区期末)如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到点3(3,2)P −,⋯,按这样的运动规律,第2023次运动后,动点2023P 的坐标是( )A .(2023,0)B .(2023,1)C .(2023,2)D .(2023,2)−【分析】观察图象,得出点P 运动的规律,再根据循环规律可得答案.【解答】解:动点P 第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P −,第四次运动到4(4,0)P ,第五次运动到5(5,2)P ,第六次运动到6(6,0)P ,⋯, ∴横坐标与下标相同,纵坐标每6次运动组成一个循环:1,0,2−,0,2,0; 20236337......1÷=,∴经过第2023次运动后,动点P 的横坐标为2023,纵坐标是1,即:2023(2023,1)P .故选:B .【点评】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律:纵坐标每6次运动组成一个循环是解题的关键.31.(2023春•从化区期末)如图,在平面直角坐标系中有一个点(1,0)A ,点A 第一次向左跳动至1(1,1)A −,第二次向右跳动至2(2,1)A ,第三次向左跳动至3(2,2)A −,第四次向右跳动至4(3,2)A ,⋯,依照此规律跳动下去,点A 第2023次跳动到点2023A 的坐标为 .【分析】写出2A 、4A 、6A 、8A 的坐标,探究规律即可解决问题. 【解答】解:由题意: 2(2,1)A , 3(2,2)A −, 4(3,2)A ,5(3,3)A −,6(4,3)A ,7(4,4)A −,8(5,4)A ,⋯⋯2(1,)n A n n +,21(1,1)n A n n +−−+,2023210111÷=⋯⋯,2023A ∴的坐标为(1012,1012)−,故答案为:(1012,1012)−.【点评】本题考查规律型:点的坐标,解题的关键是从一般到特殊探究规律,利用规律解决问题,学会这种解题的思想方法,属于中考常考题型.二十一.坐标确定位置(共2小题)32.(2023春•曹县期末)中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用有序数对(2,1)表示“炮”的位置,(2,2)−表示“士”的位置,那么“将”的位置应表示为( )A .(3,3)−B .(3,1)−C .(3,3)−−D .(4,4)−−【分析】以有序数对(2,1)表示“炮”的位置,(2,2)−表示“土”的位置,建立平面直角坐标系,然后写出将的坐标即可.【解答】解:建立平面直角坐标系如图所示,将(3,3)−.故选:A .。
七年级数学-下学期期末复习知识归纳总结与典型例题

七年级数学-下学期期末复习知识归纳总结与典型例题引言期末考试是检验学生一学期学习成果的重要环节。
为了帮助七年级学生更好地复习和准备期末考试,本文档将总结本学期所学的数学知识点,并提供一些典型例题。
一、代数基础1. 代数表达式单项式:由数字和字母相乘组成的代数式。
多项式:由多个单项式相加组成的代数式。
2. 代数方程一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。
解方程:找到使方程左右两边相等的未知数的值。
典型例题例题1:解一元一次方程 (3x - 7 = 2x + 5)。
二、几何基础1. 线与角直线:无限延伸的一维图形。
射线:有一端固定,另一端无限延伸的一维图形。
角度:由两条射线在一点相交形成的图形。
2. 三角形三角形的分类:按边分类(等边、等腰、不等边),按角分类(锐角、直角、钝角)。
典型例题例题2:在一个等腰三角形中,底边长度为10,两腰的长度相等,求两腰的长度。
三、数的运算1. 有理数正数:大于0的数。
负数:小于0的数。
有理数的四则运算:加、减、乘、除。
2. 绝对值绝对值:一个数距离数轴原点的距离。
典型例题例题3:计算 (|-8| + 5 - 3) 的值。
四、数据的收集与处理1. 数据的收集调查法:通过问卷、访谈等方式收集数据。
2. 数据的图表表示条形统计图:用条形的高度表示数据大小。
折线统计图:用折线的升降表示数据的变化趋势。
典型例题例题4:根据给定的数据,绘制一个条形统计图。
五、概率初步1. 随机事件必然事件:一定会发生的事件。
不可能事件:一定不会发生的事件。
随机事件:可能发生也可能不发生的事件。
2. 概率的计算概率:事件发生的可能性。
典型例题例题5:在一个装有3个红球和2个蓝球的袋子里,随机抽取一个球,计算抽到红球的概率。
结论通过对七年级数学下学期期末复习知识归纳总结,学生可以更加系统地回顾和巩固所学知识,为期末考试做好充分的准备。
教师和家长应鼓励学生积极参与数学学习,培养他们的逻辑思维和问题解决能力。
人教版数学七年级下各章节经典例题、易错题透析(期末、初讲)必备

经典例题透析----易错题第五章相交线与平行线1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC∥AD.A.1个;B.2个;C.3个;D.4个.6.如图所示,直线,∠1=70°,求∠2的度数.7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?第六章平面直角坐标系1.点A的坐标满足,试确定点A所在的象限2.求点A(-3,-4)到坐标轴的距离.第七章三角形1.如图所示,钝角△ABC中,∠B是钝角,试作出BC边上的高AE.2.有四条线段,长度分别为4cm,8cm,10cm,12cm,选其中三条组成三角形,试问可以组成多少个三角形?3.一个三角形的三个外角中,最多有几个角是锐角?4.如图所示,在△ABC中,下列说法正确的是().A.∠ADB>∠ADE;B.∠ADB>∠1+∠2+∠3;C.∠ADB>∠1+∠2;D.以上都对.5.一个多边形的内角和为1440°,求其边数.第八章二元一次方程组1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.2.用加减法解方程组3.利用加减法解方程组4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..第九章不等式与不等式组1.利用不等式的性质解不等式:3.解不等式组2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)第十章数据的收集、整理与描述1.调查一批药物的药效持续时间,用哪种调查方式?2.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________3.26名学生的身高分别为(身高:cm):160;162;160;162;160;159;159;169;172;160;161;150;166;165;159;154;155;158;174;161;170;156;167;168;163;162.现要列出频率分布表,请你确定起点和分点数据.答案五、1解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度. 正解:D.3.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。
(完整版)初中苏教七年级下册期末数学必备知识点题目优质及解析

(完整版)初中苏教七年级下册期末数学必备知识点题目优质及解析一、选择题1.在下列各式中,运算结果为2x 的是( )A .42x x -B .63x x ÷C .42()x x ÷-D .2()x x ⋅- 2.如图,属于同位角的是( )A .2∠与3∠B .1∠与4∠C .1∠与3∠D .2∠与4∠3.已知方程组42x y x y m -=⎧⎨+=⎩中的 x ,y 互为相反数,则m 的值为( ) A .2 B .﹣2 C .0 D .44.已知关于x 的不等式(a ﹣1)x >1,可化为x <11a -,试化简|1﹣a|﹣|a ﹣2|,正确的结果是( )A .﹣2a ﹣1B .﹣1C .﹣2a+3D .15.如果关于x 的不等式3x -a ≤-1的解集如图所示,则a 的值是()A .a ≤-1B .a ≤-2C .a=-1D .a=-2 6.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③内错角相等;④垂线段最短.A .3B .2C .1D .07.有一列数:123,,,,n a a a a …,若112a =-,从第2个数起,每一个数都等于“1与它前面的那个数的差的倒数”,那么2021a 的值为( )A .2-B .12-C .23D .38.如图,一般ABC ∆中30A ∠=︒,E 是AC 边上的点,先将ABE ∆沿着BE 翻折,翻折后ABE ∆的AB 边交AC 于点D ,又将BCD ∆沿着BD 翻折,C 点恰好落在BE 上,此时82CDB ∠=︒,则原三角形的B ∠=( )度.A .78︒B .52︒C .68︒D .75︒二、填空题9.计算:5(2)x xy ⋅-=________.10.已知三条不同的直线a 、b 、c 在同一平面内,下列四条命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥c .其中假命题的是___.(填写序号) 11.如图,△ABC ,△DBE 均为直角三角形,且D ,A ,E ,C 都在一条直线上,已知∠C =25°,∠D =45°,则∠EBC 的度数是_____.12.如果两个多项式有公因式,则称这两个多项式为关联多项式,若x 2﹣25与(x +b )2为关联多项式,则b =___;若(x +1)(x +2)与A 为关联多项式,且A 为一次多项式,当A +x 2﹣6x +2不含常数项时,则A 为____.13.已知方程组4,5ax by bx ay +=⎧⎨+=⎩的解是1,2,x y =⎧⎨=⎩那么+a b 的值是__________. 14.如图,从位置P 到直线公路MN 共有四条小道PA 、PB 、PC 、PD ,若用相同的速度行走,能最快到达公路MN 的小道是__________,理由是__________.15.如果等腰三角形的两条边分别为5厘米和10厘米,那么这个等腰三角形的周长是 _______.16.如图1,将三角板ABC 与三角板ADE 摆放在一起;如图2,固定三角板ABC ,将三角板ADE 绕点A 按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).当△ADE 的一边与△ABC 的某一边平行(不共线)时,写出旋转角α的所有可能的度数为 . 17.计算下列各式的值.(1)220311( 3.14)(2)3π-⎛⎫-+---+- ⎪⎝⎭(2)()22323154426x y xy y xy ⎛⎫--⋅- ⎪⎝⎭ (3)()22334369x y xy x y -⋅÷ 18.因式分解(1)2294y x -(2)269x x ++19.解方程组:(1)28324x y x y +=⎧⎨-=⎩ (2)()23432116x y x y ⎧-=⎪⎨⎪--=⎩20.解不等式组2311,2113x x x x +≤+⎧⎪+⎨-≥⎪⎩,并在数轴上表示出不等式组的解集. 三、解答题21.完成下面的证明:已知:如图, //AB CD , CD 和BE 相交于点O , DE 平分CDF ∠,DE 和BE 相交于点E ,2E ∠=∠.求证:22B ∠=∠.证明:2E ∠=∠(已知),//BE DF ∴(______________),CDF ∴∠=∠________(两直线平行,同位角相等).又//AB CD (已知),B ∴∠=∠______(________)B CDF ∴∠=∠(等量代换) .DE 平分CDF ∠(已知) ,2CDF ∴∠=∠_______(角平分线的定义).22B ∴∠=∠(_________).22.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?23.某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A 、B 两类:A 类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B 类年票每张60元,持票者进入中心时,需再购买门票,每次2元.(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A 类年票,请问他一年中进入该中心不低于多少次?24.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.25.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系.【参考答案】一、选择题1.C解析:C【分析】根据合并同类项和同底数幂的乘法,同底数幂的除法,及积的乘方法则进行计算,然后逐个判断.【详解】A. 4x 与2x 不是同类项,不能合并,故此选项不符合题意;B. 633x x x ÷=,故此选项不符合题意;C. 422()x x x -=÷,故此选项符合题意;D. 23()x x x -=⋅,故此选项不符合题意;故选:C .【点睛】本题考查同底数幂的乘法,同底数幂的除法,积的乘方运算,掌握运算法则正确计算是解题关键.2.A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可.【详解】解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A 符合题意. ∠1与∠4是对顶角,因此选项B 不符合题意.∠1与∠3是内错角,因此选项C 不符合题意.∠2与∠4同旁内角,因此选项D 不符合题意.故选:A .【点睛】本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提.3.A解析:A【详解】∵x 与y 互为相反数,∴x+y=0,y=-x ,又∵42x y x y m -=⎧⎨+=⎩, ∴x=m ,x-(-x)=4,∴m=x=2.故选A.4.B解析:B【分析】由不等式的基本性质3可得a ﹣1<0,即a <1,再利用绝对值的性质化简可得.【详解】解:∵(a ﹣1)x >1可化为x <11a -, ∴a ﹣1<0,解得a <1,则原式=1﹣a ﹣(2﹣a)=1﹣a ﹣2+a=﹣1,故选:B .【点睛】本题考查了绝对值的意义,以及不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变. 5.D解析:D【分析】不等式3x -a ≤-1的解集是13a x -≤,数轴表示的解集是x≤-1.则113a -=-,a=-2. 【详解】∵不等式3x -a ≤-1的解集为:13a x -≤, 又∵不等式3x -a ≤-1的解集在数轴上表示为;x≤-1.∴113a -=-,解得a=-2. 故答案为:D .【点睛】此题考查了不等式的解集在数轴上的表示方法的灵活应用.6.C解析:C【分析】根据平行公理、平行线的性质定理、垂线段的性质判断即可.【详解】解:过直线外一点有且只有一条直线与已知直线平行,①是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,②是假命题;两直线平行,内错角相等,③是假命题;垂线段最短,④是真命题,故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.C解析:C【分析】根据每一个数都等于1与它前面那个数的差的倒数多列举几个数字,找出规律即可.【详解】解:a 1=12-,13122⎛⎫--= ⎪⎝⎭, a 2=23,21133-=, a 3=3,132-=-,a 4=12-, …,从上面的规律可以看出每三个数一循环,2021÷3=673......2,∴a 2021=a 2=23, 故选:C .【点睛】本题主要考查数字的变化规律,总结归纳数字的变化规律是解题的关键. 8.A解析:A【分析】在图①的△ABC 中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD ,即可在△CBD 中,得到另一个关于∠B 、∠C 度数的等量关系式,联立两式即可求得∠B 的度数.【详解】在△ABC 中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD ,∠BCD=∠C ;在△CBD 中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②; ①-②,得:23∠B=52°, 解得∠B=78°.故选:A .【点睛】此题考查折叠变换,三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解题的关键.二、填空题9.210x y -【分析】根据单项式乘单项式的运算法则计算即可.【详解】25(2)10x xy x y ⋅-=-.故答案为:210x y -.【点睛】本题考查了单项式乘单项式,熟练掌握单项式乘单项式的运算法则是解题的关键. 10.③【分析】根据两直线的位置关系一一判断即可.【详解】解:①如果a ∥b ,a ⊥c ,那么b ⊥c ,正确,是真命题;②如果b ∥a ,c ∥a ,那么b ∥c ,正确,是真命题;③如果b ⊥a ,c ⊥a ,那么b ⊥c ,错误,应该是b ∥c ,故原命题是假命题;④如果b ⊥a ,c ⊥a ,那么b ∥c ,正确,是真命题.假命题有③,故答案为:③.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.11.D解析:20°.【分析】先根据三角形的内角和定理得:∠DEB=45°,最后根据三角形外角的性质可得结论.【详解】解:Rt△DBE中,∵∠D=45°,∠DBE=90°,∴∠DEB=90°-45°=45°,∵∠C=25°,∴∠EBC=∠DEB﹣∠C=45°-25°=20°,故答案为:20°.【点睛】本题考查三角形内角和和外角和定理,熟练掌握其性质是解题的关键.12.A解析:±5 -2x-2或-x-2【分析】先将x2-25因式分解,再根据关联多项式的定义分情况求出b;再分A=k(x+1)=kx+k或A=k(x+2)=kx+2k两种情况,根据不含常数项.【详解】解:①∵x2-25=(x+5)(x-5),∴x2-25的公因式为x+5、x-5.∴若x2-25与(x+b)2为关联多形式,则x+b=x+5或x+b=x-5.当x+b=x+5时,b=5.当x+b=x-5时,b=-5.综上:b=±5.②∵(x+1)(x+2)与A为关联多项式,且A为一次多项式,∴A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数.当A=k(x+1)=kx+k(k为整数)时,若A+x2-6x+2不含常数项,则k+2=0,即k=-2.∴A=-2(x+1)=-2x-2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2-6x+2不含常数项,则2k+2=0,即k=-1.∴A=-x-2.综上,A=-2x-2或A=-x-2.故答案为:±5,-2x-2或-x-2.【点睛】本题主要考查多项式、公因式,熟练掌握多项式、公因式的意义是解决本题的关键.13.3【分析】把12xy=⎧⎨=⎩代入方程组4,5ax bybx ay+=⎧⎨+=⎩中可以得到关于a、b的方程组,解这个方程组即可求解.【详解】解:把12xy=⎧⎨=⎩代入方程组45ax bybx ay+=⎧⎨+=⎩得关于a、b的方程组2425a bb a+=⎧⎨+=⎩,解得:21ab=⎧⎨=⎩,∴a+b=3,故答案为:3.【点睛】本题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.14.B解析:PB垂线段最短【分析】根据垂线段最短,即可求解【详解】根据垂线段最短得,能最快到达公路MN的小道是PB,故答案为:PB,垂线段最短.【点睛】本题考查了直线外一点到直线的距离,熟练掌握直线外一点到直线的距离垂线段最短是解题关键.15.25cm【分析】分两种情况讨论:当5厘米是腰时或当10厘米是腰时.根据三角形的三边关系,知5,5,10不能组成三角形,应舍去.【详解】解:当5厘米是腰时,则5+5=10,不能组成三角形,应舍解析:25cm【分析】分两种情况讨论:当5厘米是腰时或当10厘米是腰时.根据三角形的三边关系,知5,5,10不能组成三角形,应舍去.【详解】解:当5厘米是腰时,则5+5=10,不能组成三角形,应舍去;当10厘米是腰时,则三角形的周长是5+10×2=25(厘米).故答案为:25cm.【点睛】本题主要考查了三角形的三边关系,即两边之和大于第三边,两边之差小于第三边和等腰三角形的性质,解题的关键是熟练掌握等腰三角形的性质和三角形的三边关系.16.15°,45°,105°,135°,150°.【详解】试题分析:要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC分别画出图形,再分别计算出度数即可.解:当△AD解析:15°,45°,105°,135°,150°.【详解】试题分析:要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC分别画出图形,再分别计算出度数即可.解:当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的情况如下图所示:①当AD∥BC时,α=15°;②当DE∥AB时,α=45°;③当DE∥BC时,α=105°;④当DE∥AC时,α=135°;⑤当AE∥BC时,α=150°.故答案为15°,45°,105°,135°,150°.考点:旋转的性质.17.(1)-17;(2);(3)【分析】(1)先算乘方,零指数幂和负指数幂,再算加减法;(2)利用多项式除以单项式法则计算;(3)先算乘方,再算单项式的乘除法.【详解】解:(1)==-1解析:(1)-17;(2)3324510323x y x y xy -++;(3)26x y 【分析】(1)先算乘方,零指数幂和负指数幂,再算加减法;(2)利用多项式除以单项式法则计算;(3)先算乘方,再算单项式的乘除法.【详解】解:(1)220311( 3.14)(2)3π-⎛⎫-+---+- ⎪⎝⎭ =1198-+--=-17;(2)()22323154426x y xy y xy ⎛⎫--⋅- ⎪⎝⎭ =3324510323x y x y xy -++; (3)()22334369x y xy x y -⋅÷=42334969x y xy x y ⋅÷=5534549x y x y ÷=26x y【点睛】本题考查了实数的混合运算,整式的混合运算,解题的关键是掌握各自的运算法则. 18.(1)(3y+2x )(3y-2x );(2)(x+3)2【分析】(1)使用平方差公式进式分解即可;(2)使用完全平方公式分解因式即可.【详解】解:(1)原式=(3y )2-(2x )2=(3y解析:(1)(3y +2x )(3y -2x );(2)(x +3)2【分析】(1)使用平方差公式进式分解即可;(2)使用完全平方公式分解因式即可.【详解】解:(1)原式=(3y )2-(2x )2=(3y +2x )(3y -2x );(2)原式=x 2+2•x •3+32=(x +3)2.【点睛】本题考查了公式法分解因式,熟记a 2-b 2=(a +b )(a -b ),a 2±2ab +b 2=(a ±b )2是解题的关键.19.(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1),①②得:,解得:,把代入①得:,解得:,则方程组的解解析:(1)352x y =⎧⎪⎨=⎪⎩;(2)616x y =-⎧⎨=-⎩ 【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)28324x y x y +=⎧⎨-=⎩①②, ①+②得:412x =,解得:3x =,把3x =代入①得:328y +=, 解得:52y =,则方程组的解为352x y =⎧⎪⎨=⎪⎩; (2)方程组整理得:43243214x y x y -=⎧⎨-=⎩①②, ①2⨯-②3⨯得:6x -=,解得:6x =-,把6x =-代入①得:24324y --=,解得:16y =-,则方程组的解为616x y =-⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20..在数轴上表示见解析【分析】分别解不等式组中的两个不等式,再把两个不等式的解集在数轴上表示出来,确定解集的公共部分,从而可得答案.【详解】解:由①得:由②得:在数轴上分别表示①解析:2x -≤.在数轴上表示见解析【分析】分别解不等式组中的两个不等式,再把两个不等式的解集在数轴上表示出来,确定解集的公共部分,从而可得答案.【详解】 解:23112113x x x x +≤+⎧⎪⎨+-≥⎪⎩①② 由①得:8,x ≤由②得:2133,x x +-≥2,x ∴≤-在数轴上分别表示①②的解集如下:所以不等式组的解集为: 2.x -≤【点睛】本题考查的是解不等式组,在数轴上表示不等式组的解集,掌握解不等式组的方法与步骤是解题的关键.三、解答题21.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.【详解】证明:(已知),(内解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由2E ∠=∠可判定//BE DF ,即得出1CDF ∠=∠,再根据//AB CD 得出1B ∠=∠,等量代换得到B CDF ∠=∠,再根据角平分线的定义等量代换即可得解.【详解】证明:2E ∠=∠(已知),//BE DF ∴(内错角相等,两直线平行),1CDF ∴∠=∠(两直线平行,同位角相等).又//AB CD (已知),1B ∴∠=∠(两直线平行,同位角相等),B CDF ∴∠=∠(等量代换). DE 平分CDF ∠(已知),22CDF ∴∠=∠(角平分线的定义).22B ∴∠=∠(等量代换).故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【点睛】本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”.22.(1)小明原计划购买文具袋个;(2)小明最多可购买钢笔支【分析】(1)设小明原计划购买文具袋x 个,则实际购买了(x +1)个,根据对话内容列出方程并解答;(2)设小明可购买钢笔y 支,根据两种物品解析:(1)小明原计划购买文具袋17个;(2)小明最多可购买钢笔4支【分析】(1)设小明原计划购买文具袋x 个,则实际购买了(x +1)个,根据对话内容列出方程并解答;(2)设小明可购买钢笔y 支,根据两种物品的购买总费用不超过400元列出不等式并解答.【详解】解: ()1设小明原计划购买文具袋x 个,则实际购买了(1x +)个.依题意得:()1010.851017x x +⨯=-.解得17x =.答:小明原计划购买文具袋17个.()2设小明可购买钢笔y 支,则购买签字笔()50y -支,依题意得:()865080%400101717y y ⎡⎤⎣+-⨯≤-⨯+⎦. 解得 4.375y ≤.即4y =最大值.答:小明最多可购买钢笔4支.【点睛】考查了一元一次方程的应用和一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.23.(1)应该购买B 类年票,理由见解析;(2)应该购买B 类年票,理由见解析;(3)小明一年中进入拓展中心不低于30次【分析】(1)因为80元小于120元,故无法购买A 类年票,继而分别讨论直接购票与购解析:(1)应该购买B 类年票,理由见解析;(2)应该购买B 类年票,理由见解析;(3)小明一年中进入拓展中心不低于30次【分析】(1)因为80元小于120元,故无法购买A 类年票,继而分别讨论直接购票与购买B 类年票,这两种方式何者次数更多即可.(2)本题根据进入中心的次数,分别计算小亮直接购票、购买A 类年票、购买B 类年票所消费的总金额,最后比较总花费大小即可.(3)小明选择购买A 类年票,说明A 类年票更为划算,故需满足直接购票与购买B 类年票所花费的金额不低于120元,最后列不等式求解即可.【详解】(1)由于预算限制,小丽不可能买A 类年票;若直接购票,可以进中心8010=8÷次;若购买B 类年票,可进中心(8060)210-÷=次,所以应该购买 B 类年票.(2)若直接购买门票,需花费2010=200⨯元;若购买A 类年票,需花费120元;若购买B 类年票,需花费60+202=100⨯元;所以应该购买B 类年票.(3)设小明每年进拓展中心约x 次,根据题意列出不等式组:10120602120x x ≥⎧⎨+≥⎩,解得1230x x ≥⎧⎨≥⎩,故30x ≥. 所以小明一年中进入拓展中心不低于30次.【点睛】本题考查实际问题以及不等式,解题关键在于对题目的理解,此类型题目需要分类讨论做对比,其次需要从实际问题背景抽离数学关系,最后注意计算仔细即可.24.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠EAC ,∠ACD=2∠ACE ,再解析:(1)详见解析;(2)∠BAE+12∠MCD=90°,理由详见解析;(3)详见解析. 【详解】试题分析:(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC =2∠EAC ,∠ACD =2∠ACE ,再由∠EAC +∠ACE =90°可知∠BAC +∠ACD =180,故可得出结论;(2)过E 作EF ∥AB ,根据平行线的性质可知EF ∥AB ∥CD ,∠BAE =∠AEF ,∠FEC =∠DCE ,故∠BAE +∠ECD =90°,再由∠MCE =∠ECD 即可得出结论;(3)根据AB ∥CD 可知∠BAC +∠ACD =180°,∠QPC +∠PQC +∠PCQ =180°,故∠BAC =∠PQC +∠QPC .试题解析:证明:(1)∵CE 平分∠ACD ,AE 平分∠BAC ,∴∠BAC =2∠EAC ,∠ACD =2∠ACE .∵∠EAC +∠ACE =90°,∴∠BAC +∠ACD =180,∴AB ∥CD ;(2)∠BAE +12∠MCD =90°.证明如下: 过E 作EF ∥AB .∵AB ∥CD ,∴EF ∥∥AB ∥CD ,∴∠BAE =∠AEF ,∠FEC =∠DCE . ∵∠E =90°,∴∠BAE +∠ECD =90°.∵∠MCE =∠ECD ,∴∠BAE +12∠MCD =90°; (3)①∠BAC =∠PQC +∠QPC .理由如下:如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如图4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.25.(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平解析:(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平分线,可得∠CDF=12∠CDB,∠CDE=1 2∠CDO,进而得出∠EDF=12(∠CDB+∠CDO)=90°,再根据平行线的性质,即可得到∠AED=90°,即DE⊥AO;(2)连接OC,依据∠DEO=∠DEC,∠EDO=∠EDC,可得∠DOE=∠DCE,再根据三角形外角性质,即可得到∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)如图3中,依据∠CDB是△ODG的外角,可得∠CDB=∠DOG+∠DGO,依据∠DGO 是△CEG的外角,可得∠DGO=∠AEC+∠C,进而得到∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4中,同理可得∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【详解】解:(1)如图1,∵DE、DF分别是∠CDO、∠CDB的平分线,∴∠CDF=12∠CDB,∠CDE=12∠CDO,∴∠EDF=12(∠CDB+∠CDO)=90°,又∵DF∥AO,∴∠AED=90°,∴DE⊥AO;(2)如图2,连接OC,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△COD的外角,∠AEC是△COE的外角,∴∠CDB=∠COD+∠OCD,∠AEC=∠EOC+∠ECO,∴∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)图3中,∠CDB=∠AEC+2∠DCE;图4中,∠AEC=∠CDB+2∠DCE.理由:如图3,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△ODG的外角,∴∠CDB=∠DOG+∠DGO,∵∠DGO是△CEG的外角,∴∠DGO=∠AEC+∠C,∴∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠AEC是△OEH的外角,∴∠AEC=∠DOE+∠OHE,∵∠OHE是△CDH的外角,∴∠OHE=∠CDB+∠C,∴∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【点睛】本题主要考查了平行线的性质以及三角形外角性质的综合运用,解题时注意:三角形的外角等于与它不相邻的两个内角的和.。
(完整版)数学苏教七年级下册期末复习必考知识点题目

(完整版)数学苏教七年级下册期末复习必考知识点题目一、选择题1.下列计算正确的是( ) A .2a +3b =5ab B .(﹣a 2)3=a 6 C .(a +b )2=a 2+b 2 D .a 3⋅a 2=a 5 2.如图所示,下列说法正确的是( )A .1∠和2∠是内错角B .1∠和2∠是同旁内角C .1∠和5∠是同位角D .1∠和4∠是内错角3.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x yb x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩4.对于下列命题: ①若a b >,则22a b >;②在直角三角形中,任意两个内角的和一定大于第三个内角; ③无论x 取何值,代数式222x x ++的值都不小于1.④在同一个平面内,有两两相交的三条直线,这些相交直线构成的所有角中,至少有一个角小于60︒. 其中真命题有( ) A .1个B .2个C .3个D .4个5.已知关于,x y 的二元一次方程组3426x y m x y +=-+⎧⎨-=⎩的解满足3x y +<,则m 的取值范围是( ) A .52m >-B .52m <-C .52m >D .52m <6.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .平行于同一直线的两条直线平行C .内错角不一定相等D .若a 的绝对值等于a ,则a 一定是正数7.定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为35n +;②当n 为偶数时,结果为2k n ;(其中k 是使2k n为奇数的正整数),并且运算可以重复进行,例如,取26n =.则:若49n =,则第2021次“F 运算”的结果是( ) A .68B .78C .88D .988.已知1232015,,,...a a a a 均为负数,122014232015(...)(...)M a a a a a a =++++++,122015232014(...)(...)N a a a a a a =++++++,则M 与N 的大小关系是( )A .M NB .M N >C .M N <D .无法确定二、填空题9.___________223123x y x y ÷=. 10.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”). 11.如图所示,将正六边形与正五边形按此方式摆放,正六边形与正五边形的公共顶点为O ,且正六边形的边AB 与正五边形的边DE 在同一条直线上,则∠COF 的度数为______.12.若a +b =2,ab =﹣3,则代数式a 3b +2a 2b 2+ab 3的值为______.13.若关于,x y 的二元一次方程组42x y kx y k -=⎧⎨+=⎩的解也是二元一次方程27x y -=-的解;则k的值是______14.如图,三角形ABC 中,AC ⊥BC ,则边AC 与边AB 的大小关系是________,依据是________.15.三角形的三边长为3、7、x ,则x 的取值范围是______16.如图在△ABC 中,AG =BG ,BD =DE =EC ,AC =4AF ,若△ABC 面积为48,则四边形DEFG 的面积为________.17.计算:(1)﹣12020+20202﹣2021×2019; (2)(3.14﹣π)0﹣|﹣4|+(﹣12)﹣3. 18.把下列各式分解因式:(1)2x 2-32 (2)2x 2-2x+12(3)()()21619m m -+-+; (4)2221xy x y -+-. 19.解方程组:(1)139x y x y -=⎧⎨+=⎩(2)231734121623x y x y ⎧+=⎪⎪⎨⎪-=-⎪⎩20.解方程(或不等式)组:(1)21025x y x y +=⎧⎨-=⎩(2)()321213x x x x ⎧<-⎪⎨+>-⎪⎩三、解答题21.填写下列空格完成证明:如图,//7012EF AD BAC ∠=︒∠=∠,,,求AGD ∠.解://EF AD ,2∴∠=_______.(理由是:______) 12∠=∠,13∠∠∴=.∴______//_______.(理由是:_______)BAC ∴∠+_______180=︒.(理由是:______)70BAC ∠=︒,AGD ∴∠=________︒.22.某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载) 车型甲乙丙汽车运载量(公斤/辆)600800900汽车运费(元/辆)500600700(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?23.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x yx y-=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m nm n⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.24.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由25.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+12∠A,(请补齐空白处......)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.【参考答案】一、选择题1.D解析:D【分析】A.根据同类项的定义解题;B.根据幂的乘方解题;C.根据完全平方公式解题;D.根据同底数幂的乘法解题.【详解】解:A. 2a与3b不是同类项,不能合并,故A错误;B.(﹣a2)3=-a6,故B错误;C.(a+b)2=a2+2ab+b2,故C 错误;D. a3⋅a2=a5,故D正确,故选:D.【点睛】本题考查幂的乘方运算、完全平方公式、合并同类项等知识,是基础考点,掌握相关知识是解题关键.2.B解析:B【分析】利用“三线八角”的定义分别判断后即可确定正确的选项.【详解】解:A、∠1和∠2是同旁内角,故错误;B、∠1和∠2是同旁内角,正确;C、∠1和∠5不是同位角,故错误;D、∠1和∠4不是同旁内角,故错误,故选:B.【点睛】本题考查了同位角、内错角及同旁内角的定义,解题的关键是了解三类角的定义,难度不大.3.C解析:C【详解】分析:由原方程组的解及两方程组的特点知,x+y、x﹣y分别相当于原方程组中的x、y,据此列出方程组,解之可得.详解:由题意知:3{4x yx y+=-=①②,①+②,得:2x=7,x=3.5,①﹣②,得:2y=﹣1,y=﹣0.5,所以方程组的解为3.50.5xy=⎧⎨=-⎩.故选C.点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x、y的方程组.4.A解析:A【分析】根据不等式的性质、三角形内角和定理、完全平方公式、以及平角的定义解答即可.【详解】解:①当a=-1,b=-2时,满足a >b ,但a 2<b 2;原命题是假命题; ②在直角三角形中,两个锐角和等于第三个内角,原命题是假命题;③无论x 取什么值,代数式x 2-2x+2=(x-1)2+1≥1,所以其值都不小于1,是真命题; ④在同一平面内,有两两相交的3条直线,这些相交直线构成的所有角中,当三个角都等于60°时,三个角的和等于180°,条件成立,所以原命题是假命题. 故答案为:A . 【点睛】本题考查了命题与定理知识点,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.A解析:A 【分析】先把方程组的两个方程组相减得到22x y m +=--,再根据<3x y +得到22<3m --,然后解出即可; 【详解】把3426x y m x y +=-+⎧⎨-=⎩两式相减得到22x y m +=--,∵<3x y +, ∴22<3m --, ∴5>2m -; 故答案选A . 【点睛】本题主要考查了方程组与不等式的结合,准确计算是解题的关键.6.D解析:D 【分析】根据所学知识对命题依次判断真假. 【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别是:30,60,90︒︒︒,所以这个三角形是直角三角形,为真命题,不符合题意; B 、平行于同一直线的两条直线平行,为真命题,不符合题意; C 、内错角不一定相等,为真命题,不符合题意;D 、若a 的绝对值等于a ,当0a =时成立,0不是正数,故为假命题,符合题意; 故选:D . 【点睛】本题考查了命题的判断真假,解题的关键是:结合所学知识对命题依次判断,正确的为真命题,错误的为假命题.7.D【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F 运算”的结果. 【详解】解:本题提供的“F 运算”,需要对正整数n 分情况(奇数、偶数)循环计算,由于n =49为奇数应先进行F ①运算, 即3×49+5=152(偶数), 需再进行F ②运算, 即152÷23=19(奇数),再进行F ①运算,得到3×19+5=62(偶数), 再进行F ②运算,即62÷21=31(奇数), 再进行F ①运算,得到3×31+5=98(偶数), 再进行F ②运算,即98÷21=49,再进行F ①运算,得到3×49+5=152(偶数),…, 即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…, 可以发现第6次运算结果为49,第7次运算结果为152, 则6次一循环, 2021÷6=336…5,则第2021次“F 运算”的结果是98. 故选:D . 【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.8.B解析:B 【分析】根据换元法将,设122014x a a a =++⋯+,232015y a a a =++⋯+,则M xy =,()()20152015N x a y a =+-,作差即可求得大小关系.【详解】设122014x a a a =++⋯+,232015y a a a =++⋯+, 则M xy =,()()()20152015201520125N x a y a xy a y x a =+-=+--,()2015201512015=M N a y x a a a -=---由于1232015,,,...a a a a 均为负数所以12015a a 为正数,则120150M N a a -=>,M N >.【点睛】本题考查整式的混合运算,熟练掌握运算法则是关键,解答时注意运用整体思想,属难题.二、填空题 9.5323x y【分析】根据单项式乘单项式即可得出答案. 【详解】3225312233x y x y x y ⨯= 故答案为:5323x y .【点睛】本题考查的是单项式乘单项式法则:系数相乘,相同字母的指数相加. 10.真命题 【分析】根据三角形内角和为180°进行判断即可. 【详解】∵三角形内角和为180°,∴三角形的三个内角中至少有两个锐角,是真命题;故答案为真命题. 【点睛】本题考查命题与定理.判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.11.E解析:84° 【分析】利用正多边形的性质求出∠EOF ,∠BOC ,∠BOE 即可解决问题. 【详解】解:由题意得:∠EOF =108°,∠BOC =120°,∠OEB =72°,∠OBE =60°, ∴∠BOE =180°﹣72°﹣60°=48°, ∴∠COF =360°﹣108°﹣48°﹣120°=84°, 故答案为:84°. 【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识. 12.-12 【分析】根据a 3b +2a 2b 2+ab 3=ab (a 2+2ab +b 2)=ab (a +b )2,结合已知数据即可求出代数式a 3b +2a 2b 2+ab 3的值. 【详解】解:∵a +b =2,ab =﹣3, ∴a 3b +2a 2b 2+ab 3 =ab (a 2+2ab +b 2), =ab (a +b )2, =﹣3×4, =﹣12. 故答案为:﹣12. 【点睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键. 13.-1 【分析】把k 看作已知数表示出方程组的解,代入已知方程计算即可得到k 的值. 【详解】42x y k x y k -=⎧⎨+=⎩①② ①+②得:2x=6k , 解得,x=3k , ②-①得,2y=-2k , 解得:y=-k代入2x-y=-7得,6k+k=-7 解得,k=-1. 故答案为:-1. 【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组.方程组的解即为能使方程组中两方程都成立的未知数的值.14.A解析:AC <AB 垂线段最短【分析】点到直线的距离也是点到直线的垂线段,是最短的;据此解答 【详解】AC 小于AB ,因为垂线段最短 故答案为①AC <AB ②垂线段最短 【点睛】本题考查两点之间垂线段最短,掌握这一点就能正确解题.15.4<x<10 【分析】根据三角形的三边关系直接进行求解即可.【详解】解:由三角形的三边长为3、7、x ,则有: ,即; 故答案为. 【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关解析:4<x<10 【分析】根据三角形的三边关系直接进行求解即可. 【详解】解:由三角形的三边长为3、7、x ,则有:7373x -<<+,即410x <<;故答案为410x <<. 【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.16.22 【分析】连接EG ,CG ,由于BD=DE=EC ,得到BD=BC ,由AG=BG=AB ,于是得到S △BDG=S △ABC=8,同理得到S △ECF 和S △AFG ,最后利用S 四边形DEFG=S △ABC-S解析:22 【分析】连接EG ,CG ,由于BD =DE =EC ,得到BD =13BC ,由AG =BG =12AB ,于是得到S △BDG =16S △ABC =8,同理得到S △ECF 和S △AFG ,最后利用S 四边形DEFG =S △ABC -S BDG -S △CEF -S △AGF 计算结果. 【详解】 解:连接EG ,CG , ∵BD =DE =EC , ∴BD =13BC ,∵AG =BG =12AB ,∴S △BDG =13S △BCG =13×12S △ABC =16S △ABC =8,同理S △ECF =13×34S △ABC =14S △ABC =12,S △AFG =14×12S △ABC =18S △ABC =6,∴S 四边形DEFG =S △ABC -S BDG -S △CEF -S △AGF =48-8-12-6=22, 故答案为:22.【点睛】本题考查了三角形的面积,知道同高三角形的面积的比等于底的比是解题的关键.17.(1);(2) 【分析】(1)根据平方差公式计算,再进行有理数的混合运算即可; (2)根据零次幂,负整指数幂,绝对值的化简进行计算即可. 【详解】 (1)原式 ; (2)原式 【点睛】 本题解析:(1)0;(2)11- 【分析】(1)根据平方差公式计算20212019⨯,再进行有理数的混合运算即可; (2)根据零次幂,负整指数幂,绝对值的化简进行计算即可. 【详解】(1)原式212020(20201)(20201)=-+-+-2212020(20201)=-+-- 11=-+0=;(2)原式14(8)=-+-11=-【点睛】本题考查了平方差公式,零指数幂,负整指数幂,有理数的混合运算,掌握以上知识是解题的关键.18.(1);(2);(3);(4) 【分析】(1)首先提出公因式,然后进一步利用平方差公式进行因式分解即可;(2)首先提出公因式,然后利用完全平方公式进行因式分解即可; (3)首先将原式变形为,然后解析:(1)()()244x x -+;(2)2122x ⎛⎫- ⎪⎝⎭;(3)()24m -;(4)()()11x y x y ----+【分析】(1)首先提出公因式,然后进一步利用平方差公式进行因式分解即可; (2)首先提出公因式,然后利用完全平方公式进行因式分解即可;(3)首先将原式变形为()()21619m m ---+,然后进一步利用完全平方公式进行因式分解即可;(4)首先将原式变形为()2221x xy y --+-,然后先后利用完全平方公式以及平方差公式进行因式分解即可. 【详解】 (1)2232x -=()2216x -=()()244x x -+;(2)21222x x -+=2124x x ⎛⎫-+ ⎪⎝⎭=2122x ⎛⎫- ⎪⎝⎭;(3)()()21619m m -+-+ =()()21619m m ---+ =()213m --⎡⎤⎣⎦ =()24m -; (4)2221xy x y -+-=()2221x xy y --+-=()21x y ⎦--⎡⎤-⎣ =()()11x y x y ----+. 【点睛】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.19.(1);(2) 【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】 解: ②-①得:, 解得:.把代入①中得:. 所以,该方程组的解为. (解析:(1)32x y =⎧⎨=⎩;(2)11x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求出解即可; (2)方程组整理后,利用加减消元法求出解即可. 【详解】 解:1{39x y x y -=+=①②②-①得:48y =, 解得:2y =.把2y =代入①中得:3x =.所以,该方程组的解为32x y =⎧⎨=⎩.(2)解:整理得891732x y x y +=⎧⎨-=-⎩①② ②×3得:396x y -=-③ ①+③得:1111x =. 解得:1x =把1x =代入②中得:1y =.所以,该方程组的解为11x y =⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(1);(2) 【分析】(1)直接利用加减消元法解二元一次方程组即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可. 【详解】解:(1),把① +②×2得:解得, 把代入① 中解解析:(1)43x y =⎧⎨=⎩;(2)34x <<【分析】(1)直接利用加减消元法解二元一次方程组即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可. 【详解】解:(1)21025x y x y +=⎧⎨-=⎩①②,把① +②×2得:520x =解得4x =, 把4x =代入① 中解得3y =,∴方程组的解为:43x y =⎧⎨=⎩;(2)()321213x x x x ⎧<-⎪⎨+>-⎪⎩①②,解不等式① 得:3x >, 解不等式② 得:4x <, ∴不等式组的解集为:34x <<. 【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.三、解答题 21.见解析 【分析】此题要注意由EF ∥AD ,可得∠2=∠3,由等量代换可得∠1=∠3,可得DG ∥BA ,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解. 【详解】 解:∵EF=AD , ∴∠2解析:见解析 【分析】此题要注意由EF ∥AD ,可得∠2=∠3,由等量代换可得∠1=∠3,可得DG ∥BA ,根据平行线的性质可得∠BAC +∠AGD =180°,即可求解. 【详解】 解:∵EF =AD ,∴∠2=∠3,(理由是:两直线平行,同位角相等) ∵∠1=∠2, ∴∠1=∠3,∴DG ∥AB (理由是:内错角相等,两直线平行)∴∠BAC +∠AGD =180°(理由是:两直线平行,同旁内角互补) ∵∠BAC =70°, ∴∠AGD =110°. 【点睛】此题考查了平行线的性质与判定,解题时要注意数形结合的应用.22.(1)甲3辆,乙12辆;(2)有三种方案,具体见解析,甲4辆,乙9辆,丙2辆最省钱. 【分析】(1)设需要甲x 辆,乙y 辆,根据运送11400公斤和需运费8700元,可列出方程组求解. (2)设需要解析:(1)甲3辆,乙12辆;(2)有三种方案,具体见解析,甲4辆,乙9辆,丙2辆最省钱. 【分析】(1)设需要甲x 辆,乙y 辆,根据运送11400公斤和需运费8700元,可列出方程组求解.(2)设需要甲x 辆,乙y 辆,则丙(15﹣x ﹣y )辆,根据甲汽车运载量+乙汽车运载量+丙汽车运载量=11400,列方程,化简后,根据甲、乙、丙三种车型都参与运送,即x >0,y >0,15﹣x ﹣y >0,解不等式即可求出x 的范围,进而得出方案.计算出每种方案需要的运费,比较即可得出运费最省的方案. 【详解】(1)设需要甲x 辆,乙y 辆,根据题意得:600800114005006008700x y x y +=⎧⎨+=⎩解得:312x y =⎧⎨=⎩.答:甲3辆,乙12辆;(2)设需要甲x 辆,乙y 辆,则丙(15﹣x ﹣y )辆,根据题意得: 600x +800y +900(15﹣x ﹣y )=11400 化简得:y =21﹣3x .∵x >0,y =21﹣3x >0,15﹣x ﹣y =2x -6>0,解得:3<x <7.∵x 为整数,∴x =4,5,6. 因此方案有三种:方案①:甲4辆,乙9辆,丙2辆;方案②:甲5辆,乙6辆,丙4辆; 方案③:甲6辆,乙3辆,丙6辆; 则运费分别为:①4×500+9×600+2×700=8800(元). ②5×500+6×600+4×700=8900(元); ③6×500+3×600+6×700=9000(元). 故第一种方案运费最省,为8800元. 【点睛】本题考查了二元一次方程组与二元一次方程的实际运用,找出题目蕴含的数量关系,建立方程或方程组解决问题.23.(1);(2);(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解解析:(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2.【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值. 【详解】解:(1)两个方程相加得66x =, ∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩;故答案是:12x y =⎧⎨=⎩;(2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩,由(1)可得:12x y =⎧⎨=⎩,∴m+5=1,n+3=2, ∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩;(3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩,解得34am bn =⎧⎨=⎩,把bn =4代入方程2m ﹣bn =﹣2得2m =2, 解得m =1,再把m =1代入3m +n =5得3+n =5, 解得n =2,把m =1代入am =3得:a =3, 把n =2代入bn =4得:b =2, 所以a =3,b =2. 【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.24.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论;(2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE ∥AC , ∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB ,∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG 平分∠BAC ,DF 平分∠EDB ,∴12BAG BAC ∠=∠,12FDG EDB ∠=∠,∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠;理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠,∵∠DGF=∠B+∠BAG , ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠;(2)如图2所示:1902AFD B ∠=︒-∠; 理由如下:由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,∵∠AHF=∠B+∠BDH , ∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH=︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠1902B =︒-∠.【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.25.【探究1】∠2=∠ACB ,90º-∠A ;【探究2】∠BOC =90°﹣∠A ,理由见解析;【应用】22.5°;【拓展】45°或36°. 【分析】【探究1】根据角平分线的定义可得∠1=∠ABC ,∠2=∠解析:【探究1】∠2=12∠ACB ,90º-12∠A ;【探究2】∠BOC =90°﹣12∠A ,理由见解析;【应用】22.5°;【拓展】45°或36°. 【分析】【探究1】根据角平分线的定义可得∠1=12∠ABC ,∠2=12∠ACB ,根据三角形的内角和定理可得∠1+∠2=90º-12∠A ,再根据三角形的内角和定理即可得出结论; 【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC =12(∠A +∠ACB ),∠OCB =12(∠A +∠ABC ),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得∠G 的度数,于是可得∠GCD+∠GDC 的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角平分线的定义和平角的定义可得∠EAF=90°,然后分三种情况讨论:若∠EAF=4∠E ,则∠E=22.5°,根据角平分线的定义和三角形的外角性质可得∠ABO=2∠E ,于是可得结果;若∠EAF=4∠F ,则∠F=22.5°,由【探究2】的结论可求出∠ABO=135°,然后由三角形的外角性质即可判断此种情况不存在;若∠F=4∠E ,则∠E=18°,然后再由第一种情况的结论∠ABO=2∠E 即可求出结果,进而可得答案. 【详解】解:【探究1】理由如下:∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线, ∴∠1=12∠ABC ,∠2=12∠ACB ,在ΔABC 中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB )=12(180º-∠A )=90º-12∠A ,∴∠BOC=180º-(∠1+∠2)=180º-(90º-12∠A )=90º+12∠A ;故答案为:∠2=12∠ACB ,90º-12∠A ;【探究2】∠BOC =90°﹣12∠A ;理由如下:如图2,由三角形的外角性质和角平分线的定义,∠OBC =12(∠A +∠ACB ),∠OCB =12(∠A +∠ABC ),在△BOC 中,∠BOC =180°﹣∠OBC ﹣∠OCB=180°﹣12(∠A +∠ACB )﹣12(∠A +∠ABC ),=180°﹣12(∠A +∠ACB +∠A +∠ABC ),=180°﹣12(180°+∠A ),=90°﹣12∠A ;【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得:∠G=1901352O ︒+∠=︒, ∴∠GCD+∠GDC=45°,∵CE 、DE 分别是∠ACD 和∠BDC 的角平分线,∴∠1=12∠ACD=()11802GCD ︒-∠,∠2=12∠BDC=()11802GDC ︒-∠, ∴∠1+∠2=()11802GCD ︒-∠+()11802GDC ︒-∠=()136045157.52︒-︒=︒, ∴()1801222.5E ∠=︒-∠+∠=︒;故答案为:22.5°;【拓展】如图4,∵AE 、AF 是∠BAO 和∠OAG 的角平分线,∴∠EAQ+∠FAQ=()111809022BAO GAO ∠+∠=⨯︒=︒, 即∠EAF=90°,在Rt △AEF 中,若∠EAF=4∠E ,则∠E=22.5°,∵∠EOQ=∠E+∠EAQ ,∠BOQ=2∠EOQ ,∠BAO=2∠EAQ ,∴∠BOQ=2∠E+∠BAO ,又∠BOQ=∠BAO+∠ABO ,∴∠ABO=2∠E=45°;若∠EAF=4∠F ,则∠F=22.5°,则由【探究2】知:19022.52F ABO ∠=︒-∠=︒,∴ ∠ABO=135°, ∵∠ABO <∠BOQ=60°,∴此种情况不存在;若∠F=4∠E ,则∠E=18°,由第一种情况可知:∠ABO=2∠E ,∴∠ABO=36°;综上,∠ABO=45°或36°;故答案为:45°或36°.【点睛】本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数( 有理数(一)
AAD
在数轴上A点表示的数为-1, 点表示的数为求A点到原点的距离.
1
D
−3a − b + c
有理数( 有理数(二)
2 −1499 17 9 − 25 4 −1 9 4 3
5 − 6 3 2 1 5 1
−17 3 10 4 −2 −24
−30 2 24 11 729 − 2
例:一套家具按成本加六成定出售价,后来 一套家具按成本加六成定出售价, 在优惠条件下,按售价的72℅降低价格售出 在优惠条件下,按售价的 降低价格售出 6336元,求这套家具的成本是多少元?这套 元 求这套家具的成本是多少元? 家具售出后可赚多少元? 家具售出后可赚多少元? 例:一套家具按成本加六成定出售价,后来 一套家具按成本加六成定出售价, 在优惠条件下,按售价的72℅降低价格售出 在优惠条件下,按售价的 降低价格售出 可赚836元,求这套家具的成本是多少元? 可赚 元 求这套家具的成本是多少元? 例:一套家具的成本是5500元,加几成定出 一套家具的成本是 元 的售价,后来在优惠条件下,按售价的72℅降 的售价,后来在优惠条件下,按售价的 降 低价格售出6336元? 低价格售出 元
3 3 −1 − 1 + ( −12 ) ÷ 6 × − 7 4
2
2
3
3 27 = −1 − 1 − 2 × − 7 64 2 4 27 = −1 − − × − 7 64
图形认识( 图形认识(一)
请阅读下列语句: 请阅读下列语句: 射线AB与射线 是两条相同的射线; 与射线BA是两条相同的射线 ① 射线 与射线 是两条相同的射线; 如果C点在线段 点在线段EF上 那么EC<EF; ② 如果 点在线段 上,那么 ; ③ 5′49”的角是锐角; 的角是锐角; 的角是锐角 一条直线可以看成一个平角; ④ 一条直线可以看成一个平角; ⑤ 43°50′=43.5°; ° ° 钝角大于直角,锐角小于直角; ⑥ 钝角大于直角,锐角小于直角; 其中正确的序号为 ③ ⑥ .
1 x= 2 5 x= 21 5 x= 6 9 x=− 28
4 3 x [ ( − 1) − 3] − 2 x = 3 3 2 23
x + 3 x − 0.7 3 x 12 + = + 0.3 0.2 2 5
2x + 5 = 1
一元一次方程( 一元一次方程(二)
A
x 1.5x 2.5x
AB = 6cm CD = 10cm
∠COD = 20°
B
n(n −1) 2
线段条数 角的个数 交点个数
例:某种商品因换季准备打折出售,如 某种商品因换季准备打折出售, 果按定价的七五折出售将赔25元 果按定价的七五折出售将赔 元,而 按定价的九折出售将赚20元 按定价的九折出售将赚 元,这种商 品的定价是多少元? 品的定价是多少元?
.某材料供应商对顾客实行如下优惠办法:
一次购买金额不超过1万元,不予优惠;一次购买超 过1万元,但不超过3万元,给予9折优惠;一次购买 超过3万元的,其中3万元9折优惠,超过3万元的部 分8折优惠。 某厂因库容原因,第一次在该供应商处购买材料 付款7800元,第二次购买付款26100元,如果他 是一次购买同样数量的材料,可少付金额多少元?
2
16 27 27 169 = −1 + × = −1 + =− 49 64 196 196
有理数( 有理数(三)
D
D
B
D
整式加减( 整式加减(一)
-6
整式加减( 整式加减(二)
(3x
+ 4x −1 − 3x +9x = −5x −1
2 2
) (
)
5− x +3y = 5−(x −3y) = 5−(−3) = 8
m = −2, n =1
A
x
m− x
n+ x
一元一次方程( 一元一次方程(一)
解各种类型的 一元一次方程
• (1) 5x+3=-7x+9
3 7 • (2) 7 ( 3 x + 1) = 7 x − 1 x − 3 3x + 4 = • (3) −5 15
• (4) 3 x + 2
2
2x −1 2x +1 −1 = − 4 5
A
M
C
B
C
图形认识( 图形认识(四)
116° 100°41′ 111°20′ 45°39′
+:进位 +:进位 -:借位 ×:进位 ÷:分别除
6.31° 33°19′48′′ 50°29′ 140°29′ 90° 90°
基本概念
B O
95°
A
5x
2x
D E A B
C
21
2x +21= 5x −21 98°
60 x = 200 ( km / h )
轨道交通日均客运量为353万人 地面公交日均客运量为1343万人
(2009北京卷)……据统计,2008 2009北京卷 ……据统计 北京卷) 据统计, 10月11日到2009年 日到2009 28日期间 日期间, 年10月11日到2009年2月28日期间, 地面公交日均客运量与轨道交通日 均客运量总和为1696万人次, 1696万人次 均客运量总和为1696万人次,地面 公交日均客运量比轨道交通日均客 运量的4倍少69万人次.在此期间, 69万人次 运量的4倍少69万人次.在此期间, 地面公交和轨道交通日均客运量各 为多少万人次? 为多少万人次?
打折销售
一、此类型中的量 二、此类型中的等量关系 售价-进价 1、 进 价(成本)1、利润 售价 进价 成本) 、利润=售价 、 成本× 提高率) 提高率 2、 原 价(定价)2、标价 成本×(1+提高率) 定价) 、标价=成本 、 3、售价 标价×折/10 标价× 、售价=标价 3、 售 价 、 4、 利润 利润 、 4、利润率 、利润率= ×100℅ 5、利润率 、 进价 6、折扣 、 售价-进价 售价 进价 = ×100℅ 进价
A
求∠AOB的的 的 的
45°或15°
A
C
B
O
B
O
C
综合题
6, 30 n + 1, n ( n + 1)
x &(1&3) = x &(−1) = 2x +1= 2
1 x= 2
(3| a | −3)x = 6(a −1)
3| a | −3 = 0 a −1≠ 0 x = 2 ( a ≥ 0且a ≠ 1) 2 − 2a x= ( a < 0且a ≠ −1) a +1 3| a | −3 = 0 a = −1方程无解 a = 1方程有无数解 a −1= 0
A
(2008北京卷)……预计高速列车在北京、 2008北京卷)……预计高速列车在北京、 北京卷 预计高速列车在北京 天津间单程直达运行时间为半小时. 天津间单程直达运行时间为半小时.某次 试车时, 试车时,试验列车由北京到天津的行驶时 间比预计时间多用了6分钟, 间比预计时间多用了6分钟,由天津返回 北京的行驶时间与预计时间相同. 北京的行驶时间与预计时间相同.如果这 次试车时, 次试车时,由天津返回北京比去天津时平 均每小时多行驶40千米, 40千米 均每小时多行驶40千米,那么这次试车时 由北京到天津的平均速度是每小时多少千 6 米? 0.5 + x = 0.5 ( x + 40 )
数学语言
具体 抽象
几何图形(关系)
图形认识( 图形认识(二)
正方体的展开图
a +8 = b+4 = c +25
a = c +17,b = c + 21 a +b−2c = (c +17) +(c +21) −2c = 38
D
A
B
C
D
D
A C
B D
图形认识( 图形认识(三)
C
A
C
B
C
0.5或0.25