鸽巢原理教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级下册《鸽巢原理》教学设计

北马路小学郝美玲

【教学内容】新人教版小学数学六年级下册68页——数学广角《鸽巢问题》第一课时。

【教材分析】“鸽巢原理”是一种解决某种特定结构的数学或生活问题的模型,是一类较为抽象和艰涩的数学问题。为此,教材在例1前,设计了一个抽扑克牌的魔术引入教学,例1以学生熟悉的、可操作的铅笔和笔筒为素材,习题用鸽子和鸽笼为例,选择这些学生常见的、熟悉的事物,以及一些有趣的、新颖的内容作为学习的素材,以增强学习材料的吸引力,提升学生学习的积极性,缓解学习难度带来的压力。在例题与习题的衔接上,在习题的层次方面,教材也都很关注细节,体现出循序渐进的原则。

【设计理念】让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。在教学中,通过几个直观的例子,借助实际操作,向学生介绍“鸽巢问题”;学生在理解的基础上,对一些简单的实际问题“模型化”,会用鸽巢原理解决问题或解释相关的现象,促进逻辑推理能力的发展。

【教学目标】

1.学生理解鸽巢原理的基本形式(假如有多于n个元素分成n个集合,那么一定有一个集合中至少含有2个元素),初步学习鸽

巢原理的分析方法,能初步运用鸽巢原理解决简单的实际问题或解释相关的现象。

2.学生通过操作、观察、比较、推理等活动探究鸽巢原理的过程中,逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养模型思想和逻辑推理思想。

3.学生通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高解决问题的能力和兴趣。

【教学重点】理解鸽巢原理,掌握先“平均分”、再调整的方法。【教学难点】理解“总有”、“至少”的意义,理解平均分后余数不是1时的至少数。

【教学准备】扑克牌、纸杯(笔筒)、多媒体课件。

【教学过程】

一、创设情境,引出问题。

1.老师表演小魔术:一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。

选两组学生抽扑克牌,让大家判断老师的说法对不对。教师结合学生抽出的扑克牌的情况引导学生理解“至少2张牌”的意思。

2.引入课题:老师能料事如神,是有依据的,这还是一个著名的数学原理。大家想知道吗?老师相信,集合大家的智慧,你们自己就能发现其中的奥秘!

[设计意图]扑克牌小魔术作为新课的切入点,激起学生认知上的兴趣,趁机抓住他们的求知欲,激发学生探究新知的热情,使学生积极

主动地投入到新课的学习中去。同时,在魔术中直观地感知“至少”的意思。

二、共同探究,理解鸽巢原理。

(一)出示例1,共同探究验证。

1.老师还能料定:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放2支铅笔。质疑:大家对老师的说法有什么不理解之处吗?如果学生不能提出疑问,那么老师来提问:“总有”是什么意思?(3个笔筒无论哪个,一定有一个)“至少放2支铅笔”是什么意思?(放2支或2支以上,最少2支)

[设计意图]引导学生理解关键词语“总有”和“至少”的含义,培养学生认真阅读理解的习惯。

2.讨论:你认为老师的说法对吗?先让学生凭直觉判断对或错。再指出:对待数学问题,我们要有严谨的态度,只有经过周密的验证才能下结论。那么,可以用什么方法来验证老师的说法对不对呢?学生独立思考,提出设想。

[设计意图]树立学生严谨的数学学习态度,打开学生的思维,大胆设想验证方法。

3.小组合作探究:小组合作验证,验证完成了准备汇报并坐端正。需要笔筒的用纸杯代替笔筒。教师巡视,了解学生验证的情况。

[设计意图]放手让学生自主探究,让学生充分表达自己的想法,有充足的空间和时间合作探究。

4.小组汇报交流,预设情况如下:

(1)枚举法

请用实物模拟实验的小组先展示,有用画图、数的分解的方法分析的也进行展示。引导学生认识到要把铅笔摆放的所有方式都列举出来,为了不遗漏要做到有序列举(课件展示),指出这种思考方法叫“枚举法”。

[设计意图] 经历探究鸽巢原理的过程,初步学习枚举的分析方法,培养学生分析问题的能力和严谨的思维习惯。

(2)假设法

请学生展示并解说其他的方法,如果学生没有想到,教师示范:假设老师的说法是错误的,没有任何笔筒里有2支或2支以上的铅笔,那么每个笔筒里只放1支,剩下1支放入任意一个笔筒中,这个笔筒中就有2支笔了。所以总有一个笔筒中至少有2支铅笔。

集体讨论:让学生充分质疑,充分发表意见,教师适时点拨。教师可连续发问:先在每个笔筒中放1支铅笔,实际上就是在怎样分?为什么一开始就平均分呢?只考虑平均分这一种情况,其他的摆放方法不用考虑了吗?引导学生认识到:先在每个笔筒中放1支铅笔,实际上就是在平均分;平均分,就可以使每个笔筒的铅笔尽可能的少,也就有可能找到和老师说法不一样的情况;平均分已经使每个笔筒中的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

可以用除法算式表示这种分析方法,指出这种思考方法叫做“假设法”。

[设计意图]经历探究鸽巢原理的过程,理解学习假设的分析方法,培养学生逻辑推理的能力和严谨的思维习惯。

(3)请学生评价这两种方法。总结结论并板书。

[设计意图]培养学生的优化意识,使学生认识到枚举法的优越性和局限性、假设法的独特优点。

(二)解决变式问题,建立数学模型

1.解决变式问题:

(1)把6支铅笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放2支铅笔。这种说法对吗?为什么?

先同桌互相说一说,再指名回答。

(2)把6个苹果放进5个抽屉里,不管怎么放,总有一个抽屉里至少放2个苹果。这种说法对吗?为什么?

学生独立思考,指名回答。引导学生认识到:6个苹果相当于6支铅笔,5个抽屉相当于5个笔筒,那么就有同样的结论“总有一个抽屉里至少放2个苹果”。

(3)把7支铅笔放进6个笔筒里,不管怎么放,总有一个笔筒里至少放几支铅笔?为什么?

学生独立思考,指名回答。

(4)把7个篮球放进6个球筐里,不管怎么放,总有一个球筐里至少放2个篮球。这种说法对吗?

学生独立思考,齐答。提问:7个篮球相当于什么?6个球筐相当于什么?

相关文档
最新文档