鸽巢原理教学设计

合集下载

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

六年级数学下册《鸽巢原理》教案设计

六年级数学下册《鸽巢原理》教案设计

六年级数学下册《鸽巢原理》教案设计一、教学目标:1. 让学生理解并掌握鸽巢原理的基本概念和应用。

2. 培养学生运用逻辑推理和数学思维解决实际问题的能力。

3. 培养学生合作交流的能力,提高学生的数学素养。

二、教学内容:1. 鸽巢原理的定义及基本性质。

2. 鸽巢原理在实际问题中的应用。

三、教学重点与难点:1. 教学重点:让学生掌握鸽巢原理的基本概念和应用。

2. 教学难点:如何引导学生运用鸽巢原理解决实际问题。

四、教学方法:1. 采用问题驱动法,引导学生探究鸽巢原理。

2. 运用案例分析法,让学生通过实际问题体验鸽巢原理的应用。

3. 采用合作交流法,培养学生合作解决问题的能力。

五、教学过程:1. 导入新课:通过一个有趣的故事引入鸽巢原理,激发学生的学习兴趣。

2. 自主学习:让学生阅读教材,了解鸽巢原理的定义及基本性质。

3. 案例分析:出示一些实际问题,让学生运用鸽巢原理进行解答。

4. 讨论交流:引导学生分享自己在解决问题过程中的心得体会,培养学生合作交流的能力。

5. 总结提升:对本节课的内容进行总结,让学生明确鸽巢原理的应用范围和价值。

6. 课后作业:布置一些有关鸽巢原理的练习题,巩固所学知识。

六、教学评价:1. 通过课堂提问、作业批改等方式,了解学生对鸽巢原理的理解程度。

2. 注重培养学生运用鸽巢原理解决实际问题的能力,评价学生在解决问题过程中的思维过程和方法。

3. 观察学生在合作交流中的表现,评价学生的团队协作能力和沟通能力。

七、教学反馈:1. 根据学生的课堂表现和作业情况,及时调整教学方法和策略,以提高教学效果。

2. 在课后与学生进行交流,了解他们在学习过程中的困惑和问题,给予针对性的指导。

3. 鼓励学生在课堂上积极提问,充分调动学生的学习积极性。

八、教学拓展:1. 引导学生深入研究鸽巢原理,探索其在其他学科和实际生活中的应用。

2. 介绍与鸽巢原理相关的数学问题和研究,激发学生的学术兴趣。

3. 组织一些有关鸽巢原理的竞赛或活动,提高学生的学习积极性。

六年级下册数学教案《鸽巢原理》(人教新课标)(2023秋)

六年级下册数学教案《鸽巢原理》(人教新课标)(2023秋)
在实践活动方面,学生们对实验操作表现出了浓厚的兴趣,但在操作过程中,也有部分学生显得不够严谨,导致实验结果出现偏差。为了提高实验的准确性,我打算在以后的教学中,加强对实验步骤的讲解和示范,让学生们在实践中更好地掌握鸽巢原理。
最后,关于课堂总结,我觉得自己在引导学生回顾所学内容时,还可以更加细致和全面。在今后的教学中,我将尽量用简洁明了的语言,帮助学生梳理知识点,加深记忆。
2.培养学生将实际问题转化为数学问题的能力,运用所学的鸽巢原理解决生活中的问题,提高数学应用素养;
3.通过对例题的讲解和练习,发展学生的数据分析、推理及论证能力,培养严谨的数学思维和论证素养;
4.鼓励学生合作交流,提高表达和沟通能力,培养团队协作的素养;
5.引导学生在探索鸽巢原理过程中,培养勇于探究、善于思考的学习态度,增强数学学习的自信心和兴趣。
三、教学难点与重点
1.教学重点
-理解鸽巢原理的基本概念:重点在于使学生明白鸽巢原理的含义,即“如果n个物体放入m个容器中(n>m),那么至少有一个容器内至少有两个或更多物体”。
-掌握鸽巢原理的应用:重点在于学生能够运用鸽巢原理解决实际问题,如物品分配、座位安排等。
-运用除法和取余数方法:重点在于培养学生通过除法和取余数的方法求解鸽巢原理问题的能力。
其次,关于教学难点,除法和取余数方法的应用,学生们在计算过程中出现了一些错误。我认识到,这可能是因为我在讲解这部分内容时,没有充分考虑到学生们的接受程度,导致他们未能完全理解。因此,我打算在接下来的课程中,放慢讲解速度,通过更多具体的例子和练习,帮助学生巩固这一部分知识。
此外,课堂上的小组讨论环节,学生们表现得积极主动,提出了很多有创意的想法。但我也注意到,有些学生在讨论中过于依赖同伴,自己独立思考的能力有待提高。针对这一问题,我计划在后续的教学中,多鼓励学生发表自己的见解,培养他们独立思考和解决问题的能力。

六年级下册数学教案-5.1《鸽巢原理》人教新课标

六年级下册数学教案-5.1《鸽巢原理》人教新课标

《鸽巢原理》是六年级下册数学教材中的一节内容,属于人教新课标。

本节内容旨在通过学习鸽巢原理,培养学生的逻辑思维能力和数学推理能力。

以下是本节课的教案设计。

一、教学目标1. 知识与技能目标:理解鸽巢原理的含义,能够运用鸽巢原理解决实际问题。

2. 过程与方法目标:通过实际操作和观察,引导学生发现鸽巢原理,培养学生的逻辑思维能力和数学推理能力。

3. 情感态度与价值观目标:激发学生对数学的兴趣,培养学生合作学习的意识。

二、教学重点与难点1. 教学重点:理解鸽巢原理的含义,能够运用鸽巢原理解决实际问题。

2. 教学难点:引导学生发现鸽巢原理,培养学生的逻辑思维能力和数学推理能力。

三、教学方法1. 启发式教学法:通过提问、引导学生观察和思考,激发学生的思维。

2. 实践操作法:通过实际操作,让学生亲身体验鸽巢原理。

3. 小组合作法:分组讨论,培养学生的合作学习能力。

四、教学过程1. 导入新课通过一个有趣的故事引入鸽巢原理:小明有10个鸽巢,他的朋友小华送给他11只鸽子,请问小明如何将这11只鸽子安置在10个鸽巢中,使得每个鸽巢中至少有一只鸽子?2. 探究新知(1)引导学生观察和思考:如果每个鸽巢中最多只能容纳一只鸽子,那么小明最多能将几只鸽子安置在鸽巢中?(2)学生进行实践操作:让学生用10个鸽巢和11只鸽子进行实际操作,观察结果。

(3)引导学生发现鸽巢原理:通过观察和实践,引导学生发现鸽巢原理:如果有n个鸽巢和n 1只鸽子,那么至少有一个鸽巢中至少有两只鸽子。

3. 巩固练习(1)让学生运用鸽巢原理解决实际问题,如:有13个小朋友,每人至少有一个玩具,共有15个玩具,请问至少有几个小朋友的玩具是相同的?(2)小组讨论:让学生分组讨论,如何运用鸽巢原理解决生活中的问题。

4. 课堂小结通过本节课的学习,学生应掌握鸽巢原理的含义,并能够运用鸽巢原理解决实际问题。

同时,培养学生合作学习的意识,激发学生对数学的兴趣。

五、课后作业1. 根据本节课所学内容,完成课后练习题。

六年级数学下册《鸽巢原理》教案设计

六年级数学下册《鸽巢原理》教案设计

六年级数学下册《鸽巢原理》教案设计教学目标:1. 让学生理解并掌握鸽巢原理的基本概念和应用。

2. 培养学生运用逻辑推理和数学思维解决问题的能力。

3. 培养学生合作交流的能力,提高学生的团队协作能力。

教学重点:1. 鸽巢原理的基本概念和应用。

2. 运用逻辑推理和数学思维解决问题的方法。

教学难点:1. 理解并运用鸽巢原理解决实际问题。

2. 培养学生合作交流的能力。

教学准备:1. 教学PPT或者黑板。

2. 教学卡片或者题目。

3. 学生分组,每组4-6人。

教学过程:一、导入(5分钟)1. 利用PPT或者黑板,展示一个简单的鸽巢原理问题,引导学生思考和讨论。

2. 邀请学生分享他们对鸽巢原理的理解和应用。

二、新课讲解(15分钟)1. 讲解鸽巢原理的基本概念和原理。

2. 通过示例题目,引导学生运用逻辑推理和数学思维解决问题。

1. 分发课堂练习题目,学生独立完成。

2. 引导学生互相检查和讨论答案。

3. 教师进行讲解和解析。

四、小组活动(15分钟)1. 将学生分成小组,每组4-6人。

2. 每个小组选择一道应用题,运用鸽巢原理进行解决。

3. 各小组汇报解题过程和结果,其他小组进行评价和讨论。

2. 学生分享他们在课堂练习和小组活动中的体验和感受。

3. 教师给出改进和提高的建议。

教学延伸:1. 布置课后作业,要求学生独立完成一道鸽巢原理的应用题。

2. 鼓励学生在日常生活中运用鸽巢原理解决问题,并分享给同学和老师。

教学反思:六、课堂拓展(10分钟)1. 通过PPT或黑板,展示一些与鸽巢原理相关的有趣问题和实际应用案例。

2. 引导学生思考和讨论,尝试解决这些问题。

3. 邀请学生分享他们的解题思路和解决方案。

七、练习与提升(10分钟)1. 分发练习题目,要求学生在规定时间内完成。

2. 引导学生独立思考,自主解决问题。

3. 教师进行讲解和解析,解答学生的疑问。

1. 将学生分成若干小组,每组4-6人。

2. 设置竞赛题目,要求各小组在规定时间内运用鸽巢原理解决问题。

人教版小学6年级数学-鸽巢原理章节教案

人教版小学6年级数学-鸽巢原理章节教案

《鸽巢原理》教案一、教学目标1.经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。

2.会用“鸽巢原理”解决简单的实际问题,提高学生有根据、有条理地进行思考和推理的能力。

3.通过“鸽巢原理”的灵活应用,感受数学的魅力,提高学生学习数学的兴趣。

二、教学重难点1.重点(1)经历“鸽巢原理”的探究过程,理解“鸽巢原理”。

(2)对“总有”“至少”的理解。

2.难点运用“鸽巢原理”进行逆向思维。

三、教学方法操作法、讨论法、讲授法四、教学过程(一)游戏导入(5分钟)1.教师:“同学们,我们来玩一个游戏。

请5位同学上来,老师这里准备了4把椅子,大家都坐下,看看会出现什么情况?”2.引导学生观察并思考,引出课题:鸽巢原理。

(二)新授(20分钟)1.例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

让学生小组合作,动手摆一摆,记录不同的放法。

展示学生的摆放方法,共4种:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)引导学生观察发现:不管怎么放,总有一个笔筒里至少有2支铅笔。

解释“总有”和“至少”的含义。

2.例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。

引导学生用平均分的方法思考:7÷3=2......1,2+1=3 总结:物体数÷抽屉数=商......余数,至少数=商+1(三)课堂练习(10分钟)1.教材中的练习题,如:8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。

为什么?2.生活中的例子:13个人中至少有几个人的生日在同一个月?(四)课堂总结(5分钟)1.回顾鸽巢原理的内容和解题方法。

2.强调在解决问题时要找准物体和抽屉。

五、课后作业1.完成课本上的课后习题。

2.思考:如果把“总有一个抽屉里至少放进3本书”改为“总有一个抽屉里至少放进2本书”,那么至少需要多少本书放进3个抽屉?。

六年级数学下册《鸽巢原理》教案设计

六年级数学下册《鸽巢原理》教案设计

一、教案设计概述1. 教学目标:(1)让学生理解鸽巢原理的基本概念和意义。

(2)培养学生运用鸽巢原理解决实际问题的能力。

(3)提高学生的逻辑思维和数学素养。

2. 教学内容:(1)鸽巢原理的定义及证明。

(2)鸽巢原理在实际问题中的应用。

3. 教学方法:(1)采用讲授法,讲解鸽巢原理的基本概念和证明过程。

(2)运用案例分析法,引导学生运用鸽巢原理解决实际问题。

(3)开展小组讨论法,培养学生的合作能力和口头表达能力。

4. 教学准备:(1)准备相关案例和练习题。

(2)制作PPT课件,辅助教学。

二、教学过程1. 导入新课:(1)利用PPT课件,展示鸽巢原理的图片,引导学生思考。

(2)提问:什么是鸽巢原理?它有什么实际意义?2. 讲解鸽巢原理:(1)介绍鸽巢原理的定义和证明过程。

(2)通过PPT课件,展示鸽巢原理的证明过程,让学生理解并掌握。

3. 案例分析:(1)给出典型案例,让学生运用鸽巢原理进行分析。

(2)引导学生讨论,得出结论。

4. 练习巩固:(1)出示练习题,让学生独立完成。

(2)讲解答案,分析解题过程,巩固所学知识。

三、课堂小结1. 回顾本节课所学内容,让学生总结鸽巢原理的概念和应用。

2. 强调鸽巢原理在实际问题中的重要性,激发学生学习兴趣。

四、作业布置2. 预习下一节课内容,为课堂学习做好准备。

五、教学反思1. 课后总结课堂教学效果,了解学生掌握情况。

2. 对教学方法进行调整,以提高教学效果。

3. 关注学生在作业中的表现,及时给予指导和鼓励。

六、课堂活动1. 运用游戏教学法,设计一个关于鸽巢原理的数学游戏,让学生在游戏中理解和掌握鸽巢原理。

2. 组织学生进行小组竞赛,看哪个小组能更快地运用鸽巢原理解决问题,提高学生的合作能力和竞争意识。

七、拓展与延伸1. 引导学生思考:鸽巢原理在生活中的应用,例如:分配资源、安排活动等。

2. 介绍与鸽巢原理相关的数学问题,激发学生的学习兴趣,提高学生的数学素养。

2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇

2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇

人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。

教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”解决的窍门实行反复推理。

教学准备:课件。

教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。

(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明。

方法一:用“枚举法”证明。

方法二:用“分解法”证明。

把4分解成3个数。

由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。

方法三:用“假设法”证明。

通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

《鸽巢问题》教学设计(通用8篇)

《鸽巢问题》教学设计(通用8篇)

《鸽巢问题》教学设计(通用8篇)《鸽巢问题》教学设计(通用8篇)作为一名无私奉献的老师,时常需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。

我们应该怎么写教学设计呢?下面是小编整理的《鸽巢问题》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《鸽巢问题》教学设计篇1教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。

教学过程:一、创设情境、入新课1、师:同学们,导你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。

今天我们就一起来研究它。

二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。

请看大屏幕。

(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

(1)理解“总有”、“至少”的含义。

(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。

(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法?探究之前,老师有几个要求。

(一生读要求)(3)汇报展示方法,证明结论。

(展示两张作品,其中一张是重复摆的。

)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。

《鸽巢原理》教学设计

《鸽巢原理》教学设计

《鸽巢原理》教学设计一、教学目标:1.了解鸽巢原理的概念和意义。

2.掌握鸽巢原理的应用方法。

3.培养学生良好的观察和思维能力。

4.激发学生对科学原理的兴趣和探索精神。

二、教学内容:1.什么是鸽巢原理?2.鸽巢原理的应用领域。

3.鸽巢原理的实例分析。

三、教学过程:1.导入(5分钟)教师通过提问让学生思考一个问题:“你们小时候有没有让家人帮忙照看自己的宠物?你们的家人是怎么安排的呢?”引出鸽巢原理的概念。

2.讲解(20分钟)教师通过幻灯片或者板书介绍鸽巢原理的概念和意义。

解释鸽巢原理是在分配有限资源时,出现了两种极端情况:一种是资源不足,导致无法完成分配;另一种是资源过剩,导致浪费。

鸽巢原理的目的就是通过合理的分配,既能达到效用最大化,又能避免资源的浪费。

3.探究(30分钟)教师准备了几个小实验和材料:十个相同大小的木块、一把尺子。

(1)实验一:直线排列教师将十个木块摆成一排,让学生测量总长度。

然后再根据鸽巢原理进行排列,让学生再次测量总长度。

通过对比两次测量,让学生发现鸽巢原理的应用。

(2)实验二:竖线排列教师将十个木块摆成两列,让学生测量总高度。

然后再根据鸽巢原理进行排列,让学生再次测量总高度。

通过对比两次测量,让学生发现鸽巢原理的应用。

(3)实验三:三维排列教师将十个木块摆成一个长方体,让学生测量长、宽、高的大小。

然后再根据鸽巢原理进行排列,让学生再次测量长、宽、高的大小。

通过对比两次测量,让学生发现鸽巢原理的应用。

4.拓展(15分钟)教师给学生展示一些其他的鸽巢原理的实例,例如:编程的优化算法、物流配送中的最优路径规划等。

让学生观察和思考这些实例中鸽巢原理的应用方法。

5.小结(10分钟)教师对本节课学习的内容进行小结,再次强调鸽巢原理的概念和意义。

鼓励学生在生活中发现和应用鸽巢原理,并与同学分享他们的观察和思考。

四、教学评价:本节课的教学评价可以从以下几个方面进行:1.观察学生在实验过程中的积极参与和合作情况。

鸽巢原理获奖教学设计

鸽巢原理获奖教学设计

鸽巢原理获奖教学设计鸽巢原理获奖教学设计作为一名教学工作者,就有可能用到教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。

优秀的教学设计都具备一些什么特点呢?以下是小编收集整理的鸽巢原理获奖教学设计,欢迎阅读与收藏。

鸽巢原理获奖教学设计1一、单元教材分析:本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。

和以往的义务教育教材相比,这部分内容是新增的内容。

本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。

在数学问题中,有一类与“存在性”有关的问题。

在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。

这类问题依据的理论我们称之为“抽屉原理”。

“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。

“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。

但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的`结论。

因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。

二、单元三维目标导向:1、知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感态度与价值观:(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。

(2)理解知识的产生过程,受到历史唯物注意的教育。

(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。

三、单元教学重难点重点:应用“鸽巢原理”解决实际问题。

鸽巢问题教学设计范文(精选5篇)

鸽巢问题教学设计范文(精选5篇)

鸽巢问题教学设计范⽂(精选5篇)鸽巢问题教学设计范⽂(精选5篇) 作为⼀位兢兢业业的⼈民教师,就有可能⽤到教学设计,教学设计是实现教学⽬标的计划性和决策性活动。

那么写教学设计需要注意哪些问题呢?以下是⼩编为⼤家收集的鸽巢问题教学设计范⽂(精选5篇),供⼤家参考借鉴,希望可以帮助到有需要的朋友。

鸽巢问题教学设计1 本节课是数学⼴⾓内容,也叫“抽屉原理”。

实际上是⼀种解决某种特定结构的数学或⽣活问题的模型,体现了⼀种数学的思想⽅法。

反思如下: 1.从学⽣喜欢的“游戏”⼊⼿,激发学⽣学习的兴趣和求知欲望,从⽽提出需要研究的数学问题。

这样设计使学⽣在⽣动、活泼的数学活动中主动参与、主动实践、主动思考,使学⽣的数学知识、数学能⼒、数学思想、数学情感得到充分的发展,从⽽达到动智与动情的完美结合,全⾯提⾼学⽣的整体素质。

2.引导学⽣在经历猜测、尝试、验证的过程中逐步从直观⾛向抽象。

在例1中针对实验的所有结果,在学⽣总结表征的基础上,进⽽提出“你还可以怎样想?”的问题,组织学⽣展开讨论交流。

我引导学⽣借助平均分即每个笔筒⾥先只放1⽀,这时学⽣看到还剩下1⽀铅笔,这1⽀铅笔不管放⼊其中的哪⼀个笔筒,这个笔筒都会有2⽀铅笔。

进⼀步引导学⽣加深对“⾄少有⼀个笔筒中有2⽀铅笔”的理解。

最后,组织学⽣进⼀步借助直观操作,讨论诸如“5⽀铅笔放进4个笔筒,不管怎么放,总有⼀个笔筒中⾄少有2⽀铅笔,为什么?”的问题,并不断改变数据(铅笔数⽐笔筒数多1),让学⽣继续思考,引导学⽣归纳得出⼀般性的结论:(+1)⽀铅笔放进个笔筒⾥,总有⼀个笔筒⾥⾄少放进2⽀铅笔。

注重让学⽣在观察、实验、猜想、验证等活动中,发展合情推理能⼒,培养学⽣能进⾏有条理的思考,能⽐较清楚地表达⾃⼰的思考过程与结果,经历与他⼈合作交流解决问题的过程。

本节课⾸先通过三个基础练习回顾了“鸽巢原理”,接下来的练习题是鸽巢问题的原理⽐较简单,但是在实际的题⽬当中,最主要的.是帮助学⽣在不同的题⽬中找出该道题⽬的“鸽巢”是什么,然后要放到“鸽巢”⾥的东西是什么,只有帮助学⽣在解题时有了构建鸽巢问题模型的能⼒,才能使学⽣真正的理解鸽巢问题,以便更好地解决鸽巢问题。

人教新课标六年级下册数学教案:鸽巢原理

人教新课标六年级下册数学教案:鸽巢原理

标题:人教新课标六年级下册数学教案:鸽巢原理一、教学目标1. 让学生理解鸽巢原理的含义,掌握鸽巢原理的应用。

2. 培养学生的逻辑思维能力和推理能力。

3. 培养学生运用鸽巢原理解决实际问题的能力。

二、教学内容1. 鸽巢原理的定义和表达方式。

2. 鸽巢原理的应用实例。

3. 鸽巢原理在实际问题中的运用。

三、教学过程1. 导入:通过生活中的实例,引导学生思考鸽巢原理的概念。

2. 新课导入:讲解鸽巢原理的定义和表达方式。

3. 实例讲解:通过实例,让学生理解鸽巢原理的应用。

4. 练习巩固:布置相关练习,让学生运用鸽巢原理解决实际问题。

5. 总结:总结本节课的内容,强调鸽巢原理在实际生活中的重要性。

四、教学重难点1. 教学重点:鸽巢原理的定义和表达方式,鸽巢原理的应用。

2. 教学难点:鸽巢原理在实际问题中的运用。

五、教学策略1. 采用启发式教学,引导学生主动思考。

2. 通过实例讲解,让学生更好地理解鸽巢原理。

3. 布置相关练习,让学生在实践中掌握鸽巢原理。

六、教学评价1. 课后作业:布置相关练习,检验学生对鸽巢原理的理解和应用。

2. 课堂表现:观察学生在课堂上的参与程度和思考问题的积极性。

3. 练习反馈:对学生的练习进行批改和反馈,指导学生改进。

七、教学资源1. 教材:人教新课标六年级下册数学教材。

2. 辅助材料:相关练习题和实例讲解。

八、教学时间安排1. 导入:5分钟2. 新课导入:10分钟3. 实例讲解:15分钟4. 练习巩固:15分钟5. 总结:5分钟九、教学注意事项1. 在讲解鸽巢原理时,要注意用词严谨,表达清晰。

2. 在实例讲解时,要注重与学生的互动,引导学生思考。

3. 在练习巩固环节,要关注学生的解题过程,及时给予指导和反馈。

十、教学反思1. 在教学过程中,要注意观察学生的反应,及时调整教学方法和节奏。

2. 在练习巩固环节,要注重培养学生的解题思路和方法。

3. 在教学评价环节,要及时给予学生反馈,指导学生改进。

小学数学_《鸽巢原理》教学设计学情分析教材分析课后反思

小学数学_《鸽巢原理》教学设计学情分析教材分析课后反思

第五单元《数学广角---鸽巢原理》年级:六年级课型:新授课教学内容:教科书第68-69页例1、例2及做一做。

【教学内容】最简单的鸽巢问题(教材第68页例1和第69页例2)。

【教学目标】1.理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行列举及假设法探究“鸽巢问题”。

2.体会数学知识在日常生活中的广泛应用,培养学生的探究意识。

【重点难点】了解简单的鸽巢问题,理解“总有”和“至少”的含义。

【教学准备】课件,每组5个杯子和若干枝铅笔。

教学过程一、游戏激趣,初步体验。

教师:同学们,之前玛雅人有一个预言你们听过?他们说2012年是世界末日,这个预言实现了?没有。

我们顺利活到了2019年,他们的这个预言准吗?-不准。

我有一个预言特别准,一副牌,取出大小王,还剩52张,随意抽5张,我预言是:一定至少有2张牌是同花色的。

相信吗?然后五名同学上台抽牌验证。

就在刚才的预言中就运用到了我们数学中一个很重要的数学原理---鸽巢原理(板书课题)二、操作探究,发现规律。

(一)经历“鸽巢原理”的探究过程,理解原理。

1.自主猜想,初步感知。

(提出问题)把4枝铅笔放进3个文具盒中。

不管怎么放,总有一个杯子至少放进()根小棒。

让学生猜测“至少会是”几根?2.验证结论。

不管学生猜测的结论是什么,教师都必须要求学生借助实物进行操作,来验证结论。

学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生。

(1)先请列举所有情况的学生进行汇报,一说明列举的不同情况,二结合操作说明自己的结论。

(教师根据学生的回答板书所有的情况)学生汇报完后,教师再利用列法的示意图,指出每种情况(2)提出问题。

不用一一列举,想一想还有其它的方法来证明这个结论吗?学生汇报了自己的方法后,教师围绕假设法,组织学生展开讨论:为什么每个杯子里都要放1根小棒呢?请相互之间讨论一下。

在讨论的基础上,教师小结:假如每个杯子放入一支铅笔,剩下的一支还要放进一个杯子里,无论放在哪个杯子里,一定能找到一个杯子里至少有2支小棒。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容审定人教版六年级下册数学《 数学广角《鸽巢问题》,也就是原实验教材 抽屉原理》。

设计理念鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。

“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。

怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。

通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。

学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。

所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求。

我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

教材分析鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。

在这类问题中,只需要确定某个物体《 或某个人)的存在就可以了,并不需要指出是哪个物体 或哪个人),也不需要说明通过什么方式把这个存在的物体 或人)找出来。

这类问题依据的理论,我们称之为“鸽巢问题”。

通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。

它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。

呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。

教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。

这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。

学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。

学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。

但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。

设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。

教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

教学准备:多媒体课件、微视频、合作探究作业纸。

教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。

你们信吗?2、验证:学生报出生月份。

根据所报的月份,统计13人中生日在同一个月的学生人数。

六年级下册数学教案 第五章《鸽巢原理》 人教版

六年级下册数学教案   第五章《鸽巢原理》    人教版

六年级下册数学教案第五章《鸽巢原理》人教版一、教学目标1. 让学生理解鸽巢原理的基本概念,能够运用鸽巢原理解决实际问题。

2. 培养学生的逻辑思维能力,提高学生运用数学知识解决问题的能力。

3. 激发学生的学习兴趣,培养学生的合作意识。

二、教学内容1. 鸽巢原理的定义和表述。

2. 鸽巢原理的应用。

3. 鸽巢原理在实际问题中的运用。

三、教学重点与难点1. 教学重点:鸽巢原理的定义和表述,鸽巢原理的应用。

2. 教学难点:鸽巢原理在实际问题中的运用。

四、教学方法1. 讲授法:讲解鸽巢原理的定义和表述。

2. 案例分析法:通过具体案例,引导学生理解鸽巢原理的应用。

3. 小组讨论法:分组讨论,培养学生的合作意识,提高学生运用鸽巢原理解决问题的能力。

五、教学过程1. 导入新课通过生活中的实例,引导学生思考:如果有10个苹果,需要放入9个抽屉,是否一定会有一个抽屉里至少有两个苹果?从而引出鸽巢原理的概念。

2. 讲解鸽巢原理的定义和表述讲解鸽巢原理的定义:如果将n 1个物体放入n个容器中,那么至少有一个容器里至少有两个物体。

讲解鸽巢原理的表述:鸽巢原理可以表述为:将n 1个物体放入n个容器中,那么至少有一个容器里至少有两个物体。

3. 鸽巢原理的应用通过具体案例,引导学生理解鸽巢原理的应用。

例如:一个班级有30名学生,其中有10名学生的生日在同一个月,那么这个班级至少有两个学生的生日在同一个月。

4. 鸽巢原理在实际问题中的运用分组讨论,让学生运用鸽巢原理解决实际问题。

例如:一个水果摊有10种水果,需要将这10种水果分别放入9个篮子中,请设计一种方案,使得至少有一个篮子中有两种水果。

5. 总结与反思总结鸽巢原理的定义、应用和在实际问题中的运用,让学生谈一谈学习鸽巢原理的收获和感受。

六、作业布置1. 列举生活中的鸽巢原理现象。

2. 运用鸽巢原理解决实际问题。

3. 预习下一节课的内容。

七、板书设计1. 鸽巢原理的定义和表述。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。

二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。

请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。

2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。

再提问:这句话对吗?组织小组活动,进行验证。

总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。

两种方法都能验证这句话是正确的。

在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。

活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。

提问:这句话对吗?为什么?组织小组活动,进行探究。

总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。

追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。

学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。

引出鸽巢问题又叫抽屉问题。

3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。

5.布置作业课后习题1、2题,将今天学到的整理成数学日记人教版数学六年级下册鸽巢问题优秀教案【第2篇】《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,兴趣是学习最好的老师。

《鸽巢原理》(教案)-六年级下册数学人教版

《鸽巢原理》(教案)-六年级下册数学人教版

《鸽巢原理》(教案)六年级下册数学人教版教学内容本节课将引导学生探索并理解鸽巢原理,即“如果把n个物体放到m个容器中,当n>m时,至少有一个容器内包含多于一个物体”。

我们将通过实际例子的分析,让学生感受并证明这一原理的正确性。

教学目标1. 理解并掌握鸽巢原理的概念。

2. 能够运用鸽巢原理解决实际问题。

3. 培养学生的逻辑思维能力和抽象概括能力。

教学难点1. 理解鸽巢原理的本质。

2. 学会运用鸽巢原理解决实际问题。

教具学具准备1. 实物道具:鸽子和鸽巢模型。

2. 多媒体课件:包含相关例题和图表。

3. 学生分组,每组一个计数器。

教学过程1. 引入:通过一个简单的实例,如把12个苹果放到11个篮子里,引导学生思考,引出鸽巢原理。

2. 探究:学生分组讨论,通过实际操作,感受并理解鸽巢原理。

3. 解释:教师讲解鸽巢原理的定义和意义,通过图表和例题进行解释。

4. 应用:学生通过解决实际问题,如把24本书放到5个书架上,应用鸽巢原理。

板书设计1. 《鸽巢原理》2. 定义:如果把n个物体放到m个容器中,当n>m时,至少有一个容器内包含多于一个物体。

3. 应用:解决实际问题,如把24本书放到5个书架上。

作业设计1. 完成课后练习题。

2. 观察生活中的实例,用鸽巢原理进行解释。

课后反思本节课通过实际操作和例题讲解,使学生理解和掌握了鸽巢原理。

但在教学过程中,部分学生对于鸽巢原理的理解和应用仍存在困难,需要在今后的教学中加强练习和指导。

重点关注的细节是“教学难点”。

教学难点详细补充和说明理解鸽巢原理的本质1. 直观演示:使用鸽子和鸽巢的模型进行直观演示,让学生看到当鸽子数量多于鸽巢时,必然会有至少一个鸽巢中有多于一只的鸽子。

这种直观的演示可以帮助学生形成对鸽巢原理的直观理解。

2. 抽象概括:在直观演示的基础上,引导学生进行抽象概括。

例如,可以让学生思考,如果将12个苹果放入11个篮子中,是否每个篮子都只能放一个苹果?通过这样的问题,引导学生理解鸽巢原理的抽象概念。

《鸽巢原理》(教案)

《鸽巢原理》(教案)

《鸽巢原理》(教案)一、教学目标1. 知识目标了解鸽巢原理的概念和应用;掌握鸽巢原理的基本思想和方法;2. 能力目标培养学生的逻辑思维能力和探究问题的能力;让学生了解数学在生活中的应用;二、教学重难点教学重点:鸽巢原理的基本概念和应用。

教学难点:如何对实际问题进行适当的抽象和模型建立。

三、教学过程1. 教学引入教师可以提问学生,如果有10个人在一起生日会有重复的概率是多少? 如果有100个人呢?不说同月同日,只说同月或同日?多少人生日才有一半可能会有相同的?这样的问题引出:2. 鸽巢原理的概念及基本思想2.1 鸽巢原理的概念定义:如果有n只鸽子,而只有m个巢,若n>m,则至少有一个巢要容纳两只或两只以上的鸽子。

2.2 鸽巢原理的基本思想把若干个对象(鸽子)放入若干个类别(巢)之中,则至少有一个类里面的对象数目大于等于(>=)总对象数目(鸽子数目)除以(÷)类别数目(巢数目)向上取整的结果。

如果总对象数目(鸽子数目)不能被类别数目(巢数目)整除,则总有一个类最多只能容纳一些对象(鸽子)。

3. 应用举例3.1 生日问题我们已知一年有365天,那么有50个人在一起时,至少有2个人生日相同的概率是多少呢?(1) 建立模型将每个人的生日作为一个物体,将一年中的每一天作为巢,这样我们就建立了一个50鸽、365巢的模型。

(2) 解决问题使用鸽巢原理,我们将50个鸽子均匀地分配到365个巢之中,即:50/365≈0.137,向上取整得:0.138,即至少有一天会有两个生日相同。

3.2 取模问题给你1 - 9999 之间的一个整数,问这个整数除以 23 的余数是多少?这个问题可以用鸽巢原理来解决,让我们将1 - 9999 之间的所有整数分成23份,即:[1~22], [23~44], [45~66], [67~88], ... , [9979~9999]然后以23个余数作为巢,将所有的整数作为鸽子,排列在里面,一共有9999只鸽子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级下册《鸽巢原理》教学设计北马路小学郝美玲【教学内容】新人教版小学数学六年级下册68页——数学广角《鸽巢问题》第一课时。

【教材分析】“鸽巢原理”是一种解决某种特定结构的数学或生活问题的模型,是一类较为抽象和艰涩的数学问题。

为此,教材在例1前,设计了一个抽扑克牌的魔术引入教学,例1以学生熟悉的、可操作的铅笔和笔筒为素材,习题用鸽子和鸽笼为例,选择这些学生常见的、熟悉的事物,以及一些有趣的、新颖的内容作为学习的素材,以增强学习材料的吸引力,提升学生学习的积极性,缓解学习难度带来的压力。

在例题与习题的衔接上,在习题的层次方面,教材也都很关注细节,体现出循序渐进的原则。

【设计理念】让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。

在教学中,通过几个直观的例子,借助实际操作,向学生介绍“鸽巢问题”;学生在理解的基础上,对一些简单的实际问题“模型化”,会用鸽巢原理解决问题或解释相关的现象,促进逻辑推理能力的发展。

【教学目标】1.学生理解鸽巢原理的基本形式(假如有多于n个元素分成n个集合,那么一定有一个集合中至少含有2个元素),初步学习鸽巢原理的分析方法,能初步运用鸽巢原理解决简单的实际问题或解释相关的现象。

2.学生通过操作、观察、比较、推理等活动探究鸽巢原理的过程中,逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养模型思想和逻辑推理思想。

3.学生通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高解决问题的能力和兴趣。

【教学重点】理解鸽巢原理,掌握先“平均分”、再调整的方法。

【教学难点】理解“总有”、“至少”的意义,理解平均分后余数不是1时的至少数。

【教学准备】扑克牌、纸杯(笔筒)、多媒体课件。

【教学过程】一、创设情境,引出问题。

1.老师表演小魔术:一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。

选两组学生抽扑克牌,让大家判断老师的说法对不对。

教师结合学生抽出的扑克牌的情况引导学生理解“至少2张牌”的意思。

2.引入课题:老师能料事如神,是有依据的,这还是一个著名的数学原理。

大家想知道吗?老师相信,集合大家的智慧,你们自己就能发现其中的奥秘![设计意图]扑克牌小魔术作为新课的切入点,激起学生认知上的兴趣,趁机抓住他们的求知欲,激发学生探究新知的热情,使学生积极主动地投入到新课的学习中去。

同时,在魔术中直观地感知“至少”的意思。

二、共同探究,理解鸽巢原理。

(一)出示例1,共同探究验证。

1.老师还能料定:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放2支铅笔。

质疑:大家对老师的说法有什么不理解之处吗?如果学生不能提出疑问,那么老师来提问:“总有”是什么意思?(3个笔筒无论哪个,一定有一个)“至少放2支铅笔”是什么意思?(放2支或2支以上,最少2支)[设计意图]引导学生理解关键词语“总有”和“至少”的含义,培养学生认真阅读理解的习惯。

2.讨论:你认为老师的说法对吗?先让学生凭直觉判断对或错。

再指出:对待数学问题,我们要有严谨的态度,只有经过周密的验证才能下结论。

那么,可以用什么方法来验证老师的说法对不对呢?学生独立思考,提出设想。

[设计意图]树立学生严谨的数学学习态度,打开学生的思维,大胆设想验证方法。

3.小组合作探究:小组合作验证,验证完成了准备汇报并坐端正。

需要笔筒的用纸杯代替笔筒。

教师巡视,了解学生验证的情况。

[设计意图]放手让学生自主探究,让学生充分表达自己的想法,有充足的空间和时间合作探究。

4.小组汇报交流,预设情况如下:(1)枚举法请用实物模拟实验的小组先展示,有用画图、数的分解的方法分析的也进行展示。

引导学生认识到要把铅笔摆放的所有方式都列举出来,为了不遗漏要做到有序列举(课件展示),指出这种思考方法叫“枚举法”。

[设计意图] 经历探究鸽巢原理的过程,初步学习枚举的分析方法,培养学生分析问题的能力和严谨的思维习惯。

(2)假设法请学生展示并解说其他的方法,如果学生没有想到,教师示范:假设老师的说法是错误的,没有任何笔筒里有2支或2支以上的铅笔,那么每个笔筒里只放1支,剩下1支放入任意一个笔筒中,这个笔筒中就有2支笔了。

所以总有一个笔筒中至少有2支铅笔。

集体讨论:让学生充分质疑,充分发表意见,教师适时点拨。

教师可连续发问:先在每个笔筒中放1支铅笔,实际上就是在怎样分?为什么一开始就平均分呢?只考虑平均分这一种情况,其他的摆放方法不用考虑了吗?引导学生认识到:先在每个笔筒中放1支铅笔,实际上就是在平均分;平均分,就可以使每个笔筒的铅笔尽可能的少,也就有可能找到和老师说法不一样的情况;平均分已经使每个笔筒中的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

可以用除法算式表示这种分析方法,指出这种思考方法叫做“假设法”。

[设计意图]经历探究鸽巢原理的过程,理解学习假设的分析方法,培养学生逻辑推理的能力和严谨的思维习惯。

(3)请学生评价这两种方法。

总结结论并板书。

[设计意图]培养学生的优化意识,使学生认识到枚举法的优越性和局限性、假设法的独特优点。

(二)解决变式问题,建立数学模型1.解决变式问题:(1)把6支铅笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放2支铅笔。

这种说法对吗?为什么?先同桌互相说一说,再指名回答。

(2)把6个苹果放进5个抽屉里,不管怎么放,总有一个抽屉里至少放2个苹果。

这种说法对吗?为什么?学生独立思考,指名回答。

引导学生认识到:6个苹果相当于6支铅笔,5个抽屉相当于5个笔筒,那么就有同样的结论“总有一个抽屉里至少放2个苹果”。

(3)把7支铅笔放进6个笔筒里,不管怎么放,总有一个笔筒里至少放几支铅笔?为什么?学生独立思考,指名回答。

(4)把7个篮球放进6个球筐里,不管怎么放,总有一个球筐里至少放2个篮球。

这种说法对吗?学生独立思考,齐答。

提问:7个篮球相当于什么?6个球筐相当于什么?(5)17只鸽子飞进16个鸽巢里,不管怎么飞,总有一个鸽巢里至少飞进2只鸽子。

这种说法对吗?学生独立思考,齐答。

提问:17只鸽子相当于什么?16个鸽巢相当于什么?[设计意图]通过解决变式问题,让学生真正掌握并运用假设法解决问题,培养学生解决问题的灵活性和迁移能力;通过联系、对比,建立待分物体和“鸽巢”的多个表象,为抽象出数学模型做基础。

2.讨论:这些问题有什么相同点吗?有什么规律吗?引导学生发现:铅笔、苹果、篮球、鸽子都是待分物体,笔筒、抽屉、球筐、鸽巢都可以看作盛放待分物体的“鸽巢”;待分物体都比“鸽巢”多1,都是总有一个“鸽巢”至少放2个待分物体。

引导学生用字母表示:如果“鸽巢”个数用n来表示,待分物体就有(n+1)个,那么总有一个“鸽巢”至少放2个待分物体。

并用一句完整的话来描述。

揭示课题:这就是老师所说的那个著名的数学原理——鸽巢原理。

(板书课题)[设计意图]让学生经历将具体问题数学化的过程,建立鸽巢原理最简单情况的数学模型,初步形成模型思想,发展学生的抽象能力和概括能力。

3.普及数学史知识知道鸽巢原理最早是由谁提出的吗?课件出示:这个原理是组合数学中的一个重要原理,它最早由德国数学家狄利克雷提出并运用于解决数论中的问题,所以该原理又称“狄利克雷原理”。

该原理有两个经典案例,一个是把10个苹果放进9个抽屉,总有一个抽屉里至少放了2个苹果,所以这个原理又称为“抽屉原理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以也称为“鸽巢原理”(指名读)。

学生齐读课件出示的“鸽巢原理”——把(n+1)个待分物体放进n 个鸽巢,总有一个鸽巢里至少放了2个待分物体。

[设计意图]了解鸽巢原理的由来,进一步强化鸽巢原理基本形式的数学模型,感受数学的魅力,体会数学的价值。

三、运用鸽巢原理解决问题1.请学生解释扑克牌小魔术中的奥秘。

引导学生认识到:5人抽出了5张牌,这5张牌相当于5个待分物体,扑克牌有4个花色,相当于4个鸽巢,5张牌归入4个花色,那么总有一个花色至少有2张牌。

[设计意图]能初步运用鸽巢原理解释相关的现象。

2.讨论问题:5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。

为什么?先同桌讨论,再交流,重点引导学生讨论平均分后余下2只鸽子该怎么办。

引导学生认识到:为了找到飞进鸽子的至少数,余下的2只鸽子也要尽可能的平均分。

[设计意图]通过讨论理解平均分后余数不是1时的至少数,掌握先“平均分”再调整的原则。

3.解决问题:随意找13位老师,他们中至少有2个人的属相相同。

为什么?若是随意找15位、17位老师,还是至少有2个人的属相相同吗?学生自由发言,互动交流。

[设计意图]能初步运用鸽巢原理解决简单的实际问题,体会数学的价值,提高解决问题的能力和兴趣。

四、集体交流:这节课你有什么收获?引导学生从数学知识、数学思考方法等多方面来谈收获。

[设计意图] 培养学生反思归纳的学习习惯。

五、课后问题:随意找30位老师,他们中至少有多少个人的属相是相同的?[设计意图]为下节课的探究活动做铺垫。

相关文档
最新文档