牛顿第二定律典范例题
必修一牛顿第二定律典型例题(含答案)
【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.重力和斜面支持力 B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力 D.重力、正压力、下滑力和斜面支持力【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将 [ ]A.不断增大 B.不断减少C.先增大后减少D.先增大到一定数值后保持不变【例5】如图,质量为M的凹形槽沿斜面匀速下滑,现将质量为m的砝码轻轻放入槽中,下列说法中正确的是 [ ]A.M和m一起加速下滑B.M和m一起减速下滑C.M和m仍一起匀速下滑【例6】图1表示某人站在一架与水平成θ角的以加速度a向上运动的自动扶梯台阶上,人的质量为m,鞋底与阶梯的摩擦系数为μ,求此时人所受的摩擦力。
【例7】在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量m1和m2的木块,m1>m2,如图1所示。
已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块[ ]A.有摩擦力作用,摩擦力方向水平向右B.有摩擦力作用,摩擦力方向水平向左C.有摩擦力作用,但摩擦力方向不能确定D.以上结论都不对【例8】质量分别为m A和m B的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下(图1),当细线被剪断的瞬间,关于两球下落加速度的说法中,正确的是 [ ]A.a A=a B=0 B.a A=a B=gC.a A>g,a B=0 D.a A<g,a B=0【例9】在车箱的顶板上用细线挂着一个小球(图1),在下列情况下可对车厢的运动情况得出怎样的判断:(1)细线竖直悬挂:______;(2)细线向图中左方偏斜:___;(3)细线向图中右方偏斜:___________ 。
牛顿第二定律典型例题
典型例题一、动力学的两类基本问题:例:如图所示,一木箱质量为m ,与水平地面间的动摩擦因数为μ,现用斜向右下方与水平方向成θ角的力F 推木箱,求经过t 秒时木箱的速度。
例:如图所示,传送带保持1m/s 的速度运动,现将一质量为m 的小物体从传送带左端放上。
设物体与皮带间的动摩擦因数为0.1,传送带两端水平距离为2.5m ,则物体从左端运动到右端所经历的时间为多少?例:广场所放的花炮升高的最大高度是100 m.假设花炮爆炸前做竖直上抛运动,且在最高点爆炸,花炮的质量为2 kg,在炮筒中运动的时间为0.02 s,则火药对花炮的平均推力约为_______ N.(g 取10 m/s2)例:如图所示,质量为m 的木块在推力F 作用下,沿竖直墙壁匀加速向上运动,F 与竖直方向的夹角为、已知木块与墙壁间的动摩擦因数为μ,则木块受到的滑动摩擦力大小是 ( ) A 、μmg B 、Fcos θ -mg C 、Fcos θ+mg D 、μFsin θ二、整体法与隔离法处理连接体的问题:例:如图所示,固定在水平面上的斜面其倾角θ=37°,长方体木块A 的MN 面上钉着一颗小钉子,质量m=1.5kg 的小球B 通过一细线与小钉子相连接,细线与斜面垂直.木块与斜面间的动摩擦因数μ=0.50。
现将木块由静止释放,木块将沿斜面下滑.求在木块下滑的过程中小球对木块MN 面的压力大小.(取g=10m/s ²,sin37°=0.6,cos37°=0.8)例:如图所示,A 、B 两物体之间用轻质弹簧连接,用水平恒力F 拉A ,使A 、B 一起沿光滑水平面做匀加速直线运动,这时弹簧长度为L1;若将A 、B 置于粗糙水平面上,用相同的水平恒力F 拉A ,使A 、B 一起做匀加速直线运动,此时弹簧长度为L2。
若A 、B 与粗糙水平面之间的动摩擦因数相同,则下列关系式正确的是 ( ) A 、L2<L1 B 、L2>L1 C 、L2=L1D 、由于A 、B 质量关系未知,故无法确定L1、L2的大小关系 例:如图所示,A 、B 两木块的质量分别为mA 、mB ,在水平推力F 作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力FN 。
牛顿第二定律典型题型
牛顿第二定律典型题型题型1:矢量性:加速度的方向总是与合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
1、如图所示,物体A放在斜面上,与斜面一起向右做匀加速运动,物体A受到斜面对它的支持力和摩擦力的合力方向可能是 ( )A.斜向右上方 B.竖直向上C.斜向右下方 D.上述三种方向均不可能1、A 解析:物体A受到竖直向下的重力G、支持力F N和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力F N和摩擦力F f的合力F一定有水平方向的分力,F在竖直方向的分力与重力平衡,F向右斜上方,A正确。
2、如图所示,有一箱装得很满的土豆,以一定的初速度在摩擦因数为的水平地面上做匀减速运动,(不计其它外力及空气阻力),则其中一个质量为m的土豆A受其它土豆对它的总作用力大小应是 ( )A.mg B.mgC.mg D.mg2、C 解析:像本例这种物体系的各部分具有相同加速度的问题,我们可以视其为整体,求关键信息,如加速度,再根据题设要求,求物体系内部的各部分相互作用力。
选所有土豆和箱子构成的整体为研究对象,其受重力、地面支持力和摩擦力而作减速运动,且由摩擦力提供加速度,则有mg=ma,a=g。
而单一土豆A的受其它土豆的作用力无法一一明示,但题目只要求解其总作用力,因此可以用等效合力替代。
由矢量合成法则,得F总=,因此答案C正确。
例3、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小.题型2:必须弄清牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
牛顿第二定律典型例题
牛顿第二定律典型例题一、力的瞬时性1、无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变.2、弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变,但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失.【例1】如图3-1-2所示,质量为m 的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC 和BC 与过C 的竖直线的夹角都是600,则剪断AC 线瞬间,求小球的加速度;剪断B 处弹簧的瞬间,求小球的加速度.练习1、(2010年全国一卷)15.如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木坂上,并处于静止状态。
现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a ︒重力加速度大小为g ︒则有A. 10a =,2a g =B. 1a g =,2a g =C. 120,m M a ag M +==D. 1a g =,2m Ma g M+=2、一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F 的值逐渐减小到零,又马上使其恢复到原值(方向不变),则( ) A .物体始终向西运动B .物体先向西运动后向东运动C .物体的加速度先增大后减小D .物体的速度先增大后减小3、如图3-1-13所示的装置中,中间的弹簧质量忽略不计,两个小球质量皆为m ,当剪断上端的绳子OA 的瞬间.小球A 和B 的加速度多大?4、如图3-1-14所示,在两根轻质弹簧a 、b 之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同图3-1-13图3-1-2图3-1-14一竖直线上的两点,等小球静止后,突然撤去弹簧a ,则在撤去弹簧后的瞬间,小球加速度的大小为2.5米/秒2,若突然撤去弹簧b ,则在撤去弹簧后的瞬间,小球加速度的大小可能为( ) A .7.5米/秒2,方向竖直向下 B .7.5米/秒2,方向竖直向上 C .12.5米/秒2,方向竖直向下 D .12.5米/秒2,方向竖直向上二、临界问题的分析与计算【例2】如图3-2-3所示,斜面是光滑的,一个质量是0.2kg 的小球用细绳吊在倾角为53o的斜面顶端.斜面静止时,球紧靠在斜面上,绳与斜面平行;当斜面以8m/s 2的加速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力.假设斜面向右加速运动时,斜面对小球的弹力恰好为0,这时绳中的拉力F 与小球的重力mg 的合力使它具有加速度a ,因此有:mgcotα=ma ,即0.2×10×cot53°=0.2a , ∴a=7.5m/s^2,由于这一加速度<10m/s^2,所以当斜面以10m/s2的加速度向右运动时,小球已离开斜面向上了。
牛顿第二定律经典例题
牛顿第二定律应用的典型问题1. 力和运动的关系力是改变物体运动状态的原因,而不是维持运动的原因。
由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。
速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。
在加速度为零时,速度有极值。
例1. 如图1所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是()图1A. 小球刚接触弹簧瞬间速度最大B. 从小球接触弹簧起加速度变为竖直向上C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是()A. 探测器加速运动时,沿直线向后喷气B. 探测器加速运动时,竖直向下喷气C. 探测器匀速运动时,竖直向下喷气D. 探测器匀速运动时,不需要喷气解析:小球的加速度大小决定于小球受到的合外力。
从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。
当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。
故选CD。
解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。
故正确答案选C。
图22. 力和加速度的瞬时对应关系(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。
每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。
牛顿第二定律经典例题
牛顿第二定律应用的典型问题1. 力和运动的关系力是改变物体运动状态的原因,而不是维持运动的原因。
由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。
速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。
在加速度为零时,速度有极值。
例1. 如图1所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是()图1A. 小球刚接触弹簧瞬间速度最大B. 从小球接触弹簧起加速度变为竖直向上C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是()A. 探测器加速运动时,沿直线向后喷气B. 探测器加速运动时,竖直向下喷气C. 探测器匀速运动时,竖直向下喷气D. 探测器匀速运动时,不需要喷气解析:小球的加速度大小决定于小球受到的合外力。
从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。
当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。
故选CD。
解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。
故正确答案选C。
图22. 力和加速度的瞬时对应关系(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。
每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。
最新高中物理牛顿第二定律经典例题(精彩4篇)
最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。
高中物理牛顿第二定律经典练习题专题训练(含答案)
高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。
根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。
2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。
2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。
1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。
将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。
2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。
将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。
3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。
掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。
牛顿第二定律经典例题及答案
牛顿第二定律经典例题及答案
例题:如图,质量的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。
当小车向右运动速度达到3m/s时,在小车的右端轻放一质量m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2,假定小车足够长,问:
(1)经过多长时间物块停止与小车间的相对运动?
(2)小物块从放在车上开始经过t0=3s 所通过的位移是多少?(g 取10m/s2)
【分析与解答】:
(1)依据题意,物块在小车上停止运动时,物块与小车保持相对静止,应具有共同的速度。
设物块在小车上相对运动时间为t,物块、小车受力分析如图:
物块放上小车后做初速度为零加速度为a1的匀加速直线运动,小车做加速度a2的匀加速运动。
其中对物块:由μmg=ma1,
有a1=μg=2m
对小车:F-μmg=Ma2
∴a2=0.5m/s2物块在小车上停止相对滑动时,速度相同
则有:a1t1=v0+a2t1
故答案为:
(1)经多2s物块停止在小车上相对滑动;
(2)小物块从放在车上开始,经过t=3.0s,通过的位移是8.4m.本文网络搜索,如有侵权联系删除。
牛顿第二定律典型例题详解
【例6】图1表示某人站在一架与水平成θ角的以加速度a向上运动的自动扶梯台阶上,人的质量为m,鞋底与阶梯的摩擦系数为μ,求此时人所受的摩擦力。
【正确解答】如图2,建立直角坐标系并将加速度a沿已知力的方向正交分解。
水平方向加速度a2=acosθ由牛顿第二定律知f = ma2= macosθ【错因分析与解题指导】计算摩擦力必须首先判明是滑动摩擦,还是静摩擦。
若是滑动摩擦,可用f=μN计算;若是静摩擦,一般应根据平衡条件或运动定律列方程求解。
题中的人随着自动扶梯在作匀加速运动,在水平方向上所受的力应该是静摩擦力,[误解]把它当成滑动摩擦力来计算当然就错了。
另外,人在竖直方向受力不平衡,即有加速度,所以把接触面间的正压力当成重力处理也是不对的。
【例7】在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量m1和m2的木块,m1>m2,如图1所示。
已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块 [ ]A.有摩擦力作用,摩擦力方向水平向右B.有摩擦力作用,摩擦力方向水平向左C.有摩擦力作用,但摩擦力方向不能确定D.以上结论都不对【正确解答】选(D)。
解这一类题目的思路有二:1.先分别对物和三角形木块进行受力分析,如图2,然后对m1、m2建立受力平衡方程以及对三角形木块建立水平方向受力平衡方程,解方程得f的值。
若f=0,表明三角形木块不受地面的摩擦力;若f为负值,表明摩擦力与假设正方向相反。
这属基本方法,但较繁复。
2.将m1、m2与三角形木块看成一个整体,很简单地得出整体只受重力(M + m1+ m2)g和支持力N两个力作用,如图3,因而水平方向不受地面的摩擦力。
【例8】质量分别为m A和m B的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下(图1),当细线被剪断的瞬间,关于两球下落加速度的说法中,正确的是 [ ]A.a A=a B=0 B.a A=a B=gC.a A>g,a B=0 D.a A<g,a B=0分析分别以A、B两球为研究对象.当细线未剪断时,A球受到竖直向下的重力m A g、弹簧的弹力T,竖直向上细线的拉力T′;B球受到竖直向下的重力m B g,竖直向上弹簧的弹力T图2.它们都处于力平衡状态.因此满足条件T = m B g,T′=m A g + T =(m A+m B)g.细线剪断的瞬间,拉力T′消失,但弹簧仍暂时保持着原来的拉伸状态,故B球受力不变,仍处于平衡状态,aB=0;而A球则在两个向下的力作用下,其瞬时加速度为答 C.【例11】如图1甲所示,劲度系数为k2的轻质弹簧,竖直放在桌面上,上面压一质量为m的物块,另一劲度系数为k1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一起,要想使物块在静止时,下面弹簧承受物重的2/3,应将上面弹簧的上端A竖直向上提高的距离是多少?【分析】由于拉A时,上下两段弹簧都要发生形变,所以题目给出的物理情景比较复杂,解决这种题目最有效的办法是研究每根弹簧的初末状态并画出直观图,清楚认识变化过程如图1乙中弹簧2的形变过程,设原长为x20,初态时它的形变量为△x2,末态时承重2mg/3,其形变量为△x2′,分析初末态物体应上升△x2-△x2′.对图丙中弹簧1的形变过程,设原长为x10(即初态).受到拉力后要承担物重的1/3,则其形变是为△x1,则综合可知A点上升量为d=△x1+△x2-△x2′【解】末态时对物块受力分析如图2依物块的平衡条件和胡克定律F1+F2′=mg (1)初态时,弹簧2弹力F2= mg = k2△x2(2)式(3)代入式(1)可得由几何关系d=△x1+△x2-△x2′(4)【例13】质量均为m的四块砖被夹在两竖直夹板之间,处于静止状态,如图1。
高中物理必修一牛顿第二定律典型例题
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.【答】 D.【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0.(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为:它的方向与反向后的这个力方向相同.【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.力和斜面支持力B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力D.重力、正压力、下滑力和斜面支持力【误解一】选(B)。
【误解二】选(C)。
【正确解答】选(A)。
【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。
[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。
牛顿第二定律典型例题
牛顿第二定律典型例题【例1】一物体放在光滑水平面上,初速为零,先对物体施加一向东恒力F,历时1s;随即把此力改为向西,大小不变,历时1s;接着又把此力改为向东,大小不变,历时1s;如此反复,只改变力的方向,共历时1min,在此1min内()A.物体时而向东运动,时而向西运动,在1min末静止于初始位置之东B.物体时而向东运动,时而向西运动,在1min末静止于初始位置C.物体时而向东运动,时而向西运动,在1min末继续向东运动D.物体一直向东运动,从不向西运动,在1min末静止于初始位置之东【例2】如图3-1-2所示,质量为m的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC和BC与过C的竖直线的夹角都是600,求:(1)剪断AC线瞬间小球的加速度;(2)剪断B处弹簧的瞬间小球的加速度.【例3】如图所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是A.小球刚接触弹簧瞬间速度最大B.从小球接触弹簧起加速度变为竖直向上C.从小球接触弹簧到到达最低点,小球的速度先增大后减小D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大【例4】如图3-1-3表示某人站在一架与水平成θ角的以加速度a向上运动的自动扶梯台阶上,人的质量为m,鞋底与阶梯的摩擦系数为μ,求此时人所受的摩擦力.(请用两种方法①沿加速度方向为x轴建立坐标系②沿水平向右方向为x轴建立坐标系,分解加速度)【例5】如图所示,在箱内倾角为α的固定光滑斜面上用平行于斜面的细线固定一质量为m的木块。
求:在下面两种情形中,线对木块的拉力F1和斜面对箱的压力F2各多大?(1)箱以加速度a匀加速上升时;(2)箱以加速度a向左匀加速运动时。
【例6】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg.(1)求车厢运动的加速度并说明车厢的运动情况.(2)求悬线对球的拉力.(g=10m/s2,sin37°=0.6,cos37°=0.8)【例7】一个质量为0.2 kg的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,若斜面开始以水平加速度a向右运动,且a从等于零开始逐渐增大,则:(1)绳的拉力T及斜面对小球的弹力N将怎样变化?(2)当a=10 m/s2时,求T和N【例8】如图所示,m =4kg的小球挂在小车后壁上,细线与竖直方向成37°角。
牛顿第二定律经典例题
α
F
例三、一斜面AB长为5m,倾角为30°,一质量为2kg 的小物体(大小不计)从斜面顶端A点由静止释放, 如图所示。斜面与物体间的动摩擦因数为0.5,求小物 体下滑到斜面底端B时的速度及所用的时间。(g取
10m/s2,sin37=0.6,cos37=0.8)
A
B
沿哪两个方向进行正交分解?
例题四:质量为2kg的物体,静止放于水平面上,现 在物体上施一水平力F,使物体开始沿水平面运动, 运动了10s时,将水平力撤去。若物体运动的速度图 象如图所示,则水平力F= N,物体与水平面 间的动摩擦因数= 。(g取10m/s2)
N
二、一只静止的木箱,质量m=40kg,现以200N斜 向下的力F 推木箱, F 与水平成α=37º ,木箱沿水平地
面运动,木箱与地面间的动摩擦因数µ =0.30。求:木
箱 在 2 秒 末 的 速 度 和 2 秒 内 的 位 移 。 ( g 取 10m/s2 ,
sin37=0.6,cos37=0.8)
正交分解法 1、受力分析 2、沿着两个垂直的方向分解: 沿运动方向+与运动垂直方向 3、列式 运动方向:F合=ma 垂直方向:平衡方程 4、滑动摩擦:f=μN
例一、如图所示,质量为4kg的物体静止于水平面上,
物体与水平面间的动摩擦因数为0.5,物体受到大小为 20N,与水平方向成37°角斜向止的拉力F作用时沿水 平面做匀加速运动,求物体的加速度是多大?(g取 10m/s2,sin37=0.6,cos37=0.8)
(完整版)高一物理牛顿第二定律典型例题答案及讲解
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作将作 [ ] [ ]A .匀减速运动.匀减速运动B .匀加速运动.匀加速运动C .速度逐渐减小的变加速运动.速度逐渐减小的变加速运动D .速度逐渐增大的变加速运动.速度逐渐增大的变加速运动【分析】 木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.的变加速运动. 【答】 D .【例2】 一个质量m=2kg 的木块,放在光滑水平桌面上,受到三个大小均为F=10N F=10N、与桌面平、与桌面平行、互成120120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?少?【分析】 物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120120°角的三个力的合力等于零,所以木块的加速度°角的三个力的合力等于零,所以木块的加速度a=0a=0..(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F 合=2F=20N =2F=20N,所以其加速度为:,所以其加速度为:,所以其加速度为:它的方向与反向后的这个力方向相同.它的方向与反向后的这个力方向相同.【例3】 沿光滑斜面下滑的物体受到的力是沿光滑斜面下滑的物体受到的力是 [ ] [ ] A .力和斜面支持力.力和斜面支持力B .重力、下滑力和斜面支持力.重力、下滑力和斜面支持力C .重力、正压力和斜面支持力.重力、正压力和斜面支持力D .重力、正压力、下滑力和斜面支持力.重力、正压力、下滑力和斜面支持力【误解一】选(选(B B )。
牛顿第二定律练习题(经典好题)
牛顿第二定律练习题(经典好题)1、当质量为m的物体受到水平拉力F作用时,其产生的加速度为a。
若水平拉力变为2F,则物体产生的加速度为2a,即选项C。
2、根据牛顿第二定律,单独作用于某一物体上的力和加速度之间成正比,因此F1/F2=3/1,即F1=3F2.两个力同时作用于该物体时,根据牛顿第二定律,加速度等于合力除以物体质量,因此可得加速度为4m/s2,即选项D。
3、根据牛顿第二定律,物体所受合力等于物体质量乘以加速度。
已知合力为F1+F2=14N,加速度为2.5m/s2,因此可得物体质量为5.6kg。
4、因为弹簧对两球的拉力大小相等,根据牛顿第二定律可得F/2=ma,其中a为两球的加速度。
因此A球的加速度为F/2m,B球的加速度为F/2m,即选项A和C。
5、由于两小球质量相等,因此在细绳烧断的瞬间,它们受到的合力相等,根据牛顿第二定律可得加速度大小相等,即aA=aB=g,即选项A。
6、(1)根据牛顿第一定律,匀速运动时物体所受合力为零,因此F=μG=0.3×200N=60N。
(2)根据牛顿第二定律,物体所受合力等于物体质量乘以加速度加上摩擦力,即F=ma+μmg。
代入已知数据可得F=ma+60N。
因为题目给定了加速度为10m/s2,因此可得F=ma+60N=200N。
7、根据牛顿第二定律,物体所受合力等于物体质量乘以加速度加上摩擦力,其中摩擦力的大小为物体与斜面间的滑动摩擦因数乘以物体所受垂直于斜面的支持力。
因为物体在斜面上匀速下滑,所以合力为零,即mgcosθ=μmgsinθ,解得滑动摩擦因数为μ=tanθ。
8、根据牛顿第一定律,球所受合力为零,因此挡板和斜面所受支持力大小相等,即F1=F2=G/2=10N。
9、物体受到的合力分解成水平方向和竖直方向的分力,其中竖直方向的分力等于物体重力,水平方向的分力等于恒力F的投影。
因为物体做匀速运动,所以水平方向的分力等于摩擦力,即Fcosθ=μmg,解得摩擦力大小为F=μmg/cosθ。
牛顿第二定律练习题(经典好题)
⽜顿第⼆定律练习题(经典好题)例. 1.如图5所⽰:三个共点⼒,F 1=5N ,F 2=10N ,F 3=15N ,θ=60°,它们的合⼒的x 轴⽅向的分量F x 为 ________N ,y 轴⽅向的分量F y 为 N ,合⼒的⼤⼩为 N ,合⼒⽅向与x 轴正⽅向夹⾓为。
12. (8分)如图6所⽰,θ=370,sin370=0.6,cos370=0.8。
箱⼦重G =200N ,箱⼦与地⾯的动摩擦因数µ=0.30。
要匀速拉动箱⼦,拉⼒F 为多⼤?2如图所⽰,质量为m 的物体在倾⾓为θ的粗糙斜⾯下匀速下滑,求物体与斜⾯间的滑动摩擦因数。
3.(6分)如图10所⽰,在倾⾓为α=37°的斜⾯上有⼀块竖直放置的档板,在档板和斜⾯之间放⼀个重⼒G=20N 的光滑球,把球的重⼒沿垂直于斜⾯和垂直于档板的⽅向分解为⼒F 1和F 2,求这两个分⼒F 1和F 2的⼤⼩。
4.质量为m 的物体在恒⼒F 作⽤下,F 与⽔平⽅向之间的夹⾓为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为µ,则物体受摩擦⼒⼤⼩为多少?:5如图所⽰,物体的质量kg m 4.4=,⽤与竖直⽅向成?=37θ的斜向右上⽅的推⼒F 把该物体压在竖直墙壁上,并使它沿墙壁在竖直⽅向上做匀速直线运动。
物体与墙壁间的动摩擦因数5.0=µ,取重⼒加速度2/10s m g =,求推⼒F 的⼤⼩。
(6.037sin =?,8.037cos =?)6如图所⽰,重⼒为500N 的⼈通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与⽔平⾯成60o ⾓时,物体静⽌,不计滑轮与绳的摩擦,求地⾯对⼈的⽀持⼒和摩擦⼒。
θ601如图所⽰,⼀个⼈⽤与⽔平⽅向成=⾓的斜向下的推⼒F推⼀个质量为20 kg的箱⼦匀速前进,如图(a)所⽰,箱⼦与⽔平地⾯间的动摩擦因数为=0.40.求:(1)推⼒F的⼤⼩;(2)若该⼈不改变⼒F的⼤⼩,只把⼒的⽅向变为与⽔平⽅向成⾓斜向上去拉这个静⽌的箱⼦,如图(b)所⽰,拉⼒作⽤2.0 s后撤去,箱⼦最多还能运动多长距离?(g取10 )。
牛顿第二定律典型例题
牛顿运动定律典型问题一、共点力平衡及动态平衡【例1】如图(甲)质量为m的物体,用水平细绳AB拉住,静止在倾角为θ的固定斜面上,求物体对斜面压力的大小。
【例2】如图所示,用竖直档板将小球夹在档板和光滑斜面之间,若缓慢转动挡板,使其由竖直转至水平的过程中,分析球对挡板的压力和对斜面的压力如何变化.【例3】如图所示,支杆BC一端用铰链固定于B,另一端连接滑轮C,重物P上系一轻绳经C固定于墙上A点。
若杆BC、滑轮C及绳子的质量、摩擦均不计,将绳端A点沿墙稍向下移,再使之平衡时,绳的拉力和BC杆受到的压力如何变化?【练习】1.如图所示,用一个三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC绳所受最大拉力为1000N,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?2.如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求(1)物体A所受到的重力;(2)物体B与地面间的摩擦力;(3)细绳CO受到的拉力。
3.如图所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。
当细绳的端点挂上重物G,而圆环将要开始滑动时,试问(1)长为30cm的细绳的张力是多少?(2)圆环将要开始滑动时,重物G的质量是多少?4.如图,A、B两物体质量相等,B用细绳拉着,绳与倾角θ的斜面平行。
A与B,A与斜面间的动摩擦因数相同,若A沿斜面匀速下滑,求动摩擦因数的值。
5.如图所示,用两根绳子系住一重物,绳OA与天花板夹角θ不变,且θ>45°,当用手拉住绳OB,使绳OB由水平慢慢转向OB′过程中,OB绳所受拉力将()A.始终减少B.始终增大C.先增大后减少D.先减少后增大6.如图所示,一重球用细线悬于O点,一光滑斜面将重球支持于A点,现将斜面沿水平面向右慢慢移动,那么细线对重球的拉力T及斜面对重球的支持力N的变化情况是:()A.T逐渐增大,N逐渐减小;B.T逐渐减小,N逐渐增大;C.T先变小后变大,N逐渐减小;D.T逐渐增大,N先变大后变小。
高中物理牛顿第二定律经典例题
牛顿第二运动定律【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A 点物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回,则以下说法正确的是:A 、物体从A 下降和到B 的过程中,速率不断变小B 、物体从B 上升到A 的过程中,速率不断变大C 、物体从A 下降B ,以及从B 上升到A 的过程中,速率都是先增大,后减小D 、物体在B 点时,所受合力为零【解析】本题主要研究a 与F 合的对应关系,弹簧这种特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。
对物体运动过程及状态分析清楚,同时对物体正确的受力分析,是解决本题的关键,找出AB 之间的C 位置,此时F 合=0,由A →C 的过程中,由mg>kx 1,得a=g-kx 1/m ,物体做a 减小的变加速直线运动。
在C 位置mg=kx c ,a=0,物体速度达最大。
由C →B 的过程中,由于mg<kx 2,a=kx 2/m-g ,物体做a 增加的减速直线运动。
同理,当物体从B →A 时,可以分析B →C 做加速度度越来越小的变加速直线运动;从C →A 做加速度越来越大的减速直线运动。
C 正确。
例2如图3-10所示,在原来静止的木箱内,放有A 物体,A 被一伸长的弹簧拉住且恰好静止,现突然发现A 被弹簧拉动,则木箱的运动情况可能是 A 、加速下降 B 、减速上升肥 C 、匀速向右运动 D 、加速向左运动【解析】木箱未运动前,A 物体处于受力平衡状态,受力情况为:重力mg ,箱底的支持力N ,弹簧拉力F 和最大的静摩擦力f m (向左)由平衡条件知:N=mg F=f m 。
由于发现A 弹簧向右拉动(已知),可能有两种原因,一种是由A 向右被拉动推知,F>f m ′,(新情况下的最大静摩擦力),可见f m >f m ′即是最大静摩擦力减小了,由f m =μN 知正压力N 减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A 、B 正确。
高中物理经典:牛顿第二定律 经典例题
牛顿第二定律授课内容:例题1、一个空心小球从距离地面16m的高处由静止开始落下,经2s小球落地,已知球的质量为0.4kg,求它下落过程中所受空气阻力多大?(g=10m/s2)例题2、质量为10kg的物体放在水平面上,物体与水平面间的动摩擦因数为0.2,如果用大小40N,方向斜向上与水平方向的夹角为37°的恒力作用,使物体沿水平面向右运动,求(1)物体运动的加速度大小;(2)若物体由静止开始运动,需要多长时间速度达到8.4m/s,物体的位移多大?例题3、如图所示,质量为m=10kg的物体在水平面上向左运动,物体与水平面之间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的推力F=20N的作用,则物体产生的加速度为: ( )A. 0B. 4m/s2 , 水平向右C. 2m/s2 , 水平向左D. 2m/s2 , 水平向右例题4、一根质量不计的弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4㎝。
再将重物向下拉1㎝,然后放手,则在刚释放瞬间,重物的重力加速度和速度的情况是()A、a=g/4向上,v=0;B、a=g/4向上,v向上;C、a=g向上,v向上;D、a=5g/4向上,v=0。
例题5、一木块在倾角为37°的斜面上, g=10m/s2。
(1)若斜面光滑,求木块下滑时加速度大小;(2)若斜面粗糙,木块与斜面间的动摩擦因数为0.2,则当木块以某一初速度下滑时,其加速度的大小;(3)若斜面粗糙,木块与斜面间的动摩擦因数为0.2,则当木块以某一初速度上滑时,其加速度的大小。
(4)若斜面粗糙,木块与斜面间的动摩擦因数为0.2,木块质量为3Kg,木块受到沿斜面向上的大小为25.8N的推力作用,则木块由静止开始运动的加速度大小为多少?知识的力量Tel:页眉页脚双击鼠标左键删除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物体受 力情况
牛顿第 二定律
加速度 a
运动学 公式
物体运 动情况
一木箱质量为m=10Kg,与水平地面间的动摩擦因数为
μ=0.2,现用斜向右下方F=100N的力推木箱,使木箱
在水平面上做匀加速运动。F与水平方向成θ=37O角,
求经过t=5秒时木箱的速度。 解:木箱受力如图:将F正交分解,则:
FN
F1= F cosθ
牛顿第二定律的应用
一、 从受力确定运动情况
已知物体受力情况确定运动情况,指的是在受力 情况已知的条件下,要求判断出物体的运动状态或求 出物体的速度、位移等。
处理这类问题的基本思路是:先分析物体受力情 况求合力,据牛顿第二定律求加速度,再用运动学公 式求所求量(运动学量)。
物体受 力情况
牛顿第 二定律
加速度 a
运动学 公式
物体运 动情况
二、从运动情况确定受力
已知物体运动情况确定受力情况,指的是在运动情 况(知道三个运动学量)已知的条件下,要求得出物体 所受的力或者相关物理量(如动摩擦因数等)。
处理这类问题的基本思路是:先分析物体的运动情 况,据运动学公式求加速度,再在分析物体受力情况的
基础上,用牛顿第二定律列方程求所求量(力)。
①
F2= F sinθ
②
竖直方向: FN (F2 mg ) ③0
水平方向: F1 Ff=ma ④
Ff=μFN
⑤
θ
Ff
F1
F2
F
mg
v =at
⑥
由①②③④⑤ ⑥得 v = F cos - (mg + F sin ) t
m
代入数据可得: v =24m/s
一个滑雪的人,质量m=75kg,以v0=2m/s的初速度沿 山坡匀加速滑下,山坡的倾角θ=30°,在t=5s的时
例4.质量为M的斜面放置于水平面上,其上有质量为m
的小物块,各接触面均无摩擦力,将水平力 F加在M上,
要求m与M不发生相对滑动,力F应为多大?
解:以m为对象;其受力如
图:由图可得:
F合 mg tan
m
F
由牛顿第二定律有
M
mg tan ma........1()
θ
以整体为对象, 受力如图, 则
F (M m)a........(2)
用水平推力F
向左推 m1、m2 间的作用力与
m1 m2
Ff
原来相同吗?
F1
0
a m1 m2
m2g
F1
=
m2a
=
m2 F m1 + m2
0
a F (m1 m2 )g
m1 m2
F1 - m2 g = m2a
F1
=
m2
F
-
(m1 + m2 )g
m1 + m2
+ m2 g
=
m2 F m1 + m2
由(1)(2)有
F (M m)g tan
动力学中的临界极值问题
瞬时加速度的分析问题
分析物体在某一时刻的瞬时加速度,关键——分析瞬时 前后的受力情况及运动状态,再由牛顿第二定律求出瞬 时加速度。
有两种模型:
①刚性绳(或接触面):是一种不需要发生明显形变就
能产生弹力的物体,若剪断(或脱离)后,其中弹力立 即发生变化,不需要形变恢复的时间。
间内滑下的路程S=60m,求滑雪人受到的阻力(包括摩
擦和空气阻力)。
由S=v0 t+at2 21得
已知运动情况求 受力情况
a
=
2(S-v0t)
t2
1
FN
F阻
滑雪的人滑雪时受力如图,将G分解得:
F1= mgsinθ
②
根据牛顿第二定律:F1-F阻=m a ③
由①②③
F1
θ
θ
F2
mg
得F阻=F1-ma
=
mgsinθ-2
在刚撤开的瞬间P,Q的加速度各是
多少?
如图, 质量为m的小球处
于静止状态,若将绳剪断,
则此瞬间小球的加速度是
B
多少?
θ
A
m
如图所示,吊篮A、物体B、物体C的质量均为m,B和C分
别固定在竖直弹簧两端,弹簧的质量不计.整个系统在 轻绳悬挂下处于静止状态.现将悬挂吊篮的轻绳剪断, 在轻绳刚断的瞬间( )
[ 解法二 ]:
F m1 m2
对m1、m2视为整体作受力分析
FN
有 :F = (m 1+ m2)a (1)
F
对m2作受力分析 有 :F1 = m2 a
(2)
联立(1)、(2)可得
F1 =
m2F m1 m2
(m1 + m2)g
[m2]
FN2 F1
m2g
求m1对m2的作用力大小。
对m2受力分析: FN
0 A
的加速度分别是多少?
B
质量皆为m的A,B两球之间系着一个不计质量 的轻弹簧,放在光滑水平台面上,A球紧靠墙壁, 今用力F将B球向左推压弹簧,平衡后,突然将力 F撤去的瞬间A,B的加速度分别为多少?
两物体P,Q分别固定在质量可以忽 P 略不计的弹簧的两端,竖直放在一
块水平板上并处于平衡状态,两物 Q 体的质量相等,如突然把平板撤开,
m(S-v0t)
t2
代入数据可得: F阻=67.5N
F阻 方向沿斜面向上
一木箱质量为m,与水平地面间的动摩擦因数为 μ,现用斜向右下方与水平方向成θ角的力F推 木箱,求从静止开始经过 t 秒时木箱的速度?
N
竖直方向 N– Fsinθ = G ①
V0= 0
Vt=? 水平方向 Fcosθ- f = ma ②
②弹簧(或橡皮绳):特点是形变量大,形变恢复需
要较长时间,在瞬时问题中,其弹力可以看成不变。
一条轻弹簧上端固定在天花板上,
下端连接一物体A,A的下边通过
一轻绳连接物体B。A、B的质量
相同均为m,待平衡后剪断A、B间
A
的细绳,则剪断细绳的瞬间,物体 A、B加速度和方向?
B
如图,两个质量均为m的重物静止, 若剪断绳OA,则剪断瞬间A和B
[ 解法一 ]:
F m1 m2
分别以m1、m2为隔离体作受力分析 对m1有 :F – F1 = m 1a (1) [m1] F1
对m2有: F1 = m2 a (2)
FN1 F
m1g
联立(1)、(2)可得
F1 =
m2F m1 m2
[m2]
FN2 F1
m2g
光滑的水平面上有质量分别为m1、m2的两物体 静止靠在 一起(如图) ,现对m1施加一个大小为 F 方向向右的推 力作用。求此时物体m2受到物体 m1的作用力F1
Fcosθ f
二者联系 f=μN
③
θ
Fsinθ
F
G
a F cos (mg F sin )
m
如果还要求经过 t 秒时木箱的速度vt=a t
连结体问题:
连结体:两个(或两个以上)物体相互连 结参与运动的系统。
隔离法,整体法
光滑的水平面上有质量分别为m1、m2的两物体 静止靠在 一起(如图) ,现对m1施加一个大小为 F 方向向右的推 力作用。求此时物体m2受到物体 m1的作用力F1