第6章 电液伺服系统(1)
电液伺服系统(第六章)
c KV 3 2 h 2 r s s s KV 2 h h
1 h h s 2 h K KV h V
3
s h s K 1 h V h
二、数字伺服系统 在数字伺服系统中,全部信号或部分信号是离散参量。 因此数字伺服系统又分为全数字伺服系统和数字-模拟伺服 系统两种。在全数字伺服系统中,动力元件必须能够接受 到数字信号,可采用数字阀或电液步进马达。数字模拟混 合式伺服系统如图6-2所示。数控装置发出的指令脉冲与反 馈脉冲相比较后产生数字偏差,经数模转换器把信号变为 模拟偏差电压,后面的动力部分不变,仍是模拟元件。系 统输出通过数字检测器(即模数转换器)变为反馈脉冲信 号。
2
这是个三阶系统,其特征方程可用一个一阶因式和一 个二阶因式表示,即:
c 1 r s s 2 2 nc 1 2 s 1 nc b nc
(二)系统的闭环刚度特性 由图6-5和式6-17可写出系统对外负载力矩的传递函数为:
模拟输入信号 (电压)
+
伺服放大器
伺服阀
液压马达
模拟反馈信号 (电压) 模拟检测器
模拟伺服系统重复精度高,但分辨能力较低(绝对精度低)。伺服 系统的精度在很大程度上取决于检测装置的精度,而模拟式检测装置的 精度一般低于数字式检测装置,所以模拟伺服系统分辨能力低于数字 伺服系统。另外模拟伺服系统中微小信号受到噪声和零漂的影响,因此 当输入信号接近或小于输入端的噪声和零漂时,就不能进行有效的控制 了。
U e Ke sin( r c )
Xv Ug
K a K sv 2 mf s s s s2 ( 1)( 1)( 2 1) a K vf mf mf
电液伺服控制系统
1电液伺服控制系统1.1电液控制系统的发展历史概述液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构———水钟。
而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。
18世纪出现了泵、水压机及水压缸等。
19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。
第二次世界大战期间及战后,电液技术的发展加快。
出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。
20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。
这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。
电液伺服驱动器也被用于空间运载火箭的导航和控制。
电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。
在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。
在以后的几十年中,电液控制技术的工业应用又进一步扩展到工业机器人控制、塑料加工、地质和矿藏探测、燃气或蒸汽涡轮控制及可移动设备的自动化等领域。
电液比例控制技术及比例阀在20世纪60年代末70年代初出现。
70年代,随着集成电路的问世及其后微处理器的诞生,基于集成电路的控制电子器件和装置广泛应用于电液控制技术领域。
现代飞机上的操纵系统。
如驼机、助力器、人感系统,发动机与电源系统的恒速与恒频调节,火力系统中的雷达与炮塔的跟踪控制等大都采用了电液伺服控制系统。
飞行器的地面模拟设备,包括飞行模拟台、负载模拟器大功率模拟振动台、大功率材料实验加载等大多采用了电液控制,因此电液伺服控制的发展关系到航空与宇航事业的发展,在其他的国防工业中如机器人也大量使用了电液控制系统。
伺服控制(电液伺服系统 )课件
(二)系统的闭环刚度特性
闭环惯性环节转折频率的无因次曲线
17
闭环振荡环节固有频率无因次曲线
当h和Kv/h较小时
nc h
18
当h和Kv/h较小时
2 nc 2 h — Kv / h
闭环振荡环节阻尼系数无因次曲线
19
系统频宽主要受h和h的影响 和限制,应适当提高h和 h , 但过大的 h会降低nc,影响响
应速度。
电液位置控制系统闭环频率特性曲线
4)只有在工作频率接近谐振频率h时才有稳定性问题。当工作频率 接近h时,负载压力且也将接近ps了,也就是说压力趋于饱和,Kc变得很
大,阻尼系数比较高。
14
P116页使系统满足一定稳定要求的参数估算
由于以上几点原因,估算时一般可用
Kv
h
3
电液位置伺服系统难于得到较大的幅值稳定裕量Kg,而相位稳定
裕量 易于保证。
6
位置比较用电压比较代替 缸
电液伺服阀 液压能源
样板 给定
xi 位移 ei 比较eg 电伺服 I
传感器
- 放大器
ef
力矩 马达
液压 放大元件
扰动
液压 xp
执行件
位移 传感器1
A 双传感器阀控位置控制系统
7
由计算机图 形代替样板
程序 ei 比较eg
给定
-
ef
电液伺服阀 液压能源
电伺服 i 放大器
力矩 马达
11
将电液伺服阀看成比例环节
Kv
Ke Kd Ka Ksv iDm
TL
K V ce
iD K m
4
s
t
1
e ce
i +
电液伺服控制系统
组成电液比例控制系统的基本元件: 1)指令元件 2 比较元件 3 电控器 4 比例阀 5 液压执行器 6 检测反馈元件
第6章 电液伺服控制系统
4
6.1 概述
6.1.2 电 液 比 例 控 制 系 统 的 特 点 及 组成
第6章 电液伺服控制系统
5
6.1 概述
电液比例控制的主要优点是: 1)操作方便,容易实现遥控 2 自动化程度高,容易实现编程控制 3 工作平稳,控制精度较高 4 结构简单,使用元件较少,对污染不敏感 5 系统的节能效果好。
6.功率放大级
功率放大级式比例控制放大器的 核心单元。由信号放大和功率驱动电路 组成。
根据功率放大级工作原理不同,分 为:模拟式和开关式。
第6章 电液伺服控制系统
29
6.3 电液比例电控技术
(1)模拟式功率放大级
第6章 ห้องสมุดไป่ตู้液伺服控制系统
30
6.3 电液比例电控技术
(2)开关式功率放大级
第6章 电液伺服控制系统
比例放大器根据受控对象、功率级工作原理不同,分为: 1 单路和双路比例控制放大器 2 单通道、双通道和多通道比例控制放大器 3 电反馈和不带电反馈比例控制放大器 4 模拟式和开关式比例控制放大器 5 单向和双向比例控制放大器 6 恒压式和恒流式比例控制放大器
第6章 电液伺服控制系统
16
6.3 电液比例电控技术
第6章 电液伺服控制系统
18
6.3 电液比例电控技术
第6章 电液伺服控制系统
19
6.3 电液比例电控技术
2.输入接口单元 (1)模拟量输入接口
2 数字量输入接口 3 遥控接口
第6章 电液伺服控制系统
20
电液控制技术(1)及应用
比例阀技术初步
• 比例阀介于常规开关阀和闭环伺服阀之间已成
为现今液压系统的常用组件,液压工业从比例阀 技术的发展而获益匪浅。
• 看一个例子:
比例阀技术对于液压系统究竟意味着什么
比例阀技术对于液压系统究竟意味着什么
上图说明了信号流程: 输入电信号为电压多数为0至9V由信号放大器成比例地转化为
电流即输出变量如1mV相当于1mA; 比例电磁铁产生一个与输入变量成比例的力或位移输出; 液压阀以这些输出变量力或位移作为输入信号就可成比例地输 出流量或压力; 这些成比例输出的流量或压力输出对于液压执行机构或机器动 作单元而言意味着不仅可进行方向控制而且可进行速度和压力 的无级调控; 同时执行机构运行的加速或减速也实现了无级可调如流量在某 一时间段内的连续性变化等。
如果对于不带位移传感器的直动式比例方向阀,其滞环一 般为5-6%,重复精度2-3%。
比例方向阀-直动式
控制阀芯的结构:
图示,比例阀控制阀芯与普通方向阀 阀芯不同,它的薄刃型节流断面呈三 角形。用这种阀芯形式,可得到一条 渐增式流量特性曲线。
阀芯的三角控制棱边和阀套的控制棱
边,在阀芯移动过程中的任何位置上,
比例泵的恒压、恒流、压力流量复合控制等多种功能控制块 ,可采用组合叠加方式;
控制放大器、电磁铁、和比例阀组成电液一体化结构。
电液比例控制的技术特征
带比例电磁铁的比例阀和比例泵为电气控制提供了良好的接 口无论对于顺序控制的生产机械还是其它可编程的控制/驱动 系统都提供了极大的灵便性。 比例控制设备的技术优势主要在于阀位转换过程是受控的设 定值可无级调节且实现特定控制所需的液压元件较少从而减 少了液压回路的投资费用。 使用比例阀可更快捷更简便和更精确地实现工作循环控制并 满足切换过程的性能要求由于切换过渡过程是受控的避免产 生过高的峰值压力因而延长了机械和液压元器件的使用寿命 。
电液伺服系统
蓄能器
❖ 一个气—液式高压蓄压器装在油箱的旁边, 用来维持系统的压力,减小压力波动。此蓄 压器一侧预先充进的氮气压力与另一侧油系 统中的油压相平衡。此蓄压器块上有一个截 止阀,此阀能将蓄压器与系统隔绝,以进行 试验、重新充气或维修。蓄压器氮气一侧有 一个压力表,用以检查充氮压力
蓄能器
EH油系统的运行操作
❖ EH油泵出口滤网前后差压高 报警
❖ 低于9.31 Mpa(g) 汽轮机跳闸 (63/LP) 自动停机
❖ EH油压力回油压力高 回油压力报警 0.21MPa
EH油系统常见故障
❖ 1 系统压力下降,个别调门无法正常开启; ❖ 2 油动机卡涩,调门动作迟缓,有时泄油后不回座; ❖ 3 在开关调门过程中发生某个调门不规则频繁大幅度摆动,
同程度的腐蚀,在滑阀凸肩、喷咀及节流孔处腐蚀尤为严重。
❖ d 电液转换器滑阀两侧压力偏差大: 油中杂质堵塞电液转换器的喷咀;磨 擦、酸性腐蚀造成滑阀的凸肩、滑块与滑座之间磨损,使滑阀相对与滑 座之间的间隙加大,使漏流量增加;酸性油液对喷咀室、通道及节流孔 等的腐蚀,改变了滑阀两侧的压力。
❖ e LVDT线性电压位移转换器故障,电液转换器机械零位不准等
EH油系统 运 行
❖ EH油系统概述 ❖ 随着大容量、高参数汽轮发电机组的发展,
机组调节系统工作介质的额定压力随之升高, 对其工作介质的要求亦越来越高。通常所用 的矿物油自燃点为350℃左右,若在高参数大 容量机组使用,便增加了油泄漏到主蒸汽管 道(>530℃)导致火灾的危险性。为保证机组 的安全经济运行,汽轮机电液调节系统的控 制液普遍采用了磷酸酯抗燃油。
❖ 在机组预启动期间,EH油系统应进行升温、 升压。液压油的正常运行温度是49℃ (38℃~60℃),虽然允许系统可以在21℃ 油温下操作,但不推荐低于21℃油温下运行, 严禁在10℃下运行。因此预启动的第一步是 对油升温。 采用浸入式加热器升温
电液伺服系统的建模与控制
电液伺服系统的建模与控制1. 引言电液伺服系统是一种广泛应用于工业控制领域的系统,它可以通过控制液压执行器的输出来实现对机械运动的精确控制。
本文将介绍电液伺服系统的建模与控制方法,以帮助读者更好地了解和应用这一技术。
2. 电液伺服系统的概述电液伺服系统由液压执行器、电液伺服阀、传感器和控制器等组成。
液压执行器负责将液压能转化为机械能,电液伺服阀负责控制液压执行器的动作,传感器用于反馈系统状态信息,控制器根据传感器的反馈信息对电液伺服阀进行控制。
3. 电液伺服系统的建模建模是控制系统设计的第一步,对于电液伺服系统也是不可或缺的。
电液伺服系统的建模既可以基于理论模型,也可以基于实验数据进行。
3.1 理论模型在理论模型建模中,我们需要考虑液压执行器、电液伺服阀和控制器的动态特性。
液压执行器的动态特性可以用惯性、摩擦、密封等参数来描述。
电液伺服阀的动态特性可以用阀门的流量-压力特性和阀门饱和现象来描述。
控制器的动态特性通常可以用传统的PID控制算法进行建模。
3.2 实验模型在实验模型建模中,我们需要通过实验得到系统的频率响应和传递函数,并将其转化为数学模型。
这种方法对于实际系统的建模更加准确,但也需要大量的实验数据和较高的技术要求。
4. 电液伺服系统的控制控制是电液伺服系统中最关键的环节之一。
常用的电液伺服系统控制方法有位置控制、速度控制和力控制等。
4.1 位置控制位置控制是电液伺服系统中最基本的控制方法之一。
通过控制电液伺服阀的输出来控制液压执行器的位置。
传感器将执行器的位置信息反馈给控制器,控制器根据反馈信息进行调节,使得系统实现期望的位置跟踪。
4.2 速度控制速度控制是电液伺服系统中常用的控制方法之一。
通过控制电液伺服阀的输出来控制液压执行器的速度。
传感器将执行器的速度信息反馈给控制器,控制器根据反馈信息进行调节,使得系统实现期望的速度跟踪。
4.3 力控制力控制是电液伺服系统中一种高级的控制方法。
电液伺服控制系统概述
电液伺服控制系统概述摘要:电液伺服控制是液压领域的重要分支。
多年来,许多工业部门和技术领域对高响应、高精度、高功率——重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。
特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在原件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。
目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。
关键词:电液伺服控制液压执行机构伺服系统又称随机系统或跟踪系统,是一种自动控制系统。
在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。
液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。
一、电液控制系统的发展历史液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构——水钟。
而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。
18世纪出现了泵、水压机及水压缸等。
19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。
第二次世界大战期间及战后,电液技术的发展加快。
出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。
20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。
这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。
电液伺服驱动器也被用于空间运载火箭的导航和控制。
电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。
在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。
电液伺服系统的原理及应用
电液伺服系统的原理及应用一.电液伺服系统概述电液伺服系统在自动化领域是一类重要的控制设备,被广泛应用于控制精度高、输出功率大的工业控制领域.液体作为动力传输和控制的介质,跟电力相比虽有许多不甚便利之处且价格较贵,但其具有响应速度快、功率质量比值大及抗负载刚度大等特点,因此电液伺服系统在要求控制精度高、输出功率大的控制领域占有独特的优势。
电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。
按系统被控机械量的不同,它又可以分为电液位置伺服系统、电液速度伺服控制系统和电液力控制系统三种。
我国的电液伺服发展水平目前还处在一个发展阶段,虽然在常规电液伺服控制技术方面,我们有了一定的发展。
但在电液伺服高端产品及应用技术方面,我们距离国外发达国家的技术水平还有着很大差距。
电液伺服技术是集机械、液压和自动控制于一体的综合性技术,要发展国内的电液伺服技术必须要从机械、液压、自动控制和计算机等各技术领域同步推进。
二.电液伺服的组成电液控制系统是电气液压控制系统简称,它由电气控制及液压两部分组成。
在电子-液压混合驱动技术里,能量流是由电子控制,由液压回路传递,充分结合了电子控制和液压传动两者混合驱动技术的优点避免了它们各自的缺陷。
⑴电子驱动技术的特点①高精度、高效率,低能耗、低噪音②高性能动态能量控制③稳定的温度性能④能量再生及反馈电网⑤在循环空闲的时间没有能量损失⑵液压驱动技术的特点①高(力/功)密度②结构紧凑③液压马达(油缸)是大功率且经济的执行元件④在液压系统做压力控制的时候有明显的能量流失液压部分:以液体为传动介质,靠受压液体的压力能来实现运动和能量传递。
基于液压传动原理,系统能够根据机械装备的要求,对位置、速度、加速度、力等被控量按一定的精度进行控制,并且能在有外部干扰的情况下,稳定、准确的工作,实现既定的工艺目的。
(工控网)液压伺服阀是输出量与输入量成一定函数关系,并能快速响应的液压控制阀,是液压伺服系统的重要元件。
电液伺服控制系统(含实验内容)教学大纲
《电液伺服控制系统》(含实验内容)教学大纲课程编码:08241068课程名称:电液伺服控制系统英文名称:electro-hydraulic servo control system开课学期:1学时/学分:30 (其中实验学时:4 )课程类型:专业课开课专业:机械电子工程专业本科生选用教材:《液压伺服控制系统》王春行主编主要参考书:执笔人:刘昕晖一、课程性质、目的与任务本课程为机械电子工程专业本科生专业选修课。
通过对本课程的学习使学生了解液压伺服控制的基本理论、液压伺服控制元件和液压伺服控制系统等知识,了解液压伺服控制元件和系统的作用原理、特性分析及设计计算等。
二、教学基本要求1.了解电液伺服系统的基本概念2.了解液压伺服控制的基本理论、基本方法。
3.了解液压伺服控制元件和液压伺服控制系统组成和基本原理。
4.了解液压伺服控制元件和系统的特性分析及初步设计计算方法。
三、各章节内容及学时分配第一章液压伺服控制系统概述(2学时)本章介绍液压伺服控制系统的工作原理、组成、分类、优缺点和应用。
通过本章的学习,可以对液压伺服控制系统有一个大致的了解。
1.1 液压伺服控制系统的工作原理和组成一、液压伺服控制系统的工作原理二、液压伺服控制系统举例三、液压伺服控制系统的组成1.2 液压伺服控制系统的分类一、按输入信号的变化规律分类二、按系统输出量的名称分类三、按驱动装置的控制方式和控制元件的类型分类四、按信号传递介质的形式分类五、按液压动力机构是否对称分类1.3 液压伺服控制系统的优缺点一、液压伺服控制系统的优点二、液压伺服控制系统的缺点1.4 液压伺服控制系统的发展和应用概况第二章液压放大元件(4学时)液压放大元件是液压伺服系统中的一种主要控制元件,它们的性能直接影响到液压伺服系统购工作品质,因此必须对它们的特性及设计淮则进行研究。
液压放大元件可以是液压伺服阀或伺服变量泵。
本章只讨论液压伺服阀,包括滑阀、喷嘴挡板阀和射流管阀。
电液伺服系统在数控机床中的应用
电液伺服系统在数控机床中的应用伺服系统是一种通过感应和响应外部信号来调整输出的自动控制系统。
电液伺服系统是一种使用电力和液压传动技术的伺服系统,被广泛应用于数控机床中。
本文将探讨电液伺服系统在数控机床中的应用,并介绍其优势和发展趋势。
一、电液伺服系统的工作原理电液伺服系统主要由电液伺服阀、液压伺服缸、传感器、执行器和控制器等组成。
其工作原理是:控制器通过传感器获得外部输入信号,然后将信号传递给电液伺服阀。
电液伺服阀根据接收到的信号来控制油路的开闭,调节液压伺服缸的运动。
液压伺服缸将运动转化为力或位移输出,从而实现对机械装置的精确控制。
二、1. 位置控制:电液伺服系统通过精确的位置控制能够实现数控机床的高精度加工。
通过传感器获得工作台或刀具的位置信号,控制器根据设定值对电液伺服阀进行控制,使得机械装置按照预定的路径和速度进行准确定位。
2. 速度控制:电液伺服系统能够实现数控机床的平稳加速和减速操作。
控制器根据设定值对电液伺服阀进行控制,调节液压伺服缸的运动速度,从而实现对机械加工的平滑速度控制。
3. 力控制:电液伺服系统能够实现数控机床的精确力控制。
通过传感器获取工作台或刀具的力信号,控制器根据设定值对电液伺服阀进行控制,调节液压伺服缸的输出力,确保机械装置对工件施加恰当的力。
4. 自动化操作:电液伺服系统能够实现数控机床的自动化操作。
通过控制器中预设的程序,可以实现自动切换刀具、自动换夹具、自动调整加工参数等功能,提高了数控机床的生产效率和加工质量。
三、电液伺服系统的优势1. 高精度:电液伺服系统具有响应速度快、位置控制精度高的特点,可以满足数控机床对于精密加工的要求。
2. 高可靠性:电液伺服系统由于采用了液压传动技术,具有承受高负载和冲击的能力,能够适应数控机床长时间、高负荷运行的需求。
3. 高适应性:电液伺服系统能够适应不同的加工需求,通过调整控制器中的参数实现不同的运动模式和控制策略。
4. 易于维护:电液伺服系统的设计相对简单,维修和更换零部件相对容易,能够降低机床维护成本和停机时间。
电液伺服系统及其控制文档
电液系统及其控制1概述1.1电液控制系统工作原理及组成一.工作原理电液控制系统又称电液伺服系统,是以电气信号为输入,以液压信号为输出,电气检测传感器元件为反馈构成闭环控制系统.由于是电气和液压相结合,因而系统可发挥两者的优点.电气信号便于测量转换放大处理校正,电气检测传感器元件便于检测各种物理量,且快速和多样性;液压信号输出功率大速度快,执行元件具有惯性小等优点.所以结合起来的电液控制系统具有控制精度高,响应速度快,信号处理灵活,输出功率大,结构紧凑,重量轻等优点.输入电气信号通常有电位器,电子放大器,PLC控制器和计算机等. 电气检测传感器元件通常有位置传感器,压力传感器, 速度传感器,编码器等元件. 输出是以液压动力执行元件(油缸和马达)和伺服元件组成的反馈控制系统.如图所示:在此系统中,输出量(位移,力,速度等)通过反馈传感器(位移传感器,力传感器,速度传感器等)能自动地快速地准确地反映其变化.并与原先的给定的给定量进行比较,再放大输入给伺服阀,改变其阀芯位移,从而控制输出的压力和流量,驱动执行元件运动,直至输人量与输出量一致为止.举例:1.阀控式电液位置控制伺服系统(如上图)图中所示为双电位器电液位置控制伺服系统的工作原理图.该系统控制工作台的位置,使其按指令电位器给定的规律变化.系统由指令电位器, 反馈电位器,电子放大器,电液伺服阀,液压缸和工作台组成.其工作原理如下:指令电位器将位置指令xi转换成指令电压ur,被控制的工作台位置xp由反馈电位器检测转换成反馈电压ui.两个线性电位器接成桥式电路,从而得到偏差电压ue=ur-uf.当工作台位置xp与指令位置xi一致时,电桥输出偏差电压ue=0,此时伺服放大器输出电流为零, 电液伺服阀处于零位,没有流量输出,工作台不动.当指令电位器位置发生变化,如向右移动一个位移Oxi,在工作台位置发生变化之前, 电桥输出偏差电压ue=KOx,偏差电压经伺服放大器放大后变为电流信号去控制电液伺服阀, 电液伺服阀输出压力油到液压缸,推动工作台右移.随着工作台的移动, 电桥输出偏差电压逐渐减小,当工作台移动Oxp等于指令电位器位移Oxi时, 电桥输出偏差电压为零, 工作台停止移动.反之亦然.系统的工作原理方块图如下:2.泵控式电液速度控制伺服系统该系统的液压动力执行元件由变量泵和液压马达组成,变量泵既是液压能源又是液压控制元件.由于操纵变量机构所需要的力较大,通常采用一个小功率的液压放大装置作为变量控制机构.如图所示为一泵控式电液速度控制伺服系统的原理图.图中所示系统采用阀控式电液位置控制机构作为泵的变量控制机构. 液压马达的输出速度由测速发电机检测,转换为反馈电压信号uf,与输入指令电压信号ur相比较,得出偏差电压信号ue=ur-uf,作为变量控制机构的输入信号.当速度指令为ur0时, 负载以某个给定的转速w0工作,测速机输出反馈电压uf0,则偏差电压ue0=ur0-uf0,这个偏差电压对应于一定的液压缸位置,从而对应于一定的泵流量输出,此流量为保持负载转速w0所需的流量.如果负载变化或其它原因引起转速变化时,则uf 不等于uf0,假如w大于w0,即uf大于uf0,则ue=ur0-uf小于ue0,使液压缸输出位移减小,使泵输出流量减小,液压马达转速自动下调至给定值.反之,如果转速下降,则uf小于uf0,则ue=ur0-uf大于ue0,使液压缸输出位移增大,使泵输出流量增大,液压马达转速自动回升至给定值.结论: 速度指令一定时, 液压马达转速保持恒定;速度指令变化时, 液压马达转速也相应变化.系统的工作原理方块图如下:二.电液伺服控制系统组成1.输入元件---其功用是给出输入信号加于系统的输入端.可以是机械的,电气的等如靠模,电位器,计算机等.2.反馈测量元件---测量系统输出并转换为反馈信号.如各类传感器(位置传感器,压力传感器,速度传感器等).3.比较元件---将输入信号与反馈信号进行比较,给出偏差信号.4.放大转换元件---将偏差信号放大,转换成液压信号.妲伺服放大器,电液伺服阀等.5.执行元件---产生调节动作加于控制对象上,如液压缸和液压马达等.6.控制对象---被控制的设备等,即负载.7.液压能源装置及各种校正装置等.1.2电液伺服控制的分类电液伺服控制系统可按不同的原则分类,基本上有五大类.一.按被控对象的物理量名称分类1.位置伺服控制系统主要是控制被控对象的位置精度的伺服控制系统,妲机床工作台的位置,板带轧机的板厚,振动试验台等系统.2.速度伺服控制系统主要是控制被控对象的速度精度的伺服控制系统,如原动机的调速,雷达天线的速度控制等.3.力伺服控制系统以力为被调量的伺服控制系统,如材料试验机,轧机张力控制系统等.二.按执行元件的控制方式分类1.阀控式伺服控制系统利用伺服阀控制的伺服控制系统称为阀控式伺服控制系统.它又可分为阀控缸系统和阀控马达系统两种.其优点是响应速度快,控制精度高,结构简单.缺点是效率低.2.容积式伺服控制系统利用变量泵或变量马达控制的伺服控制系统称为容积式伺服控制系统.它又可分伺服变量泵系统和伺服变量马达系统.三.按系统输入信号的变化规律分类1. 定值控制系统当系统输入信号为定值时称为定值控制系统.它的任务是将系统的实际输出量保持在希望值上.2. 程序控制系统当系统输入信号为按预先给定的规律变化时称为程序控制系统..3. 伺服控制系统伺服控制系统又称随动系统,其输入信号是时间的未知函数,而输出量能够准确快速地复现输入量的变化规律.四.按信号的方式分类1.模拟信号控制系统系统中全部信号都是连续的模拟量的系统称之.2.数字信号控制系统系统中全部信号都是数字量的系统称之.3. 数字-模拟混合控制系统系统中部分信号是数字量部分信号是模拟量的系统称之.五.按信号传递介质的形式分类1.机液伺服控制系统输入信号给定,反馈测量和比较均用机械构件实现的系统称之.2.电液伺服控制系统用液压动力元件,偏差信号的检测校正和初始放大等均用电气电子元件实现的系统称之.1.3电液伺服控制的优缺点一. 电液伺服控制的优点1.液压元件功率-重量比和力矩-惯量比(力-质量比)大,因而结构紧凑,体积小,重量轻,用于中大型功率系统优点更明显.比较举例:电气元件:最小尺寸取决于有效磁通密度,而有效磁通密度又受磁性材料的磁饱和限制;功率损耗产生的发热量散发又比较困难.因此功率-重量比和力矩-惯量比小,结构尺寸大.液压元件:功率损耗产生的发热量由油带到散热器去散热,其最小尺寸取决于最大工作压力,而工作压力可以很高(通常可达32MPa),因而元件尺寸小,重量轻, 功率-重量比和力矩-惯量比大.同功率:液压泵重量/电动机重量=10%-20%液压泵尺寸/电动机尺寸=12%-13%液压马达功率重量比=10倍相当容量的电动机液压马达力矩-惯量比=10-20倍电动机2.液压动力元件快速性好,系统响应快.加速能力强,能高速起动和制动.3.液压伺服系统抗负载的刚度大.二. 电液伺服控制的缺点1.液压元件抗污染能力差,对工作介质清洁度要求高.工作介质随温度变化而变化,对系统性能有影响.2. 液压元件制造精度高,成本高,且若元件的密封制造使用不当,易外漏,造成环境污染.3.液压能源传输不如电气系统方便2 电液伺服阀电液伺服阀是电液伺服系统中的主要元件,它既是电液转换元件,又是功率放大元件.它能够把微小的电信号转换成大功率的液压能(流量和压力),是电液伺服控制系统的核心和关键.电液伺服阀的输入信号是由电气元件来完成的,由它再转换成液压流量和压力,输出给执行机构,实现对执行机构各物理量的控制.2.1电液伺服阀的组成与分类一.组成电液伺服阀通常由力矩马达,液压放大器,反馈机构三部分组成.以下图的两级中力反馈式电液伺服阀为例,简单介绍如下:图中上半部为力矩马达,下半部为液压放大器(由四通滑阀组成的液压放大器), 反馈机构则由反馈杆11组成.它们的作用分别是:1.力矩马达(力马达)将输入的电信号转换成力矩或力控制液压放大器运动.2.液压放大器控制液压能源流向执行机构的流量和压力.3.反馈机构使伺服阀输出的流量和压力获得与输入信号相应的特性.二.分类电液伺服阀的种类很多,按不同的结构和机能常有以下几种分类:1.按输出量的控制功能分有:电液流量伺服阀---主要控制输出的液流流量特性,即在额定输入信号范围内,具有线性流量控制特性.电液压力伺服阀---在额定输入信号范围内,具有线性压力控制特性.电液压力-流量伺服阀---在额定输入信号范围内,具有线性压力-流量控制特性.2.按液压放大器的级数分有:单级伺服阀---只有一级放大元件.结构简单,价格低廉,但输出力和力矩小,输出流量小,对负载变化敏感.用于低压小流量和负载变化不大的场合.两级伺服阀---有两级放大元件.它克服了单级伺服阀的缺点,是最常用的型式.三级伺服阀---由一个两级伺服阀作前置级,控制第三级功率滑阀.通常只用于大流量(200L/min)以上的场合.3.按第一级阀的结构分有:滑阀---第一级阀的结构是滑阀.此类阀流量和压力增益高,输出流量大,对油清洁度要求较低.但加工复杂,分辨率低,响应慢,滞环较大,阀芯受力大.喷咀挡板--- 第一级阀的结构是喷咀挡板. 此类阀灵敏,动态响应快,线性度好.但对油清洁度要求高,挡板受力小,驱动功率小.射流管--- 第一级阀的结构是射流管阀. 此类阀抗污染强,但动态响应慢,受油温响应大.4.按反馈形式分有:滑阀位置反馈---利用滑阀的位置反馈的阀,常用的有直接位置反馈,机械位置反馈,位置电反馈,位置力反馈等.直接位置反馈---阀芯位移通过反馈杆与挡板相连,构成滑阀位移力反馈.常用于两级伺服阀.机械位置反馈---将功率级滑阀的位移通过机械机构反馈到前置级.位置电反馈---将功率级滑阀的位移通过位移传感器反馈到伺服阀的放大器输入端,实现功率级滑阀阀芯定位.2.2 力矩马达力矩马达是将电信号转换成机械运动的一种电气-机械转换.一.力矩马达工作原理利用电磁原理,由永久磁铁(或激磁线圈)产生极化磁场,而电信号通过控制线圈产生控制磁场,两个磁场相互作用,产生与控制信号成比例并能反映控制信号的极性的力或力矩,使其运动部分产生直线位移或角位移的机械运动.二.力矩马达分类1. 根据运动形式分1) 角位移马达--力马达,可移动件是直角位移.2) 直线位移马达—力马达,可移动件是直线位移.2.按可动件结构分1)动铁式---可动件是衔铁.2)动圈式---可动件是控制线圈.3.按极化磁场产生的方式分1)永磁式---利用永久磁铁建立极化磁通.2)非极磁式---无专门的极磁线圈,两个控制线圈差动连接,利用常值电流产生极化磁通.3)固定电流极磁式---利用固定电流通过极磁线圈建立极化磁场.三.力矩马达要求1.能产生足够的输出力和行程,且要求体积小,重量轻.2.动态性能好,响应速度快.3.直线性好,死区小,灵敏度高,磁滞小.4.抗震,抗冲击,不受环境温度和压力影响.四.典型力矩马达1. 永磁动铁式力矩马达1)组成下图所示为一种常用的永磁动铁式力矩马达工作原理图,它由永久磁铁(2),上下导磁体(3,5),衔铁(4),弹簧管(1),控制线圈(两个控制线圈套在衔铁上).2)工作原理永久磁铁将上下导磁体磁化,一个为N极, 一个为S极.无信号电流时,即两个控制线圈的电流i1=i2,衔铁在上下导磁体的中间位置,由于力矩马达结构是对称的, 永久磁铁在四个工作气隙中所产生的极化磁通是一样的,使衔铁两端所受的电磁吸力相同,力矩马达无力矩输出.当有信号电流通过控制线圈时,线圈产生控制磁通(其大小和方向取决于信号电流的大小和方向).假设i1>i2,如上图所示,在气隙1,3中控制磁通与极化磁通方向相同,而在气隙2,4中控制磁通与极化磁通方向相反,因此气隙1,3中其控制磁通与永久磁铁磁通合成大于气隙2,4中控制磁通与极化磁通的合成,于是衔铁上产生顺时针方向的电磁力矩,使衔铁绕弹簧管转动中心顺时针方向转动.当弹簧管变形产生的反力矩与电磁力矩相平衡时,衔铁停止转动.如果信号电流反向,则电磁力矩也反向,衔铁向反方向转动.电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例.因此调节信号电流便可调节电磁力矩的大小,也就调节衔铁的转角大小.2.永磁动圈式马达1)组成永久磁铁,可动线圈,对中弹簧等.2)工作原理图所示为一种常见的结构原理图图中,永久磁铁在工作气隙中形成极化磁通,当控制信号电流加到线圈上时,线圈就会受到电磁力的作用克服弹簧力和负载力而运动.线圈的位移与控制电流成比例.因此输入信号电流就会得到电磁力,且呈正比关系,具有线性特性.3.动铁式力矩马达与动圈式力马达比较动铁式力矩马达动圈式力马达磁滞大磁滞小工作行程小工作行程大输出力矩大,弹簧刚度大,. 输出力矩小,固有频率低.固有频率高同功率体积小, 价格高同功率体积大,价格低五.力矩马达的数学模型(电磁力矩计算)1) 永磁动铁式力矩马达的数学模型(电磁力矩计算)电磁力矩是由于控制线圈输入电流,在衔铁产生了控制磁通而形成的.因此需先求出力矩马达的控制电流.通过力矩马达的磁路分析可求出电磁力矩的计算公式.a.力矩马达的控制电流参看永磁动铁式力矩马达的工作原理图,在其工作时, 两个控制线圈由一个放大器供电,其常值电压Eb在每个控制线圈中产生的常值电流I0大小相等方向相反.当放大器有输入电压时,两个控制线圈的电流分别为:I1= I0+iI2= I0-i式中i1 i2--- 每个控制线圈中的电流;I0---每个控制线圈中的常值电流i---每个控制线圈中的信号电流;两个控制线圈的差动电流为Δi=i1-i2=2I=i c(1)I c ---输入马达的控制电流b. 衔铁中产生的控制磁通根据力矩马达的磁路原理图,应用磁路的基尔霍夫第二定律可得气隙的合成磁通, 继而应用磁路的基尔霍夫第一定律求出衔铁磁通:φa=φ1-φ2=2φgθ(a/Lg)+Δi(Nc/ Rg)式中φa ---衔铁磁通;φg ---衔铁在中位时气隙的极化磁通;θ---衔铁转角; a ---衔铁转动中心到磁极面中心的距离;Lg ---衔铁在中位时每个气隙的长度;Rg ---工作气隙的磁阻;NcΔi---永久磁铁产生的控制磁动势;c. 作用在衔铁上的电磁力矩根据马克斯威尔公式计算衔铁在磁场中所受的电磁吸力,可得由控制磁通和极化磁通相互作用在衔铁上产生的电磁力矩简化式为Td=KtΔi+Kmθ式中Td ---作用在衔铁上的电磁力矩;Kt---力矩马达的中位电磁力矩系数;Km---力矩马达的中位磁弹簧刚度;从式中可看出,在衔铁中产生的控制磁通以及由此产生的电磁力矩比例于差动电流.2) 永磁动圈式力马达的数学模型(电磁力矩计算)参见永磁动圈式力马达的工作原理图,力矩马达的可动线圈悬置于工作气隙中,永久磁铁在工作气隙中形成极化磁通,当控制电流加到线圈上时,线圈就会受到电磁力的作用而运动.其运运动方向和电流方向按左手定则判断.线圈上的电磁力克服弹簧力和负载力,产生一个与控制电流成比例的位移.由于电流方向与磁通方向垂直,根据载流导体在均匀磁场中所受的电磁力公式,可得力马达线圈所受的电磁力:F=BgлDNcic=Ktic式中F---线圈所受的电磁力;K t---电磁力系数F=BgлDNcN c---控制线圈的匝数.B g---工作气隙中的磁感应强度;D---线圈的平均直径;I c---通过线圈的控制电流.结论: 永磁动圈式力马达的电磁力与控制电流成正比,具有线性特性.2.3 液压放大元件电液伺服阀另一个组成部分是液压放大器,它是一种以机械运动来控制流体动力的元件.它将力矩马达(或力马达)输出的机械运动(转角或位移)转换为液压信号(液体的流量和压力)输出,并进行了功率放大.液压放大元件是伺服系统中的一种主要控制元件,其静动态特性对系统的性能影响很大.且结构简单,单位体积输出功率大,工作可靠和动态性能好.一.液压放大元件的种类液压放大元件有滑阀,喷咀挡板阀和射流管阀等.二.滑阀滑阀是靠节流原理工作的.它借助于阀芯与阀套间的相对运动改变节流口面积的大小,对流体流量或压力进行控制.滑阀结构形式多,控制性能好,在电液系统中应用最广泛.1.滑阀的结构及分类(1)按进出阀的通道数划分它与液压方向阀的通道数一样,有四通阀,三通阀和二通阀.四通阀有一个进油口,一个回油口,两个控制口.可用来控制双作用液压缸或马达.如图a所示.三通阀有一个进油口,一个回油口,一个控制口.只可用来控制差动液压缸.如图b所示.图b 三通阀图c 二通阀二通阀一个进油口,只有一个可变节流口,须和一个固定节流孔配合使用,才能用来控制差动液压缸. 如图c所示.(2)按滑阀的工作边数划分a.四边滑阀--与上对应四通阀有四个可控的节流口,又称四边滑阀,控制性能最好.如上图a所示.b. 双边滑阀--三通阀有两个可控的节流口,又称双边滑阀, 控制性能居中. 如上图b所示.c. 单边滑阀--单边滑阀只有一个可控的节流口, 控制性能最差.(3)按滑阀的预开口型式划分按滑阀阀芯在中位时,阀芯凸肩与阀套槽宽的几何尺寸关系划分有:a.正开口--阀芯凸肩与阀套槽宽的几何尺寸是负重叠的(即阀芯凸肩宽度大于阀套槽宽),参见图a.b.零开口--阀芯凸肩与阀套槽宽的几何尺寸是零重叠的(即阀芯凸肩宽度等于阀套槽宽),参见图b.c.负开口--阀芯凸肩与阀套槽宽的几何尺寸是正重叠的(即阀芯凸肩宽度小于阀套槽宽),参见图c.图a 正开口图b 零开口图c 负开口.阀的预开口形式对其性能,特别是零位附近特性影响很大.如下图所示:零开口阀具有线性流量增益特性,性能比较好.负开口阀由于流量增益特性有死区,将引起稳态误差,有时还可能引起游隙,从而产生稳定性问题.正开口在正开口区内外的流量增益变化大,压力灵敏度低,零位泄漏量大.图不同开口形式的流量特性1-零开口2-正开口3-负开口2.滑阀静态特性滑阀静态特性是指稳态情况下,阀的负载流量qL, 负载压力pL和滑阀的位移xv三者之间的关系,即qL=f(pL, xv).它表示滑阀的工作能力和性能,对系统的静动态特性计算有重大意义.阀的静态特性可用方程(压力-流量方程),曲线或特性参数(阀的系数)表示.(1) 滑阀静态特性a.压力-流量方程滑阀的控制流量可由滑阀节流口流量公式表示,其流量是阀芯位移和节流口的压降的函数.为了使问题简化,在推导压力-流量方程时,作了以下假设:a)液压能源是理想的恒压源,供油压力Ps为常数,回油压力P0为零.b)忽略管道和阀腔内的压力损失.c)假定液体是不可压缩的.d)假定阀各节流口流量系数相等.e)阀的窗口都是匹配和对称的.根据节流口流量公式,以四边滑阀为例,可推导出压力-流量方程:负载流量为QL=CdA2√1/ρ(ps - pL)- CdA1√1/ρ(ps + pL)式中Cd-为流量系数,ρ-为油密度, (ρ=870Kg/m3)A1- 为节流口1的面积;A2-为节流口2的面积;ps –为恒压油源压力pL-为负载压力,pL=p1-p2.供油流量为Qs=CdA2√1/ρ(ps - pL)+ CdA1√1/ρ(ps + pL)b.滑阀的静态特性曲线a)流量特性曲线阀的流量特性是指负载压降等于常数时, 负载流量与阀芯位移之间的关系,其图形表示即为流量特性曲线. 负载压降为0时的流量特性称空载流量特性.相应的曲线为空载流量特性曲线,如图a所示.图a 空载流量特性曲线图图b 压力特性曲线b)压力特性曲线阀的压力特性是指负载压降等于常数时, 负载压降与阀芯位移之间的关系,其图形表示即为压力特性曲线.通常所指的压力特性是指负载流量为0时的压力特性,相应的曲线为压力特性曲线,如图b所示.c)压力-流量特性曲线阀的压力-流量特性曲线是指阀芯位移一定时, 负载流量与负载压降之间关系的图形. 如下图所示为理想零开口四边滑阀的压力-流量特性曲线族.它全面描述了阀的稳态特性,并可获得阀的全部性能参数.阀在最大位移下的压力-流量特性曲线可以表示阀的工作能力和规格.当负载所需的压力和流量能被阀在最大位移下的压力-流量特性曲线所包围时,阀就能满足负载的要求阀的压力-流量特性曲线(2)零开口四边滑阀的静态特性a. 理想零开口四边滑阀的静态特性理想零开口滑阀是指径向间隙为零,工作边锐利的滑阀,如图所示.由于径向间隙为零,工作边锐利,因而在讨论静态特性时可不考虑它们的影响.且认为节流阀口为矩形,其面积A=W xv, (W-面积梯度xv-阀芯位移).a)理想零开口四边滑阀的压力-流量方程理想零开口四边滑阀的压力-流量方程:QL=Cd W xv -(1)b)压力-流量曲线根据无因次压力-流量方程绘制压力-流量曲线如下图所示.因阀窗口是匹配且对称的,所以压力-流量曲线对称于原点.当阀在正常工作状态是按图中Ⅰ,Ⅲ象限曲线.只有在瞬态情况下,才会处于Ⅱ,Ⅳ象限曲线.三.喷咀挡板阀喷咀挡板阀也称喷咀挡板式液压放大元件.与滑阀相比,其公差要求不太严格,易加工,造价低,对油液污染的敏感性也差.但零位泄漏量大,功率损失较大。
电液伺服控制系统
12
m
1 Dm
QL
Kce Dm2
1
Vt
4e Kce
s
s2
h
2 h h
s
1
s
TL i
电液控制技术-电液伺服控制系统
电液位置伺服系统
一、电液位置伺服系统的方框图与传递函数
自整角机
us
θi
θL
相敏 放大器
ug
t
齿轮传动比
i m L
功率 放大器
t
Δi 力矩马达 电液伺服阀 液压马达 θm
电液伺服控制系统的类型 与性能评价指标
二、电液伺服控制系统的性能评价指标
2、动态特性指标 (1)时域性能指标
超调量 调节时间 峰值时间 衰减比 振荡次数
4
电液控制技术-电液伺服控制系统
电液伺服控制系统的类型 与性能评价指标
二、电液伺服控制系统的性能评价指标
2、动态特性指标 (2)频域性能指标
J 0 t e(t)dt
e(t)dt
J
0
0 x(t)dt
7
电液控制技术-电液伺服控制系统
电液位置伺服系统
电液位置伺服系统是最基本和最常用的一种
液压伺服系统,其输入是电信号,输出是机械位 移信号,常用在机床工作台的位置控制、板带轧 机的板厚控制、飞机和船舶的舵机控制等方面。
电液位置伺服系统分阀控电液位置伺服系统 和泵控电液位置伺服系统。
自整角机
相敏 放大器
功率 放大器
Δi
力矩马达
us
ug
电液伺服阀
液压马达
t
t
θi
θL
θm
电液伺服阀传递函数
TL 负 载
第6章 电液伺服系统(1)
6.3 电液伺服系统的校正
以上讨论了比例控制的电液位置伺服系统,其性能主 要由动力元件参数所决定,对这种系统,单纯靠调整 增益往往满足不了系统的全部性能指标,这时就要对 系统进行校正,高性能的电液伺服系统一般都要加校 正装置。
一、滞后校正
滞后校正的主要作用是通过提高低频段增益,减小系 统的稳态误差,或者在保证系统稳态精度的条件下, 通过降低系统高频段的增益,以保证系统的稳定性。
总位置误差为:
位置控制系统的校正 A)串联滞后校正 作用:提高开环增益以提高精度,其传递函数为:
式中
rc
1 RC
——超前环节的转折频率; ——滞后超前比 >1。
典型滞后校正网络
校正后系统的开环传递函数为
一般要求: 选择不超过10~20; Kg=10~20dB、=40~60; c 位于rc和h之间的-20dB/dec区间。 参数选取方法: 当c确定后,取rc=(1/4~1/5) c,调整 rc 满足稳定裕量要求。
有速度反馈后的系统开环波德图
加速度反馈的实质是把输出速度变化率超前反馈,以阻止输出量 的变化而形成阻尼。提高了系统等速输入时的平稳性。二阶以上系统 用加速度反馈有利于平稳调速,故常用这种校正。
加入速度,加速度反馈校正后:
加速度、速度反馈参数选择原则: 1)根据希望的’h、’h求得K1、 K2, 2)进一步求出Kfa、Kfv,求出K’v可 判定Ka的值 3)通常’h、’h有一定限度。要求 增大后的’c以-20dB/dec穿过零分贝 线。 加入速度及加速度反馈的系统开环波德图
三、压力反馈和动压反馈校正:
采用压力反馈和动压反馈校正的目的是提高系统的阻尼。负 载压力随系统的动态而变化。当系统振动加剧时,负载压力也 增大。如果将负载压力加以反馈,使输入系统的流量减少.则 系统的振动将减弱。起到了增加系统阻尼的作用。可以来用压 力反馈伺服阀或功压反馈伺服阀实现压力反馈和动压反馈。也 可以采用液压机械网络或电反馈实现压力反馈或动压反馈。
6电液伺服阀及电液伺服系统(2)
(1)提高低频段增益, 改善控制精度。 (2)降低高频段增益, 提高稳定性。 校正网络:
32
§2.电液位置控制系统
传递函数:
u0 (s) ui (s)
RCs 1
RCs 1
1
s
rc
1
rc
s
X 2 Ts 1
X1 Ts 1
T B1 K1
B! B2
B1
α :滞后超前比,α>1
4、伺服阀的选择 由上述参数, ps 4.5MPa , pL 3MPa , 以及 Ap 0.0148m2 可得负载流量
qL Apvp 0.0148 2.2 102 3.26 104 m3 s 19.5 L min
由样本资料,选用DYC1—25L型伺服阀, 其相关参数如下:
21
§2.电液位置控制系统
流量连续性方程:
qL
Ap sx p
Ctp pL
Vt
4e
spL
力平衡方程:
FL Ap pL Ms2xp BLsxp Ks xp
开环传递函数:
(5) (6)
39
§4. 电液力控制系统
力控制系统的检测元件多为压力传感器或力 传感器,常用伺服阀可以是压力控制阀也可以是 流量控制阀。
压力阀本身带有压力反馈,其压力增益特性 较为平缓,常用于开环压力控制。此类阀的调试 较为复杂,使其应用受到一定的限制。
液压伺服系统
第六章 电液伺服系统
1
六、电液伺服阀及电液伺服系统
1 车床液压仿形刀架
液压仿形刀架倾斜安装在车床 溜板5的上面,工作时随溜板纵向移 动。样板12安装在床身后侧支架上 固定不动。液压泵站置于车床附近。 仿形刀架液压缸的活塞杆固定在刀 架的底座上,缸体6、阀体7和刀架 连成一体,可在刀架底座的导轨上 沿液压缸轴向移动。滑阀阀心10在 弹簧的作用下通过杆9使杠杆8的触 销11紧压在样板上。在车削圆柱面 时,溜板5沿床身导轨4纵向移动。 杠杆触销在样板的圆柱段内水平滑 动,滑阀阀口不打开,刀架只能随 溜板一起纵向移动,刀架在工件1上 车出AB段圆柱面。
电液伺服系统的控制研究
电液伺服系统的控制研究随着工业技术的发展,电气化技术的应用越来越广泛。
在许多工业领域,如汽车、航空、机械制造等,电液伺服系统已成为关键的技术。
电液伺服系统由电液转换器、执行机构、传感器、控制电路等组成,其主要功能是对加工、制造、运动等的精准控制。
本文将从控制理论的角度来探讨电液伺服系统的控制研究。
一、电液伺服系统的基本原理电液伺服系统的基本原理是利用电、液两种能量进行转换,实现机械运动的控制。
电液伺服系统的核心是电液转换器,即电液伺服阀。
电液伺服阀是将电信号与液压传动结合起来的一种装置。
由于其结构简单、反应快速、功率大等特点,电液伺服阀已经成为控制液压执行机构的主要手段。
二、电液伺服系统的特点电液伺服系统具有许多特点。
首先,电液伺服系统可以实现高速、高精度的运动控制。
在机械制造、运动控制等领域,其精度要求非常高,而电液伺服系统正是能够满足这种需求的。
其次,电液伺服系统具有良好的可靠性和稳定性。
电液伺服系统采用了多种控制算法来保证系统的稳定性和可靠性。
再次,电液伺服系统可以实现自动控制和智能控制。
传感器可以采集实时数据,并传输给控制器,控制器可以根据数据进行智能控制,实现自动运动控制。
三、电液伺服系统的控制方法在电液伺服系统中,主要的控制方法有位置控制、速度控制和力控制。
1、位置控制位置控制是通过控制电液伺服系统的液压执行机构,实现机械运动轨迹和位置的控制。
对于位置控制,通常采用PID控制算法。
PID控制算法是一种经典的控制算法,能够快速响应和精确控制。
2、速度控制速度控制是控制电液伺服系统的液压执行机构,实现机械运动的速度控制。
对于速度控制,可以采用PD控制算法。
PD控制算法结合了位置控制和速度控制两种控制方法,能够实现更加精准的速度控制。
3、力控制力控制是通过控制电液伺服系统的液压执行机构,实现机械运动的力量控制。
对于力控制,通常采用PID控制算法或者模糊控制算法。
力控制通常用于机械加工、焊接等领域,可以实现更为精确的力量控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伺服阀死区和零飘引起的位置误差 : 如果伺服阀的死区、液压马达和负载摩擦的死区折合为电流误差il,电 液伺服阀的零飘为i2,伺服放大器零飘折合到电液伺服阀为i3;这些因素 引起的位置误差为
Ke、Kd、Kf——反馈取出点经反馈通路到伺服阀输入的增益。
C) 测量元件的误差 测量元件与负载连接,测量元件的固有误差、安装调试和校准误差会反映到输出轴 上,其值假设为a。
Kv<(0.2~0.4) h
为了防止系统中由于元件参数变化造成的影响,也为了得到满意的性能指标,一般相位 裕量在30~60 之间,幅值裕量为6~12分贝。
B.位置控制系统的闭环频率特性 系统的闭环传递函数为
分母的三次多项式可以分解为一个一阶因式和一个二阶因式的乘积:
当h和Kv/h较小时,
b Kv
闭环惯性环节转折频率的无因次曲线
当h和Kv/h较小时, nc h
当h和Kv/h较小时, 2 nc 2 h—Kv/ h
简化方框图:
系统的闭环刚度特性
系统的闭环刚度远远大于系统的开环刚度,系统的闭环刚度与开环放大 系数成正比。为了减小由外负载力矩所引起的位置误差,希望提高外环放大 系数,但开环放大系数的提高受系统稳定性的限制。为了得到较高的闭环刚 度,可以在系统中加入校正装置,如滞后校正或在小回路中加入速度反馈校 正等。
二、 数字伺服系统
在数字伺服系统中,全部信号或部分信号是离散参量。因此数字伺服系 统又分为全数字伺服系统和数字—模拟伺服系统两种。
6.1 电液伺服系统的类型
9.2
电液位置伺服系统的分析
9.2.1系统的组成及其传递函数
电液伺服系统的动力元件不外乎阀控式和泵控式两种基本型式,但 由于所采用的指令装置、反馈测量装置和相应的放大、校正的电子部件 不同,就构成了不同的系统。如果采用电位器作为指令装置和反馈测量 装置,就可以构成直流电液位置伺服系统(如第一章所介绍的双电位器电液 位置伺服系统)。当采用自整角机或旋转变压器作为指令装置和反馈测量 装置时,就可构成交流电液位置伺服系统。
系统的精度分析
静态误差:对于只有惯性负载的位置控制系统,对输入信号来说,系统的结构是I 型。I型系统没有位置误差而只有速度误差。速度误差等于输入速度Vi被开环放大系 数除,即
系统对于干扰信号的闭环传递函数为
此式称为系统闭环柔度特性, 其倒数即为闭环刚度特性:
系统闭环静态刚度为
对于干扰信号TL来说,系统的结构是 零型,干扰力矩引起位置误差为:
三、压力反馈和动压反馈校正:
采用压力反馈和动压反馈校正的目的是提高系统的阻尼。负 载压力随系统的动态而变化。当系统振动加剧时,负载压力也 增大。如果将负载压力加以反馈,使输入系统的流量减少.则 系统的振动将减弱。起到了增加系统阻尼的作用。可以来用压 力反馈伺服阀或功压反馈伺服阀实现压力反馈和动压反馈。也 可以采用液压机械网络或电反馈实现压力反馈或动压反馈。
二、系统的稳定性分析
二、系统的稳定性分析
角度同步变压器机可以看作为比例环节:
交流放大和解调器同样视为比例环节:
伺服放大器的输入电压与输出电流近似成比例:
伺服阀的传递函数:
二、系统的稳定性分析
只考虑惯性负载,则阀控马达的滑阀位移对马达输出转角的传递函数为
式中 i——马达轴与负载间齿轮传动比; TL——系统输出轴阻力矩;
加入滞后校正的位置系统开环波德图
B) 速度及加速度反馈校正
反馈校正回路的闭环传递函数为
式中 K1——单有速度反馈校正时校正回路的开环增益,且 只有速度反馈校正,即 K2=0时,系统的开环增益由Kv下降到Kv / (1+K1),固有频率由h增加 , , h 1 K1 阻尼比由 h降低到 h / 1 K1 提高反馈回路外的增益K ,可以补偿K 的下降。 e v 到 K2——单有加速度反馈校正时校正回路的开环增益,且 只有加速度反馈时,Kv、h不变而阻尼比 h提高,提高了稳定性。
二、系统的稳定性分析
系统的开环传递函数为
式中 Kv——系统开环增益。
系统的开环传递函数为
式中 Kv——系统开环增益。
单位反馈时,系统的闭环传递函数为
故特征方程为:
利用劳斯判据可知,欲使系统稳定,需满足:
K v <2 h h
h值的计算不易准确又不易测定。一般取 h=0.1~0.2。所以系统稳定条件为
总位置误差为:
位置控制系统的校正 A)串联滞后校正 作用:提高开环增益以提高精度,其传递函数为:
式中பைடு நூலகம்
rc
1 RC
——超前环节的转折频率; ——滞后超前比 >1。
典型滞后校正网络
校正后系统的开环传递函数为
一般要求: 选择不超过10~20; Kg=10~20dB、=40~60; c 位于rc和h之间的-20dB/dec区间。 参数选取方法: 当c确定后,取rc=(1/4~1/5) c,调整 rc 满足稳定裕量要求。
有速度反馈后的系统开环波德图
加速度反馈的实质是把输出速度变化率超前反馈,以阻止输出量 的变化而形成阻尼。提高了系统等速输入时的平稳性。二阶以上系统 用加速度反馈有利于平稳调速,故常用这种校正。
加入速度,加速度反馈校正后:
加速度、速度反馈参数选择原则: 1)根据希望的’h、’h求得K1、 K2, 2)进一步求出Kfa、Kfv,求出K’v可 判定Ka的值 3)通常’h、’h有一定限度。要求 增大后的’c以-20dB/dec穿过零分贝 线。 加入速度及加速度反馈的系统开环波德图
5.6 电液力控制系统
以力为被调量的液压伺服校制系统称为液压力控制系统。在工 程实际中,力控制系统应用的很多,如材料试验机、结构物疲 劳试验机、轧机张力控制系统、车轮刹车装置等都采用电液力 控制系统。
系统组成及工作原理 电液力控制系统主要由伺服放大器、电液伺服阀、液压 缸和力传感器等组成。 原理:当指今装置发出的指令电压信号作用于系统时,液压缸便
2、带位置环的泵控闭环速度控制系统 它是在开环速度控制的基础上,增加速度传感器将液压马达转 速进行反馈。构成闭环控制系统。速度反馈信号与速度指令信 号的差值经积分放大器加到变量伺服机构的输入端、使泵的流 量向减小速度误差的方向变化。采用积分放大器是为了使开环 系统具有积分特性。构成I型无差系统。通常.由于变量伺服机 构的惯性很小,液压缸—负载的固有频率很高.阀控液压缸可 以看成积分环节,变量伺服机构基本上可以看成是比例环 节.系统的动态特件主要出泵控液压马达的动态所决定。
第9章 电液伺服系统
本章摘要
介绍电液伺服系统类型,重点讲述了三种典 型电液伺服系统(位置、速度、力)的分析, 并对电液伺服系统的校正方法加以论述。
9.1 电液伺服系统的类型
一、模拟伺服系统
在模拟伺服系统中,全部信号都是连续的模拟量,模拟伺服系统重复精 度高,但分辨能力较低(绝对精度低)。伺服系统的精度在很大程度上取决 于检测装置的精度,另外模拟式检测装置的精度一般低于数字式检测装 置.所以模拟伺服系统分辨能力低于数字伺服系统。另外模拟伺服系统中 微小信号容易受到噪声和零漂的影响、因此当输入信号接近或小于输入端 的噪声和零漂时,就不能进行有效的控制了。
6.3 电液伺服系统的校正
以上讨论了比例控制的电液位置伺服系统,其性能主 要由动力元件参数所决定,对这种系统,单纯靠调整 增益往往满足不了系统的全部性能指标,这时就要对 系统进行校正,高性能的电液伺服系统一般都要加校 正装置。
一、滞后校正
滞后校正的主要作用是通过提高低频段增益,减小系 统的稳态误差,或者在保证系统稳态精度的条件下, 通过降低系统高频段的增益,以保证系统的稳定性。
6.4 电液速度控制系统
一、阀控马达速度控制系统
速度控制系统是一个不稳定的系统,为了使系统 稳定,必须要加校正环节,可以考虑加滞后校 正和积分校正。
二、泵控马达速度控制系统
泵控马达速度控制系统有开环控制和闭环控制两种。 1、泵控开环速度控制系统 变量泵的斜盘角由比例放大器、伺服阀、液压缸和位 移传感器组成的位置回路控制。通过改变变量泵斜盘 角来控制供给液压马达的流量,以此来调节液压马达 的转速。因为是开环控制,受负载和温度变化的影响 较大,控制精度差。
有输出力。 该力由力传感器检测转换为反馈电压信号与指令电压信号 相比较,得出偏差电压信号。 此偏差信号经伺服放大器放大后输入到伺服阀,使伺服阀 产生负载压差作用于液压缸活塞上,使输出力向减小误差的方 向变化,直至输出力等于指令信号所规定的值为止。 在稳态情况下,输出力与偏差信号成比例。
5.6 电液力控制系统
3、不带位置环的泵控闭环速度控制系统
如果将变量伺服机构的位置反馈去掉,并将积分放大器改为比 例放大器.可得到闭环这种速度控制系统。因为变量伺服机构 中的液压缸本身含有积分环节.所以放大器应采用比例放大 器,系统仍是I型系统。由于积分环节是在伺服阀和变量泵斜盘 力的后面,所以伺服阀零漂和斜盘力等引起的静差仍然存在。 变量机构开环控制,抗干扰能力差.易受零漂、摩擦等影响。
整个位置系统开环传递函数
速度反馈校正:主要提高主回路
的静态刚度,减少速度反馈回 路内的干扰和非线件的影响, 提高系统的静态精度。
加速度反馈:主要是提高系统的
阻尼。低阻尼是限制液压伺服 系统性能指标的主要原因,如 果能将阻尼比提高到0.4以上, 系统的性能可以得到显著的改 善。 根据需要速度反馈与加速 度反馈可以单独使用,也可以 联合使用。
思考题
1、考虑伺服阀的动态时,如何用频率法分析系统的动态特性? 2、有哪些因素影响系统的稳态误差? 3、在电液伺服系统中为什么要增大电气部分的增益,减小液 压部分的增益? 4、开环增益、穿越频率、系统频宽之间有什么关系? 5、未加校正的液压伺服系统有什么特点? 6、为什么电液伺服系统一般都要加校正装置,在电液位置伺 服系统中加滞后校正、速度与加速度校正、压力反馈和动压 反馈校正的主要目的是什么? 7、电液速度控制系统为什么一定要加校正,加滞后校正和加 积分校正有什么不同? 8、在力控制系统中负载刚度对系统特性有何影响?影响了哪 些参数? 9、力控制系统和位置控制系统对伺服阀的要求有什么不同? 为什么?