层次分析法(AHP)建模

合集下载

层次分析法及模糊综合评价建模方法

层次分析法及模糊综合评价建模方法

否则,k:=k+1, 转2
5) 计算 max
1 n
n i 1
w(k 1) i w(k ) i
关于如何确定成对比较矩阵 A (aij )nn 中元素 aij 的值,
Saaty等建议试用1~9尺度,即 aij 的取值范围是1,2,…,9 以及倒数是1,1\2,…,1\9, 判断矩阵的元素一般采用1~9及 其倒数的标度方法。
科研C2
w1(3)=(w11(3),w12(3),w13(3),0)T P1
P2
P3
P4
w2(3)=(0,0,w23(3),w24(3)T已得 讨论由w(2),W(3)=(w1(3), w2(3)) 计算第3层对第1层权向量
P1,P2只作教学, P4只作科研, P3兼作教学、科研。
w(3)的方法
C1,C2支配元素的数目不等

业 业 业 靠 通 C8
C1
C3 C4 C5 C6 C7
舒进 美
适出 化
C9
方 便
C11
C1
0
桥梁 D1
隧道 D2
渡船 D3
(1)过河效益层次结构
例3 横渡 江河、海峡 方案的抉择
经济代价 B1
过河的代价 A
社会代价 B2
环境代价 B3
投 操 冲冲 交 居 汽 对 对
入 作 击击 通 民 车 水 生
一致性指标
CI max n
n 1
随机一致性指标
判断 矩阵 1 2 3 4 5 6 7 8 9 10 阶数n
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
一致性比率
CR
CI RI

层次分析法(AHP法)

层次分析法(AHP法)

一致性检验是层次分析法 中非常重要的步骤,可以 保证分析结果的可靠性
04
CATALOGUE
层次单排序
特征向量法
总结词
通过计算判断矩阵的特征向量来确定各因素权重的方法。
详细描述
特征向量法是层次分析法中确定权重的一种常用方法。它基于线性代数原理,通过计算判断矩阵的特 征值和特征向量,得到各因素的权重值。这种方法能够反映各因素之间的相对重要性,广泛应用于决 策分析和多目标优化等领域。
要点一
总结词
通过计算判断矩阵的最大特征值对应的特征向量来确定各 因素权重的方法。
要点二
详细描述
最大特征值法也是层次分析法中确定权重的一种常用方法 。它基于矩阵论原理,通过计算判断矩阵的最大特征值和 对应的特征向量,得到各因素的权重值。这种方法能够反 映各因素之间的相对重要性,并且在判断矩阵一致性检验 中具有重要作用。最大特征值法在多目标决策、系统评价 等领域有广泛的应用。
03
CATALOGUE
构造判断矩阵
标度定义
标度2
两个元素相比,前者比后者稍 重要
标度4
两个元素相比,前者比后者强 烈重要
标度1
两个元素相比,具有相同的重 要性
标度3
两个元素相比,前者比后者明 显重要
标度5
两个元素相比,前者比后者极 端重要
判断矩阵的构造
01
通过专家咨询、比较等方法,对每一层次各元素相对重要性给 出判断
02
将判断结果整理成矩阵形式
判断矩阵的元素aij表示第i个元素与第j个元素相对重要性的比值
03
判断矩阵的一致性检验
一致性检验是检验各元素 重要性判断是否具有逻辑 一致性
当CR<0.1时,认为判断 矩阵的一致性是可以接受 的;否则,需要对判断矩 阵进行调整

层次分析法AHP法建模

层次分析法AHP法建模
随机一致性指标 RI=1.12 (查表)
通过一致
一致性比率CR=0.018/1.12=0.016<0.1
性检验
正互反阵最大特征根和特征向量的简化计算
• 精确计算的复杂和不必要
• 简化计算的思路——一致阵的任一列向量都是特征向量,
一致性尚好的正互反阵的列向量都应近似特征向量,可取
其某种意义下的平均。
二、层次分析法的基本原理
层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的 组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同 层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归 结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重 要权值的确定或相对优劣次序的排定。
对总目标Z的排序为
A1
A2
Am
a1, a2,, am
B层n个因素对上层A中因素为Aj
B1
B2
Bn
的层次单排序为
b1 j ,b2 j ,,bnj ( j 1,2,, m)
B 层的层次总排序为:
即 B 层第 i 个因素对总目标
的权值为: m
a jbij
(影响加和)j 1
B1 : a1b11 a2b12 amb1m B2 : a1b21 a2b22 amb2m
是对难于完全定量的复杂系统作出决策的模型和方 法。
决策是指在面临多种方案时需要依据一定的标准选 择某一种方案。日常生活中有许多决策问题。举例
1. 在海尔、新飞、容声和雪花四个牌号的电冰箱 中选购一种。要考虑品牌的信誉、冰箱的功能、价 格和耗电量。
2. 在泰山、杭州和承德三处选择一个旅游点。要 考虑景点的景色、居住的环境、饮食的特色、交通 便利和旅游的费用。

数学建模(层次分析法(AHP法))

数学建模(层次分析法(AHP法))

判断矩阵元素a 判断矩阵元素 ij的标度方法
标度 1 3 5 7 9 2 , 4 , 6, 8 倒数 含义 表示两个因素相比, 表示两个因素相比,具有同样重要性 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面的管理决策中都 有广泛的应用。 常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。 日常生活中有许多决策问题。决策是指 在面临多种方案时需要依据一定的标准选择 某一种方案。 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6 他对市场上的6种不同类型的电冰箱进行了解 选取一些中间指标进行考察。例如电冰 指标进行考察 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等 外界信誉、售后服务等。
目标层
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
要比较各准则C1,C2,… , Cn对目标O的重要性 要比较各准则 对目标 的重要性
Ci :Cj ⇒aij
选 择 C1 旅 C2 游 C 3 地
C4 C5 C1
层次分析法(AHP法 层次分析法(AHP法)
Analytic Hierarchy Process

AHP(层次分析法)方法、步骤

AHP(层次分析法)方法、步骤

2009.11
多目标评估方法
MS-OR
方根法
1 A 5 3 1/5 1 1/3 1 / 3 3 1
M 1 1 M
2
1 5

1 3

3
1 15
0 . 067
15 ,
M
1
计算Mi 的n次方根
W1
2009.11
3
M 1 0 . 405 ,
W 2 2 . 466
W = (0 .4 0 6 ,0 .4 0 6 ,0 .0 9 4 ,0 .0 9 4 )
max 4
C .R .= 0
C1
C2
C3
d1
d2
d3
d4
d5
2009.11
多目标评估方法
MS-OR
(3)计算各元素的总权重
准则 权重
C1
C2
C3 总权重
0 .1 0 5 方案 d1 d2 d3 d4 d5 0 .4 9 1 0 .2 3 2 0 .0 9 2 0 .1 3 6 0 .0 4 6
(c)计算一致性比例C.R.: C.R.= C.I./ R.I.
当C.R.<0.1时,一般认为判断矩阵的一致性是可以接受的。
2009.11
多目标评估方法
MS-OR
3、多层次分析法基本步骤
1 2
3 4 建立递阶层次结构 计算单一准则下元素相对重要性(单层次模型) 计算各层次上元素的组合权重(层次总排序) 评价层次总排序计算结果的一致性
2009.11
多目标评估方法
MS-OR
(3)计算步骤
判断矩阵中的元素具有下述性质
( i ) a ij 0 ( ii ) a ij 1 a

层次分析法建模

层次分析法建模

层次分析法建模层次分析法(AHP)是一种用于多准则决策的定量分析方法,最早由美国学者托马斯·S·萨亚基提出,常用于解决复杂的决策问题。

AHP方法通过构建层次结构模型,并运用专家主观判断与数学计算相结合的方法,评估多个准则的重要性,并最终选择最佳方案。

AHP方法的优势在于,能够将主观因素与客观因素相结合,充分考虑决策者的主观意见,并且能够提供较为可靠的决策结果。

下面将介绍AHP 方法的建模过程。

首先,我们需要明确决策的目标是什么。

然后,将目标拆分成若干个层次,形成一个层次结构。

层次结构通常包括目标层、准则层和方案层。

目标层表示最终的决策目标,准则层表示实现目标所必须满足的准则,而方案层则表示可以选择的方案。

例如,假设我们要购买一辆新车,目标层为“购买一辆适合自己的车”,准则层可以包括“价格”、“品牌口碑”、“性能”等,方案层可以包括“A品牌的小型车”、“B品牌的中型车”等。

接下来,我们需要对每个层次的准则和方案进行两两比较,以确定其重要性。

比较的方法是两两比较矩阵。

对于准则层,我们可以将每个准则之间的重要性按照9点标度进行比较,其中1表示两个准则具有相同的重要性,9表示一个准则比另一个准则重要性高很多。

对于方案层,我们可以将每个方案与每个准则之间的重要性进行比较。

比较的结果可以用一个判断矩阵表示。

然后,我们需要计算每个层次的权重。

对于准则层,我们可以通过计算准则之间的重要性判断矩阵的特征向量来得到各准则的权重。

对于方案层,我们可以通过计算方案与准则之间的重要性判断矩阵的特征向量来得到各方案的权重。

最后,我们可以通过计算方案的综合得分来确定最佳方案。

综合得分可以通过将每个方案的权重与各准则的权重相乘并求和得到。

AHP方法的建模过程相对简单,但是需要决策者对各准则和方案之间的重要性进行准确评估。

因此,选择合适的专家和确保专家对决策问题有足够的了解是非常重要的。

总之,层次分析法是一种用于多准则决策的定量分析方法。

多目标决策模型:层次分析法(AHP)、代数模型、离散模型

多目标决策模型:层次分析法(AHP)、代数模型、离散模型
2
程中常是定性的。 例如:经济好,身体好的人:会将景色好作为第一选择; 中老年人:会将居住、饮食好作为第一选择; 经济不好的人:会把费用低作为第一选择。 而层次分析方法则应给出确定权重的定量分析方法。 (S3)将方案后对准则层的权重,及准则后对目标层的权重进行综合。 (S4)最终得出方案层对目标层的权重,从而作出决策。 以上步骤和方法即是 AHP 的决策分析方法。 三、确定各层次互相比较的方法——成对比较矩阵和权向量 在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因 而 Santy 等人提出:一致矩阵法 ..... 即:1. 不把所有因素放在一起比较,而是两两相互比较 2. 对此时採用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,提高准确度。 因素比较方法 —— 成对比较矩阵法: 目的是,要比较某一层 n 个因素 C1 , C 2 , , C n 对上一层因素 O 的影响(例如:旅游决策解 中,比较景色等 5 个准则在选择旅游地这个目标中的重要性) 。 採用的方法是:每次取两个因素 C i 和 C j 比较其对目标因素 O 的影响,并用 aij 表示,全部 比较的结果用成对比较矩阵表示,即:
分析:
W1 W2 若重量向量 W 未知时, 则可由决策者对物体 M 1 , M 2 , , M n 之间两两相比关系, W n 主观作出比值的判断,或用Delphi(调查法)来确定这些比值,使 A 矩阵(不一定有一致性)
为已知的,并记此主观判断作出的矩阵为(主观)判断矩阵 A ,并且此 A (不一致)在不一致 的容许范围内,再依据: A 的特征根或和特征向量 W 连续地依赖于矩阵的元素 aij ,即当 aij 离 一致性的要求不太远时, A 的特征根 i 和特征值(向量)W 与一致矩阵 A 的特征根 和特征向 量 W 也相差不大的道理:由特征向量 W 求权向量 W 的方法即为特征向量法,并由此引出一致 性检查的方法。 问题:Remark 以上讨论的用求特征根来求权向量 W 的方法和思路,在理论上应解决以下问题: 1. 一致阵的性质 1 是说:一致阵的最大特征根为 n (即必要条件) ,但用特征根来求特征向量 时, 应回答充分条件: 即正互反矩阵是否存在正的最大特征根和正的特征向量?且如果正互 反矩阵 A 的最大特征根 max n 时, A 是否为一致阵? 2. 用主观判断矩阵 A 的特征根 和特征向量 W 连续逼近一致阵 A 的特征根 和特征向量 W 时,即: 由 lim k

层次分析法分析(AHP)及实例教程

层次分析法分析(AHP)及实例教程
02
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。

层次分析法

层次分析法
CR 0.1
进行检验。若通过,则可按照总排序权向量表示的结果进 行决策,否则需要重新考虑模型或重新构造那些一致性比 率 CR 较大的成对比较矩阵。
三、应用实例
例如,员工绩效考核问题
目标层A
绩效考核
准则层C
C1道德品 质
C2 专业 技能
C3知识 层次
C4业务水 平
C5客户 评价
方案层P
员工P1
员工P2
w1 w2 w2 w2 wn w2


w1 wn w2 wn wn wn
一致阵 性质
• A的秩为1,A的唯一非零特征根为n
Aw nw
但允许范围是 多大?如何界 定?
• 非零特征根n所对应的特征向量归一化后可作为权向量
对于不一致(但在允许范围内)的成对比较阵 A, Saaty等人建议用对应于最大特征根 的特征向量作为权向量w ,即
层次分析法(AHP法)
(Analytic Hierarchy Process) 建模
数学建模
模型背景
基本步骤
应用实例
一、模型背景
美国运筹学家匹兹堡大学教授Saaty在20世纪70 年代初提出的一种层次权重决策分析方法。
层次分析法(Analytic Hierarchy Process简称AHP) 是一种定性和定量分析相结合的决策分析方法。 特点:用较少的定量信息使决策的思维过程数学 化。
a23 8 (C2 : C3 )
允许不一致,但要确定不一致的允许范围
w1 考察完全一致的情况 w 1 W ( 1) w1 , w2 ,wn 可作为一个排序向量 w2 w A 成对比较 1 令aij wi / w j 满足 aij a jk aik , i, j, k 1,2,, n wn 的正互反阵A称一致阵。 w1

浅谈对层次分析法(AHP)的认识

浅谈对层次分析法(AHP)的认识

浅谈对层次分析法(AHP的认识层次分析法的简介及学习体会层次分析法(AHP )就是将决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

短学期里,在有限的几节课上,老师给我们介绍了层次分析法的背景、基本步骤、应用与解法等。

现在,我将在本文中浅谈一下自己上完课后对层次分析法的认识理解,阐述层次分析法的基本步骤,并举出一个使用层次分析法的案例,最后对层次分析法的优缺点进行评估。

层次分析模型是数学建模中常用的模型。

在现实世界中,无论是日常工作还是生活,涉及经济社会等因素,往往会遇到决策的问题,比如如何选择旅游景点的问题、选择升学志愿的问题、对企业进行评估的实例等等。

在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。

层次分析法是解决这类问题的行之有效的方法。

层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析、决策提供定量的依据。

层次分析法的基本步骤1. 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标一准则或指标一方案或对象),上层受下层影响,而层内各因素基本上相对独立。

如在老师教案中的例子一一选择旅游地中,将决策问题分为3个层次:目标层0,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

通过相互比较确定各准则对目标的权重,及各方案对每一准则的权重。

将上述两组权重进行综合,确定各方案对目标的权重。

2. 构造成对比较阵用成对比较法和1-9尺度,构造各层对上一层每一因素的成对比较阵。

3. 计算权向量并作一致性检验对每一成对比较阵计算最大特征根和特征向量,作一致性检验,若通过,则特征向量为权向量。

4. 计算组合权向量(作组合一致性检验*)组合权向量可作为决策的定量依据。

层次分析法的案例分析AHP建模实例1995年全国人学生数学模型竟赛的“人Wj冶炼炉的作业调度⑷”问题是•道从实际工业课题提炼、简化出来的数学问越.而且这种多车多炉的优化调度问题是每存在的牛•产问题本文利用层次分析法对使用1〜5台大牟选择最优方案天车与冶炼炉作业闊度的耍求为:1)成品钢产杲高:2)各台天车的作业率(天车作业时间所占比例)尽量均衡(考虑到设备及人员安全等因索,一燉犬车作业率不超过70%):3)绝不允许出现大车ft!撞等事故:4)调度规则尽最简明•以利于现场人员使用在不超过5台天车的条件下进行方案杼优为使问题简化.从大车作业率不超过70%的要求•根据赛题所作假设⑴不难判断出至少有3台犬车才能完成基本匸序因此只需对采用3台犬车方案、4台犬车方案和5台犬车方案这3冲方案进行选优建模根据各类冈素之间的隶属关系把它们分为3个层次•并建立递阶层次结构模型冃标层,4 :合理选择天车台数匍!|层C:总产量6天车利用率6调度筲便性6天乍作业均衡性C入乍作业安全性6方案层P: 3台天车Pi. 4台天车肥,5台天车P*IU据冬丙素的亜耍性关系构造判断矩阵,并利用AHP软件⑴进行计算.所彳非J断葩阵及相应计算结果如下:(1)判断矩阵.4 • C(2)判断矩阵PA c C2C J C4Cs W Ci Pl Pl P3WCl11443Q34726Pl125Q58155Cl1133斗Q332091/2 1 3Q30900 Ci1/41/3131/2 0117631/51/3 1C41/41/31/3110(291Q10945Cs1/31/47411012011注--Vax*3004.CZi= 0002.注b“ 5304, CR -Q 06&< Q IQ CR= Q003v Q IQ •个钢铁厂都普遍■ ■ ■次纠构图(4)刿斷矩阵〔J P层次总排序及一致性检脸•共结杲如下:层次总排序-致性指标:CI= 甲C 』尸3 982 855x 10 25层次总排序随机一致性指标:R1= 沏 ir ft 58层次总排序随机•致性比率:CR = ^= 0 006 8< Q 1Q知层次总排序的计算结果具有活意的一致性层次尸总排序向fcw= (0 436 41, 0 262 494 301 10)T ,权重最大的一项即为最优项溝后結果(由优到次):3台大车r §台夭车-M 台大车故应选择3台天车的柞业调度方案层次分析法的优缺点 优点:(1)AHP 把研究对象作为一个系统,按照分解、比较判断和综合的思维方式进行决策 ,是 系统分析的重要工具。

多目标决策模型:层次分析法(AHP)、代数模型、离散模型

多目标决策模型:层次分析法(AHP)、代数模型、离散模型

层次分析法建模层次分析法〔AHP -Analytic Hierachy process 〕---- 多目标决策方法70 年代由美国运筹学家T ·L ·Satty 提出的,是一种定性与定量分析相结合的多目标决策分析方法论。

吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标〔因素〕结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。

传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述〔自然现象、社会现象〕现象的规律。

根本内容:〔1〕多目标决策问题举例AHP 建模方法〔2〕AHP 建模方法根本步骤〔3〕AHP 建模方法根本算法〔3〕AHP 建模方法理论算法应用的假如干问题。

参考书: 1、姜启源,数学模型〔第二版,第9章;第三版,第8章〕,高等教育2、程理民等, 运筹学模型与方法教程,〔第10章〕,清华大学3、?运筹学?编写组,运筹学〔修订版〕,第11章,第7节,清华大学一、问题举例:A .大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择〞时,用人单位与毕业生都有各自的选择标准和要求。

就毕业生来说选择单位的标准和要求是多方面的,例如:① 能发挥自己的才干为国家作出较好奉献〔即工作岗位适合发挥专长〕; ② 工作收入较好〔待遇好〕;③ 生活环境好〔大城市、气候等工作条件等〕;④ 单位名声好〔声誉-Reputation 〕;⑤ 工作环境好〔人际关系和谐等〕⑥ 开展晋升〔promote, promotion 〕时机多〔如新单位或单位开展有后劲〕等。

问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?B.假期旅游地点选择 暑假有3个旅游胜地可供选择。

AHP(层次分析法)

AHP(层次分析法)
1 矩 阵 阶 数n 2 3 4 5 6 7 8 9
R.I. 0
0
0.58 0.92 1.12
1.24
1.32
1.41
1.45
最后计算一致性比率CR:
(四)层次单排序
判断矩阵是针对上一层某要素而言,进行两两比较的的重 要性评比数据。层次单排序就是把本层所有要素针对上一层 某要素来说,排出评比的优劣次序,这种次序以相对数值大小 表示,称为相对权重向量。然而采用线性代数的方法计算矩阵 的特征值和特征向量比较复杂,因此一般采用近似计算,常用 的方法有方根法和求和法,方根法更普遍,以其为例步骤如下 ①计算n阶判断矩阵每一行的元素乘积Mk ②计算Mk的n次方根 ③归一化处理,得到特征向量W=(ω1, ω2,……ωn)t,就是所 求相对权重向量
一、层次分析法的原理
二、层次分析法的步骤
(一)建立层次模型 首先将需要评价的目标分解为测度因素指标,将这些因素再 按属性关系分解为次级组成因素,如此层层分解,形成一个有 序的层次递阶的因素从属关系结构,如下图1-1所示的目标层O 、准则层U、措施方案层A等。
评价总目标O
第一大 类指标U1
第二大 类指标U2
1 3
1 5
CI=0.0145
1/5 1
CR=0.0250<0.1
0.0733 0.6708
层次总排序结构如下图2-7所示
表2-7
D1 D2 0.637 0.105 A B
D3 0.258
0.1818 0.2559 0.1851 0.7272 0.0733 0.1562 0.0910 0.6708 0.6587
(三)一致性检验
一致性是指判断矩阵中个要素的重要性判断是否一致,不 能出现逻辑矛盾。当判断矩阵中的元素都符合一致性特征时, 则说明该矩阵具有完全一致性。例如,A1比A2稍微重要a12=3, A2比A3重要一点a23=2,则A1比A3的重要程度就是a13=a12×a23=6 那么就具有完全一致性,只要a13≠6,就不具有完全一致性。 然而人们在进行主观评价时,对评价指标和评价方案的认识 具有片面性,所建立的矩阵就不具有完全一致性,这就需要对 所建立的矩阵进行一致性检验。 根据矩阵理论,对n阶判断矩阵,其最大特征根为单根, 而且最大特征根λmax≥n,当n阶判断矩阵具有完全一致性时 具有唯一非零的最大特征根λmax=n,其余特征根均为零。

模糊层次分析方法

模糊层次分析方法

一致性比率CR=0.018/1.12=0.016<0.1
性检验
正互反阵最大特征根和特征向量的简化计算
• 精确计算的复杂和不必要 • 简化计算的思路——一致阵的任一列向量都是特征向量, 一致性尚好的正互反阵的列向量都应近似特征向量,可取 其某种意义下的平均。 和法——取列向量的算术平均
2 1 例 A 1 / 2 1 1 / 6 1 / 4
5 7
9 2 , 4 , 6, 8
表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要
表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
因素i与j比较的判断aij,则因素j与i比较的判断aji=1/aij
倒数
目标层 C1 景色
O(选择旅游地) C2 费用 C3 居住 C4 饮食 C5 旅途
将决策问题分为3个或多个层次: 最高层:目标层。表示解决问题的目的,即层次分析 要达到的总目标。通常只有一个总目标。 中间层:准则层、指标层、…。表示采取某种措施、 政策、方案等实现预定总目标所涉及的中间环 节; 一般又分为准则层、指标层、策略层、 约束层等。 最低层:方案层。表示将选用的解决问题的各种措施、 政策、方案等。通常有几个方案可选。 每层有若干元素,层间元素的关系用相连直线表示。 层次分析法所要解决的问题是关于最低层对最高层的
6 列向量 0.6 0.615 0.545 4 归一化 0.3 0.308 0.364 归 一 1 0.1 0.077 0.091 化
求 行 和
0.587 0.324 w 0.089
A~成对比较阵 A是正互反阵 稍加分析就发 现上述成对比 较矩阵有问题

层次分析法法建模

层次分析法法建模

层次分析法法建模
一、AHP简介
AHP(Analysis Hierarchy Process),即层次分析法,是一种从抽象的多个目标到具体决策的一种分析方法,它由美国系统工程师 Thomas Saaty 于1970年提出,它利用层次结构表示影响多元决策的各因素之间的相互关系,采用数学模型进行综合比较,把多样性、复杂性及无序综合化,转变成一个有序的决策过程。

二、AHP的基本原理
(1)设定目标待决策的层次结构,并建立多个分支,形成一棵决策树。

(2)比较每一对相邻层次因素,将它们的相互关系表示为一个矩阵大小。

(3)从矩阵大小求出矩阵的特征值及特征向量。

(4)根据特征值来判断比较矩阵的相似程度,选出最大特征值及其对应的特征向量。

(5)根据特征向量算出权值,从而确定决策问题的最优解。

三、AHP的应用
AHP方法提供了一种科学、系统的方法,它适用于复杂的决策问题,可以将复杂问题转化为可以解决的层次分析问题,实现有效的决策过程。

AHP方法可以用于企业管理、决策分析、公共安全、计算机技术、政府管理、商业投资、优化设计等。

4层次分析法.

4层次分析法.

二、层次分析法的基本原理
层次分析法根据问题的性质和要达到的 总目标,将问题分解为不同的组成因素, 并按照因素间的相互关联影响以及隶属关 系将因素按不同层次聚集组合,形成一个 多层次的分析结构模型,从而最终使问题 归结为最低层(供决策的方案、措施等)相 对于最高层(总目标)的相对重要权值的确 定或相对优劣次序的排定。
大学毕业生就业选择问题
获得大学毕业学位的毕业生,在“双向选择”时,用人单 位与毕业生都有各自的选择标准和要求。就毕业生来说选 择单位的标准和要求是多方面的,例如:
①能发挥自己才干作出较好贡献(即工作岗位适 合发挥自己的专长); ②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
2. 构造判断(成对比较)矩阵
在确定各层次各因素之间的权重时,如果只是定性的 结果,则常常不容易被别人接受,因而Santy等人提出:
一致矩阵法,即:
1. 不把所有因素放在一起比较,而是两两相互比较。 2. 对此时采用相对尺度,以尽可能减少性质不同的诸因 素相互比较的困难,以提高准确度。 心理学家认为成对比较的因素不宜超过9个,即每层 不要超过9个因素。
三、层次分析法的步骤和方法
大体分为以下四个步骤: 1. 建立层次结构模型 2. 构造判断(成对比较)矩阵 3. 层次单排序及其一致性检验 4. 层次总排序及其一致性检验
1. 建立层次结构模型
• 将决策的目标、考虑的因素(决策准则)和决策 对象按它们之间的相互关系分为最高层、中间层 和最低层,绘出层次结构图。 • 最高层:决策的目的、要解决的问题。 • 最低层:决策时的备选方案。 • 中间层:考虑的因素、决策的准则。 • 对于相邻的两层,称高层为目标层,低层为因 素层。 下面举例强化练习。

层次分析法AHP法建模

层次分析法AHP法建模

层次分析法AHP法建模层次分析法(Analytic Hierarchy Process,AHP)是由美国运筹学家托马斯·L·赛蒙提斯(Thomas L. Saaty)于20世纪70年代提出的一种多属性决策方法。

AHP法通过构建一个层次结构,将复杂的决策问题分解为若干个层次,从而使决策问题具有可比较性和可量化性,通过量化的方法进行决策。

AHP法建模的步骤如下:1.构建层次结构:首先将决策问题分解为若干个层次,从上到下依次是目标层、准则层和方案层。

目标层是决策问题的最高层,准则层是目标层下的子目标,方案层是准则层下的具体方案。

2.确定判断矩阵:对于准则层和方案层,通过两两比较确定判断矩阵。

判断矩阵是一个n×n的矩阵,其中n是准则层或方案层的数量。

在两两比较中,使用1-9的尺度对两个元素之间的相对重要性进行评判,其中1表示两个元素的重要性相等,9表示一个元素比另一个元素重要性明显更大。

3.计算权重向量:通过求解判断矩阵的最大特征值和对应的特征向量,可以得到准则层和方案层的权重向量。

特征向量中的每个元素表示对应准则或方案的重要性权重。

4. 一致性检验:利用一致性指标判断判断矩阵的一致性。

一致性指标的计算涉及到随机一致性指数(Random Index,RI)和一致性比例(Consistency Ratio,CR),一致性通过对RI进行比较得到。

5.汇总判断矩阵:将判断矩阵的权重向量进行归一化,然后将准则层和方案层的权重向量进行组合,得到决策问题在各层次上的权重向量。

6.最终评价:利用各层次上的权重向量计算方案的综合得分,从而得到最佳方案。

层次分析法通过将复杂的决策问题分解为简单的子问题,将主观判断量化,避免了直接比较和抽象概念的评价,使决策问题更加精确和可行。

同时,通过一致性检验可以验证判断矩阵的可靠性和有效性,提高了决策结果的可信度。

AHP法广泛应用于各个领域,如工程管理、市场营销、投资决策等。

AHP模型

AHP模型

第3章. AHP层次分析法理论概述3.1 AHP层次分析方法概述层次分析法(AHP)是美国运筹学家T. L. Satty 于20 世纪70 年代初提出的,它将复杂问题分解成各个组成元素,采用定性和定量相结合的方法,提高了决策的有效性,因而在社会的、经济的、技术的系统中得到了广泛应用[20-21],AHP在教育评价、学生素质评价方面也有不少应用[22-23]。

下图给出了一个层次图3.1. 层次模型示意图.方法是:建立层次模型后,可将各层的要素按照表 1 进行两两比较,看它们对上一层次某个准则的相对重要程度,将全部比较结果对于某一上层因素的标度值列于表内,就得到式(1)的判断矩阵。

显然,该方法能够对人们的主观判断做出比较客观的描述。

表1. 要素比较重要程度的标度表(1)3.2 AHP层次分析法的应用步骤使用AHP层次分析法来解决实际问题分3个步骤,首先是要构造指标体系,然后进行数据的规范化处理,最后是确定权重并进行一致性分析。

3.2.1 构造指标体系就学生健康成长指标体系来说,根据实际教学过程可以构造出如图3.2的健康成长指标体系。

注意在第一层有7个指标,第二层对应每个第一层的指标项数有差异。

这7个指标包括了公认的5个评价方面(运动参与、运动技能、身体健图3.2. 学生评价指标体系.为了实施计算,并能在实际网络系统中程序实现,我们将上面的指标体系图加以改造,并加以标注。

使用g来代表健康成长指数,这个值反映了一定的时间阶段上学生的各项指标累计值。

改造后如图3.3所示。

图3.3. 学生某阶段成长指数模型.3.2.2 规范化处理为了能将不同指标不同量纲的数据进行统一处理,消除其影响,我们需要进行规范化处理,采用的方法通常是利用模糊数学方法计算其隶属度[24]。

分成3种计算评价指标隶属度的情况。

根据前面的指标体系,假设有某个学生x的健康指数为g k,其中k∈(1, m),学生所在的群体数为m。

(1). 极大型这类指标的特点是评价数据越大越好,例如在二级指标层,爆发力越大越好,肺活量也越大越好,这种评价属于正向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新余高等专科学校 数学建模教练组 2005-
6
Mathematical Contest in Modeling
层次分析法
3
计算权向量并做一致性检验
什么是权重(权系数)? 在决策问题中,通常要把变量Z表成变量x1,x2, … , xn的线性组合:
z w1x1 w2 x2 wn xn
n
其中 wi 0, wi 1 w1, w2 ,...., w则n
1 例: A 1/ 2
2 1
6 4
列向量 归一化
0.6 0.3
0.615 0.308
0.545 0.364
按行求和
1.760 0.972
1/ 6 1/ 4 1
0.1 0.077 0.091
0.268
, 即为
归一化
0.587 0.324 w
0.089
1.769 Aw 0.974
0.268
1 (1.769 0.974 0.268) 3.009
比较因素的权向量,其不一致程度应在容许的范围内.如何确定这个范围?
Mathematical Contest in Modeling 第5讲: 层次分析法(AHP)建模
层次分析法基本简介 层次分析法的基本步骤
1. 建立层次结构模型 2. 构造成对比较阵(判断矩阵) 3. 计算权向量并做一致性检验 4. 计算组合权向量并做组合一致性检验
不完全层次结构模型
新余高等专科学校 数学建模教练组 (设计制作: syllen
权重(权系数)?
a. 将A的每一列向量归一化得 w~ij aij / n aij
w~ b. 对 ij
按行求和得w~i n w~ij
j 1
i 1
c. 将w~i
归一化wi w~i / n w~i , w (w1, w2 ,..., wn )T
i 1
d.
计算
1
n
(
Aw)i
n w i1
i
,作为最大特征根的近似值
选择旅游景点






则(x) 层






案(y)
P1
P2
P3

层次分析法
解决问题的目的 (也叫总目标)
为实现总目标而采 取的各种措施和方

用于解决问题的各 种措施和方案
新余高等专科学校 数学建模教练组 2005-
4
Mathematical Contest in Modeling
层次分析法
2 构造成对比较矩阵(判断矩阵)
Байду номын сангаас
要比较某一层n个因素x1,x2,…,xn对上一层一个因素Z的影响,可从x1,x2,…,xn中任取 xi与xj,比较他们对于Z的贡献(或重要性)大小.按照如下”1~9比例尺度”给xi/xj赋值.
尺度xij
1 3 5 7 9 2,4,6,8
1,1/2,…,1/9
含义
xi与xj的影响相同 xi与xj的影响稍强 xi与xj的影响强 xi与xj的影响明显地强 xi与xj的影响绝对地强 xi与xj的影响之比在上述两个相邻等级之间 xi与xj的影响之比为上面aij的互反数
层次分析法
层次分析法应用领域 应用遍及经济计划和管理,能源政策和分配,行为科学,军事指挥,运 输,农业,教育,人才,医疗,环境等领域.
新余高等专科学校 数学建模教练组 2005-
2
Mathematical Contest in Modeling 二. 层次分析法的基本步骤
层次分析法
例1:(假日旅游) 有P1,P2,P3三个旅游地供选择, 假如选择的标准和依据有:景色,费用, 饮食,居住和旅途.
1
Mathematical Contest in Modeling 一. 层次分析法简介
层次分析法简介
层次分析法(AHP: Analytic Hierarchy Process)是美国著名的运筹学家 T.L.Saaty等人于20世纪70年代提出的一种简便,灵活而又实用的 多准则决策方法.主要用于确定综合评价的决策问题.具备矩阵演 算知识即可理解和应用.
Mathematical Contest in Modeling
层次分析法
做成对比较时得到
于是,所谓的权重即指各小石块在大石头中所占的比重,即各wi
一般地,如果一个正互反矩阵A满足 aij.ajk=aik, i,j,k=1,2, … , n
则称A为一致性矩阵,简称一致阵.
一致阵的性质: 1. A的秩为1,A的唯一非零特征根为n; 2. A的任一列向量都是对应于特征根n的特征向量.
若A为一致阵,则对应于特征根n的,归一化的特征向量(即分量之和为1)即表示各 因素对上一层因素Z的权权向量,各分量即为各因素对于Z的权重!
新余高等专科学校 数学建模教练组 2005-
8
Mathematical Contest in Modeling
层次分析法
由对于一般的判断矩阵(即A不一定一致)如何计算各因素xi对上一层因素Z的
首先,确定这些准则在你心目中各占的比重多大;




其次,就每一准则将三个地点进行对比;



最后,将这两个层次的比较判断进行综合,作出选择.
层次分析法的步骤
新余高等专科学校 数学建模教练组 2005-
3
Mathematical Contest in Modeling 1 建立层次结构模型
目 标(Z) 层
新余高等专科学校 数学建模教练组 2005-
5
Mathematical Contest in Modeling
得到:
A=(xij), xij>0,xji=1/xij
判断矩阵
层次分析法
某人用上述方法得到了”假日旅游”中景色,费用,居住,饮食,旅途5个因素对于目标Z的 比较矩阵如下:
其中,x12=1/2表示景色x1与费用x2对选择旅游地这个目标Z的重要性之比为1:2.即日认 为费用更重要.其他类同.
对于目标Z的权i重1 ,
叫各因w素 (w1, w2 ,...,wn )T
注叫意 权,向x1量,.x2, … ,xn中有的不是基数变量,而有可能是序数变量如舒适程度,积极性之类.
设想: 把一块单位重量的石头砸成n块小石块
小石块W1 小石块W2
… 小石块Wn
新余高等专科学校 数学建模教练组 2005-
7
3 0.587 0.324 0.089
精确值为 w (0.588,0.322,0.090)T , 3.010
新余高等专科学校 数学建模教练组 2005-
9
Mathematical Contest in Modeling 判断矩阵的一致性检验
层次分析法
判断矩阵通常是不一致的,但是为了能用它的对应于特征根的 的特征向量作为被
相关文档
最新文档