【生物化学】脂类的生物合成

合集下载

生物化学第25章 脂类的生物合成

生物化学第25章 脂类的生物合成
脂酰甘油是由二个前体物质合成的,它们是脂 酰CoA和甘油-3-磷酸。脂酰CoA来自于脂肪酸 的活化。甘油-3-磷酸则来自于糖酵解中的磷酸 二羟丙酮或甘油的磷酸化。
NADH NAD+
P O CH2 C CH2OH O
甘油-3-磷酸脱氢酶 ADP 甘油激酶
H P O CH2 C CH2OH OH
ATP
HO-CH2-CH-CH2OH
H P O CH2 C CH2OH OH
OH
脂酰甘油的生物合成
三酰甘油的合成
酰基转移酶
酰基转移酶
磷脂酸磷脂酶
酰基转移酶
Questions
• 业已提出,丙二酸单酰CoA可能是向大 脑发送减少胃口效应的一种信号。当喂 给老鼠一种浅蓝菌素(cerulenin)的衍生 物(称为C75)时,它们的胃口受到抑制, 并且迅速失重。已知浅蓝菌素及其衍生 物是脂肪酸合酶的有效抑制剂。为什么 C75可作为一种潜在的减肥药物?
-氨基以共价键相连形成生物胞素(biocytin)。
脂肪酸的生物合成
脂肪酸合成的起始:乙酰CoA的羧化
转羧酶
3 1
生物素羧化酶
2
BCCP-生物素
乙酰CoA的羧化
• 乙酰辅酶A羧化酶(Acetyl-CoA carboxylase,ACC) (EC 6.4.1.2)是催化脂肪酸合成代谢第一步反应的限速 酶,在ATP供能、Mg2+存在下,以HCO3-为羧基供体,将 乙酰辅酶A羧化生成丙二酰单酰辅酶A,是生物素依赖性 酶。 • 在人类和其它哺乳动物中该酶属于组织特异性酶,存在两 种基因形式ACC1和ACC2,ACC因具有阻断治疗肥胖症、 糖尿病和其它代谢病的活性位点受到广泛关注。 • 在禾本科植物中ACC被发现是几类化学除草剂作用于植物 的靶蛋白,因此对植物ACC的研究大多数集中在除草剂筛 选和作用机理研究方面。 • 此外,ACC基因在逐渐兴起的转基因油料作物和生物柴油 的研究中也处于重要地位,但由于ACC分布和基因组织形 式的复杂性,目前这方面的研究仍处于瓶颈阶段。

《生物化学》-脂质化学

《生物化学》-脂质化学
概述
一、脂类物质概念 脂类是是生物体中的重要有机物,其共同点是
低(不)溶于水,高(易)溶于苯、乙醚、氯仿及 石油醚等有机溶剂;大多数脂质的化学本质是脂肪 酸和醇形成的酯及其衍生物。以及与这些化合物的 生物合成或生物功能紧密相关的一类物质。 二、脂类物质的分类 (一)按其化学组成分 (二)按其生物学功能分
2.命名与简写符号 系统名称按有机化合物命名原则进行。 十六碳脂肪酸(软脂酸) 十八碳脂肪酸(硬脂酸) 9-十六碳烯酸(棕榈油酸) 9-十八碳烯酸(油酸)
如18:0
18:1(9)
3.天然脂肪酸的结构特点
(1)一般为偶数碳原子,碳骨架长度4-36,常见 12-24,一般是不分支和无环、无羟基的单羧酸。
OH
(Sn-立体特异性编号体系) Sn -3-磷脂酸
常见甘油磷脂的极性头部和其净电荷(pH=7)
甘油磷脂名称
磷脂酸 磷脂酰乙醇胺 磷脂酰胆碱 磷脂酰丝氨酸
HO-X的名称
—— 胆胺 胆碱 丝氨酸
—X的结构
极性头基净电荷
磷脂酰甘油
甘油
磷脂酰肌醇
肌醇
H -1
HH
心磷脂
双磷脂酰甘油
例题:中性pH下,净电荷为零的 甘油磷脂是( )( )。
然而,催化加氢是一个可逆反应,饱和脂肪酸在 反应过程中,也会脱氢生成不饱和脂肪酸。这样,脱 氢的产物就可能有两种,顺式和反式。
反式不饱和脂肪酸比顺式不饱和脂肪酸空阻小,更 稳定,更容易生成,而且一旦生成,又不易被氢化饱 和。
所以,在顺式不饱和脂肪酸催化加氢的产物饱和脂 肪酸中,会含有一定量的反式不饱和脂肪酸。这就是 反式脂肪酸的由来。
影响油脂自动氧化的因素 (1)油脂的脂肪酸组成
不饱和脂肪酸越多,越容易发生自动氧化。 思考:为什么家用猪油比花生油更易变“哈喇”? 因为天然植物油脂中溶有维生素E,起抗氧化作用。

生物化学第九章脂类物质的合成与分解

生物化学第九章脂类物质的合成与分解
第九章 脂类物质的合成与分解
点击此处添加副标题
贮存脂质:酯酰甘油、蜡等;是能源物质。
结构脂质:磷脂等;生物膜的骨架成分。
活性脂质:萜类化合物、甾醇类化合物;
是激素、维生素前体。
按其生物学功能分为:
第一节 生物体内的脂类物质
按其化学组成与结构分为: 单纯脂类:酯酰甘油、蜡等。 复合脂类:磷脂、糖脂、硫脂等。 异戊二烯脂:萜类、类固醇。
01
C15H31COOH + 8 CoA-SH + ATP + 7 FAD + 7 NAD+ +7 H2O 8 CH3CO-SCoA + AMP +PPi+ 7 FADH2 + 7 NADH + 7 H+
02
4.能量计算
8 CH3CO-SCoA 10×8= 80 ATP 7 FAD 1.5×7=10.5 ATP 7 NADH + 7 H+ 2.5×7=17.5 ATP 活化消耗:-2个高能磷酸键
缩合、还原、脱水、还原
脱氢、水化、脱氢、硫解
β-羟脂酰基构型
D型
L型
底物穿梭机制
柠檬酸穿梭
肉碱穿梭
方向
甲基到羧基
羧基到甲基
总反应
8 CH3CO-SCoA + 7 ATP + 14 ( NADPH + H+ ) + H2O C15H31COOH + 8 CoA-SH + 7 ADP + 7 Pi + 14 NADP+
单不饱和脂肪酸的合成需要O2和NADPH的参与。
必需脂肪酸:由于动物机体缺乏△9 以上的脱饱和酶,不能合成对其生理活动十分重要的多不饱和脂肪酸,如亚油酸、亚麻油酸和花生四烯酸,它们必须从食物中获得。这类

生物化学7 脂类代谢与合成

生物化学7 脂类代谢与合成

脂肪酸的分解代谢脂肪酸对生物体有四种重要的功能,其一脂肪酸是磷脂和糖脂的组成单元,这些分子又是生物膜的组成成分;其二,脂肪酸以共价键与糖蛋白的蛋白质相接,经过修饰的这个糖蛋白在脂肪酸残基的引导下指向膜的靶标位置;其三脂肪酸时燃料分子,它们以三脂酰甘油的形式贮存起来;其四,脂肪酸的某些衍生物担当者激素及胞内信使的职能。

长链脂肪酸的氧化铈动物、许多原生生物和一些细菌获取能量的主要途径。

在脂肪酸氧化的过程中,电子的转移通过线粒体呼吸链推动ATP合成,并产生乙酰辅酶A。

乙酰辅酶A经过柠檬酸循环产生二氧化碳,进一步实现能量贮存。

脊椎动物中,乙酰辅酶A在肝脏会转化为酮体,这是一种可溶于水的燃料,当葡萄糖不能供应室,它可向脑和其他组织提供能量。

在高等植物中,脂肪酸氧化产物乙酰辅酶A首先用作生物合成的前体,其次再用作为燃料。

脂肪酸氧化的生物功能尽管因不同生物体有所差别,但是它的反应机制都是相同的。

脂肪酸的氧化可分为三步一是长链脂肪酸降解为两个碳原子即乙酰辅酶A二是乙酰辅酶A经过柠檬酸循环氧化成二氧化碳三是还原的电子载体到线粒体呼吸链的电子传递三脂酰甘油即三酰甘油或脂肪是脂肪酸的甘油三酯。

三脂酰甘油在人类的饮食脂肪中,以及作为代谢能量的主要贮存形式中约占百分之九十。

脂肪可完全氧化成二氧化碳和水,由于脂肪分子中绝大部分碳原子和葡萄糖相比,都处于较低的氧化状态,因此脂肪氧化代谢产生的能量按同等干重计算比糖类或蛋白值高出2倍以上。

脂肪是非极性化合物,它以水合形式贮存,因此按同等重量计算,脂肪的代谢能量实际高达糖原的6倍,脂肪的酶促降解三脂酰甘油是水不溶性的,而消化作用的酶确是水溶性的,因此三脂酰甘油的消化是在脂质-水的界面出发生的。

三酰甘油的消化速度取决于界面的表面积,在小肠的“剧烈搅拌”下,特别是在胆汁盐的乳化作用下,消化量大幅度增高。

胆汁盐是强有力的,用于消化的“去污剂”,它是在肝脏中合成的,经胆囊分泌进入小肠,脂肪的消化和吸收也主要在小肠中进行。

生物化学脂类代谢[2]

生物化学脂类代谢[2]
四、酮体(ketone body)的生成及利用:
主要在肝脏的线粒体中生成,合成原料为乙酰CoA, HMG-CoA合酶是酮体生成的关键酶。
1.酮体的生成: p244
乙酰乙酰硫解酶
(1) 两分子乙酰CoA在乙酰乙酰CoA硫解酶的催化下,缩合生成一分子乙酰乙酰CoA。
乙酰CoA 转酰酶
β-酮酰 合酶
β-羟酰 脱水酶
丙二酰CoA转酰酶
β酮酰 还原酶
烯酰 还原酶
长链脂肪 酰硫酯酶
HS-ACP
(1)转酰基作用:(启动) 乙酰CoA + ACP-SH 乙酰ACP + CoASH 丙二酰CoA + ACP-SH 丙二酰ACP + CoASH
肝脂 (转变、加工)
食物
糖类
生酮氨基酸
组织脂
氧化
酮体
氧化
磷脂
CO2、 H2O、ATP
第二节 脂肪的分解代谢
1、定义:贮存于脂肪细胞中的甘油三酯在激素敏感脂肪酶(HSL)的催化下水解并释放出脂肪酸和甘油,供给全身各组织细胞摄取利用的过程。
一、脂肪动员

HSL主要受共价修饰调节。 促脂解激素:肾上腺素、去甲肾上腺素、胰高血糖素等 抗脂解激素:胰岛素、前列腺素E
2、过程:
甘油不被脂肪细胞利用,经血液输送到肝脏进行代谢。
二、甘油代谢
甘油
3-磷酸甘油
磷酸二羟丙酮
磷酸二羟丙酮→3-磷酸甘油醛→氧化或糖异生
三、脂肪酸的氧化 (p232)
1、部位: 肝脏、肌肉(主要),胞液(活化)+ 线粒体( -氧化) 2、过程:四个阶段
脂肪酸的活化:耗能 2ATP
脂酰CoA转运入线粒体:限速步骤

生物化学真题之脂类代谢与合成

生物化学真题之脂类代谢与合成

脂代谢2014简述细胞质内脂肪酸氧化降解的三个步骤及其相关活性载体(未)第一个步骤是脂肪酸的-氧化。

-氧化又包括活化、氧化、水合、氧化、断裂这五个步骤。

每一轮氧化切下两个碳原子即乙酰辅酶A第二个步骤是氧化形成的乙酰辅酶A进入柠檬酸循环,继续被氧化最后脱出二氧化碳。

第三个大步骤中脂肪酸氧化过程中产出还原型的电子传递分子——NADH和FADH2,它们在第三步骤中把电子送到线粒体呼吸链,经过呼吸链,电子被运送给氧原子,伴随这个电子的流动,ADP经磷酸化作用转化为ATP。

所涉及的相关活性载体包括-氧化中将脂肪酸的形式乙酰辅酶A转送到线粒体的载体肉碱。

第三个步骤电子传递的载体包括:NADH—Q还原酶、琥珀酸—Q还原酶、细胞色素还原酶、细胞色素氧化酶等2011脂肪酸氧化和载体脂肪酸氧化共包括五个步骤1.活化:脂肪酸在硫激酶的作用下形成脂酰辅酶A2.氧化:脂酰辅酶A的羧基邻位被脂酰辅酶A脱氢酶作用,脱下两个氢原子转化为反式-2-烯酰辅酶A,同时产生FADH23.水合:反式-2-烯酰辅酶A水合成3-羟脂酰辅酶A,这部反应是在烯酰辅酶A水合酶的作用下完成的4.氧化:3-羟脂酰辅酶A在3-羟脂酰辅酶A脱氢酶的作用下转化为3-酮脂酰辅酶A,并产生NADH5.硫解:3-同脂酰辅酶A受第二个辅酶A的作用发生硫解,断裂为乙酰辅酶A和一个缩短了两个碳原子的脂酰辅酶A,这部反应是在-酮硫解酶的催化下。

其总结果是脂肪酸链以乙酰辅酶A形式自羧基端脱下两个碳原子单元,缩短了的脂肪酸以脂酰辅酶A形式残留,又进入下一轮-氧化。

2010磷脂合成的共性脂质合成所包括的绝大多数反应发生在膜结构的表面,与之相关的各种酶具有两亲性。

甘油磷脂合成的第一阶段是甘油-3-磷酸形成磷脂酸的反应途径,甘油酸和脂酰辅酶A在脂酰转移酶的作用下生成磷脂酸。

磷脂酸一旦形成就很快转移为二脂酰甘油和CDP-二脂酰甘油。

常见的磷脂如磷脂酰乙醇胺、磷脂酰甘油、二磷脂酰甘油,这三种甘油磷脂的生物合成途径从开始到CDP-二脂酰甘油的生物合成途径是共通的,自CDP-二脂酰甘油一下就分别有各自的途径。

脂类代谢-生物化学

脂类代谢-生物化学

03
04
合成过程可以分为三个阶段:
乙酰CoA羧化酶可分成三个不同的亚基:
05
生物素羧基载体蛋白(BCCP)
原料的准备——乙酰CoA羧化生成丙二酸单酰CoA(在细胞液中进行),由乙酰CoA羧化酶催化,辅基为生物素,是一个不可逆反应。
生物素羧化酶(BC)
羧基转移酶(CT)
06
柠檬酸穿梭系统
肉毒碱转运
脂酰CoA的β氧化反应过程如下:
脂肪酸的β氧化
脱氢 脂酰CoA经脂酰CoA脱氢酶催化,在其α和β碳原子上脱氢,生成△2反烯脂酰CoA,该脱氢反应的辅基为FAD。 加水(水合反应) △2反烯脂酰CoA在△2反烯脂酰CoA水合酶催化下,在双键上加水生成L-β-羟脂酰CoA。
脱氢 L-β-羟脂酰CoA在L-β-羟脂酰CoA脱氢酶催化下,脱去β碳原子与羟基上的氢原子生成β-酮脂酰CoA,该反应的辅酶为NAD+。 硫解 在β-酮脂酰CoA硫解酶催化下,β-酮脂酰CoA与CoA作用,硫解产生 1分子乙酰CoA和比原来少两个碳原子的脂酰CoA。
乙酰CoA的去路
2分子的乙酰CoA在肝脏线粒体乙酰乙酰CoA硫解酶的作用下,缩合成乙酰乙酰CoA,并释放1分子的CoASH。
乙酰乙酰CoA与另一分子乙酰CoA缩合成羟甲基戊二酸单酰CoA(HMG CoA),并释放1分子CoASH。
HMG CoA在HMG CoA裂解酶催化下裂解生成乙酰乙酸和乙酰CoA。乙酰乙酸在线粒体内膜β-羟丁酸脱氢酶作用下,被还原成β-羟丁酸。部分乙酰乙酸可在酶催化下脱羧而成为丙酮。
β-羟丁酸在β-羟丁酸脱氢酶作用下,脱氢生成乙酰乙酸,然后再转变成乙酰CoA而被氧化。
乙酰乙酰CoA被β氧化酶系中的硫解酶裂解成乙酰CoA进入三羧酸循环。

生物化学-3-脂类

生物化学-3-脂类

2.活性氧(reactive oxygen)
(1)活性氧:氧或含氧的高反应活性分子 如O2. , H2O2,1O2等统称为活性氧。 (2)普通氧和几种重要的活性氧 普通氧 超氧阴离子自由基 羟基自由基 过氧化氢 单线态氧。
3.自由基链反应(chain reaction)
包括3个阶段:引发、增长、终止。 (详见下图…)
二、 脂肪酸
• 脂肪酸的种类
脂肪酸(fatty acid, FA):由一条长的烃链(“尾”) 和一个 末端羟基(“头”)组成的羧酸。 饱和脂肪酸(saturated FA):烃链不含双键(和三键)。
不饱和脂肪酸(polyunsaturated FA):含一个或多个双键。 不同脂肪酸之间的主要区别在于烃链的长度(碳原子数 目)、双键的数目和位臵。
又可分为 甘油三酯 蜡
复合脂质(compound lipid):除脂肪酸和醇外,含其他 非脂分子。
又可分为 磷脂
衍生脂质(derived lipid):由单纯脂肪酸和复合脂质衍 生而来或关系密切。 取代烃
固醇类 萜 其他脂质
糖脂
2.按脂质在水中和水界面上的行为不同:
非极性脂质:不具有溶剂可溶性,也不具有界面 可溶性。 I类极性脂质:具有界面可溶性,不具有溶剂可溶 性,能掺入膜,但自身不能形成膜。 II类极性脂质(磷脂和鞘糖脂):是成膜分子,能 形成双分子层和微囊。 III类极性脂质(去污剂):是可溶性脂质,虽具有 界面可溶性,但形成的单分子层不稳定。
• 醚甘油磷脂
缩醛磷脂 (plasmalogen) 血小板活化因子(PAF)
• 鞘磷脂
鞘磷脂(sphingomyelin)即鞘氨醇磷脂(phosphosphingolipid) ,由鞘氨醇(sphingosine)、脂肪酸、磷酰胆碱组成。

生物化学第章 脂类的生物合成

生物化学第章 脂类的生物合成

生物化学第章脂类的生物合成生物合成是生物化学的核心之一,它描述了生物体如何从食物或其他物质中提取能量并用于生命活动。

脂类的合成是生物合成中一个非常重要的过程,脂类不仅在能量存储和利用上起着关键作用,还是生物膜的主要成分之一。

本文将从脂类的结构和功能入手,讨论脂类的生物合成路径及其调节机制。

脂类的结构和功能脂类分为简单脂类、复合脂类和衍生脂类三种,它们的基本结构单元是甘油三酯、磷脂和鞘脂等。

甘油三酯是由甘油和三分子脂肪酸酸酯化而成的紫色液体,它在机体内可以被储存为能量主要来源。

磷脂和鞘脂则由甘油、脂肪酸以及磷酸或胆碱等电离性的物质组成,它们则在细胞膜和神经细胞髓鞘中发挥着重要作用。

脂类的功能非常多样,它们不仅可以储存能量和形成细胞膜,还可以调节细胞信号传递、参与免疫反应和维持正常的生理功能。

脂类的代谢失调和合成异常会导致许多疾病的发生,如高脂血症、心血管疾病、代谢疾病和某些神经系统疾病等。

脂类的生物合成路径脂类的生物合成可以分为两个过程,即酯化过程和磷脂酰化过程。

酯化过程指的是甘油和脂肪酸通过合成酯基键形成甘油三酯,磷脂酰化过程则指的是磷酸和甘油三酯通过合成酯基键形成磷脂或鞘脂。

酯化过程在酯化过程中,脂肪酸被逐渐连接到甘油分子上,形成甘油三酯。

这一过程需要三个不同的酰化反应,包括初级酯化反应、次级酯化反应和三级酯化反应。

在初级酯化反应中,一个脂肪酸被连接到甘油的位点1和2处,形成1-和2-脂肪酸甘油分子;在次级酯化反应中,另一个脂肪酸连接到位点3和1或2的其中一个上,形成二酰甘油分子;在三级酯化反应中,第三个脂肪酸连接到最后一个可用位点上,形成甘油三酯分子。

磷脂酰化过程磷脂酰化过程指的是将磷酸和甘油三酯反应,形成磷脂或鞘脂。

在磷脂合成的过程中,鞘磷酯的合成相对比较简单,它由磷酸、胆碱、脂肪酸和甘油三酯组成。

在鞘磷酯分子的合成过程中,胆碱的存在可以极大地促进反应速度。

相比之下,磷脂的生物合成过程稍微复杂些,它需要通过多个酰化和甲基化反应来完成。

生物化学第29章脂类的生物合成

生物化学第29章脂类的生物合成
脂类是生物体的重要组成成分,参与细胞膜的构建、能量储存、 信号传导等多种生理功能。脂类生物合成对于维持生物体的正常 生理功能和代谢活动具有重要意义。
脂类生物合成的主要途径
脂肪酸合成途径
以乙酰辅酶A为原料,通过一系列的缩合、还原、脱 水等反应,合成不同链长的脂肪酸。
甘油磷脂合成途径
以甘油和脂肪酸为原料,通过磷酸化和酯化反应, 合成甘油磷脂。
含有两个或两个以上双键的脂 肪酸,如亚麻酸(C18:3)和花 生四烯酸(C20:4)。
脂肪酸的生物合成过程
乙酰CoA的羧化
在乙酰CoA羧化酶的催化下,乙酰CoA与CO2反 应生成丙二酸下被还原成β-羟脂 酰CoA,然后脱水生成烯脂酰CoA。
缩合反应
固醇类的结构与功能
01
02
03
胆固醇
是动物细胞膜的重要组成 成分,参与细胞信号传导 和激素合成。
胆汁酸
由胆固醇转化而来,帮助 消化脂肪和吸收脂溶性维 生素。
维生素D
胆固醇经紫外线照射转化 而成,参与钙磷代谢和骨 骼健康。
固醇类的生物合成过程
01
02
03
04
05
乙酰CoA的缩合:两分子 乙酰CoA在硫解酶的作用 下缩合成乙酰乙酰CoA。
动脉粥样硬化是一种由于动脉内壁 脂质沉积过多而导致的疾病。患者 的脂类代谢异常表现为血液中脂质 水平升高,尤其是低密度脂蛋白胆 固醇(LDL-C)水平升高。
脂肪肝
脂肪肝是一种由于肝脏内脂肪堆 积过多而导致的疾病。患者的脂 类代谢异常表现为肝脏内脂肪合 成增加、脂肪分解减少等。
脂类生物合成在医学领域的应用
生物化学第29章脂类的生物合 成

CONTENCT

第29章脂类的生物合成

第29章脂类的生物合成

CH2OH
R3CO~SCoA CoA-SH
CH2OCOR1 R2CO-O— C CH2O- P CH2OCOR1 磷脂酸 R2CO-O— C TG CH2OCOR3
脂肪合成的两条途径
注意:脂肪中的甘油来源于糖的分解代谢
在脂肪组织合成内源TG 甘油二脂途径
在小肠黏膜中合成外源TG
甘油一脂途径
(三)脂肪酸合成的调节 柠檬酸
+
柠檬酸裂解酶
+
胰岛素
+
乙酰-CoA
乙酰-CoA羧化酶
丙酮酸脱氢酶系 -
丙酮酸
胰高血糖素、肾上腺素
丙二酸单酰-CoA
肉碱脂酰转移酶Ⅰ (CAT-Ⅰ)
脂酰-CoA
β-氧化关闭
三、甘油磷脂的合成
1.合成部位: 全身各组织,肝、肾、肠最活跃 2.原料: 甘油、脂肪酸、磷酸盐、胆碱、乙醇胺 食物或脂肪分解 丝氨酸、食物
外围巯基SH
③ ④ ⑤ ① ⑥
ACP

①ACP-脂酰基转移酶 ③β-酮脂酰-ACP合成酶
② ACP-丙二酰转移酶 ④ β-酮脂酰-ACP还原酶
⑤β-羟脂酰-ACP脱水酶
7 长链脂酰基硫解酶
⑥ 烯脂酰-ACP还原酶
脂酰基载体蛋白ACP(-SH)
O H O H OH CH3 HS CH2 CH2 N C CH2 CH2 N C C C CH2 O P CH2 Ser ACP O H CH3 O
①乙酰CoA-ACP酰基转移酶 ②丙二酸单酰CoA-ACP酰基转移酶 ③β-酮脂酰-ACP合成酶(缩合酶) ④β-酮脂酰-ACP还原酶 ⑤β-羟脂酰-ACP脱水酶 ⑥烯脂酰-ACP还原酶
脂肪酸的合成总结
合成起始物:乙酰CoA,与丙二酸单酰CoA(3C单 位)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多烯不饱和脂肪酸在厌氧细菌中基本不存在, 但在高等动植物体内含量丰富,他们是由单烯脂 肪酸继续去饱和而产生的。
由单烯脂肪酸(△9)去饱和产生的
C16:0
软脂酸 +C2延长
பைடு நூலகம்
去饱和 -2H
△9-C16:1
C18:0
硬脂酸
棕榈油酸
去饱和 -2H
+C2延长
神经酸 二十四碳烯-15-酸
△15-C24:1
+C2延长
O HOOC-CH2-C~SCOA +ADP+Pi
乙酰-CoA羧化酶(别构酶)
生物素羧化酶 羧基转移酶(转羧酶) 生物素羧基载体蛋白(BCCP)
原核生物乙酰-CoA羧化酶:上述三种蛋 白质组成复合体。
真核生物乙酰-CoA羧化酶:由两个相 同亚基组成,上述三种蛋白质位于同一 条多肽链上。
作用机制
生物素羧化酶
生物素-酶
Lys-e氨基
CO2-生物素-酶
3. 脂肪酸合酶系统
组成:
脂酰基载体蛋白(ACP-SH) 1) 乙酰-CoA:ACP转酰酶 2) 丙二酸单酰CoA:ACP转酰酶 3) β-酮酰-ACP合酶 4) β-酮酰-ACP还原酶 5) β-羟酰-ACP脱水酶 6) 烯脂酰-ACP还原酶 7) 软脂酰-ACP硫酯酶
4. 饱和脂肪酸的从头合成与β-氧化的比较
区别要点
从头合成
β-氧化
细胞内进行部位 酰基载体 转运机制 二碳单位参与或断裂形式 电子供体或受体 -羟酰基中间物的立体构型不同 对HCO3-和柠檬酸的需求 所需酶 能量需求或放出 消耗
细胞质 ACP-SH 三羧酸转运机制
丙二酸单酰ACP
NADPH+H+ D型 需要 7种 7ATP及14NADPH+H+
HS
辅基:4-磷酸泛酰巯基乙胺
CH2-Ser-ACP
CoA分子中也有4-磷酸泛酰巯基乙胺
HS
A
4-磷酸泛酰巯基乙胺
反应历程
1) 乙酰基转移(启动)反应
O
O
CH3-C~SCOA 乙酰-CoA:ACP转酰酶 CH3-C~SACP
=
=
= = =
2) 丙二酸单酰基转移(装载)反应
O CH3-C~S-合酶
O
3-磷酸甘油
转酰酶
2 RCOCoA 2 CoA
1,2-甘油二酯磷脂酸
磷酸酯酶
Pi
1,2-甘油二酯
转移酶
CDP-乙醇胺
CMP
CDP-胆碱 CMP
H3N-CH2-CH3-O P
磷脂酰乙醇胺
-甘油二酯 (CH3)3N-CH2-CH3-O P
磷脂酰胆碱
-甘油二酯
CDP-甘油二酯途径 磷脂酰肌醇﹑磷脂酰丝氨酸﹑ 二磷脂酰甘油的合成途径
转运 柠檬酸穿梭(三羧酸转运体系)
线粒体基质
脂肪酸氧化
丙酮酸羧化酶
柠檬酸穿梭(三羧酸转运体系)
2. 丙二酸单酰CoA的形成 (来自乙酰CoA 和碳酸氢盐)
一分子软脂酸合成时,8个2C单位中,1个为乙酰 CoA,其它7个为丙二酸单酰CoA参与合成。
= =
O
乙酰CoA羧化酶
CH3-C~SCOA+HCO3-+H++ATP
H 10
H
D 16
2 A
9 8 14 15
H
H
3
B
7
5
4
6
固醇共同结构 环戊烷多氢菲
• 胆固醇广泛存在于动物体 内,尤以脑及神经组织中 最为丰富,在肾、脾、皮 肤、肝和胆汁中含量也高。 不溶于水,易溶于乙醚、 氯仿等溶剂。
动物胆固醇(27碳)
二、胆固醇的生理功能
• 生物膜的重要成分,对控制生物膜的流动性有重要作用。 • 是合成胆汁酸、类固醇激素及维生素D等生理活性物质的
=
OO CH3-C-CH2-C~SACP +NADPH+ + H + β-酮酰-ACP还原酶
= =
-
OH O CH3-CH-CH2-C~SACP+NADP+
D-β-羟丁酰-ACP
5) 脱水反应
- -= --
=
OH O
β-羟酰-ACP脱水酶 CH3 H
=
-
CH3-CH-CH2-C~SACP
C==C
+H2O
乙酰-CoA
乙酰-CoA羧化酶 (限速酶)
丙二酸单酰-CoA
丙酮酸脱氢 酶复合体
丙酮酸
胰高血糖素、肾上腺素(引发 磷酸化(抑制)
反馈
软脂酰-CoA
脊椎动物细胞中的调控
代表活化
代表抑制
Pi
P
蛋白质磷酸酶
乙酰-CoA羧化酶
乙酰-CoA羧化酶多聚体
(无活性)
(有活性)
cAMP-依赖蛋白激酶
ADP
ATP
第三节 三酰甘油的生物合成
大肠杆菌和植物中: 7条多肽链组成聚合体(ACP+6种酶)
动物中: 以含相同亚基的二聚体存在,每个亚基上都含有 ACP和7种酶功能区。
酵母中:两条多肽链,一条含ACP和两种酶活性,另一 条含4种酶活性,两条链组成二聚体,6个二 聚体组成大的复合体。
动物细胞脂肪酸合成酶的结构
脂酰基载体蛋白(ACP)的辅基结构
2. 合成的原料及辅助因子: 甘油 脂肪酸 磷酸盐 胆碱 丝氨酸
ATP CTP
肌醇
合成的基体过程
(1) 甘油二酯途径: 磷脂酰胆碱﹑磷脂酰乙醇胺 合成的主要途径
(2) CDP-甘油二酯途径: 磷脂酰肌醇﹑磷脂酰丝氨酸﹑ 二磷脂酰甘油的合成途径
甘油二酯途径 磷脂酰胆碱﹑磷脂酰乙醇胺合成的主要途径 葡萄糖
原料: 甘油-3-磷酸+脂酰-CoA
1. 甘油-3-磷酸的来源有两个
1)来自EMP途径 CH2OH C=O CH2O-P
---
CH2OH HO-CH
3-磷酸甘油脱氢酶
CH2O-P
3-磷酸甘油
2)来自脂肪的水解
甘油+ATP
甘油激酶
3-磷酸甘油
2. 脂酰-CoA的来源
RCH2CH2CH2COOH 脂酰-CoA合成酶RCH2CH2CH2CO~SCoA
2H+ +O2
植物体或低等的需氧生物中
NADPH 2e- 黄素蛋白2e- 铁硫蛋白2eO2+2H+
酶-O2
饱和脂酰ACP

不饱和脂酰ACP
2H2O
上述反应中共形成2个分子水,,也就是共转移了4对 电子:2个来源NADPH,2个来源于脂肪酸,实际上是 同时对两个底物进行双对电子氧化
2.多烯不饱和脂肪酸的合成
CoASH+ATP AMP+PPi
3. 合成过程
1) 磷脂酸的生成
=
=
--
=
--
=
=
--
O
CH2OH R1-C~SCOA HO-CH
O CH2O-C-R1
甘油磷酸酰基转移酶 HO-CH (溶血磷脂酸)
CH2O-P
O
O CH2O-C-R1
CH2O-P
O
R2-C-OCH
R2-C~SCOA 酰基转移酶
(磷脂酸) CH2O-P
ACP
HOOCCH3COACP
CO2 + ACP
C2 C2 C2 C2 C2 C2
CH3βCO-C酮H丁2C酰o-SAACPCP
CH3(CH2)14CO-SACP
NADPH+H+
CH3CH2CH2Co-SACP
丁酰ACP
NADP+
NAD P+
CH3CH(OH) CH2Co-SACP
β -羟丁酰ACP
HOOC-CH2-C~SCoA +ACP-SH O
丙二酸单酰COA:ACP转酰酶
HOOC-CH2-C~SACP+COA-SH
3) 缩合反应
== =
=
O
O
CH3-C~S-合酶+ HOOC-CH2-C~SACP
β-酮酰-ACP合酶
OO
CH3-C-CH2-C~SACP +合酶-SH+CO2
4) 还原反应
NADPH+H+
CH3CH= CH2Co-SACP
β -烯丁酰ACP
H2O
脂肪酸生物合成的反应历程
=
总反应式
O 8CH3-C~SCOA +7ATP+14NADPH++14H +
CH3 ( CH2)14COOH +14NADP+ +8CoASH + 7ADP +7Pi+6H2O
NADPH+H+从哪来? 反应中所需的NADPH++H+约有40%来自PPP途径, 其余的60%可由苹果酸酶反应或从EMP中生成的 NADH+H+间接转化中获得。
2) 二酰甘油的生成
H2O
磷脂酸
磷脂酸磷酸酶
=
3) 三酰甘油的生成
O R3-C~SCOA
二酰甘油
二酰甘油酰基转移酶
=
--
= -=
O O CH2O-C-R1 R2-C-O-CH
CH2OH 二酰甘油
O O CH2O-C-R1 R2-C-O-CH
CH2O-C-R3
O
=
=
三酰甘油
第四节 磷脂的合成
1. 合成部位: 全身各组织, 肝﹑肾﹑肠最为活跃。 细胞内定位:内质网
第四节 胆固醇的生物合成
相关文档
最新文档