KB400伺服电机行星减速机配15KW11KW7.5KW松下台达安川伺服电机

KB400伺服电机行星减速机配15KW11KW7.5KW松下台达安川伺服电机

松下伺服资料

松下伺服资料 一.伺服的概念 二.伺服电机与步进电机性能比较三.伺服系统的控制模式 四.伺服电机编码器分类 五.伺服驱动器的认识 六.伺服电机的认识 七.系统结构和配线 八.试运转 九.前面板的使用方法 十.参数 十一.报警代码

一.伺服的概念 “伺服”—词源于希腊语“奴隶”的意思。人们想把“伺服机构”当个得心应手的驯服工具,服从控制信号的要求而动作。在讯号来到之前,转子静止不动;讯号来到之后,转子立即转动;当讯号消失,转子能即时自行停转。由于它的“伺服”性能,因此而得名——伺服系统。 伺服是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。 二.伺服电机与步进电机性能比较 步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如山洋公司(SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以山洋全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1 /655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM 或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

行星减速器设计

目录 第一章概述 (1) 第二章要求分析 (2) (一)原始数据 (2) (二)系统组成框图 (2) 第三章方案拟定 (4) 第四章传动系统的方案设计 (5) 传动方案的分析与拟定 (5) 1.对传动方案的要求 (5) 2.拟定传动方案 (5) 第五章行星齿轮传动设计 (6) (一)行星齿轮传动比和效率计算 (6) (二)行星齿轮传动的配齿计算 (6) 1.传动比条件 (6) 2.同轴条件 (6) 3.装配条件 (7) 4.邻接条件 (7) (三)行星齿轮传动的几何尺寸和啮合参数计算 (8) (四)行星齿轮传动强度计算及校核 (10) 1、行星齿轮弯曲强度计算及校核 (10) 2、齿轮齿面强度的计算及校核 (11) 3、有关系数和接触疲劳极限 (11) (五)行星齿轮传动的受力分析 (13) (六)行星齿轮传动的均载机构及浮动量 (15) (七)轮间载荷分布均匀的措施 (15) 第六章行星轮架与输出轴间齿轮传动的设计 (17) (一)选择齿轮材料及精度等级 (17) (二)按齿面接触疲劳强度设 (17) (三)按齿根弯曲疲劳强度计算 (18) (四)主要尺寸计算 (18)

(五)验算齿轮的圆周速度v (18) 第七章行星轮系减速器齿轮输入输出轴的设计 (19) (一)减速器输入轴的设计 (19) 1、选择轴的材料,确定许用应力 (19) 2、按扭转强度估算轴径 (19) 3、确定各轴段的直径 (19) 4、确定各轴段的长度 (19) 5、校核轴 (19) (二)行星轮系减速器齿轮输出轴的设计 (21) 1、选择轴的材料,确定许用应力 (21) 2、按扭转强度估算轴径 (21) 3、确定各轴段的直径 (21) 4、确定各轴段的长度 (21) 5、校核轴 (22)

伺服电机的调试步骤

伺服电机的调试步骤 1、初始化参数 在接线之前,先初始化参数。在控制卡上:选好控制方式;将PID参数清零;让控制卡上电时默认使能信号关闭;将此状态保存,确保控制卡再次上电时即为此状态。在伺服电机上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。比如,松下是设置1V电压对应的转速,出厂值为500,如果你只准备让电机在1000转以下工作,那么,将这个参数设置为111。 2、接线 将控制卡断电,连接控制卡与伺服之间的信号线。以下的线是必须要接的:控制卡的模拟量输出线、使能信号线、伺服输出的编码器信号线。复查接线没有错误后,电机和控制卡(以及PC)上电。此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制卡是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置3、试方向 对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制卡打开伺服的使能信号。这是伺服应该以一个较低的速度转动,这就是传说中的“零漂”。一般控制卡上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制卡或电机上的参数,使其一致。 4、抑制零漂 在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制卡或伺服上抑制零飘的参数,仔细调整,使电机的转速趋近于零。由于零漂本身也有一定的随机性,所以,不必要求电机转速绝对为零。 5、建立闭环控制 再次通过控制卡将伺服使能信号放开,在控制卡上输入一个较小的比例增益,至于多大算较小,这只能凭感觉了,如果实在不放心,就输入控制卡能允许的最小值。将控制卡和伺服的使能信号打开。这时,电机应该已经能够按照运动指令大致做出动作了。 6、调整闭环参数 细调控制参数,确保电机按照控制卡的指令运动,这是必须要做的工作,而这部分工作,更多的是经验,这里只能从略了。

松下伺服故障及原因

一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 1.JOG试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0’下,按‘SET’键,然后连续按‘MODE’键直至数码显示为‘AF-AcL’,然后按上、下键至‘AF-JoG’; 按‘SET’键,显示‘JoG -’:按住‘^’键直至显示‘rEAdy’; 按住‘<’键直至显示‘SrV-on’; 按住‘^’键电机反时针旋转,按‘V’电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET’键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; 参数No.53、No.05设置为1:(注此类参数修改后应写入EEPROM,并重新上电) 调节参数No.53,即可使电机转动。参数值即为转速,正值反时针旋转,负值顺时针旋转。 3.位置控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; PLUS1(3脚)、SIGN1(5脚)接脉冲源的电源正极(+5V); PLUS2(4脚)接脉冲信号,SIGN(6脚)接方向信号; 参数No.02设置为0,No42设置为3,No43设置为1; PLUS(4脚)送入脉冲信号,即可使电机转动;改变SIGN2即可改变电机转向。 另外,调整参数No.46、No.4B,可改变电机每转所需的脉冲数(即电子齿轮)。 常见问题解决方法: 1.松下数字式交流伺服系统MHMA 2KW,试机时一上电,电机就振动并有很大的噪声,然后驱动器出现16号报警,该怎么解决? 这种现象一般是由于驱动器的增益设置过高,产生了自激震荡。请调整参数No.1 0、No.11、No.12,适当降低系统增益。(请参考《使用说明书》中关于增益调整的内容) 2.松下交流伺服驱动器上电就出现22号报警,为什么? 22号报警是编码器故障报警,产生的原因一般有: 编码器接线有问题:断线、短路、接错等等,请仔细查对; 电机上的编码器有问题:错位、损坏等,请送修。 3.松下伺服电机在很低的速度运行时,时快时慢,象爬行一样,怎么办? 伺服电机出现低速爬行现象一般是由于系统增益太低引起的,请调整参数No.10、No.11、No.12,适当调整系统增益,或运行驱动器自动增益调整功能。(请参考《使用说明书》中关于增益调整的内容) 4.松下交流伺服系统在位置控制方式下,控制系统输出的是脉冲和方向信号,但不

行星齿轮减速机构成及意义、特点

行星齿轮减速机构成及意义、特点 行星减速机主要传动结构为:行星轮,太阳轮,外齿圈. 行星减速机因为结构原因,单级减速最小为3,最大一般不超过10,常见减速比为:3.4.5.6.8.10,减速机级数一般不超过3,但有部分大减速比定制减速机有4级减速. 相对其他减速机,行星减速机具有高刚性,高精度(单级可做到1分以内),高传动效率(单级在97%-98%),高的扭矩/体积比,终身免维护等特点. 因为这些特点,行星减速机多数是安装在步进电机和伺服电机上,用来降低转速,提升扭矩,匹配惯量. 减速机额定输入转速最高可达到18000rpm(与减速机本身大小有关,减速机越大,额定输入转速越小)以上,工业级行星减速机输出扭矩一般不超过2000Nm,特制超大扭矩行星减速机可做到10000Nm以上.工作温度一般在-25℃到100℃左右,通过改变润滑脂可改变其工作温度. 行星减速机的几个概念: 级数:行星齿轮的套数.由于一套星星齿轮无法满足较大的传动比,有时需要2套或者3套来满足拥护较大的传动比的要求.由于增加了星星齿轮的数量,所以2级或3级减速机的长度会有所增加,效率会有所下降. 回程间隙:将输出端固定,输入端顺时针和逆时针方向旋转,使输入端产生额定扭矩+-2%扭矩时,减速机输入端有一个微小的角位移,此角位移就是回程间隙.单位是"分",就是一度的六十分之一.也有人称之为背隙. 行星减速机是一种用途广泛的工业产品,其性能可与其它军品级减速机产品相媲美,却有着工业级产品的价格,被应用于广泛的工业场合。

该减速器体积小、重量轻,承载能力高,使用寿命长、运转平稳,噪声低。具有功率分流、多齿啮合独用的特性。最大输入功率可达104kW。适用于起重运输、工程机械、冶金、矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器和航空航天等工业部门行星系列新品种WGN定轴传动减速器、WN 子母齿轮传动减速器、弹性均载少齿差减速器。 行星减速机是一种具有广泛通用性的新性减速机,内部齿轮采用20CvMnT渗碳淬火和磨齿。整机具有结构尺寸小,输出扭矩大,速比在、效率高、性能安全可靠等特点。本机主要用于塔式起重机的回转机构,又可作为配套部件用于起重、挖掘、运输、建筑等行业。 行星减速机产品特点: 行星齿轮减速机重量轻、体积小、传动比范围大、效率高、运转平稳、噪声低适应性强等特点。减速机广泛应用于冶金、矿山、起重运输、电力、能源、建筑建材、轻工、交通等工业部门。 产品说明: 1、P系列行星齿轮减速机采用模块化设计,可根据客户要求进行变化组合, 2、减速机采用渐开线行星齿轮传动,合理利用内、外啮合、功率分流, 3、箱体采用球墨铸铁,大大提高了箱体的钢性及抗震性, 4、齿轮均采用渗碳淬火处理,得到高硬耐磨表面,齿轮热处理后全部磨齿,降低了噪音,提高了整机的效率和使用寿命。 5、行星减速机P系列产品有9-34型规格,行星传动级数有2级和3级。 减速比:

松下PLC控制伺服电机实例程序

松下PLC控制伺服电机实例程序 上位机设定伺服电机旋转速度单位为(转/分),伺服电机设定为1000个脉冲转一圈. PLC输出脉冲频率=(速度设定值/6)*100(HZ)。 上位机设定伺服电机行走长度单位为(0.1mm),伺服电机每转一圈的行走长度10mm,伺服电机转一圈需要的脉冲数为1000,故PLC发出一个脉冲的行走长度为0.01mm(一个丝)。 PLC输出脉冲数=长度设定值*10。 上面两点的计算都是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,必须先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致方法如下: 机械安装结束,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的行走精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下PLC的CPU本体可以发脉冲频率为100K,完全可以满足要求。 如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU本体就不够了。需要加大成本,如增加脉冲输出专用模块等方式。 知道了频率与脉冲数的算法就简单了,只需应用PLC的相应脉冲指令发出脉冲即可,松下PLC的程序图如下:

松下伺服常见问题 一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 1.JOG试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0’下,按‘SET’键,然后连续按‘MODE’键直至数码显示为‘AF-AcL’,然后按上、下键至‘AF-JoG’; 按‘SET’键,显示‘JoG -’:按住‘^’键直至显示‘rEAdy’; 按住‘<’键直至显示‘SrV-on’; 按住‘^’键电机反时针旋转,按‘V’电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET’键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; 参数No.53、No.05设置为1:(注此类参数修改后应写入EEPROM,并重新上电)

日弘忠信—松下伺服电机代理商

(日弘忠信)松下伺服电机代理商 现在国内松下伺服电机代理商很多,作为代理商需了解整个产品的相关性能,深圳市日弘忠信电器有限公司在这方面做的非常不错。松下伺服电机国内一级代理商,也是亚洲松下电机销售额最大的公司,公司设有专业伺服维修中心及行业15年调试的资深工程师。不售假、库存足、交货快、选择多、服务好、灵付款是公司永远追求的18真经。下面来看看日弘忠信对伺服电机的了解。是近几年小电机行业发展最快的品种,随着视听产品“小、轻、薄”化和家电产品的静音化以及豪华型轿车需求量增多,无刷直流电动机需要量迅速增加。无刷直流电机用电子换向替代了电刷和换向器,具有高可靠、高效率、寿命长、调速方便的优点。各国都加快了开发新产品的速度和占领市场的力度。 日弘忠信解析松下伺服电机也是最受用户青睐的电机之一,国内销量遥遥领先于其他品牌,因此应用范围也比较广泛,如注塑机行业、纺织行业、数控机床行业、包装等多个工业自动化行业。松下伺服电机是响应速度快、稳定性好、节能性强、工作效率高的智能伺服电机,松下伺服电机公司根据国内市场需要,不时研发升级产品,具有很高的性价比。伺服电机是一种将电能转换成直线运动机械能,而不需要任何中间转换机构的传动装置,具有结构简单、无接触运动、噪音低、速度和精度高、控制容易、维护方便、可靠性高等优点。随着工业自动化水平的不时创新,直线电机的应用领域越来越广。世界各大公司都在大力研究开发新产品和开拓应用领域。直线电机也分异

步、同步、步进、有刷直流、无刷直流等各种类型。 日弘忠信了解,目前已有不少自动化设备中应用直线电机,如高速冲床、高速切削机、卫星天线、磁头驱动器、绘图机、打印机、复印机、扫描仪、电动门等,据有关资料报道,直线电机在直线驱动使用领域无论从整机效率、体积以及控制系统都优于旋转电机,值得加以重视开发生产的新型电机。伺服电机需求与日剧增小电机产品是工业自动化、农业现代化、武器装备现代化、办公自动化、家庭现代化等各个领域广泛应用不可缺少的基础产品。随着全球经济和人们生活水平不时发展和提高,以及小电机应用领域的不时发展,其需求量也随之增加,对小电机的品质要求也在不时提高。为了提高市场竞争能力,不时降低本钱,满足各个领域的需要,小电机行业正在加速朝着专业化、规模化、自动化生产方向发展。 随着不时提高设计水平、制造水平以及采用新材料、新结构、新原理,小电机技术发展迅速。根据有关资料报道,小型化、薄型化、轻量化、无刷化、智能化、静音化、高效化、节能化、环保化、可靠化、精密化、组合化以及直接驱动和直线驱动是小电机技术发展趋势。以上信息由深圳市日弘忠信电器有限公司简单讲解,更多相关信息也可以电话咨询,代理伺服电机已有16年之久,在业内拥有较高知名度,公司秉承“共赢发展,忠信为本”的经营理念,自成立以来,不断引入欧、日、台及国内名优品牌工业自动化产品,服务于广大自动化机械设备厂商,欢迎来点咨询购买。

行星减速机详细介绍

行星减速机知识 行星减速机:主要传动结构为:行星轮,太阳轮,外齿圈.行星轮减速其实就是齿轮减速的原理,它有一个轴线位置固定的齿轮叫中心轮或太阳轮,在太阳轮边上有轴线变动的齿轮,即既作自转又作公转的齿轮叫行星轮,行星轮有支持构件叫行星架,通过行星架将动力传到轴上,再传给其它齿轮.它们由一组若干个齿轮组成一个轮系.只有一个原动件,这种周转轮系称为行星轮系. 行星减速机常用术语 级数:行星齿轮的套数.由于一套星星齿轮无法满足较大的传动比,有时需要2套或者3套来满足拥护较大的传动比的要求.由于增加了星星齿轮的数量,所以2级或3级减速机的长度会有所增加,效率会有所下降. 回程间隙:将输出端固定,输入端顺时针和逆时针方向旋转,使输入端产生额定扭矩+-2%扭矩时,减速机输入端有一个微小的角位移,此角位移就是回程间隙.单位是"分",就是一度的六十分之一.也有人称之为背隙. 行星减速机工作原理 1)齿圈固定,太阳轮主动,行星架被动。 从演示中可以看出,此种组合为降速传动,通常传动比一般为2.5~5,转向相同。

2)齿圈固定,行星架主动,太阳轮被动。 从演示中可以看出,此种组合为升速传动,传动比一般为0.2~0.4,转向相同。 3)太阳轮固定,齿圈主动,行星架被动。

从演示中可以看出,此种组合为降速传动,传动比一般为1.25~1.67,转向相同。 4)太阳轮固定,行星架主动,齿圈被动。 从演示中可以看出,此种组合为升速传动,传动比一般为0.6~0.8,转向相同。

5)行星架固定,太阳轮主动,齿圈被动。 从演示中可以看出此种组合为降速传动,传动比一般为1.5~4,转向相反。 6)行星架固定,齿圈主动,太阳轮被动。 从演示中可以看出此种组合为升速传动,传动比一般为0.25~0.67,转向相反。

松下伺服电机常见问题及处理办法

. 松下伺服电机常见问题及处理办法 一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 1.JOG试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0'下,按‘SET'键,然后连续按‘MODE'键直至数码显示为‘AF-AcL',然后按上、下键至‘AF-JoG'; 按‘SET'键,显示‘JoG -':按住‘^'键直至显示‘rEAdy'; 按住‘<'键直至显示‘SrV-on'; 按住‘^'键电机反时针旋转,按‘V'电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET'键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV- ON(29脚)接COM-; 参数No.53、No.05设置为1: (注此类参数修改后应写入EEPROM,并重新上电)调节参数No.53,即可使电机转动。参数值即为转速,正值反时针旋转,负值顺时针旋转。 3.位置控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV- ON(29脚)接COM-; PLUS1(3脚)、SIGN1(5脚)接脉冲源的电源正极(+5V); PLUS2(4脚)接脉冲信号,SIGN(6脚)接方向信号; 参数No.02设置为0,No42设置为3,No43设置为1; PLUS(4脚)送入脉冲信号,即可使电机转动;改变SIGN2即可改变电机转

向。 另外,调整参数No.46、No.4B,可改变电机每转所需的脉冲数(即电子齿轮)。常见问题解决方法: '. . 1.松下数字式交流伺服系统MHMA 2KW,试机时一上电,电机就振动并有很大的噪声,然后驱动器出现16号报警,该怎么解决? 这种现象一般是由于驱动器的增益设置过高,产生了自激震荡。请调整参数No.10、No.11、No.12,适当降低系统增益。(请参考《使用说明书》中关于增 益调整的内容) 2.松下交流伺服驱动器上电就出现22号报警,为什么? 22号报警是编码器故障报警,产生的原因一般有: 编码器接线有问题:断线、短路、接错等等,请仔细查对; 电机上的编码器有问题:错位、损坏等,请送修。 3.松下伺服电机在很低的速度运行时,时快时慢,象爬行一样,怎么办? 伺服电机出现低速爬行现象一般是由于系统增益太低引起的,请调整参数No.10、No.11、No.12,适当调整系统增益,或运行驱动器自动增益调整功能。(请参考《使用说明书》中关于增益调整的内容) 4.松下交流伺服系统在位置控制方式下,控制系统输出的是脉冲和方向信号,但不管是正转指令还是反转指令,电机只朝一个方向转,为什么? 松下交流伺服系统在位置控制方式下,可以接收三种控制信号:脉冲/方向、正/反脉冲、A/B正交脉冲。驱动器的出厂设置为A/B正交脉冲(No42为0),请将No42改为3(脉冲/方向信号)。 5.松下交流伺服系统的使用中,能否用伺服-ON作为控制电机脱机的信号,以便直接转动电机轴? 尽管在SRV-ON信号断开时电机能够脱机(处于自由状态),但不要用它来启动

松下伺服电机调整参考与常见问题解决方法

松下伺服电机调整参考与常见问题解决方法 一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 1.JOG试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0’下,按‘SET’键,然后连续按‘MODE’键直至数码显示为‘AF -AcL’,然后按上、下键至‘AF-JoG’; 按‘SET’键,显示‘JoG -’:按住‘^’键直至显示‘rEAdy’; 按住‘<’键直至显示‘SrV-on’; 按住‘^’键电机反时针旋转,按‘V’电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET’键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; 参数No.53、No.05设置为1:(注此类参数修改后应写入EEPROM,并重新上电) 调节参数No.53,即可使电机转动。参数值即为转速,正值反时针旋转,负值顺时针旋转。 3.位置控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; PLUS1(3脚)、SIGN1(5脚)接脉冲源的电源正极(+5V); PLUS2(4脚)接脉冲信号,SIGN(6脚)接方向信号; 参数No.02设置为0,No42设置为3,No43设置为1; PLUS(4脚)送入脉冲信号,即可使电机转动;改变SIGN2即可改变电机转向。 另外,调整参数No.46、No.4B,可改变电机每转所需的脉冲数(即电子齿轮)。

台达伺服电机ecma手册选型直角行星减速机蜗轮蜗杆减速机松下三菱台达西门子安川

台达伺服电机ecma手册选型直角行星减速机蜗轮蜗杆减速机松下三菱台达西门子安川 KFR系列直角伺服行星减速机: 具有高精度、高钢性、高负载、高效率、高速比、高寿命、低惯性、低振动、低噪音、低温升、外观美、结构轻小、安装方便、精确定位等特点,适用于交流伺服马达、直流伺服马达、步进马达、液压马达的增速与减速传动。适合于全球任何厂商所制造的驱动产品连接,如:松下、台达、安川、富士、三菱、三洋、西门子、施耐德、法那克、科比、科尔摩根、AMK、帕克等等。 KFR系列直角伺服行星减速机: 为经济型与实用型设计,型号分:KFR40、KFR60、KFR90、KFR115、KFR140、KFR160机座型号。速比:3~100有20种比速可选择;分一、二减速传动;精度:一级传动精度在6-12弧分,二级传动精度在8-15弧分,等500多种规格。 应用领域: 伺服减速机可直接安装到交流和直流伺服马达上,广泛应用于中等精度程度的工业领域。如:印刷机床、火焰切割、激光切割、数控机床、工具机械,食品包裝、自动化产业、工业机器人、和自动化的机电产品行业。 性能和特点: KFR系列直角伺服行星减速机提供了高性价比,应用广泛、经济实用、寿命长等优点,在伺服控制的应用上,发挥了良好的伺服刚性效应,准确的定位控制,在运转平台上具备了中低背隙,高效率,高输入转速,高输入扭矩,运转平順,低噪音等特性,外观及结构设计轻小。使用终身免更换的润滑油,及无论安装在何处,都可以免维修操作全封闭式设计,并且具有IP65的保护程度,因此工作环境差时亦可使用。 KFR系列伺服减速机性能参数:

KFR系列伺服减速机转动惯量:

PF系列精密行星减速机选型和尺寸

卓藤行星减速机技术主要应用在有特殊要求的领域中。在不同的行业领域中。在全球各个角落。在最为极端的条件下。卓藤行星减速机都在不断树立全球衡量标准。不断提供性能卓越的产品,量身定制的解决方案,来满足各市场的不同需求。卓藤行星减速机公司在研发与销售、生产、市场推广紧密联系,并且实现了信息共享。 特点:易于安装、具有精度高、高输入转速、高输出扭矩、钢性好、承载能力大、效率高、寿命长、噪音低、低震动、体积轻小、外形美观、免维修、定位精准等特点,适用于交流伺服马达、直流伺服马达、步进马达的减速传动。 适合于全球任何厂商所制造的驱动产品连接:如常用伺服电机:台达、安川、松下、东元、三菱、富士、汇川、西门子、施耐德、欧姆龙、步进电机。 PF系列精密行星减速机性能参数表: 规格单位段数速比 PF60 PF90 PF120 PF160 PF200 额度输出扭矩 Nm L1 3 33 95 210 470 1120 4 42 112 210 58 5 1140 5 42 112 210 585 1140 7 33 92 168 378 850 10 15 54 85 310 630 L2 9 15 54 85 310 630 12 33 95 210 470 1120 15 33 95 210 470 1120 16 42 112 210 585 1140 20 42 112 210 585 1140 25 42 112 210 585 1140 28 42 112 210 585 1140 30 33 95 210 470 1020 35 42 115 210 585 1140 40 42 115 210 585 1140 50 42 115 210 585 1140 70 33 92 168 378 850 100 15 54 85 310 630 L3 64 42 112 210 585 1140 80 42 112 210 585 1140 100 42 115 210 585 1140 125 42 115 210 585 1140 140 42 115 210 585 1140 150 42 115 210 585 1140 250 42 115 210 585 1140 280 42 115 210 585 1140 350 42 115 210 585 1140 400 42 115 210 585 1140 500 42 115 210 585 1140 700 33 92 168 678 850 1000 15 54 85 310 630 故障停止扭矩 Nm L1 L2 L3 3-1000 2.0times T2N 2.0倍额定扭矩 最大输入转速 rpm L1 L2 L3 3-1000 6000 6000 6000 5000 4000 额定输入转速 rpm L1 L2 L3 3-1000 4000 3500 3500 3000 2500 超精密背隙P0 arcmin L1 3-10 ≤3 L2 9-100 ≤5 L3 64-1000 ≤7 精密背隙P1 arcmin L1 3-10 ≤5 L2 9-100 ≤7 L3 64-1000 ≤9 标准背隙P2 arcmin L1 3-10 ≤8 L2 9-100 ≤10

松下伺服器接线总结..-共27页

松下伺服电机接线总结 伺服驱动器型号:MDDHT5540 伺服电机型号:MSME152G1H 运动控制卡型号:PCI-1240 1、主电路 工作原理:按下空气开关MCCB后,控制电路L1C、L2C先得电。此时ALM+引脚有输出,ALM回路控制的回路接通,ALM回路的继电器控制的开关ALM 闭合。软件开关通过程序控制主电路的通断,正常运行情况下一直运行。此时只要按下开始按钮ON,电磁接触器线圈主电路瞬间接通,电磁接触器线圈MC得电后,使电磁接触器控制的开关MC闭合,此时即使开始按钮ON断开,由于电路的自锁作用,主电路仍然接通。 2、脉冲发送电路

接线根据: 运动控制卡PCI-1240给出的控制卡功能模块图如下图所示 由图可知,运动控制卡输出脉冲的方式为长线驱动方式。 松电机下伺服使用手册中P3-35(P151)中提到长线驱动接线端子说明如下图 手册P3-18(P134)给出的长线驱动接线方法如下图

3、编码器反馈脉冲接收电路 接线原理:关于利用伺服驱动器输出的ABZ相脉冲计算伺服电机的旋转角度(参考 网址:http://bbs.gongkong1/Details/201910/2019103112034201901-1.shtml)推荐做法:先将OA、OB脉冲四倍频(类似于DSP的QEP计数模块),具体实现的时候只需要记住OA、OB的每个脉冲跳变即可实现四倍频,同时要辩相,一般我们定义OA超前OB为电机旋转正方向,此时脉冲累加,否则为负方向,脉冲累减。知道了脉冲个数就好办了,如果松下伺服输出的脉冲个数为一圈2500个,由于我们四倍频了,故实际到我们这里就应该是10000个没圈,根据这个脉冲你就可以知道电机的相对位置。根据OC信号,你可以知道电机的绝对位置,一般定义OC出现的时刻就是电机转子的零位,因此每次检测到OC出现,就应该认为绝对位置出现,这样可以清除累积误差。根据收到的脉冲数,采用M法测速也可以计算出实际电机的转速。 接线根据: 伺服驱动器说明书P3-32(P148)给出的接线说明

松下伺服电机行星减速机直角减速机

KFR系列直角伺服行星减速机: 具有高精度、高钢性、高负载、高效率、高速比、高寿命、低惯性、低振动、低噪音、低温升、外观美、结构轻小、安装方便、精确定位等特点,适用于交流伺服马达、直流伺服马达、步进马达、液压马达的增速与减速传动。适合于全球任何厂商所制造的驱动产品连接. 应用领域: 伺服减速机可直接安装到交流和直流伺服马达上,广泛应用于中等精度程度的工业领域。如:印刷机床、火焰切割、激光切割、数控机床、工具机械,食品包裝、自动化产业、工业机器人、和自动化的机电产品行业。 性能和特点: KFR系列直角伺服行星减速机提供了高性价比,应用广泛、经济实用、寿命长等优点,在伺服控制的应用上,发挥了良好的伺服刚性效应,准确的定位控制,在运转平台上具备了中低背隙,高效率,高输入转速,高输入扭矩,运转平順,低噪音等特性,外观及结构设计轻小。使用免更换的润滑油,及无论安装在何处,都可以免维修操作全封闭式设计,并且具有IP65的保护程度,因此工作环境差时亦可使用。 KFR系列伺服减速机性能参数:

配备电机LA LZ S LR LB LE LC L1(一级传动)L2(二级传动)L3(三级传动)2000W 145 4-M8 22(F7) 65 110(H7) 10 150 200 246 287 3000W 200 4-M12 35(F7) 80 114.3(H7) 10 180 200 246 287 4200W 215 4-M12 38/42(F7) 115 180(H7) 10 190 200 246 287 配备电机LA LZ S LR LB LE LC L1(一级传动) L2(二级传动)L3(三级传动)3000W 200 4-M12 35F7 82 114.3H7 10 188 214 262 300 4200W 215 4-M12 38/42F7 115 180H7 10 192 214 262 300 7500W 235 4-M12 55F7 120 200H7 10 220 214 262 300

松下伺服电机与驱动器配对一览表

A4电机与驱动器配对一览表 电机系列额定功率电机型号驱动器型号驱动器分类 MSMD小惯量 小功率50 W MSMD 5AZ P1* MADD T1205 A型100 W MSMD 012 P1* 200 W MSMD 022 P1*MADD T1207 400 W MSMD 042 P1*MBDD T2210B型750 W MSMD 082 P1*MCDD T3520C型 MQMA小惯量 扁平型100 W MQMA 012 P1*MADD T1205A型200 W MQMA 022 P1*MADD T1207B型400 W MQMA 042 P1*MBDD T2210C型 MHMD大惯量 小功率200 W MHMD 022 P1*MADD T1207A型400 W MHMD 042 P1*MBDD T2210B型750 W MHMD 082 P1*MCDD T3520C型 MSMA小惯量 大功率1.0 kW MSMA 102 P1* MDDD T5540D型 1.5 kW MSMA 152 P1* 2.0 kW MSMA 202 P1*MEDD T7364E型 3.0 kW MSMA 302 P1*MFDD TA390 F型4.0 kW MSMA 402 P1* MFDD TB3A2 5.0 kW MSMA 502 P1* MDMA中惯量750 W MDMA 082 P1* MDDD T3530 D型1.0 kW MDMA 102 P1* 1.5 kW MDMA 152 P1*MDDD T5540 2.0 kW MDMA 202 P1*MEDD T7364E型2.5 kW MDMA 252 P1* MFDD TA390 F型3.0 kW MDMA 302 P1* 3.5 kW MDMA 352 P1* 4.0 kW MDMA 402 P1* MFDD TB3A2 4.5 kW MDMA 452 P1* 5.0 kW MDMA 502 P1* MFMA中惯量 扁平型400 W MFMA 042 P1*MCDD T3520C型 1.5 kW MFMA 152 P1*MDDD T5540D型 2.5 kW MFMA 252 P1*MEDD T7364E型4.5 kW MFMA 452 P1*MFDD TB3A2F型 MGMA中惯量 低转速900 W MGMA 092 P1*MDDD T5540D型2.0 kW MGMA 202 P1*MFDD TA390 F型3.0 kW MGMA 302 P1* MFDD TB3A2 4.5 kW MGMA 452 P1* MHMA大惯量 500 W MHMA 052 P1*MCDD T3520C型1.0 kW MHMA 102 P1*MDDD T3530 D型 1.5 kW MHMA 152 P1*MDDD T5540 2.0 kW MHMA 202 P1*MEDD T7364E型 3.0 kW MHMA 302 P1*MFDD TA390 F型4.0 kW MHMA 402 P1* MFDD TB3A2 5.0 kW MHMA 502 P1* 资料由www.gkcity.com提供

松下伺服电机A5与电机选型

松下伺服电机A5(图)MHMD042S1T

松下开发出了响应性更高的AC伺服马达“MINAS-A5”系列(图)。响应频率较原来的1kHz提高了1倍,达到2kHz。嵌入制造半导体及液晶时使用的贴片机、探针及电子部件封装机等装置后,能够使可动部迅速起动或停止。另外还对降低振动下了一番工夫,有助于缩短制造装置的单件产品生产时间。 为了抑制振动,首先将转子的极数增至10,减小了齿槽力矩。其次,通过内置共振抑制滤波器和减振滤波器,将振动降到了原来的1/8。而且还在轻量化方面改进了转子和定子的设计和工艺,使重量比原来减轻了10~25%。 此外,易用性也得到了提高。此次开发了可简单进行装置起动作业的装配支持用软件。支持日语、英语、汉语及韩语4种语言,海外工厂的员工也可轻松操作。符合防水规格IP67,耐水性及耐油性也很出色。 电压根据输出功率备有100V、200V、400V三种。最大转速为6000rpm (但在750W以下)。输出功率范围为50W~15kW。其中,5kW以下型号从2009年9月1日开始销售,超过5kW的型号将于2010年春季上市。 A5系列电机的特点: 功率: 50W~5kW 惯量不同 特性改善:槽定位转矩0.5%以下 小型?超轻化:行业最轻(1kW~5kW) 高分解率:绝对式17bit、增量式20bit 耐环境性能升级: IP67构造

连接:全容量连接化

A5系列驱动器的特点 电源:单相AC100V、单/3相AC200V 控制模式:转矩、速度、位置、全闭环 控制参数:扩大自动设定范围 与PC通信:对应USB 新软件设定,操作性能升级安装:与A4互换

伺服电机表面问题

常见问题解决方法: 1.松下数字式交流伺服系统MHMA 2KW,试机时一上电,电机就振动并有很大的噪声,然后驱动器出现16号报警,该怎么解决? 这种现象一般是由于驱动器的增益设置过高,产生了自激震荡。请调整参数No.10、No.11、No.12,适当降低系统增益。(请参考《使用说明书》中关于增益调整的内容) 2.松下交流伺服驱动器上电就出现22号报警,为什么? 22号报警是编码器故障报警,产生的原因一般有: 编码器接线有问题:断线、短路、接错等等,请仔细查对; 电机上的编码器有问题:错位、损坏等,请送修。 3.松下伺服电机在很低的速度运行时,时快时慢,象爬行一样,怎么办? 伺服电机出现低速爬行现象一般是由于系统增益太低引起的,请调整参数No.10、No.11、No.12,适当调整系统增益,或运行驱动器自动增益调整功能。(请参考《使用说明书》中关于增益调整的内容) 4.松下交流伺服系统在位置控制方式下,控制系统输出的是脉冲和方向信号,但不管是正转指令还是反转指令,电机只朝一个方向转,为什么?

松下交流伺服系统在位置控制方式下,可以接收三种控制信号:脉冲/方向、正/反脉冲、A/B正交脉冲。驱动器的出厂设置为A/B正交脉冲(No42为0),请将No42改为3(脉冲/方向信号)。 5.松下交流伺服系统的使用中,能否用伺服-ON作为控制电机脱机的信号,以便直接转动电机轴? 尽管在SRV-ON信号断开时电机能够脱机(处于自由状态),但不要用它来启动或停止电机,频繁使用它开关电机可能会损坏驱动器。如果需要实现脱机功能时,可以采用控制方式的切换来实现:假设伺服系统需要位置控制,可以将控制方式选择参数No02设置为4,即第一方式为位置控制,第二方式为转矩控制。然后用C-MODE来切换控制方式:在进行位置控制时,使信号C-MODE打开,使驱动器工作在第一方式(即位置控制)下;在需要脱机时,使信号C-MODE闭合,使驱动器工作在第二方式(即转矩控制)下,由于转矩指令输入TRQR 未接线,因此电机输出转矩为零,从而实现脱机。 6.在我们开发的数控铣床中使用的松下交流伺服工作在模拟控制方式下,位置信号由驱动器的脉冲输出反馈到计算机处理,在装机后调试时,发出运动指令,电机就飞车,什么原因?

松下伺服电机常见问题及处理办法

松下伺服电机常见问题及处理办法 一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 1.JOG试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0’下,按‘SET’键,然后连续按‘MODE’键直至数码显示为‘AF-AcL’,然后按上、下键至‘AF-JoG’; 按‘SET’键,显示‘JoG -’:按住‘^’键直至显示‘rEAdy’; 按住‘<’键直至显示‘SrV-on’; 按住‘^’键电机反时针旋转,按‘V’电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET’键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; 参数No.53、No.05设置为1:(注此类参数修改后应写入EEPROM,并重新上电) 调节参数No.53,即可使电机转动。参数值即为转速,正值反时针旋转,负值顺时针旋转。 3.位置控制方式

COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; PLUS1(3脚)、SIGN1(5脚)接脉冲源的电源正极(+5V); PLUS2(4脚)接脉冲信号,SIGN(6脚)接方向信号; 参数No.02设置为0,No42设置为3,No43设置为1; PLUS(4脚)送入脉冲信号,即可使电机转动;改变SIGN2即可改变电机转向。 另外,调整参数No.46、No.4B,可改变电机每转所需的脉冲数(即电子齿轮)。 常见问题解决方法: 1.松下数字式交流伺服系统MHMA 2KW,试机时一上电,电机就振动并有很大的噪声,然后驱动器出现16号报警,该怎么解决? 这种现象一般是由于驱动器的增益设置过高,产生了自激震荡。请调整参数No.10、No.11、No.12,适当降低系统增益。(请参考《使用说明书》中关于增益调整的内容) 2.松下交流伺服驱动器上电就出现22号报警,为什么? 22号报警是编码器故障报警,产生的原因一般有: 编码器接线有问题:断线、短路、接错等等,请仔细查对; 电机上的编码器有问题:错位、损坏等,请送修。 3.松下伺服电机在很低的速度运行时,时快时慢,象爬行一样,怎么办? 伺服电机出现低速爬行现象一般是由于系统增益太低引起的,请调整参数No.10、No.11、No.12,适当调整系统增益,或运行驱动器自动增益调整功能。(请参考《使用说明书》中关于增益调整的内容)

相关文档
最新文档