勾股定理复习讲义
初二数学复习讲义——-勾股定理
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
常见方法如下:
方法一: , ,化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
常见图形:
题型一:直接考查勾股定理
例1.在 中, .
(1)已知 , .求 的长
(2)已知 , ,求 的长
题型二:应用勾股定理建立方程
例2.
1在 中, , , , 于 , =
2⑵已知直角三角形的两直角边长之比为 ,斜边长为 ,则这个三角形的面积为
3已知直角三角形的周长为 ,斜边长为 ,则这个三角形的面积为
四个直角三角形的面积与小正方形面积的和为
大正方形面积为
所以
方法三: , ,化简得证
3.勾股定理的适用范围
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形
4.勾股定理的应用
例7.三边长为 , , 满足 , , 的三角形是什么形状?
题型五:勾股定理与勾股定理的逆定理综合应用
例8.已知 中, , , 边上的中线 ,求证:
证明:
①已知直角三角形的任意两边长,求第三边
在 中, ,则 , ,
②知道直角三角形一边,可得另外两边之间的数量关系
③可运用勾股定理解决一些实际问题
5.勾股定理的逆定理
如果三角形三边长 , , 满足 ,那么这个三角形是直角三角形,其中 为斜边
(寒假班内部讲义)第十八章-勾股定理
第十八章勾股定理第一部分知识网络一、重、难点重点:勾股定理及其逆定理的应用。
难点:勾股定理及其逆定理的应用。
二、知识要点梳理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。
知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
三、规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
4. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.第二部分 学习笔记1.直角三角形的边、角之间分别存在什么关系?(1) 角与角之间的关系:在△ABC 中,∠C=90°,有∠A+∠B=90°;(2) 边与边之间的关系:在△ABC 中,∠C=90°,有222c a b =+2.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c ,那么222c a b =+ 即直角三角形的两直角边的平方和等于斜边的平方。
勾股定理讲义
第十八章 勾股定理18.1 勾股定理知识点1 勾股定理的内容定理:果直角三角形两直角边分别为a 、b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方.解读:(1)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形.(2)注意区分直角边和斜边.(3)勾股定理揭示了直角三角形三边的平方关系.(4)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦(如图所示) 即:222+勾股=弦(5)应用:②已知直角三角形的两边,求第三边;③已知直角三角形的一边,确定另两边的关系;③已知直角三角形的一边与另两边的关系,求另两边;④推导线段之间的平方关系.知识点2 验证勾股定理方法:勾股定理的验证方法多达上百种,而且很多巧妙的验证方法令人赞叹不已,但大多数采用拼图的方法.善于变换角度看问题,是这种方法验证勾股定理的技巧.解读:用拼图的方法验证勾股定理的思路是:(1)图形经过制补拼接后,只要没有重叠,没有空隙,面积不会改变.(2)根据同一种图形面积的不同表示方法列出等式,推导出勾股定理.(3)运用:如图①所示,24,S S S ==+大正方形三角形小正方形边长即221()4.2a b ab c +=⨯+ 化简,得222.a b c +=如图②所示,24S S S +大正方形三角形小正方形=边长=,即2214().2c ab b a =⨯+- 化简,得222a b c +=一、选择题1.若某等腰直角三角形的斜边长为12c m,则它的面积是( )A.48c m 2B.72c m 2C.24c m 2D.36c m 22.如图所示,在△ABC 中,若∠C =90,∠B =45,则a :b :c =( )A.1:1:2B.1:1:2C.1:2:1D.1:2:13.在Rt △ABC 中,斜边AB=1,则AB 2+BC 2+AC 2的值是( )A.2B.4C.6D.84.若一个直角三角形的两边长分别为6和8.则下列说法正确的是( )A.第三边一定为10B.三角形的周长为25C.三角形的面积为48D.第三边可能为105.如图所示是一段楼梯,高BC 是3m,斜边AB 是5m,如果在楼梯上铺地毯,那么地毯至少需要( )A.5mB.6mC.7mD.8m6.如图所示,若∠C =90,AC =12,BC =5,AM =AC ,BN =BC ,则MN 的长是( )A.2B.2.6C.3D.47.如图所示,分别以Rt △ABC 的三边AB 、BC 、CA 为直径向外作半圆,设斜边AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8.在△ABC 中,∠A =90,则下列各式中不成立的是( )A.222BC AB AC =+B.222AB AC BC =+ C.22AB BC AC -- D.222AC BC AB =- 9.如图所示,三个正方形中有两个的面积分别为S 1=169,S 2=144,则S 3等于( )A.50B.25C.100D.3010.如图所示,强台风“麦莎”过后,一棵大树在离地面3.6米处折断倒下,倒下部分与地面的接舢点离树的底部为4.8米,则该树的原高度为( )A.6米B.8.4米C.6.8米D.9.6米11.在某直角三角形中,若它的斜边长为5 m,周长为12 m,则它的面积是( )A.12m 2B.6m 2C.8m 2D.9m 212.若△ABC 中,12::::1,33A B C ∠∠∠=那么这个三角形是( ) A.锐角三角形 B.钝角三角形C.直角三角形D.等腰三角形13.已知一个直角三角形,两条直角边分别为3和4.则下列说法正确的是( )A.斜边为25B.三角形的周长为24C.斜边为5D.三角形的面积为2014.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的面积为( )A.84B.24C.24或84D.30或3515.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且c +a =2b ,,2b c a -=则△ABC 的形状是( )A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形16.若一个直角三角形的边长是三个连续自然数,那么这三边的长为( )A.1,2,3B.2,3,4C.3,4,5D.4,5,617.若∠XOY =45°,在角的内部有一点P ,它关于OX 、OY 的对称点分别为M 、N ,那么△MON 一定是( )A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形18.在某直角三角形中,若它的斜边上的中线是2.5cm,周长是l2cm,则其面积为 ( )A.12cm 2B.6cm 2C.8cm 2D.10cm 219.若小明同学先向北行进4千米,然后向东行进4千米,再向北行进2千米,最后又向东行进4千米,此时小明离出发点( )A.6千米B.8千米C.10千米D.12千米20.如图所示,有一块直角三角形纸片,两直角边AC =6cm,BC =8cm.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A.2 cmB.3cmC.4 cmD.5cm二、填空题1.如图所示,阴影部分是一个正方形,则此正方形的面积是________cm2.2.如图所示,在四边形ABCD 中,∠B=∠ACD =90°,BC =6,AB =8,AD =26,则△ACD的面积是_________.3.如图所示,台风将旗杆在B 处折断,使杆顶落在距离杆底8米处的A 点.已知旗杆总长16米,问:旗杆是在距底部_________米处折断的.4.如图所示,折叠长方形的一边AD,使点D落在BC边上的点F处,若AB=8cm,BC=10cm,则EC=__________cm.5.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是7cm,则正方形A、B、C、D的面积的和是________cm2.6.在△ABC中,若AB=3,BC=4,第三边AC的长_________求出.(填“能”或“不能”)7.如图所示是由边长为1m的正方形地砖铺设的地面示意图.小明沿图中所示的折线从A →B→C所走的路程为__________m.(结果保留根号)8.在Rt△ABC中,∠C=90°,回答下列问题:(1)若a=12,b=16,则c=______;(2)若a=12,c=13,则b=_______;(3)若a:b=3:4,c=10,则a=______.9.看图求出未知边.(1)a=________.a=_______,b=________.10.已知直角三角形ABC中,两直角边AB、BC分别长6cm、8cm,则斜边AC上的高为_______cm.11.如图所示,则阴影部分的面积:____________.(阴影部分为正方形)12.如图所示,在矩形纸片ABCD中,AD=4cm,AB=10cm,接如图所示方式折叠,使点B与点D重合,折痕为EF,则DE=________cm.13.等腰三角形底边上的高是8,周长是32,则三角形的面积为________.14.某生态环境调查小组的甲组同学从学校出发,以15km/h的速度向东南方向前进;同时乙组同学也由学校出发,以20km/h的速度向东北方向前进,经过2h,两组各自到达目的地A、B,则A、B两地间相距________km.15.在△ABC中,∠C=90°,△ABC的周长为60cm,BC:CA=5:12,则BC=______cm,CA==_______cm,AB=_______cm.16.如图所示,在△ABC中,AB=AC,AD是BC边上的中线,若AB=17,BC=16,那么AD=______.17.已知三角形三内角度数之比为1:2:3,它的最大边长为6cm,则最小边长为______.18.在△ABC中,∠C=90°AB=13,BC=5,则AC=________.19.直角三角形的两条直角边长分别为5cm,12cm,则斜边上的高为_______cm.20.如图所示,阴影部分是一个正方形,如果正方形的面积是100cm2,则a的长为______cm.21.若直角三角形两直角边之比为3:4,且斜边的长为20cm,则斜边上的高为________.三、解答题1.(1)如图①所示,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,试证明S1=S2+S3.(2)加固②所示,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(3)如图③所示,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明.2.如图所示,在Rt△ACB中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,试说明AN2-BN2=AC2.3.如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=3,AB=5.求AD的长.4.(1)如图①所示,在Rt△ABC中,AC=5,BC=12,求AB的长.(2)如图②所示,在Rt△ABC中,AB=25,AC=20,求BC的长.5.一场台风过后,一棵小树被从距地面1.5 m处折断,树头距树的根部2m,你能判断出这棵小树原来有多高吗?6.在一次缉毒行动中,我省警方获得可靠消息:一辆运毒车将路经5号公路,但由于车上装有爆炸装置,督员无法靠近,只能利用远程射击的办法,为了减少伤亡,警方选中一距离公路120m的隐蔽处P点,射程为200m,准备行动,此时,运毒车与P点的水平距离为300m(如图所示),那么警方可在运毒车再前进多少米之后对其进行射击?7.如图所示,有一个长方形的场院ABCD,其中AB=9m,AD=12m,在点B处竖直立着一根电线杆,在电线杆上距地面8m的E处有一盏电灯.点D到灯E的距离是多少?8.如图所示,在树CD上10m高的B处有两只松鼠,其中一只松鼠爬到C点后又爬到离树20m的池塘A处,另一只松鼠爬到树顶后直接跃向池塘A处,若两只松鼠所经过的距离相等,试问这棵树有多高?(DA间实为抛物线,现假设为直线)9.如图所示,在5×5的正方形网格中,每个小正方形的边长都是1,请在所给网格中按下列要求画图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为22(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数.10.现有四块直角边为a、b,斜边为c的直角三角形的纸板,请你从中取出若干块拼图,说明勾股定理(需要画出所拼的图形).11.如图所示,在△ABC中,AB=AC=20,BC=32,∠DAC=90°,求BD.12.某住宅小区的形状是直角三角形,如图所示,直角边AC、BC的长度分别为600m、800m,DE为小区的大门,大门宽5m,小区的周边用冬青围成了绿化带,问绿化带有多长?13.如图所示,一逃犯从A地正北6km的B地乘车向B地正东8km的C地逃跑,我公安干警在A地闻讯,同时从A地沿直路直接向C地追击.若逃犯速度为80km/h,我公安干警的速度为多少时,恰好在C地将逃犯截住?14.如图所示,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在离A点多千米处?15.如图所示,某人在B处通过平面镄看见在B正上方3m处的A物体已知物体A到平面镜的距离为2m,问B点到物体A的像A'的距离是多少?(注:A'O=AO)16.为了测量一个球的直径,今有若干根木棒可供使用,通过实验发现,若将球放在桌面上,再将一根长6cm的木棒垂直桌面而立(如图所示).某一时刻,在斜阳的照射下,球与木棒的影长都是8cm,求球的直径.17.为了预防禽流感,张大爷想把自家的鸡用栅栏圈起来,已知栅栏为矩形,且其面积为48m2,对角线长为10m,那么张大爷家的鸡栅栏的周长为多少?18.如图所示,美伊战争期间,美军运输车队计划沿由东向西延伸的L公路向巴格达前线供应军用物资,一支先头小分队奉总部之命沿公路侦察敌情,当行至A地时,测得一伊军炮兵阵地P的方位是北偏西30°,行至B地时测得P地方位是北偏东30°,继续前进到C地,测得P 地方位是北偏东60°,在C地俘虏一名伊军士兵,得知C、B两地之间的距离不会超过10千米,并获得可靠情报:P地伊方炮火的射程半径是9千米.根据以上数据,请问美侦察兵能否判断运输车队沿公路通行的安全性.19.如图所示,已知∠BAC,AB=3,AC=4.若∠A是不断变化的角,问:(1)当∠A为锐角时,BC的取值情况;(2)当∠A为直角时,BC的取值情况;(3)当∠A为钝角时,BC的取值情况;(4)当∠A变为平角时,BC的取值情况.20.如图所示,在长方形纸片ABCD中,AB=3cm,BC=4cm,现将A、C重合,使纸片折叠压平,设折痕为EF,试确定重叠部分△AEF的面积.21.图①是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,图②是以c为直角边的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形;(2)用这个图形证明勾股定理;(3)假设图①中的直角三角形有若干个,你能运用图①中所给的直角三角形拼另一种能证明勾股定埋的图形吗?请画出拼后的示意图.(无需证明)22.如图所示,两个村子A、B在河CD的同侧,A、B两村到河边的距离分别为AC=1km,BD =3km,又CD=3km.现需在河边CD上建造一水厂向A、B两村送水,铺设水管的工程费用约为每千米20 000元,请在河边CD上选择水厂位置O,使铺设水管的费用最省,并求出,铺设水管的费用,假如你是工程师,帮助A、B两村设计一下好吗?。
勾股定理 基础知识复习讲义
(D)①②③④
15. 若 a 3 b3 ac 2 a 2b ab 2 bc 2 ,则由 a 、 b 、 c 为三角形 (B)等腰三角形 (C)直角三角形或等腰三角形(D)直角等腰三角形 16. 如图一直角三角形纸片,两直角边 AC 6cm, BC 8cm ,现将直角边 AC 沿 直线 AD 折叠,使它落在斜边 AB 上,且与 AE 重合,则 CD 等于( A. 2cm B. 3cm C. 4cm D. 5cm )
【知识点 5】勾股定理数学图形内的应用 〖基础回顾〗 1、已知等腰三角形的一条腰长是 5,底边长是 6,求它底边上的高=____________ 2、如图,在△ABC 中,AB=26,BC=20,BC 边上的中线 AD=24,求 AC.
【知识点 6】 最近问题 〖基础回顾〗 1、如图,在棱长为 1 的正方体 ABCD—A'B'C'D' 的表面上,求从顶点 A 到 顶点 C' 的最短距离. 2、如图 A、B 两个化工厂位于一段直线形河堤的同侧,A 工厂至河堤的距离 AC 为 1km,B 工厂到河堤 的距离 BD 为 2km,经测量河堤上 C、D 两地间的距离为 6km.现准备在河堤边修建一个污水处理厂 P, 为使 A、B 两厂到污水处理厂的排污管道最短,污水处理厂 P 应建在什么地方?请在图中画出,并算 出这个最短距离。
B A C D
课堂检测 1. Rt△ABC 中,∠C=900
2
①如果 AC=20,BC =25,那么 AB=
。
②如果 AB=13,AC=12,那么 BC=
。
2. 已知 Rt ABC 两边为 5、12,则第三边长________. 3. 若三角形三边之比为 3:4:5,周长为 24,则斜边上的高为________,面积为________. 4. 在 Rt△ABC 中,斜边 AB=4,则 AB 2 BC 2 AC 2 5. 若等腰三角形的腰长为 10,底边长为 16,则此三角形的面积为 . .
勾股定理培优讲义全
勾股定理培优讲义全c b a HGFED CB Abacbac cabcab a bc c baED CBA勾股定理知识点汇总⼀、基础知识点:1.勾股定理:直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅;表⽰⽅法:如果直⾓三⾓形的两直⾓边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明⽅法很多,常见的是拼图的⽅法⽤拼图的⽅法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,⾯积不会改变②根据同⼀种图形的⾯积不同的表⽰⽅法,列出等式,推导出勾股定理常见⽅法如下:⽅法⼀:4EFGH S S S ?+=正⽅形正⽅形ABCD ,2214()2ab b a c ?+-=,化简可证.⽅法⼆:四个直⾓三⾓形的⾯积与⼩正⽅形⾯积的和等于⼤正⽅形的⾯积.四个直⾓三⾓形的⾯积与⼩正⽅形⾯积的和为221 422S ab c ab c =?+=+ ⼤正⽅形⾯积为222()2S a b a ab b =+=++所以222a b c +=⽅法三:1()()2S a b a b =+?+梯形,2112S 222ADE ABE S S ab c ??=+=?+梯形,化简得证222a b c +=3.勾股定理的适⽤范围勾股定理揭⽰了直⾓三⾓形三条边之间所存在的数量关系,它只适⽤于直⾓三⾓形,对于锐⾓三⾓形和钝⾓三⾓形的三边就不具有这⼀特征。
4.勾股定理的应⽤①已知直⾓三⾓形的任意两边长,求第三边在ABC ?中,90C ∠=?,则22c a b =+,22b c a =-,22a c b =-②知道直⾓三⾓形⼀边,可得另外两边之间的数量关系③可运⽤勾股定理解决⼀些实际问题5.勾股定理的逆定理如果三⾓形三边长a ,b ,c 满⾜222a b c +=,那么这个三⾓形是直⾓三⾓形,其中c 为斜边。
①勾股定理的逆定理是判定⼀个三⾓形是否是直⾓三⾓形的⼀种重要⽅法,它通过“数转化为形”来确定三⾓形的可能形状,在运⽤这⼀定理时,可⽤两⼩边的平⽅和22a b +与较长边的平⽅2c 作⽐较,若它们相等时,以a ,b ,c 为三边的三⾓形是直⾓三⾓形;②若222a b c +<,时,以a ,b ,c 为三边的三⾓形是钝⾓三⾓形;若222a b c +>,时,以a ,b ,c 为三边的三⾓形是锐⾓三⾓形;③定理中a ,b ,c 及222a b c +=只是⼀种表现形式,不可认为是唯⼀的,如若三⾓形三边长a ,b ,c 满⾜222a c b +=,那么以a ,b ,c 为三边的三⾓形是直⾓三⾓形,但是b 为斜边该定理在应⽤时,同学们要注意处理好如下⼏个要点:①已知的条件:某三⾓形的三条边的长度.②满⾜的条件:最⼤边的平⽅=最⼩边的平⽅+中间边的平⽅.③得到的结论:这个三⾓形是直⾓三⾓形,并且最⼤边的对⾓是直⾓. ④如果不满⾜条件,就说明这个三⾓形不是直⾓三⾓形。
05.勾股定理讲义
勾股定理要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b,,斜边长为c,那么222a b c+=.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:222a c b=-,222b c a=-,()222c a b ab=+-.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.知识点方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.利用勾股定理,作出长为的线段.典型例题类型一、勾股定理的直接应用例1、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a=5,b=12,求c;(2)若c=26,b=24,求a.举一反三:【变式1】在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)已知b=2,c=3,求a;a c ,b=32,求a、c.(2)已知:3:5【变式2】分析探索题:细心观察如图,认真分析各式,然后解答问题.OA22=()2+1=2 ,S1=;OA32=()2+1=3,S2=;OA42=()2+1=4,S3=…(1)请用含有n(n为正整数)的等式S n=___________;(2)推算出OA10=______________.(3)求出 S12+S22+S32+…+S102的值.类型二、勾股定理的证明例2、如图所示,在Rt △ABC 中,∠C =90°,AM 是中线,MN ⊥AB ,垂足为N ,试说明222AN BN AC -=.类型三、利用勾股定理作长度为n 的线段例3、作长为、、的线段.类型四、利用勾股定理解决实际问题例4、“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)举一反三:【变式】如图所示,一旗杆在离地面5m处断裂,旗杆顶部落在离底部12m处,则旗杆折断前有多高?例5、如图,长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3,则AB的长为()6A.3 B.4 C.5 D.课后练习一.选择题1.在△ABC中,AB=12,AC=9,BC=15,则△ABC的面积等于()A.108B.90C.180D.542.在Rt△ABC中,AB=3,AC=4,则BC的长为()A.5 B. C.5或 D.无法确定3. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( )A.12米 B.10米 C.8米 D.6米4.Rt △ABC 中,斜边BC =2,则222AB AC BC ++的值为( )A.8B.4C.6D.无法计算 5.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( )A.4B.6C.8D.1026.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( )A.1502cmB.2002cmC.2252cmD.无法计算 二.填空题 7.在直角坐标系中,点P (-2,3)到原点的距离是_______.8.如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交数轴上原点右边于一点,则这个点表示的实数是 _________ .9.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.10.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12. 如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点'B重合,则AC=cm.三.解答题13.如图,在△ABC中,∠B=30°,∠C=45°,AC=2.求BC边上的高及△ABC的面积.14. 已知在三角形ABC中,∠C=90°,AD平分∠BAC交BC于D,CD=3,BD=5,求AC的长.15.如图,将长方形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.。
勾股定理复习讲义内容
勾股定理复习讲义内容一、第一单元知识结构二、典例归类考点1:面积及面积的应用例1、若直角三角形的两直角边为7和24,在三角形内有一点P 到三边的距离相等,这个距离为。
例2、在直线l 上依次放着七个正方形,如图所示,已知斜放置地三个的正方形的面积分别是1,2,3,正放着的四个正方形面积依次是,,,,1S S S S 则=+++S S S S 。
对应练习:1、如上右图,每个小方格都是边长为1的正方形, (1)求图四边形ABCD 的各边的长。
(2)求∠ADC 的度数L3、如图,等腰梯形ABCD 中,AD ∥BC ,AB=DC ,AD=3,AB=4,∠B=60°,则梯形的面积总结归纳: 。
考点2、距离(最短距离)问题例3、如图所示,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC = 6cm ,点是母线上一点且=.一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是.如图所示,有一个长方体,它的长、宽、高分别为5,3,4。
在点A ’处有一只蚂蚁,它想吃到与点A ’相对的C 点的食物,沿长方体表面需要爬行的最短路程是多少?对应练习: 1、如图,边长为1的立方体中,一只蚂蚁从A 顶点出发沿着立方体的外表面爬到B 顶点的最短路程是( ) A 、3 B 、 C 、 D 、12、如上图,则正方体中能放入的最大长度为。
总结归纳:。
考点3:判断三角形的形状例4、如果ΔABC 的三边分别为a 、b 、c ,且满足a 2+b 2+c 2+50=6a+8b+10c ,判断ΔABC 的形状。
P BC PC 23BC对应练习:1、下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有().A.1个 B.2个 C.3个 D.4个2、已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为三角形A.直角B.等腰C.等腰直角D.等腰或直角考点4:勾股定理与实际问题结合例6、如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长。
07.勾股定理全章复习与巩固讲义
勾股定理全章复习与巩固要点一、勾股定理 1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=) 2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是: (1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题; (3)求作长度为的线段.要点二、勾股定理的逆定理 1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题. 2.勾股定理的逆定理 勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为c ;(2)验证2c 与22a b +是否具有相等关系,若222a b c +=,则△ABC 是以∠C 为直角的直角三角形,反之,则不是直角三角形.知识点3.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征: 1.较小的直角边为连续奇数; 2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.类型一、勾股定理及逆定理的简单应用例1、已知直角三角形的两边长分别为6和8,求第三边的长.典型例题举一反三:【变式】在△ABC 中,AB =15,AC =13,高AD =12.求△ABC 的周长.例2、如图所示,△ABC 中,∠ACB =90°,AC =CB ,M 为AB 上一点.求证:2222AM BM CM +=.举一反三:【变式】已知,△ABC 中,AB =AC ,D 为BC 上任一点,求证:22AB AD BD CD -=⋅.类型二、勾股定理及逆定理的综合应用例3、如图,在正方形ABCD 中,AB=4,AE=2,DF=1,请你判定△BEF 的形状,并说明理由.举一反三:【变式】如图所示,已知△ABC 中,∠B =22.5°,AB 的垂直平分线交BC 于D ,BD =62,AE ⊥BC 于E ,求AE 的长.例4、如图①所示,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用123S S S 、、表示,则不难证明123S S S =+.(1)如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用123S S S 、、表示,那么123S S S 、、之间有什么关系?(不必证明)(2)如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用123S S S 、、表示,请你确定123S S S 、、之间的关系并加以证明.例5、如果ΔABC 的三边分别为a b c 、、,且满足222506810a b c a b c +++=++,判断ΔABC 的形状.类型三、勾股定理的实际应用例6、如图①,一只蚂蚁在长方体木块的一个顶点A 处,食物在这个长方体上和蚂蚁相对的顶点B 处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A 处举一反三:【变式】我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?一.选择题1.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( )A.5mB.7mC.8mD.10m2.如图,从台阶的下端点B到上端点A的直线距离为( )A.212 B.310C.56 D.583.下列命题中是假命题的是()A.三个内角的度数之比为1:3:4的三角形是直角三角形;B.三个内角的度数之比为1:3:2的三角形是直角三角形;C.三边长度之比1:3:2的三角形是直角三角形;D.三边长度之比2:2:2的三角形是直角三角形;课后练习4. 如图所示,在△ABC中,AB=AC=5,BC=6,点E、F是中线AD上的两点,则图中阴影部分的面积是().A.6 B.12 C.24 D.305.下列三角形中,是直角三角形的是( )+= B.三角形的三边比为1∶2∶3A.三角形的三边满足关系a b cC.三角形的一边等于另一边的一半D.三角形的三边为9,40,416.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.450a元B.225a元C.150a元D.300a元7.如图,Rt△ABC中,∠C=90°,AC=12,BC=5.分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.90B.60C.169D.1448. 已知,如图长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A.32cm B.42cm C.62cmD.122cm二.填空题9.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.10.若等边三角形的边长为2,则它的面积为______.11.如图,B ,C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是______米.12.下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行; ②如果两个角是直角,那么它们相等; ③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a b c 、、满足222a b c +=,那么这个三角形是直角三角形.13.如图,圆柱形容器中,高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为cm.(容器厚度忽略不计)14.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形cm,则其中最大的正方形的边长为______cm.的面积的和是10216.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.三.解答题17.若直角三角形两直角边的比是3:4,斜边长是20,求此三角形的面积.18.甲乙两船从位于南北走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.19.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.20.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,CB'=3.将纸片沿某条直线折叠,使点B落在点B'处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.。
勾股定理讲义
→← 3m4m “路”勾股定理板块复习(第一、二讲)1,注意隐含条件例:已知直角三角形的两边长分别为3cm ,4cm ,求第三边的长由于思考不周全,忽略隐含条件,误认为一边是3cm ,一边是4cm ,所以第三边就应该是5cm ,实际上,题目隐含着两种情况 练习:若直角三角形的两边长分别为6cm 和8cm ,则第三边长为 2,注意应用的区别在直角的三角形中需要用到三边关系时用勾股定理,而已知三边长想用勾股定理进行有关计算或推理时,则需先用勾股定理的逆定理判定它是不是直角三角形。
【知识点 1】 勾股定理内容例1:(1)在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =__(2)三角形的两条直角边的长分别为5,12,则斜边上的高线的长为( )重要考题(1)一个直角三角形的两边长分别为12和5,则此三角形的第三边长为_________。
(2)如果直角三角形的三边长为10、6、x ,则最短边上的高为________________.变式1:下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( ) A.a=1.5,b=2,c=3 B.a=7,b=24,c=25 C.a=6,b=8,c=10D.a=3,b=4,c=5变式2:已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A.25B.14C.7D.7或25变式3:三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形. 变式4:下列各组数中,以它们为边长的线段不能..构成直角三角形的是( ). A .6,8,10 B .8,15,17 C .1,3,2 D .2,2,32变式5:如图,一根12米高的电线杆两侧各用15米的铁丝固定, 两个固定点AB 之间的距离是( )变式2:A . 13 B . 9 C . 18 D . 10如图6: 400分别为所在正方形的面积,则图中字母A 所代表的正方形面积是 ___ .如右图,学校有一块长方形花圃,有极少数同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,而他们仅仅少走了 步(假设1米 = 2步),却踩伤了花草.变式7:如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 、E 、F 的面积之和是______2cmCBA 第8题图15题图 _ F_ E_ D_ C_ B _ ADCB A N OMAM O N B变式8:下列各组数中,以它们为边长的线段能.构成直角三角形的是( ). A .3,4,6 B .5,12,14 C .1,1D .2, ,4变式9:下列各组数中,以a 、b 、c 为边长的三角形不是直角三角形的是( )A.5c ,4b ,3a ===,B.13c ,12b ,5a ===C.5c ,2b ,1a ===D.3c ,2b ,23a ===变式10:下列各组数中, 能成为直角三角形的三条边长的是 ( ) A .8、15、17 B. 10、24、25 C. 9 、15、20 D. 9、 80、 81例2:为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够。
初二数学勾股定理讲义
初二数学勾股定理【知识点归纳】考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有2c22+ba=勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。
(2)如果直角三角形的两直角边长分别为1n2-,2n(n>1),那么它的斜边长是()A、2n B、n+1 C、n2-1 D、1n2+(3)在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.222+=a c b+= B.222a b cC.222+= D.以上都有可能c b a(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A、25B、14C、7D、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A、242c mc m D、602c m B、362c m C、482(3)已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、15例3:探索勾股定理的证明有四个斜边为c 、两直角边长为a,b 的全等三角形,拼成如图所示的五边形,利用这个图形证明勾股定理。
勾股定理经典讲义
勾股定理讲义Image考点1、勾股定理的内容和证明勾股定理:Image例1:思考:以下图形中那些能用来证明勾股定理,怎么证?ImageImage图1 图2 图3 图4例2:在中,,若C=,如下图1根据勾股定理可以得出:a+b=c,若不是直角三角形,如图2与图3,请你类比勾股定理猜想a+b与c的关系,并且证明你的结论图1BBBAAACCC图2图3考点2、利用勾股定理求长度在中,若C=,,则例3:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.1、△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.2、如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.3、等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.4、在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.5、如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.考点3、勾股定理的实际应用Image例4:如图1,公路MN和公路PQ在点P处交汇,且,点A处有一所中学,AP=160m,假设拖拉机行驶时,周围100m以内会受到影响,那么拖拉机在公路MN沿PN方向行驶时,学校是否会受到噪声的影响?请说明理由,如果受影响,那么学校受影响的时间为多少长?(已知拖拉机的速度为18km/h)例5:以下是小辰同学阅读的一份材料和思考:五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).图①图②图③小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x(x>0),可得x2=5,x=.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.参考上面的材料和小辰的思考方法,解决问题:五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.图④图⑤具体要求如下:(1)设拼接后的长方形的长为a,宽为b,则a的长度为;(2)在图④中,画出符合题意的两条分割线(只要画出一种即可);(3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)Image6、有一块如图的木板,经过适当的剪切后,可拼成一块正方形板材,请在图中画出剪切线,并把剪切后的板材拼成的一个面积最大的正方形在图中画出(保留剪切痕迹,不写画法)7、现场学习题问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.Image小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上 ________.思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、,请利用图2的正方形网格(每个小正方形的边长为)画出相应的△ABC,并求出它的面积是:.探索创新:(3)若△ABC三边的长分别为、、,请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为:.Image8、如图,一架长25分米的梯子AB,斜立在一竖直的墙上,这时梯子底端距墙底7分米.如果梯子的顶端沿墙下滑4分米,梯子的底端的水平方向沿一条直线也将滑动4分米吗?用所学知识,论证你的结论.9、如图,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A和点B的直线距离是.例6:如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.10、如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?11、在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处;另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?12、在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,则这里的水深是米考点4、勾股定理的逆定理勾股定理逆定理:勾股数:例7:如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=BC,F为CD的中点,连接AF、AE,问△AEF是什么三角形?请说明理由.FEACBD例8:若△ABC的三边的长为a、b、c,根据下列条件判断△ABC的形状(1)(2)a-ab+ ab-ac+ bc-b=0(3)若三边长分别为2n2+2n,2n+1,2n2+2n+1呢?(n为正整数)13、小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿钱再去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个(设公园到小芳家及小芳家到图书馆都是直线)()A.锐角 B.直角 C .钝角D.不能确定14、如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GHC.AB、CD、GH D.AB、CD、EF15、一个三角形的三边之比是3:4:5 则这个三角形三边上的高之比是()A. 20:15:12 B. 3:4:5 C. 5:4:3 D. 10:8:216、在下列说法中是错误的()A.在△ABC中,∠C=∠A-∠B,则△ABC为直角三角形.B.在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形.C.在△ABC中,若a=c,b=c,则△ABC为直角三角形.D.在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形.17、三角形的三边长分别为a2+b2、2ab、a2-b2(a、b都是正整数),则这个三角形是()A.直角三角形 B.钝角三角形 C.锐角三角形D.不能确定18、五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()三边a 、b 、ca +b -c 3、4、52 5、12、134 8、15、176A .B .C .D .19、若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.20、△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为____ __.21、已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状例9:已知:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l .(1)填表:(2)如果a +b -c =m ,观察上表猜想: (用含有m 的代数式表示).(3)证明(2)中的结论.3、4、53+ 4=55、12、135+ 12=137、24、257+ 24=259、40、419+ 40=41……..……21、b 、c21+ b =c22、观察下面表格中所给出的三个数a,b ,c ,其中a ,b ,c 为正整数,且a <b <c(1)试找给他们的共同点,并证明你的结论(2)当a =21时,求b ,c 的值23、观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.考点5、勾股定理与面积24、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为l a b cImage25、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,正方形A ,B ,C 的面积分别是8cm 2,10cm 2,14cm 2,则正方形D 的面积是 cm 2.26、在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4等于27、有一块土地形状如图3所示,,AB =20米,BC =15米,CD =7米,D C B A 图3请计算这块土地的面积Image28、如右图:在四边形ABCD中,AB=2,CD=1,∠A=60°,求四边形ABCD的面积29、如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,ADCB求这块地的面积.考点6、勾股定理与折叠例10:如图,长方形ABCD中,AD=9,AB=3,将其折叠,使点D与点B 重合,折痕为EF,求DE和EF的长.Image30、如图,矩形纸片ABCD 中,AB =8cm ,把矩形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,若cm ,则AD 的长( )A .4cmB .5cmC .6cmD .7cm31、如图,矩形纸片ABCD 的边AB =10cm ,BC =6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长E G C D B AImage32、有一块直角三角形纸板ABC ,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使点C 恰好落在AB 上于点E ,求CD 的长?Image33、如图,在正方形中,、分别是、上的点,将四边形沿翻折,使得点落在边的上,若,则的长度为______34、如图,在矩形纸片ABCD中,AB=,BC=6,沿EF折叠后,点C落在AB边上的点P处,点D落在Q点处,AD与PQ相交于点H,BPE=PHFEQDCBA(1) 求BE、QF的长(2) 求四边形QEFH的面积考点7、勾股定理相关几何问题Image例11:如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BC=5cm,DC=4cm,求AC和AB的长.Image例12:如图,已知正方形ABCD边长为1cm,△AEF是等边三角形,求AF的长度DCBA35、在四边形ABCD中,C是直角,AB=13,BC=3,CD=4,AD=12证明:ADBD36、已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.37、如图,△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D.求证:AD2=AC2+BD2.考点8、勾股定理与旋转例13:在等腰Rt△ABC中,CAB=,P是三角形内一点,且PA=1,PB=3,PC=CBAP求:CPA的大小?38、已知,如图△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=2,求∠BPCPBACImage例14:如图,在等腰△ABC中,∠ACB=90°,D、E为斜边AB上的点,且∠DCE=45°求证:DE2=AD2+BE239、如图中,为BC上任意一点,求证:.ABPCImage40、如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD 求证:考点9、最短路径问题ImageImage41、有一正方体盒子,棱长是10cm,在A点处有一只蚂蚁它想到B点处觅食,那么它爬行的最短路线是多少?42、有一个长方体盒子,它的长是70cm,宽和高都是50cm,在A点处有一只蚂蚁它想到B点处觅食,那么它爬行的最短路线是多少?Image43、如图所示,一个二级台阶,每一级的长、宽、高分别为60cm、30cm、10cm,A和B是这个台阶上两个相对的端点,在A点处有一只蚂蚁它想到B点处觅食,那么它爬行的最短路线是多少?44、如下图、王力的家在高楼15层,一天他去买竹竿,如果电梯的长、宽、高分别为1.2m,1.2m,1.3m,则他所买的竹竿最大长度是多少?Image45、如图,已知圆锥的母线AS=10㎝,侧面展开图的夹角是90°,点C为AS 的中点,A处有一只蜗牛想吃到C处的食物,但它不能直接爬到C处,只能沿圆锥曲面爬行,请你画出蜗牛爬行的最短路程的图形并求出最短路程.ACBS例15:问题解决:已知:如图,为上一动点,分别过点、作于点,于点,联结、.(1)请问:点满足什么条件时,的值最小?(2)若,,,设.用含的代数式表示的长(直接写出结果).拓展应用:参考上述问题解决的方法,请构造图形,并求出代数式的最小值.46、(1)【原题呈现】如图,要在燃气管道l上修建一个泵站分别向A、B两镇供气. 泵站修在管道的什么地方,可使所用的输气管线最短?解决问题:请你在所给图中画出泵站P的位置,并保留作图痕迹;(2)【问题拓展】已知a>0,b>0,且a+b=2,写出的最小值;(3)【问题延伸】已知a>0,b>0,写出以、、为边长的三角形的面积.。
【初二】第三章勾股定理讲义
勾股定理1.1 勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么222a b c +=.即直角三角形中两直角边的平方和等于斜边的平方。
1.2勾股定理的证明:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。
1.4勾股数:满足222a b c +=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为( )CABcb aDCGFE Hcb a cba ED CBA【例3】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______.【例4】 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定【例5】 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5 C【例6】 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍【例7】 在Rt ABC ∆中, 90C ∠=︒,(1)如果34a b ==,,则c =_______; (2)如果68a b ==,,则c =_______; (3)如果512a b ==,,则c =________; (4)如果1520a b ==,,则c =________.(5)若c =41,a =40,则b =______; (6)若∠A =30°,a =1,则c =______;(7)若∠A =45°,a =1,则b =______.【例8】 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )A. a b c <<B. c a b <<C. c b a <<D. b a c <<【例9】 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 【例10】已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,•如果8cm AB =,10cm BC =,EC 的长为 . 【例11】一个矩形的抽屉长为24cm ,宽为7cm,在里面放一根铁条,那么铁条最长可以是 . 【例12】如图,将一根30㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和24㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?CBA“路”4m3m【例13】 将一根长为24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外边的长度为cm h ,则h 的取值范围为( ) 【例14】如图,以一个直角三角形的三边为边长分别向外作三个正方形,如果两个较大正方形的面积分别是576和676,那么最小的正方形的面积为( ) 【例15】在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a ∶b =3∶4,c =75cm ,求a 、b ; (2)若a ∶c =15∶17,b =24,求△ABC 的面积; (3)若c -a =4,b =16,求a 、c ; (4)若a 、b 、c 为连续整数,求a +b +c .2 勾股定理的逆定理【例1】 分别以下列四组数为一个三角形的边长:(1)6、8、10;(2)5、12、13;(3)8、15、17; (4)4、5、6,其中能构成直角三角形的有____________.(填序号)【例2】 下列线段不能组成直角三角形的是( ).A .a =6,b =8,c =10B .3,2,1===c b aC .43,1,45===c b a D .6,3,2===c b a【例3】 已知ABC △的三边长分别为5,13,12,则ABC △的面积为( )A .30B .60C .78D .不能确定【例4】 在ABC △中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.【例5】 若ABC △中,()()2b a b a c -+=,则B ∠=____________; 【例6】 如图,正方形网格中,每个小正方形的边长为1,则网格上的ABC△是______三角形.【例7】 下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).A .1∶1∶2B .1∶3∶4C .9∶25∶26D .25∶144∶169【例8】 已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).A .一定是等边三角B .一定是等腰三角形C .一定是直角三角D .形状无法确定【例9】 若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以22a a a -+、、为边的三角形的面积为______.【例10】 ABC △的两边a b ,分别为512,,另一边c 为奇数,且a b c ++是3的倍数,则c 应为______,此三角形为______.【例11】 如图,ABC △中,90C ∠=︒,330AC B =∠=︒,,点P 是BC 边上的动点,则AP 长不可能是( )A .B .C .D .7【例12】 如图,在△ABC 中,已知AB =AC =2a ,∠ABC =15°,CD 是腰AB 上的高,求CD 的长.DCBA【例13】 如图所示,已知∠1=∠2,AD =BD =4,CE ⊥AD ,2CE =AC ,那么CD 的长是( )【例14】 如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.【例15】 如图,在ABC △中,CD AB ⊥于D ,9435AC BC DB ===,,.(1)求CD AD ,的值;(2)判断ABC △的形状,并说明理由.【例16】 已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.【例17】 如图所示,在四边形ABCD 中,已知:AB :BC :CD :DA =2:2:3:1,且∠B =90°,求∠DAB 的度数.【例18】 如图,已知CA ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD .(1)试猜想线段CE 与DE 的大小与位置关系,并说明你的结论; (2)若AC =5,BD =12,求CE 的长.【例19】 阅读理解题:(1)如图所示,在ABC △中,AD 是BC 边上的中线,且PBCA21EBDCADCBAABDCD CBACDBE AA12AD BC =.求证:90BAC ∠=︒(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直接运用这个结论解答下列题目:一个三角形一边长为5,这边上的中线长为,另两边之和为7,求这个三角形的面积.【例20】 已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .【例21】 已知∠MAN ,AC 平分∠MAN .(1)在图1中,若∠MAN =120°,∠ABC =∠ADC =90°,求证:AB +AD =AC ;(2)在图2中,若∠MAN =120°,∠ABC +∠ADC =180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;BCDN AM MAND CB【例22】 在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?. 1.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.2.如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆CB A底部B 的距离为6米,则折断点C 到旗杆底部B 的距离为3.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于 .4. Rt △ABC 中,斜边BC =2,则222AB AC BC ++的值为( ).5.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,则CD 的长为 .6.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 7.如图,已知正方形ABED 与正方形BCFE ,现从A ,B ,C ,D ,E ,F 六个点中任取三个点,使得这三个点能作为直角三角形的三个顶点,则这样的直角三角形共有( )A .10B .12C .14D .168.如图,在Rt ABC △中,已知,90ACB ∠=︒,15B ∠=︒,AB 边的垂直平分线交AB 于E ,交BC 于D ,且13BD =,则AC 的长是 .9. 如图所示,在ABC △中,::3:4:5AB BC CA =,且周长为36,点P 从点A 开始沿AB 边向B 点以每秒1cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,则过3秒时,BPQ △的面积为( )2cm .10. 如图所示的一块地,已知AD =4m ,CD =3m ,AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.DCBAFECBDAE DBC AQCA。
第14章勾股定理-复习讲义-数学八年级上册
勾股定理一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。
公式的变形:a2 = c2- b2, b2= c2-a2 。
2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数有:(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 )( 8,15,17 )(9,12,15 )4、最短距离问题:主要运用的依据是两点之间线段最短。
二、经典例题:1、利用勾股定理求线段的长b c例1、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)已知=2,=3,求;(2)已知,=32,求、. 解:(1)∵ ∠C =90°,=2,=3,∴ ; (2)设,.∵ ∠C =90°,=32, ∴ .即. 解得=8.∴ ,.对应练习:如图,在ABC ∆中,90ACB ∠=︒,CD AB ⊥于点D ,3AC cm =,4BC cm =,求AD ,CD 的长.解:90ACB ∠=︒,3AC cm =,4BC cm =, 5AB cm ∴=.根据直角三角形的面积公式,得 2.4AC BCCD cm AB==. 在RtACD ∆中, 1.8AD cm2、利用勾股定理说明边的关系b c a :3:5a c =ba c bc a ==3a k =5c k =b 222a b c +=222(3)32(5)k k +=k 33824a k ==⨯=55840c k ==⨯=例2、如图所示,在Rt △ABC 中,∠C =90°,AM 是中线,MN ⊥AB ,垂足为N ,试说明.解:∵MN ⊥AB ,所以,,∴. ∵AM 是中线,所以MC =MB .又∵∠C =90°,∴在Rt △AMC 中,,∴.3、利用勾股定理求面积例3、如图,Rt ABC ∆中,90ACB ∠=︒,以AC 、BC 为直径作半圆1S 和2S ,且122S S π+=,则AB 的长为( )A .16B .8C .4D .2解:由勾股定理得,222AC BC AB +=,2222111()()()222228AC BC AC BC ππππ⨯+⨯=⨯+=, 解得,2216AC BC +=,222AN BN AC -=222AN MN AM +=222BN MN MB +=2222AN BN AM BM -=-222AM MC AC -=222AN BN AC -=则22216AB AC BC =+=, 解得,4AB =, 故选:C .对应练习:如图,其中所有三角形都是直角三角形,所有四边形都是正方形.若1S ,2S ,3S ,4S 和S 分别代表相应的正方形的面积,且14S =,29S =,38S =,410S =,则S 等于()A .25B .31C .32D .40解:如图,由题意得:21213AB S S =+=,23418AC S S =+=, 22231BC AB AC ∴=+=, 231S BC ∴==.故选:B .4、利用勾股定理解直角三角形折叠问题例4、长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.解:设DE=xcm ,则BE=DE=x ,AE=AB ﹣BE=10﹣x ,△ADE 中,DE 2=AE 2+AD 2,即x 2=(10﹣x )2+16. ∴x=(cm ).答:DE 的长为cm.对应练习:如图,有一块直角三角形纸片,两直角边6AC cm =,8BC cm =,将纸片沿AD 折叠,直角边AC 恰好落在斜边上,且与AE 重合,求BDE ∆的面积.解:6AC cm =,8BC cm =10AB cm ∴==将纸片沿AD 折叠,直角边AC 恰好落在斜边上,且与AE 重合, 6AC AE cm ∴==,90DEB ∠=︒ 1064BE cm ∴=-=设CD DE x ==,则在Rt DEB ∆中,2224(8)x x +=-解得3x =, 即DE 等于3cmBDE ∴∆的面积14362=⨯⨯=答:BDE ∆的面积为26cm5、判断直角三角形例5、在以线段a ,b ,c 的长三边的三角形中,不能构成直角三角形的是( ) A .4a =,5b =,6c =B .::5:12:13a b c =C .a =b =cD .4a =,5b =,3c =解:A 、222456+≠,不能构成直角三角形,故本选项符合题意;B 、设三角形三边为5k ,12k ,13k ,2(5)(k +2212)(13)k k =,能构成直角三角形,故本选项不符合题意;C 、(2(+2(=2,能构成直角三角形,故本选项不符合题意;D 、222345+=,能构成直角三角形,故本选项不符合题意;故选:A .对应练习:)如图,在△ABC 中,∠B=30°,∠C=45°,AC=2.求BC 边上的高及△ABC的面积.解:∵AD ⊥BC ,∠C=45°,∴△ACD 是等腰直角三角形,∵AD=CD . ∵AC=2,∴2AD 2=AC 2,即2AD 2=8,解得AD=CD=2. ∵∠B=30°, ∴AB=2AD=4, ∴BD===2,∴BC=BD+CD=2+2,∴S △ABC =BC •AD=(2+2)×2=2+2.6、最短距离问题例6、如图①,有一个圆柱,它的高等于12,底面半径等于3,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)解:如图②所示,由题意可得:, 在Rt △AA ′B 中,根据勾股定理得: 则AB =15.所以需要爬行的最短路程是15.cmcm 12AA '=12392A B π'=⨯⨯=22222129225AB AA A B ''=+=+=cm cm对应练习:如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A处的最短距离是()A B.10厘米C.厘米D.8厘米解:如图所示:最短路径为:P A'→,将圆柱展开,'=,PA cm10'=.故选:B.最短路程为10PA cm。
勾股定理期末复习讲义
勾股定理期末复习讲义提要:本节内容的重点是勾股定理及其应用.勾股定理是解几何中有关线段计算问题的重要依据,也是以后学习解直角三角形的主要依据之一,在生产生活实际中用途很大,它不仅在数学中,而且在其他自然科学中也被广泛地应用.本节内容的难点是勾股定理的证明.勾股定理的证明方法有多种,课本是通过构造图形,利用面积相等来证明的这里还涉及到了解决几何问题的方法之一:面积法。
割补(……陌生的名词么,但是我们用过)的思想也要值得我们去注意.【知识结构】1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 2.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.3.勾股数能够成为直角三角形三条边长的三个正整数,称为勾股数.你记得几组勾股数?显然,若(a,b,c)为一组基本勾股数,则(ka,kb,kc)也为勾股数,其中k为正整数.4.利用尺规画出长度是无理数的线段.了,知道画吧5.勾股定理及其逆定理的应用.蚂蚁怎样走最近【注意】1.勾股定理的证明,是利用图形的割补变化,通过有关面积的数量关系进行证明的方法.2.在应用勾股定理时,要注意在直角三角形的前提条件,分清直角三角形的直角边和斜边.3. 在应用勾股定理逆定理时,先要确定最长边,再计算两条较短边的平方和是否等于最长边的平方,最后确定三角形是不是直角三角形.4. 本章关联的知识点:实数的运算,三角形,四边形,图形变换,解方程等【基础训练A】1.三角形三边之比分别为①1:2:3,②3:4:5;③1.5:2:2.5,④4:5:6,其中可以构成直角三角形的有()A.1个 B.2个 C.3个 D.4个2.若线段a、b、c能构成直角三角形,则它们的比为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:73.下面四组数中是勾股数的有()(1)1.5,2.5,2 (2,2(3)12,16,20 (4)0.5,1.2,1.3A.1组B.2组C.3组D.4组4. △ABC中,∠C=90°,c=10,a:b=3:4,则a=______,b=_______.5. 在△ABC中∠C=90°,AB=10,AC=6,则另一边BC=________,面积为______,• AB边上的高为________;6.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.B C A D B C A D7. 如图,已知CD=3m ,AD=4m , ∠ADC=90°, AB=13m ,BC=12m ,(1)求AC 边的长。
勾股定理综合总结复习讲义
勾股定理综合提升【知识梳理 】1、勾股定理 :直角三角形两直角 的等于. 【性 定理】2、勾股逆定理 :假如直角三角形三a 、b 、c足,那么 个三角形是_________三角形. (且∠=90°)【判断定理】当三角形三a 、b 、c ,且c 最大 ,①若a 2+b 2=c 2, ∠C ________; ②若c 2>a 2 +b 2, ∠ C __________ ;③若c 2<a 2+b 2, ∠ C___________.3、勾股数 : 足条件a 2+b 2=c 2 的三个正整数称 勾股数.常 的 勾股数 有:3 、 4、 5( 整数);5 、 12、 13;6 、8、 10( 偶数);7、 24、 25;8 、 15、 17;9、 12、 15;9 、40、 41;10、 24、 26;11 、 60、 61;15 、 20、 25⋯⋯些勾股数 的整数倍 仍旧是勾股数 勾股数通式巧 :通式一 :( 3,4,5 ),(6,8,10 )⋯⋯⋯⋯.3n 、 4n 、 5n ( n 是正整数 )通式二:( 5,12,13 ),( 7,24,25 ),( 9,40,41 )⋯⋯⋯2n 1、 2n 2 2n 、 2n 22n 1( n 是正整数)通式三:( 8,15,17 ),( 12,35,37 )⋯⋯⋯2n 、 n 2 1 、 n 2 1( n 是正整数)4、勾股定理的 明:a bDb aaacaacbcb FabcGaCAHEbcb b b cacababB5、直角三角形中的几个性 明:( 1)直角三角形斜 上的中 等于_________________.(2) Rt △中 30°角所 的 等于 _______________. 三 比 ________________.(3) 45 °的等腰直角三角形三 比 ___________________.6、勾股树:CDBA(1) 以直角三角形的三边为边向外作等边三角形( 如图 ) ,研究S1+S2与S3的关系;等边三角形边长为 a ,则高=__________,面积=______________.(2) 以直角三角形的三边为斜边向形外作等腰直角三角形( 如图 ) ,研究S1+S2与S3的关系;(3) 以直角三角形的三边为直径向形外作半圆( 如图 ) ,研究S1+S2与S3的关系.7、最短距离问题:将立体图形睁开,利用直角三角形的勾股定理求出最短距离(斜边长).8、非负性:绝对值a0平方项(或偶次方项)a20二次根式a09、数轴表示数:如在数轴上作出表示 2 、 3 、 5 、10 、1- 2 和 2 +1的点10、方法:见比设参【经典易错例题透析】种类一:勾股定理及其逆定理的应用1. Rt△ ABC 中,斜边 BC= 2,则 AB2+AC 2+BC 2的值为 () .(A)8(B)4(C)6(D) 没法计算2.( 易错题 ) 以下几组数据:①0.6, 0.8, 1② 12,13,5;③ 7,8,15④ 40,41,9.此中是勾股数的有()(A)4 组(B)3 组(C)2 组(D)1 组3. 已知直角三角形两直角边分别为5,12, 则三边上的高的和为____.4. 已知x 12 x y 25 与z2 10z 25 互为相反数,则以x、y、z为三边的三角形是三角形 .5. 已知 a,b,c 是△ ABC 的三边长,且知足关系式 c 2 a 2 b 2 2(a b)20 ,则△ABC 的形状为 _____________.6.如图,在 Rt △ ABC中,∠ C=90°, AC=3.将其绕 B 点顺时针旋转一周,则分别以 BA,BC为半径的圆形成一圆环,则该圆环的面积为()A. B.3 C.9 D. 67.图甲是我国古代有名的“赵爽弦图” 的表示图,它是由四个全等的直角三角形围成的.在 Rt △ABC中,若直角边 AC=6,BC=5,将四个直角三角形中边长为 6 的直角边分别向外延伸一倍,获得图乙所示的“数学风车” ,则这个风车的外围周长(图乙中的实线)是 _________种类二:利用勾股定理证明、计算1.如图,直线 l 经过正方形 ABCD 的极点 B,点 A、 C 到直线 l 的距离分别是1、 2,则正方形的边长是 ______.2.在直线上挨次摆着7 个正方形(如图 ),已知倾斜搁置的 3 个正方形的面积分别为1,2, 3,水平搁置的 4 个正方形的面积是S1, S2, S3, S4,则S1+ S2+ S3+ S4= ______.3.如图,已知△ ABC 中,∠ABC =90°, AB = BC,三角形的极点在互相平行的三条直线 l1,l2,l3上,且 l 1,l2之间的距离为2,l2,l 3之间的距离为3,求 AC 的长是多少 ?4. 在△ ABC中,∠ C=90°,点 M是 BC的中点, MD⊥ AB于点 D,求证: AD2=AC2+BD2种类三:对于勾股定理的实质应用1.如图 , 圆柱形容器中 , 高为 8cm, 底面周长为 12cm, 在容器内壁离容器底部 2cm 的点 B 处有一蚊子 , 此时一只壁虎正幸亏容器外壁 , 离容器上沿 2cm 与蚊子相对的点 A 处 , 则壁虎捕获蚊子的最短距离为 ________cm ( 容器厚度忽视不计 ).种类四:勾股定理与乘法公式变形综合应用1.(巧思妙解题)在 Rt△ABC 中,∠ C= 90o,AC+BC=15 , AB=11 ,则 Rt△ ABC 的面积为 __________ .2.如图, Rt △ABC 中,∠C=90 °,CD ⊥ AB 于点 D , AB=13 , CD=6 ,则 AC+BC等于_______________.3.如右上图中大、小正方形的面积分别为 65 和 9,那么一个直角三角形的两直角边的和等于 __________.种类五:勾股定理与等腰直角三角形综合应用1. 如图,在ABC 中,AC=BC,ACB 90 , D 、E 是边AB 上的两点,AD =3,BE=4,DCE 45 .求ABC 的面积.CA BD E2.如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PB=1,PC=2,PA=3 ,求∠BPC 的度数 .3.如图,在四边形ABCD 中, AB=BC ,∠ ABC=∠ CDA=90°, BE⊥AD 于点 E,且四边形 ABCD 面积为 8,则 BE 的长为 ____________4.如图, P 是正△ ABC内的一点,且 PA=6,PB=8,PC=10,若将△ PAC绕点 A 旋转后,获得,则点 P 与点之间的距离为________,∠ APB=________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1E
D
C B
A
勾股定理复习
班级______姓名_________
一.知识归纳
1.勾股定理:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么____________, 2.勾股定理的逆定理
如果三角形三边长a ,b ,c 满足________,那么这个三角形是_______,其中_____为斜边 如何判定一个三角形是否是直角三角形
(1)首先确定最大边(如c ).(2)验证2
c 与2
a +2
b 是否具有相等关系.
若2c =2a +2b ,则△ABC 是 ;若2c ≠2a +2
b ,则△ABC 不是 .
3.勾股数
①能够构成直角三角形的三边长的三个_________称为勾股数,即222a b c +=中,a ,b ,c 为_____整数时,称a ,b ,c 为一组勾股数
②记住常见的勾股数可以提高解题速度,如_______;_______;________;7,24,25等
题型一:直接考查勾股定理
例1.(1)在ABC ∆中,90C ∠=︒,17AB =,15AC =,BC =
(2)在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =
(3)已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 (4)已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 2cm
练习1:求下列阴影部分的面积:
(1) 正方形S = ; (2)长方形S = ; (3)半圆S = ;
2:如图2,已知△ABC 中,AB =17,AC =10, BC 边上的高AD =8,则边BC 的长为
例2.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长
D
C
B
A
题型二:勾股定理的逆定理及判断三角形的形状
例3.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =
D C
B
A
练习1:已知()2
1213x y -+-与2
1025z z -+互为相反数,则以x 、y 、z 为边的三角形是 三角形。
(填“直角”、“等腰”、“任意”)
2、若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .
3.如图网格中的△ABC ,若小方格边长为1,请你根据所学的知识 (1)求△ABC 的面积;(2)判断△ABC 是什么形状?并说明理由.
题型三:勾股定理与方程思想的结合
例4、已知:如图所示,在四边形ABCD 中,AB=AD=8,∠A=60°,∠D=150°,四边形ABCD 的周长为32,求BC 和CD 的长.
练习.一直角三角形的斜边比一直角边大4,另一直角边长为8,则斜边长为 .
题型四:勾股定理在折叠问题中的应用
例5、如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.
C
B
A
D
练习、如图,矩形纸片ABCD 中,AB =3 cm ,BC =4 cm .现将A ,C 重合,使纸片折叠压平,设折痕为EF ,试求AF 的长和重叠部分△AEF 的面积.
题型五:实际问题中应用勾股定理
例6、如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道
上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多 少元钱?
练习1.如图,长方体三条棱的长分别为4cm ,3cm ,2cm ,蚂蚁从A 1出发,沿长方体的表面爬到C 点,则最短路线长是 cm .
练习2.如图,∠AOB=90°,OA=45cm ,OB=15cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?
5m
13m
例7、在甲村至乙村的公路有一块山地正在开发.现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图13所示.为了安全起见,爆破点C 周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁? 请通过计算进行说明。
练习1.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方60米处的C点,过了5秒后,测得小汽车所在的B点与车速检测仪A之间的距离为100米.
(1)求BC间的距离;(2)这辆小汽车超速了吗?请说明理由.
练习2.如图,某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风中心,沿BC方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?。