水力压裂形成多裂缝的力学条件
水力压裂_精品文档
水力压裂什么是水力压裂?水力压裂(Hydraulic Fracturing,简称水压)是一种在地下岩石层中注入高压水和添加剂以制造裂缝的技术。
它被广泛用于油田和天然气开采中,旨在增加地下储层的渗透率和产量。
水力压裂是目前广泛使用的一种增产方法,可应用于各种类型的地质结构和岩石组合。
水力压裂的原理和过程压裂液的组成水力压裂过程中使用的压裂液是由水、砂和添加剂组成的混合物。
水的主要作用是传递压力,并在裂缝形成后将砂颗粒带入其中以保持裂缝的开放性。
砂颗粒的大小和形状可以根据具体的地质条件进行调整。
添加剂通常包括粘度剂、消泡剂、防菌剂和界面活性剂等,用于改善压裂效果以及保护设备。
压裂过程水力压裂通常是在千米以下的深井中进行的。
整个过程分为多个步骤:1.预处理:地下岩石的特性和地质结构分析后,会进行预处理来确定最佳注水点和压裂压力。
这一步骤通常包括孔隙度测量、浸泡实验和岩心分析等。
2.井筒注水:在进行水力压裂前,需要先在井筒中注入压裂液。
压裂液通过井筒进入地下岩石层,加压注入。
3.裂缝扩张:高压的压裂液在地下岩石层中流动,对岩石施加巨大的压力。
这个过程会导致岩石层裂缝扩张,增加油气的渗透区域。
4.砂颗粒进入:压裂液中的砂颗粒会随着液体一起进入岩石裂缝中。
这些砂颗粒的作用是防止裂缝在裂缝压力释放后重新闭合。
5.压力释放:压力释放后,压裂液从井筒中排出,油气开始从裂缝中渗出到井筒中。
水力压裂的优势和挑战优势1.提高产量:水力压裂可以显著增加地下储层的渗透率,从而提高油田和天然气田的产量。
2.提高可采储量:通过裂缝扩张和增加储层渗透性,水压可以开发以前无法利用的油气资源。
3.可针对不同地质条件:水力压裂可以适应不同类型的地质结构和岩石组合,具有一定的灵活性。
挑战1.环境影响:水力压裂过程中使用的大量水和化学添加剂可能对地下水资源和环境造成污染。
2.地震风险:水力压裂过程中产生的岩石应力释放可能导致地震活动,尤其是在地下注水压力较大的地区。
水力压裂多裂缝基础理论研究
水力压裂多裂缝基础理论研究水力压裂技术是一种广泛应用于石油、天然气等矿产资源开采中的重要方法。
在水力压裂过程中,由于地层岩性的复杂性和压力传递的特殊性,往往会产生多裂缝现象。
多裂缝的生成、扩展和相互作用对采矿工程的稳定性和安全性具有重要影响,因此针对水力压裂多裂缝的基础理论研究具有重要意义。
本文旨在深入探讨水力压裂多裂缝的基础理论,为相关工程实践提供理论支撑。
水力压裂多裂缝的基础理论主要涉及裂缝的产生原因、特征和影响等方面。
在采矿工程中,地层岩性的不均匀性和应力分布的不确定性是导致多裂缝产生的主要原因。
裂缝的产生会导致地层中的压力重新分布,进而引发裂缝的扩展和相互作用。
多裂缝的特征主要表现在裂缝的数量、形态、大小和方向等方面。
裂缝的数量和形态受地层岩性、开采规模和压力条件等因素影响,而裂缝的大小和方向则与应力分布和地层构造有关。
多裂缝的影响主要表现在以下几个方面:多裂缝会导致地层中的压力重新分布,影响采矿工程的稳定性和安全性。
多裂缝会降低采矿效率,增加采矿成本。
多裂缝还可能引发地面塌陷等地质灾害。
因此,针对水力压裂多裂缝的基础理论研究具有重要意义。
为了深入探讨水力压裂多裂缝的基础理论,本文设计了一系列实验研究。
实验过程中,我们采用了真实地层岩样和实际施工条件,通过模拟水力压裂过程,观察和记录了多裂缝的产生、扩展和相互作用情况。
同时,我们采用了岩石力学测试仪器和压力传感器等设备,对裂缝的数量、形态、大小和方向等特征进行了详细测量。
实验结果表明,地层岩性的不均匀性和应力分布的不确定性是导致多裂缝产生的主要原因。
在采矿工程中,多裂缝的产生会导致地层中的压力重新分布,引发裂缝的扩展和相互作用。
多裂缝的数量和形态受地层岩性、开采规模和压力条件等因素影响,而裂缝的大小和方向则与应力分布和地层构造有关。
为了进一步验证水力压裂多裂缝基础理论的正确性,本文采用了数值模拟方法。
我们建立了水力压裂多裂缝的数值模型,该模型基于弹塑性力学理论,并考虑了地层岩性的不均匀性和应力分布的不确定性等因素。
《井下作业》第四章水力压裂技术
货源广、便于配制、价钱便宜。大型压裂中,压裂液是压裂施工费用中的主要组
成部分。速溶连续配制工艺大大方便了施工,减少了对液罐及场地的要求。
二、压裂液的类型
目前常用的压裂液有水基压裂液、酸基压裂液、油基压裂液、乳状压裂液及泡沫压裂液
等。具有粘度高、摩阻低及悬砂能力好等优点的水基冻胶压裂液,已成为矿场主要使用的压
裂液
81
( 一 )水 基 压 裂 液
水基压裂液是用水溶胀性聚合物经交联剂交联后形成的冻胶。常用的成胶剂有植物胶、
纤维素衍生物以及合成聚合物;交联剂有硼酸盐、钛、锆等有机金属盐等。在施工结束后,
为了使冻胶破胶还需要加入破胶剂,常用破胶剂有过硫酸铵、高锰酸钾和酶等。
活性水压裂液
在水溶液中加入表面活性剂的低粘压裂液称为活性水压裂液。这种压裂液配制简单、成
第 四 章 水 力 压 裂 技 术
水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中, 在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层 产生裂缝。继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在 支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到 增产、增注的目的。
施工资料统计出来的,破裂压力梯度值为:
。可以用各地区的破裂压力梯度的
大小估计裂缝的形态,一般认为 小于
时形成垂直裂缝,而大于
时
则是水平裂缝。因此深地层出现的多为垂直裂缝,浅地层出现水平裂缝的几率大。这是由于
浅地层的垂向应力相对比较小,近地表地层中构造运动也较多,水平应力大于垂应力的几率
也大。有时会碰到破裂压力梯度特高的地层,这可能是由于构造关系或岩石抗张强度特别大
水力压裂
携砂液
防止井筒沉砂。
水力压裂技术
压裂液的性能要求: ①滤失少: ③摩阻低: 造长缝、宽缝 取决于它的粘度与造壁性
②悬砂能力强:取决于粘度 摩阻愈小,用于造缝的有效功率愈大
④稳定性好: 热稳定性和抗机械剪切稳定性 ⑤配伍性好: 不应引起粘土膨胀或产生沉淀而堵塞油层 ⑥低残渣: ⑦易返排: 以免降低油气层和填砂裂缝的渗透率 减少压裂液的损害
1 x1 x E
x2
E
y
x3
E
z
水力压裂技术
由于存在侧向应力的约束,则:
x x1 x 2 x 3
令: x 得:
1 x y z 0 E
y
x y
1
z
考虑到构造应力等因素的影响,可以得到最大、最小水平 侧压系数 主应力为:
水力压裂技术
(二)井壁上的应力 1.井筒对地应力及其分布的影响
地层三维应力问题转化为二维方法处理
y H (1) 当 当 r , ra a x (2) , x y 时, (3) 随着 时, 2 2的增加, 3 H , 2 x x y min 0 ,180 y
3
压缩并使油藏流 体流动的压差
使压裂液滤失于 储层内的压差 裂缝壁面滤 饼的压力差
水力压裂技术
(三)具有造壁性压裂液滤失系数CⅢ
滤失系数CⅢ是由实验方法测定
加压口
滤 失 量 ml
α
Vsp
tg m
筛座 (含滤纸或岩心片) 出液口 图4-4 静滤失仪示意图
0
1
2 3min 4 时间,
压裂基础知识详细资料版
压裂基础知识一、水力压裂原理(一)大体原理水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当此压力大于井壁周围的地应力和地层岩石抗张强度时,便在井底周围地层产生裂痕;继续注入带有支撑剂的携砂液,裂痕向前延伸并填以支撑剂,关井后裂痕闭合在支撑剂上,从而在井底周围地层内形成具有必然几何尺寸和高导流能力的填砂裂痕,使井达到增产增注的目的。
(二)增产原理1、形成的填砂裂痕的导流能力比原地层系数大得多,可大几倍到几十倍,大大增加了地层到井筒的连通能力;2、由原先渗流阻力大的径向流渗流方式转变成单向流渗流方式,增大了渗流截面,减小了渗流阻力;3、可能沟通独立的透镜体或天然裂痕系统,增加新的油源;4、裂痕穿透井底周围地层的污染堵塞带,解除堵塞,因此能够显著增加产量。
二、压裂材料(一)压裂液在压裂进程中注入的液体统称为压裂液,依照压裂进程中注入井内的压裂液在不同施工时期所起的作用不同,可把压裂液分为前置液、携砂液、顶替液三种。
1、依照作用不同分类前置液:它的作用是破裂地层并造成必然几何尺寸的裂痕,以便后面的携砂液进人在温度较高的地层里,它还可起必然的降温作用。
有时为了提高前置液的工作效率,在前置液中还加入必然量的细砂(粒径100-140目,砂比10%左右)以堵塞地层中的微隙,减少液体的滤失。
携砂液:它起到将支撑剂带入裂痕中并将支撑剂填在裂痕内预定位置上的作用。
在压裂液的总量中,这部份比例专门大。
携砂液和其他压裂液一样,有造缝及冷却地层的作用。
携砂液由于需要携带密度很高的支撑剂,必需利用交联的压裂液(如等)。
顶替液:顶替液是在加砂程序终止后,用来将携砂液全数替人裂痕中,以提高携砂液的效率和避免井筒沉砂。
2、依照类型不同分类依照压裂液类型不同,能够将压裂液分为水基压裂液、油基压裂液、泡沫压裂液等。
(1)水基压裂液:水基压裂液是用水溶胀性聚合物(称为成胶剂)经交链剂(又叫交联剂)交链后形成的冻胶。
第五章水力压裂技术
第五章 水力压裂技术§5—1 水力压裂力学地层中形成水力裂缝的过程与液体流动特性及岩石的力学性质有关。
水力造缝的本质是岩石在液体压力作用下的破裂与变形问题,因此造缝特性与岩石的受力及力学性质有关。
一.地应力场1.地应力场概念:地应力是由于岩石变形引起的介质内部单位面积上的作用力。
地应力场:是指地应力大小和方向在地层空间位置的分布。
2.地应力剖面概念地应力剖面是指研究地应力大小在纵向上的变化。
二.地应力的类型(1)原地应力:开发之前地应力原始大小。
(2)扰动应力:开发引起的地应力改变。
(3)构造应力:由构造运动在岩体中引起的应力。
(4)残余应力:除去外力后尚残存在岩石中的应力。
(5)重力应力:由上覆岩层的质量引起的地应力。
(6)热应力:由于地层温度发生变化在其内部引起的内应力增量。
(7)分层地应力:按地层分层给出不同的地应力。
(8)古地应力和现今地应力:某地质时期或重要地质事件前的地应力称古地应力。
目前存在或正在活动的称现今地应力。
石油工程关心的是现今地应力。
3.地应力测试1)长源距声波与密度测井方法该方法通过测井取得剖面上变化的岩石的纵波速度P υ和横波速度S υ,然后求出岩石泊松比ν的纵向变化,利用下式求出最小水平主应力σh ,而取得地应力剖面。
σh ()1P P ννσααν=-+- 4—12222212P S P S υυνυυ-=- 4—2 式中:σv —上覆层压力,通过密度测井得到。
P —地层压力;α—孔隙弹性系数,通过实验测的。
2)测试压裂方法(现场常用)测试压裂:是将不含砂的压裂液注入地层,造缝后停泵侧压力降落曲线,待曲线上出现拐点后测试结束,出现拐点时相应的压力即裂缝闭合压力,其大小与岩层中垂直于裂缝面的应力值相等,也即就是地层最小主应力。
如图4—1 所示。
上图中,产生人工裂缝后停泵,裂缝停止扩展处于临界闭合状态,闭合压力为P s 。
图4—1 水力压裂测试典型压力曲线结论:可以认为,裂缝临界闭合时,裂缝内的流体压力等于裂缝闭合的最小地应力。
煤层水力压裂网状裂缝形成条件分析
引 言
中 国大 部分 煤 层 渗 透 率 较 低 ,需 通 过 水 力 压
1 缝网形成力学条件
1 . 1 煤岩 体简 化 力学模 型
裂等增产措施才 能有效开采煤层气 ¨ J 。缝 网压
裂技 术是 近 些 年 广 泛 应 用 的新 型 水 力 压 裂 技 术 , 利 用储层 水 平 最 大 、最 小 主应 力 差 值 与裂 缝 延 伸
略, 断续裂 缝 或贯通 裂缝 在水 压作 用 下开启 和延 伸 时, 裂 缝 内净压 力 保 持不 变 , 且 不考 虑 煤 岩 本 体 产
生新分支裂缝的情况。
收稿 日期 : 2 0 1 2 1 0 1 5 ; 改回日期 : 2 0 1 3 0 3 1 9 基金项 目: 国家 自 然科学 基金“ 基于混沌理论煤层气井压裂孔裂隙分形演化与渗流特征研究” ( 5 1 2 7 4 0 6 7 ) 作者简介 : 李玉伟( 1 9 8 3 一) , 男, 2 0 0 7 年毕业于东北石油大学石 油工程专业 , 现为该校石油与天然气 工程专业在读博 士研究生 , 主要从事 油气井工程 力学 与储 层增 产措施 等方面研 究。
1 o 0
特 种 油 气 藏
第2 O卷
式中: r 为 裂缝 壁面 的剪应 力 , MP a ; / x 为 裂 缝 壁 面 的内摩擦 系数 。 由弹塑性 力学 , 作用 于倾 角为 裂 隙面上 的法
,
向应 力 和切 向应力 ( 图2 ) 可 表示 为 :
的力学 问题 研 究还较 少 ,本 文应 用 弹性 力学理 论 ,
为建 立计 算模 型 , 假设煤 岩 体及煤 岩块 为各 向
同性 线 弹性体 , 断续 裂缝 与贯 通裂 缝 问影 响可 以忽
水力压裂力学第二版
水力压裂力学第二版水力压裂力学第二版引言:水力压裂是一种常用于增强天然气和石油开采效率的工艺。
它通过在井中注入高压液体,将岩石层破碎,从而增加油气的流通性和产量。
本文将介绍水力压裂力学的第二版,其中包括水力压裂的基本原理、水力压裂液体的选择、破裂力学以及水力压裂井的设计和优化。
一、水力压裂的基本原理水力压裂的基本原理包括两个方面:岩石力学和液体流体力学。
岩石力学涉及到岩石材料的强度和断裂特性,而液体流体力学则考虑了液体在裂缝中的运动和压力传递。
1. 岩石力学:岩石的强度和断裂特性是水力压裂的基础。
强度决定了岩石能够承受的最大应力,断裂特性则决定了岩石层能够裂缝的倾向和裂缝间距。
通过了解岩石的力学参数,可以选择合适的水力压裂参数,以达到最佳的裂缝扩展效果。
2. 液体流体力学:水力压裂液体在压力作用下通过井筒进入破裂带,然后通过裂缝扩展压裂岩石。
液体的物理性质,如黏度、密度、渗透性和溶解性,对水力压裂的效果产生了重要影响。
通过选择合适的液体,可以实现更好的裂缝扩展效果和流体排放。
二、水力压裂液体的选择在水力压裂过程中,压裂液体的选择是非常重要的。
常用的压裂液体包括水基液体、油基液体和液化气体。
不同的液体对裂缝扩展效果和流体排放有不同的影响。
1. 水基液体:水基液体是最常用的压裂液体,因其成本低、容易获得和处理方便而受到广泛应用。
但是,水基液体对地层的侵蚀性较强,可能引起裂缝封闭和孔隙堵塞。
因此,在选择水基液体时需要考虑地层的特性和水基液体的化学成分。
2. 油基液体:油基液体由石油和其他化合物组成,具有较低的侵蚀性和毒性。
这使其适用于一些特殊地层,如高温和高压地层,以及对水敏感的地层。
然而,油基液体的成本较高,且处理和排放困难,因此在实际应用中往往需要进行较多的处理。
3. 液化气体:液化气体是一种新型的压裂液体,通过将天然气、液化石油气等气体压缩成液体形式在地层中注入。
液化气体具有较低的粘度和较高的渗透性,可以提高裂缝扩展效果,并且在压裂后能够快速地蒸发和排放,减少环境污染。
压裂基础知识
压裂基础知识压裂基础知识一、水力压裂原理(一)基本原理水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,便在井底附近地层产生裂缝;继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和高导流能力的填砂裂缝,使井达到增产增注的目的。
(二)增产原理1、形成的填砂裂缝的导流能力比原地层系数大得多,可大几倍到几十倍,大大增加了地层到井筒的连通能力;2、由原来渗流阻力大的径向流渗流方式转变为单向流渗流方式,增大了渗流截面,减小了渗流阻力;3、可能沟通独立的透镜体或天然裂缝系统,增加新的油源;4、裂缝穿透井底附近地层的污染堵塞带,解除堵塞,因而可以显著增加产量。
二、压裂材料(一)压裂液在压裂过程中注入的液体统称为压裂液,根据压裂过程中注入井内的压裂液在不同施工阶段所起的作用不同,可把压裂液分为前置液、携砂液、顶替液三种。
1、根据作用不同分类前置液:它的作用是破裂地层并造成一定几何尺寸的裂缝,以便后面的携砂液进人在温度较高的地层里,它还可起一定的降温作用。
有时为了提高前置液的工作效率,在前置液中还加入一定量的细砂(粒径100-140目,砂比10%左右)以堵塞地层中的微隙,减少液体的滤失。
携砂液:它起到将支撑剂带入裂缝中并将支撑剂填在裂缝内预定位置上的作用。
在压裂液的总量中,这部分比例很大。
携砂液和其他压裂液一样,有造缝及冷却地层的作用。
携砂液由于需要携带密度很高的支撑剂,必须使用交联的压裂液(如冻胶等)。
顶替液:顶替液是在加砂程序结束后,用来将携砂液全部替人裂缝中,以提高携砂液的效率和防止井筒沉砂。
2、根据类型不同分类根据压裂液类型不同,可以将压裂液分为水基压裂液、油基压裂液、泡沫压裂液等。
(1)水基压裂液:水基压裂液是用水溶胀性聚合物(称为成胶剂)经交链剂(又叫交联剂)交链后形成的冻胶。
水力压裂介绍
.
12
水力压裂增产机理
.
13
2、沟通油气储集区
由于地质上的非均质性,地层中有产能的地区并不一定 与井底相连通。例如:砂层中透镜体,三角洲沉积的砂 体等不一定都被井所钻穿。通过压裂所形成的人造裂缝, 可以将它们与井底沟通起来,就增加了新的供油区,大 型压裂压出的较长裂缝甚至可将几个透镜体压穿,沟通 油气储集区是压裂增产的重要原因
对于天然裂缝油藏,在于人工裂缝沟通天然裂缝
.
14
3、克服井底附近地层的污染
压裂后的裂缝可以解决井底污染所造成的低产后果。为 此目的所进行的压裂可以是小规模的,只要穿过堵塞区 的深度即可。但是对裂缝的导流能力却要求很高。因为 井底附近裂缝的渗透率在油气生产中是个关键
.
15
水力裂缝模型
.
为剖 矩面 形均 模 ,为 型 裂一 : 缝椭 宽 高圆 度 度, 剖 恒垂 面 定直 及
.
33
(4) 优化施工设计 施工设计的优化就是指用最少的投入获得最大的经济 效益。一般从三个方面来考虑: ① 以油井生产期间加速开采为目的; ② 在最低费用下,施工方法和施工过程的改进和实现; ③ 对于长期开采,以获得最高采收率。
.
34
压裂施工的经济优化设计一般有3个步骤。 ⑴对一个确定的油藏,根据不同的裂缝长度和裂缝导流能 力估算预期得到的油或气的产量,将它们与现金费用联系 起来; ⑵确定压裂施工要求,以获得期望的缝长和导流能力,将 这些与成本联系起来; ⑶选择裂缝长度和导流能力,使这时的收益与成本组成最 大的经济利润
取短期导流能力值的1/3作为实际应用值,支撑缝内的
导流能力可达到40.1DC.cm。
.
41
最终优化该层加 砂规模为42m3
水力压裂概述
⽔⼒压裂概述⽔⼒压裂概述⼀、单井⽔⼒压裂的增产作⽤及其效果预测⽅法从油藏⼯程观点看,⽔⼒裂缝是油层中带有⽅向性的具有⼀定长、宽、⾼的⼏何形状的⾼渗带。
单井压裂后,⽔⼒裂缝与井筒所组成的系统,与油层连通的⾯积远⼤于⽆⽔⼒裂缝时井筒的⾯积,显著地降低了单井⽣产时地层的渗流阻⼒,这是压裂改造后单井的基本增产机制。
当钻开油层后,井底附近地带因受钻井液等伤害⽽使产量下降,通过压裂使⽔⼒裂缝穿过伤害地带(⼀般伤害带⼩于2m)进⼊未受伤害的油层,使未伤害油层中的油流通过⽔⼒裂缝进⼊井筒,恢复并提⾼了井的⾃然产能。
在单井压裂时,往往两种机制都起作⽤。
⼀般来说,在相对较⾼的渗透率油藏,由于⽣产井压后投产很快就进⼊拟稳态流状况,所以产量预测求解可以⽤径向流动⽅程,通常,这可⽤Prats 与McGuire 和Sikora ⽅法来求解。
相反地,在渗透率相对较低的油藏,⽣产井压后投产,油层中液体将长时间保持⾮稳态流状况,所以对裂缝的影响应在⾮稳态条件下求解,可应⽤⾮稳态流的单相油藏数值模拟或Agarwal 等⼈或Holditch 等⼈的典型曲线图版。
若油藏处于注⽔开发期并进⾏了整体压裂,其产量预测需使⽤三维三相油藏数值模拟。
正确地使⽤压后产量的模型与计算⽅法,是进⾏压裂经济优化设计的基础。
(⼀)稳态与拟稳态条件下⽔⼒裂缝的增产作⽤与效果预测⽅法相对渗透率较⾼的油藏中的井,压后投产可较早出现稳态与拟稳态渗流情况,其最通⽤的两种增产预测⽅法是Prats 法与McGure 和Sikora 法。
1.Prats 法Prats 提出⽤井径扩⼤的概念来评估井被压裂后垂直裂缝对油层改造的作⽤,即“有效井筒半径r′w。
这是⽤于确定增产倍数最简易的⽅法。
假设条件为稳态流动(产量恒定,外边界压⼒恒定),圆形泄流⾯积,不可压缩流体,单相渗流,⽆限裂缝导流能⼒(在r′w范围内渗流阻⼒为零),⽀撑缝⾼等于油层厚度,⽆油层伤害。
(⼆)在稳态与拟稳态下,对于油层受伤害的⽣产井压后的增产预测当受伤害井压裂后,在稳态与拟稳态条件下的增产倍数将⼤⼤超过McGuire—Sikora 曲线预测的结果。
水力压裂
现场测试方法
利用长源距声波测井(LSDS)取得纵波速度和 利用长源距声波测井(LSDS) 横波速度,利用密度测井求得岩石密度, 横波速度,利用密度测井求得岩石密度,可获 得岩石力学参数的动态值。 得岩石力学参数的动态值。
E d = ρ bυ s2
2 3υ p − 4υ s2 2 υ p − υ s2
地如果破裂压力梯度小于0.0150.018 ①地如果破裂压力梯度小于0.0150.018 MPa/m 时, 多为水平裂缝; 多为水平裂缝; 如果破裂压力梯度大于0.023 ②如果破裂压力梯度大于0.023 MPa/ m 时,多为垂 直裂缝。 直裂缝。
二、地层破裂压力
采集方法 理论计算方法— 理论计算方法 Eaton法 法
IC
I
K I≥ K
IC
岩石断裂韧性的大小与施工泵压( 岩石断裂韧性的大小与施工泵压(即破裂压力和裂缝延伸压力 的高低呈正比, )的高低呈正比,与水力裂缝缝长的长短呈反比 。 在一定条件下, 在一定条件下,岩石断裂韧性的大小可使水力裂缝方位不再沿 水平最大主应力方位延伸而发生转向。 水平最大主应力方位延伸而发生转向。
水力压裂造缝及增产机理 压前评估(压裂选井选层) 压前评估(压裂选井选层) 压裂材料的优化选择 水力压裂设计 水力裂缝诊断 压后评估
水力压裂综述
文献综述前言水力压裂是油田增产一项重要技术措施。
由地面以超过地层吸收能力的排量高压泵组将液体注入井中,此时,在井底附近便会蹩起压力,当蹩气的压力超过井壁附近地层的最小地应力和岩石抗张强度时,在地层中便会形成裂缝。
随之带有支撑剂的液体泵入缝中,裂缝不断向前延伸,这样,在地层中形成了具有一定长度、宽度及高度的填砂裂缝。
由于压裂形成的裂缝提高了产油层导流能力,使油气能够畅流入井内,从而起到了增产增注的作用。
为了完成水力压裂设计,在地层中造成增产效果的裂缝,需要了解与造缝有关的地应力、井筒压力、破裂压力等分布与大小。
这些因素控制着裂缝的几何尺寸,同时对与地面与井下设备的选择有关。
同时,用于水力压裂的压裂液的性能、数量,支撑剂的排布情况关系到裂缝的几何尺寸,压裂技术-端部脱砂技术,对提高压裂效果起到很大作用,这些因素关系到能否达到油田增产的目的,需要进行详细研究。
在建立适当的裂缝扩展模型的基础上,实现现场实际生产情况的模拟研究,对进一步优化水力压裂参数,提高压裂经济实用性起到很大作用。
这项油田增产措施自发展以来,得到国内外广泛采用,并且经不断的开发试验,已取得很大成效。
水力压裂技术的发展过程水力压裂技术自 1947 年美国堪萨斯州进行的的第一次试验成功以来,至今近已有60余年历史。
它作为油井的主要增产措施,正日益受到世界各国石油单位的重视及采用 ,其发展过程大致可分以下几个阶段:60 年代中期以前 ,各国石油公司的工作者们的研究工作已适应浅层的水平裂缝为主,此时的我国主要致力于油井解堵工作并开展了小型压裂试验。
60 年代中期以后 ,随着产层加深 ,从事此项事业的工作者以研究垂直裂缝为主。
已达成解堵和增产的目的。
这一时期 ,我国发展了滑套式分层压裂配套技术。
70 年代 ,工作进入到改造致密气层的大型水力压裂阶段。
我国在分层压裂技术的基础上 ,发展了蜡球选择性压裂工艺 ,以及化学堵水与压裂配套的综合技术。
80 年代 ,逐步进入了低渗油藏改造时期,并开始了优化水力压裂设计。
第五章:水力压裂技术
B——原油体积系数,m3(地下)/m3(地面)。
o——地面原油的密度。
地面排量按 Q排 Q吸 来确定。
3)地面泵压的计算
目的是为了在满足裂缝需要的压力和排量的基础上,充分发挥设备的能 力,减少使用设备的台数。压裂时地面泵压可由下列公式估算:
P 泵 压 P 井 口 P 破 P 摩 阻 P 局 损 P 液 柱
式中 Pe ——厚壁筒外边界压力,Pa;(井眼内压在外边界产生的压力) re ——厚壁筒外边界半径,m; ra ——厚壁筒内半径,m; Pi ——内压,Pa r ——距井轴半径,cm。
当re =∞、Pe=0、r= ra 时,井壁上的周向应力为:
σθ=-Pi
即:由于井筒内压而导致的井壁周向应力与内压大小相等, 但符号相反。(利用无穷大定理推导)
裂缝的导流能力:裂缝宽度与填砂裂缝渗透率的乘积。
无因次裂缝导流能力表达式:
K f W
要想使低渗层和高渗层有同 样的高导流能力,从公式中变 换两个参数W 和 Xf。
C fD
K f W KXf
PKN模型
KGD二维裂缝延伸模型
KGD模型
五.水力压裂增产增注原理
1.压裂前流体从底层流向井底的流动形态
(1)流体流动过程复杂 (2)污染带和井底周围应力集中,近井地带渗透率低,井筒 附近渗流阻力大
(一)形成垂直裂缝的条件: 1.当存在液体渗滤时
如果岩石的破裂是纯张力破裂,当井壁上存在的周向应力达到井壁 岩石的水平方向的抗拉强度σth时,岩石将在垂直于水平应力的方向上产 生脆性破裂,即在与周向应力相垂直的方向上产生垂直裂缝。
此时有: = -σth,代入(5—8)式,并换为有效应力( x x ps,
油层水力压裂效果的因素
油层水力压裂效果的因素市场经济在不断的发展变化,人们在石油方面的需求量也越来越高,对于还不存在某种能够代替石油的现在,水力压裂在石油的整个开采过程起着不可忽视的作用,其效果在很大程度上影响着石油的开采过程。
在石油的整个开采过程当中主要使用的手段就是水裂压,其影响因素有很多种,像实施的技术手段以及不一样的地质地形条件等。
将油层的水力压裂效果的影响因素进行探索分析,有助于提高石油开采的质量,有利于获得显著的效果。
一、引言我国针对石油开采方面的分析研究存在起步比较晚发展比较快的特点,而在我国最开始的石油开采采取水力压裂的方式进行增产的是陕北油田,当学会使用水力压裂之后产油量与以往相比增加了一倍,采取水力压裂的方法来控制水并进行石油开采增产,显然其作用是无法忽视的。
因此对油层的水力压裂效果的影响因素进行探索分析,可以在一定程度上帮助石油进行开采,也使开采过程当中的技术得到一定程度的提高与改善,其有利于石油开采的发展,有利于石油产业的发展。
二、储油层地质特征分析对陕北油田的水力压裂应用效果进行分析,在其三角洲的前缘存在一些比较复杂的砂岩进行堆积,油平面当中有薄或者厚形成,存在各种各样的组合分叉,这样方便于发现剩余油的分布规律和措施,还可以体现储层水力压裂的效果。
而三角洲的冲积平原中有一些厚层的砂岩体堆积,因为储层的形式相对来书比较单一,而且其分布也比较稳定,所以剩余油大多都分布在层内。
早期储层水淹存在的程度比较低,因为储层存在较优的真实性,而且注射用的效果是十分好的,其水力压裂效果也很明显。
但是当储层的含水量比较高的情况下,尽管储层当中存在大量的剩余油,由于采取水力压裂的方法具有比较大的难度,所以很难挖掘出具有的潜力。
在三角洲前缘的砂岩当中,油层当中是薄差水,其注射效果是非常不明显的,实施起来会比较困难,并且在早期具有十分明显的水力压裂效果,一般当注水效果出现之后,水力压裂效果将对储层进行干扰。
三、水力压裂液的影响分析针对具有低渗透现象的油层,使用水力压裂液的效果是十分明显的,其是油层增产的一项重要的影响因素,具有的性能可以实现压后增产,然而在储存油层当中使用水力压裂液也存在一定程度的危害。
第六章 水力压裂
第六章水力压裂水力压裂(hydraulic fracturing)是利用地面高压泵组,以超过地层吸液能力的排量将高粘压裂液泵入井内而在井底产生高压,当该压力超过井壁附近地应力并达到岩石抗张强度,使地层产生裂缝。
继续注入压裂液使水力裂缝逐渐延伸;随后注入带有支撑剂的混砂液,使水力裂缝继续延伸并在缝中充填支撑剂。
停泵后,由于支撑剂对裂缝壁面的支撑作用,在地层中形成足够长的、足够宽的填砂裂缝,从而实现油气井增产和注水井增注。
图6-1为水力压裂作业示意图。
水力压裂的增产增注机理主要体现在:(1) 沟通非均质性构造油气储集区,扩大供油面积;(2) 将原来的径向流改变为线性流和拟径向流,从而改善近井地带的油气渗流条件;(3) 解除近井地带污染。
水力压裂主要用于砂岩油气藏,在部分碳酸岩油气藏也得到成功应用。
图6-1 水力压裂作业示意图1—混砂车;2—砂车(罐);3—液罐(组);4—压裂泵车(组);5—井口;6—压裂管柱;7—动态裂缝;8—支撑裂缝;9—压裂液;10—储层本章从水力压裂系统工程角度全面阐述压裂造缝机理、压裂液材料性能与评价方法、裂缝延伸模拟、支撑剂在裂缝中运移分布、水力压裂设计和水力裂缝诊断评估方法,并扼要介绍水力压裂技术新发展。
第一节水力压裂造缝机理水力压裂裂缝的形成和延伸是一力学行为,水力裂缝的形态与方位对于有效发挥压裂对储层的改造作用密切相关,必须掌握水力压裂的裂缝起裂与延伸过程的力学机制。
本节从地应力场分析及获取方法入手介绍水力裂缝的形成机理、造缝条件、裂缝形态与方位、破裂压力预测方法。
图6-2为水力压裂施工泵压变化的典型示意曲线。
F点对应于地层破裂压力(使地层破裂所需要的井底流体压力),E点为瞬时停泵压力(即压裂施工结束或其它时间停泵时的压力),反映裂缝延伸压力(使裂缝延伸所需要的压力),C点对应于闭合压力(即裂缝刚好能够张开或恰好没有闭合时的压力),S点为地层压力。
压裂过程中的泵压是地应力场、压裂液在裂缝中流动摩阻和井筒压力的综合作用结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由断裂力学理论可知,影响水力压裂净压力的因素有很多,主要包括地质因素及工程因素,其中,地质因素是由地层本身固有性质如渗透率、岩石模量、弹性模量、泊松比等,是人力无法控制的。工程因素主要包括采用的工艺类型,施工排量、压裂液粘度等,所有这些工艺的根本是提高缝内净压力,促使新缝产生。
K-非均匀的地质构造应力系数,无因次;
σz一垂向主应力,MPa;
Ps一孔隙压力,MPa;
St一地层抗拉强度,MPa。
裂缝一旦张开,裂缝延伸所需要的压力将趋于稳定,而且随排量增加,压力将不会有明显的变化,并且裂缝延伸压力小于地层破裂压力。
裂缝延伸条件满足以下公式:
相关理论研究表明,压裂施工时,当井底处理压力大于地层岩石破裂压力时,地层破裂而产生裂缝。破裂压力与岩层和流体性质有关,一个区块内同一地层的破裂压力基本上是相同的。破裂压力可以用下式表达:
(5.1)
式中:Pf-底层破裂压力,MPa;
v-泊松比,无因次;
式中:σh1—储层最大水平主应力;σh1—储层最小水平主应力;θ—方位角;T—岩石抗张强度
其中,缝内净压力可以以下关系式表达:
式中:Pnet—水力压裂裂缝净压力; ν一岩石泊松比。
根据有关断裂力学及岩石力学理论,在水力压裂裂缝破裂及延伸过程中,如产生分支缝,则符合裸眼条件下的破裂条件。
(5.2)
பைடு நூலகம்
式中:为井底破裂压力,MPa;为空隙流体压力MPa;为地层最小主水平应力,为地层最大水平主应力,MPa;为岩石抗张强度,MPa;为岩石触点孔隙度,小数;为岩石孔隙;为泊松比,小数。
一般来说,对于已经开启并延伸的裂缝来说,如果其他条件不变,缝内净压力不会有太大变化,所以压裂施工时一旦裂缝开启,一般沿起裂方向形成大的主裂缝,由于应力-损伤-耦合作用,裂缝壁面上应力可能发生变化,形成小的裂隙或应力薄弱点。在外力作用条件不变也就是既定的净压力下,这些变化不足以引起裂缝延伸方向的改变。但是如果采用适当的压裂工艺,进一步增加缝内净压力,即可达到转向产生新缝目的。