第三章 气体和蒸汽的性质

合集下载

工程热力学 第四版思考题答案(完整版)(沈维道)(高等教育出版社)

工程热力学 第四版思考题答案(完整版)(沈维道)(高等教育出版社)

工程热力学第四版沈维道 思考题 完整版第1章 基本概念及定义1.闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗?答:否。

当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。

2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。

这种观点对不对,为什么?答:不对。

“绝热系”指的是过程中与外界无热量交换的系统。

热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。

物质并不“拥有”热量。

一个系统能否绝热与其边界是否对物质流开放无关。

⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。

⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式中,当地大气压是否必定是环境大气压?答:可能会的。

因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。

环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。

“当地大气压”并非就是环境大气压。

准确地说,计算式中的P b 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。

⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。

它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。

⒍经验温标的缺点是什么?为什么? 答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。

3机械热力学第03章 理想气体的性质1

3机械热力学第03章  理想气体的性质1

pB •
固态 液态 • C
BTtpC上侧,液相; ATtpC右侧,汽相。
气态
A•
•Ttp
t Ttp点:三相点
C点:临界点
TtpC线:气液两相共存,代表ps=f(ts); TtpB线:固液两相共存,熔点温度与压力的关系; TtpA线:固气两相共存,升华温度与压力之关系;
§3-5 水的汽化过程和临界点
cp
dT T

T1 T0
cp
dT T

Rg
ln
p2 p1

s20
s10
Rg
ln
p2 p1
精确计算熵变的方法: 1. 选择真实比热容经验式计算 2. 查表s0数据计算
例题\第三章\A4111551.ppt 例题\第三章\A4111552.ppt
作业:3-6,8,16
§3-4 水蒸气的饱和状态和相图
V=(Mv)=0.0224141 m3 /mol
例题:书中例3-1、3-2
§3-2 理想气体的比热容(比热)
一、定义和基本关系式
定义:
lim c
q q , 或 c q
T0 T dT
dt
一定量的物质在吸收或放出热量时,其温度变化的大小取决 于工质的性质、数量和所经历的过程。
1.理想气体热力学能和焓仅是温度的函数 a) 因理想气体分子间无作用力
u uk u T du cV dT
b) h u pv u RT
h hT dh cp dT
2
u 1 cvdT ;
2
h 1 cpdT
2.理想气体热力学能和焓的求算方法:
三、水的三相点
1. 三相点:固态、液态、汽态三相平衡共存的状态

最新工程热力学气体和蒸汽的性质

最新工程热力学气体和蒸汽的性质

注: Nm3为非法定表示法,标准表示法为“标准m3”。 10
按过程
质量定压热容(比定压热容)
cp
C
p ,m
,C
' p
(constant pressure specific heat capacity per unit of mass)

质量定容热容(比定容热容) (constant volume specific heat
cTuv uvT pddTv
比热容的一般表达式
2. cV
定容过程 dv=0
若为理想气体
cV
u T
v
是状态参数
u u (T ) T u vd d T u c Vd d T u d u c V d T
cV cV (T) 温度的函数
12
3. cp
c δ q d h δ w t d h v d p d T d T d Td T
Vm相同
在标准状况下 (p0 1.01325105Pa T0 273.15K)
1mol任意气体的体积同为
Vm 0(M)0v0.022m 4 3/1 m4ol
5
四、摩尔气体常数
R——摩尔气体常数 (与气体种类无关)
R=MRg=8.314 5 J/(mol·K) M-----摩尔质量
Rg——气体常数 (随气体种类变化)
cV
C
V
,m
,
C
' V
capacity per unit of mass)
二、理想气体比定压热容,比定容热容和迈耶公式
1.比热容一般表达式
cδ q d u δ w d up d v d T d T d Td T
(A )

工程热力学总复习

工程热力学总复习

O
5
6
1
1
a
2
2
a
s
图11-3 初温t1对ηt的影响
优点: 循环吸热温度 , ,有利于汽机安全。
缺点: 对耐热及强度要求高,目前最高初温一般在550℃左右,很少超过600 ℃; 汽x
2a
v
t
h
2、初压p1对热效率的影响
基本状态参数,需要掌握①温标转换②压力测量(转换)③比体积与密度的转换。
04
03
01
02
系统在不受外界的影响的条件下,如果宏观热力性质不随时间而变化,这时系统的状态称为热力平衡状态,简称平衡状态。
系统内部及系统与外界之间的一切不平衡势差(力差、温差、化学势差)消失是系统实现热力平衡状态的充要条件。
k=1.3
νcr=0.577
干饱和蒸汽
k=1.135
关键:状态判断(习题8-2)
流量按最小截面(即收缩喷管的出口截面,缩放喷管的喉部截面)来计算
0
a
q m
c
b
图8-7 喷管流量qm
临界
临界 流量
喷管两种计算
设计计算
校核计算
已知
进口参数(p1、t1)、出口背压(pb)、流量qm
喷管形状、尺寸(A2、Acr)、进口参数(p1、t1)、出口背压(pb)
工 程 热 力 学
添加副标题
总复习
第一章基本概念
热力系统:人为地分割出来作为热力学分析对象的有限物质系统。 外界:系统周围物质的统称。 边界(界面):热力系与外界的分界面。 界面可以是真实,也可以是虚拟的;可以是固定,也可以是变化(运动)的。 闭口系统:与外界无物质交换,又称控制质量。 开口系统:与外界有物质交换,又称控制体积。 绝热系统:与外界无热量交换。 孤立系统:与外界无能量交换又无物质交换。可以理解成闭口+绝热,但是实际上孤立系统是不存在的。

蒸汽的基本性质

蒸汽的基本性质

蒸汽的基本性质蒸汽已经伴随着机车和工业革命走过几个世纪,迄今为止,蒸汽已成为现代技术不可或缺的一部分。

如果没有蒸汽,我们现在的食品、纺织、化工、医药、电力、供热等工业就不可能存在,或者说不会像现在这样发展的这么好。

蒸汽的使用为能量的输送提供了一种可控制的方法,将能量从集中的、自动化的、高效的锅炉房输送到使用现场。

蒸汽是应用最广泛的热量载体之一,它广泛应用于工业系统,例如,发电、空间加热和制程应用中。

蒸汽的产生高效而经济地球上水资源相对丰富、价格便宜,并且对健康无害,对环境没有污染。

当水汽化变成蒸汽后,它又成为安全、高效的能量载体,蒸汽携带的热量相当于同等质量水所能携带热量的5-6倍。

当水在锅炉中被加热,它开始吸收热量,根据锅炉内压力的不同,水会在特定的温度下汽化成蒸汽。

这时蒸汽内储存着大量能量,这些能量可以在制程中或空间加热时再释放出来。

可以在高压下产生高温的蒸汽,压力越高,蒸汽温度也越高。

高温蒸汽内储存的能量更多,它们做功的潜力也更大。

现代的锅壳式锅炉设计紧凑,效率高,使用多回程和高效的燃烧技术,可以将燃料中蕴藏的大部分能量传递到水中,只有很少部分排放掉。

蒸汽可以方便地、高效地输送到用汽点蒸汽是应用最广泛的可长距离传递的热量载体之一。

由于蒸汽的流动是依靠管道内的压力降,因此省去了昂贵的循环泵系统。

由于蒸汽的热容量很高,所以在高压下仅需要很小口径的管道就可以输送大量的热量。

与其它传热介质相比,蒸汽管道安装简单、价格更便宜。

能量传递方便蒸汽提供了优良的热传递性能。

当蒸汽到达设备后通过冷凝过程将热量传递给被加热产品,热传递过程效率非常高。

图中显示的是一个典型的蒸汽--热水机组,它最大换热功率可以达到3000kW,采用了蒸汽板式换热器和各种控制,占地面积仅有0.7m2,与之相比,管壳式热交换器占地面积是它的2-3倍。

现代蒸汽设备管理容易通过适当的维护,蒸汽系统可以使用很多年,系统的各环节可以实现自动监测。

第三章__理想气体热力性质及过程

第三章__理想气体热力性质及过程

容积成分: i
Vi V
, i
1
摩尔成分: xi

ni n
, xi
1
换算关系:
i xi
i

xi M i xi M i

xi M i M eq

xi Rg,eq Rg ,i

xi

i Rg,i
Rg ,e q
分压力的确定:

piV=ni RT PVi=ni RT

ppi V Vi i ,
2
u 1 cVdT
如果取定值比热或平均比热,又可简化为
二、焓
ucVT
也可由热Ⅰ导得 d h(cVRg)dT cpdT
同理,有
2
h 1 cpdT
hcpT
结论:理想气体的u、h 均是温度的单值函数。
三、 熵变的计算
由可逆过程
ds du pd
T

ds du
cp
Rg 1
三、 真实比热容、平均比热容和定值比热容
1. 真实比热容(精确,但计算繁琐)
cpa0a 1 Ta2T2a3 T3
c V (a 0 R g) a 1 T a 2 T 2 a 3 T 3
qp
2 1
cpdt
2
q 1 cdt
2. 平均比热容(精确、简便)

cV
ln
T2 T1

Rg
ln
2 1
s

c
p
ln
T2 T1
Rg
ln
p2 p1
s

c
p
ln
2 1
cV
ln
p2 p1

工程热力学童钧耕第六版

工程热力学童钧耕第六版

工程热力学童钧耕第六版简介《工程热力学童钧耕第六版》是一本经典的工程热力学教材,由童钧耕教授编写。

本书系统地介绍了工程热力学的基本概念、原理和应用,适用于工科相关专业的学生和从事相关领域的工程师。

内容概述《工程热力学童钧耕第六版》共分为十章,内容涵盖了热力学的基本概念、气体和蒸汽的性质、能量转换与传递、理想气体混合物等方面。

以下将对每一章节进行简要介绍。

第一章:引言这一章主要介绍了工程热力学的基本概念和范围,以及其在实际应用中的重要性。

同时还对温度、压力、体积等基本物理量进行了定义和解释。

第二章:能量转换与能量传递本章讲述了能量转换与传递的基本原理,包括能量守恒定律、功与功率、传热与传质等内容。

通过对各种能量转换过程的分析,读者可以深入理解能量守恒定律在工程实践中的应用。

第三章:气体与蒸汽的性质这一章主要介绍了气体和蒸汽的基本性质,包括物态方程、气体混合物、湿空气等内容。

通过对气体和蒸汽性质的分析,读者可以了解到它们在工程热力学中的重要作用。

第四章:一次能源与二次能源本章重点讲述了一次能源和二次能源的概念和特点。

同时还介绍了常见的一次能源和二次能源类型,以及它们在工程实践中的应用。

第五章:理想气体混合物这一章主要介绍了理想气体混合物的基本原理和计算方法。

通过对理想气体混合物进行分析,读者可以掌握计算混合气体性质和热力学过程参数的技巧。

第六章:燃烧与燃烧产物本章讲述了燃烧与燃烧产物的基本原理和特点。

同时还介绍了常见的燃料类型、燃烧过程中的能量转换和产物生成等内容。

第七章:蒸汽发生器这一章主要介绍了蒸汽发生器的原理和构造,包括锅炉、汽轮机等设备。

通过对蒸汽发生器的分析,读者可以了解到其在能量转换中的重要作用。

第八章:蒸汽涡轮机本章重点讲述了蒸汽涡轮机的工作原理和性能特点。

同时还介绍了蒸汽涡轮机在电力工业中的应用和优化方法。

第九章:压缩机与风机这一章主要介绍了压缩机和风机的基本原理和分类。

通过对压缩机和风机的分析,读者可以掌握它们在工程实践中的应用技巧。

工程热力学 第三章 气体和蒸汽的性质.

工程热力学 第三章 气体和蒸汽的性质.
第三章 气体和蒸汽的性质
3-1 理想气体的概念 3-2 理想气体的比热容 3-3 理想气体的热力学能、焓和熵 3-4 水蒸汽的饱和状态和相图 3-5 水的汽化过程和临界点 3-6 水和水蒸汽的状态参数 3-7 水蒸汽表和图
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
dT
p


dh vdp dT
p


h T
p
cV


q
dT
V


du
pdv dT
V


u T
V
☆注意:上式适用于任何工质,表明 c p、cV为状态参数
●理想气体
热力学能只包括内动能,只与温度有关,u f (T )
cp,423K 1.01622kJ /(kg K) cp,623K 1.05652kJ /(kg K)
623K
cp 423K (1.01622 1.05652) / 2 1.0364kJ /(kg K)
623K
qp cp 423K (T2 T1) 1.0364 (623 423) 207.27kJ / kg
5、不同形式的理想气体状态方程式
1kg的气体: pv RgT mkg的气体: pV mRgT 1mol的气体:pVm RT nmol的气体:pV nRT 流量形式: pqV qm RgT qn RT
例3-2:某台压缩机每小时输出 3200m3、表压力 pe 0.22MPa 温度t 156℃的压缩空气。设当地大气压pb 765mmHg ,求 压缩空气的质量流量qm及标准状态下的体积流量qV 0 。

北京科技大学研究生考试初试-871工程热力学大纲

北京科技大学研究生考试初试-871工程热力学大纲

考试科目名称:871工程热力学《工程热力学》考试大纲工程热力学课程是热能与动力工程、建筑环境与设备专业的一门重要技术基础课,它的教学目的与任务是:让学生学习关于能量守恒与转换的理论基础,使学生牢固地掌握工程热力学的基本理论、基本知识和相应的热工分析、计算能力,并进一步得到基本技能的训练。

为学习专业课提供充分的理论准备,也为学生以后解决生产实际问题和参加科学研究打下必要的理论基础。

其考试大纲内容如下:一、第一章基本概念要求熟练掌握:系统,平衡状态和状态参数,温度温标,压力,状态方程,准静态过程和可逆过程,循环,功和热量;透彻理解以下的基本概念:热力系统,热力学状态、平衡状态、准静态过程、可逆过程和不可逆过程、功与热量。

二、第二章热力学第一定律要求熟练掌握热力学第一定律基本表达式——基本能量方程,总能,热力学能,焓,膨胀功,技术功,热力学第一定律的第一解析式和稳定流动能量方程式及其应用,循环功之间及循环净功与循环净热量之间关系,循环热效率概念与计算公式;透彻理解以下概念:热力学第一定律的实质—能量守衡与转换定律在热现象中的应用,能量方程的内在联系与共性,热变功的实质。

会进行功和热量的计算,以及功和热量在p-v图和T-s图上的表示。

三、第三章气体和蒸汽的性质要求熟练掌握理想气体和实际气体的概念、理想气体状态方程、理想气体的比热容和热力学能、焓、熵的定义、计算;水蒸气的性质:水蒸气的饱和状态、饱和温度、饱和压力、饱和湿蒸汽、干度、三相点,水蒸气状态的确定。

四、第四章气体和蒸汽的基本热力过程要求熟练掌握理想气体的基本热力过程:定温、定压、定容、定熵和多变过程的过程方程、参数变化和过程中功及热量的计算及其p-v图和T-s图。

水的定压加热汽化过程及其在p-v图和T-s上的表示;会计算水蒸气定压过程的热量,水蒸气绝热过程的功。

五、第五章热力学第二定律熟练掌握热过程的方向性、热力学第二定律的表述;卡诺循环和卡诺定理、克劳修斯积分不等式、熵流和熵产、熵方程、孤立系统的熵增原理;作功能力、作功能力损失与熵产和火用平衡方程。

气体和蒸汽的性质

气体和蒸汽的性质
1相点) 或温当固度压相 。力。低p于tp称ptp为时三,相液点相压不力可,能对存应在的,饱而和只温可度能t是tp称气为三相 2) 三相点温度和压力是最低的饱和温度和饱和压力。 3) 各种物质在三相点的温度与压力分别为定值,但比体积 则随固、液、气三相的混合比例不同而异。
水的三相点温度和压力值:
Ttp 273.16K ptp 611.659Pa
一点 临界点
pcr 22.064 MPa
两线
上界限线 下界限线
tcr 373.99 C vcr 0.003106m3 /kg三区
液 汽液共存

未饱和水 饱和水 五态 湿蒸汽 干饱和蒸汽 过热蒸汽
分析:
p-v图中可以看出:影响 v 的主要是 P 和 T: 1) 对液态而言,T对v的影响比P的影响大,因而当P增加时,
物质有三种聚集状态:固态、液态、气态 水的三态: 冰、水、蒸汽
热力学面:以p,v,T表示的物质各种状态 的曲面
水的热力学面
单相区

固--液

p
p
两相区
液--气
T
T


固--气 v
六个区:三个单相区、三个两相区
饱和线、三相线和临界点
饱和液线
p
临界点 饱和气线
三相线
饱和固线
T v
四个线:三个饱和线、一个三相线 一个点:临界点 pcr 22.064Pa,Tcr 373.99K
过热阶段
干饱和蒸汽
过热蒸汽
p const. t ts v v s s h h
p const. t ts v v s s h h
这个阶段所需的热量称为过热热 qsup。 t-ts称为过热度

沈维道《工程热力学》(第4版)名校考研真题-气体和蒸汽的性质(圣才出品)

沈维道《工程热力学》(第4版)名校考研真题-气体和蒸汽的性质(圣才出品)

2.理想气体只有取定比热容时,才能满足迈耶公式:cp − cv = Rg 。( )[南京航空
航天大学 2008 研] 【答案】错 【解析】只要是理想气体,就满足迈耶公式。
3.(1)理想气体任意两个状态参数确定后,气体的状态就一定确定了。( )
(2)活塞式压气机采用多级压缩和级间冷却方法可以提高它的容积效率。( )[西
【答案】T1(p2/p1);0; cv (T2 − T1) ; cv (T2 − T1)
3 / 13
圣才电子书

三、判断题
十万种考研考证电子书、题库视频学习平台
1.流动功的大小仅取决于系统的进口和出口状态,而与经历的过程无关。( )[天
津大学 2005 研]
【答案】对
【答案】A
十万种考研考证电子书、题库视频学习平台
【解析】在四个选项中,只对于理想气体的绝热过程, du = cV dT ,且 dq = 0 ,即 w = −cV dT 。
4.理想气体等温过程的技术功=( )。[宁波大学 2008 研] A.0 B2
【答案】C
【解析】 wt
A.升高 B.降低 C.不变 【答案】A 【解析】充气的过程中增加了流动功,故导致瓶子气体的内能升高,温度升高。
3. w = cvdT 使用条件为(
A.理想气体绝热过程
)。[湖南大学 2007 研]
B.理想气体可逆过程
C.任何工质定容过程
D.任何工质绝热过程
1 / 13
圣才电子书

【答案】错 【解析】上式不仅只适应于理想气体,也只能用于可逆过程。
四、名词解释 1.理想气体与实际气体。[天津大学 2005 研] 答:理想气体是不考虑分子之间的作用力以及气体分子本身所占体积的气体模型,严格 地说它是一种假想的气体。实际气体则是实际存在的气体。前者遵循理想气体方程式等规律, 后者则不遵循这种规律。实际气体的压力趋近于零时,实际气体就趋向于理想气体。

第3章理想气体的性质与热力过程

第3章理想气体的性质与热力过程

矩形面积的高度即为平均比热容。
平均比热容图表:
q
t2 cdt
t1
t2 cdt
0
t1 0
cdt
c
|
t2 0
t2
c
|
t1 0
t1
其中:
c
|
t 0
温度自0-t的平均比热容值。
因此气体的平均比热容表示为:
c
|
t2
t1
c
|
tt2
02
t2
c| t1
tt1
01
只要确定了
c
| t1
0

c
| t2
0
3-2-1 热容的定义(Heat capacity):
1. 热容:物体温度升高1K(或1℃)所需要的热量,
用C表示,单位J/K。
C Q Q
2. 根据物质计量单位不同,热容分三类: dT dt
(1)比热容(specific heat)
q
c
单位质量物质的热容量(质量热容)
dT
用c表示 ,单位 J / (kg . K) (2)摩尔热容(molar heat)
q1 2 t2 t1
t2cd t
t1
t2 t1
c c a0 a1T a2T 2 a3T 3 q1-2
热量:
q
c
|
t2 t1
(t2
t1 )
c
|
t2 t1
几何意 义
c |t2 t1
0
t1 dt t2 t
q1-2为过程线下面的面积。如果过程线下面的面 积可以用一个相同宽度的矩形面积来代替,则该
当温度变化趋于零的极限时的比热容。 它表示某瞬间温度的比热容。

第三章 气体和蒸汽的性质(1)

第三章 气体和蒸汽的性质(1)

三相点 定义: 定义:固、液、气三相共存的状态 1) 当压力低于ptp时,液相不可能存在 2) 三相点温度和压力是最低的饱和温度和饱和压力 3) 各物质在三相点的温度与压力分别为定值,但比 各物质在三相点的温度与压力分别为定值, 体积则随固、 气三相的混合比例不同而异。 体积则随固、液、气三相的混合比例不同而异。 水的三相点温度和压力值: 水的三相点温度和压力值:
2
2、理想气体状态方程式
不同物量下理想气体的状态方程式
pv = RgT pV = mRgT pVm = RT pV = nRT
Rg为 气体常数,其数值取决于气体的种类,与气体状 气体常数,其数值取决于气体的种类 气体的种类, 态无关。 态无关。 = MRg 既与状态无关,也与气体性质无关, R 既与状态无关,也与气体性质无关, 称为摩尔气体常数 称为摩尔气体常数。 摩尔气体常数。
c=
δq
dT
=
δq
dt
4
(1)比定容热容
对于理想气体
∂u cV = = dT ∂T V
δ qV
du cV = dT
∂h cp = = dT ∂T p
(2)比定压热容
对于理想气体
δ qp
dh cp = dT
5
3、迈耶公式及比热容比
理想气体的c 理想气体的cp与cV之间的关系: 之间的关系:
第三章 气体和蒸汽的性质
1
3-1
理想气体的概念
理想气体的特征: 理想气体的特征: (1)气体分子的距离足够大,体积忽略不计; 气体分子的距离足够大,体积忽略不计; (2)气体分子之间以及分子与容器壁的碰撞都是弹 性碰撞。 性碰撞。 气体分子之间无作用力; (3)气体分子之间无作用力; 理想气体在自然界并不存在,但实验证明: 理想气体在自然界并不存在,但实验证明:气 体 压力不太高 ( P→0, v→∞) , 温度不太低 时 , 压力不太高( , → ) 温度不太低时 远离液态的稀薄气体, 即 远离液态的稀薄气体 , 气体分子间作用力及分子 本身的体积可忽略,气体性质接近理想气体。 本身的体积可忽略,气体性质接近理想气体。

沈维道《工程热力学》(第4版)章节题库-气体和蒸汽的性质(圣才出品)

沈维道《工程热力学》(第4版)章节题库-气体和蒸汽的性质(圣才出品)

第3章气体和蒸汽的性质一、选择题1.下面说法中正确的是()。

A.某蒸汽的温度若高于临界温度,则不可能通过改变压力使蒸汽液化B.某蒸汽的温度若高于临界温度,则可以通过改变压力使蒸汽液化C.某蒸汽的温度若低于临界温度,则不可能通过改变压力使蒸汽液化【答案】A2.下列哪些气体近似可看作理想气体?()A.柴油机起动空气瓶中的高压空气B.动力机内的水蒸气C.空调设备中空气所含水蒸气D.冰箱压缩机内的制冷剂气体【答案】C【解析】并不是只要是空气就可以作为理想气体,考察气体是否可近似作为理想气体主要依据其压力,空调设备工作压力和温度不高,其中空气所含水蒸气分压力更低,故可当作理想气体,其他三种状况工质均不宜做理想气体处理。

3.为()。

A.理想气体、闭口系统、可逆过程B.实际气体、开口系统、可逆过程C.任意气体、闭口系统、任意过程D.任意气体、开口系统、任意过程【答案】A【解析】q=△u+w是普遍适用于闭口系的,从q=△u+w导出受到两处制约:,非理想气体的热力学能是温度和比体积的函数,只有理想气体的可逆过程才同时满足这两点要求。

4.理想气体可逆吸热过程,下列哪个参数一定增加的?()A.热力学能B.熵C.压力D.温度【答案】B【解析】人们的直觉认为吸热过程温度必定升高,理想气体的热力学能和温度间有单值关系,所以热力学能也将增大,但事实上任何过程的进行都受第一定律的制约,据q=△u+w,理想气体在可逆吸热过程中△u的变化还要受制于w的大小及正负,若理想气体对外作功大于吸热量,气体热力学能将减小,导致温度下降、压力下降。

但据熵的定义,气体可逆吸热过程的熵必增加。

5.在空气定压加热过程中,加热量()转化为热力学能增加量。

A.37%B.65%C.68.4%D.71.4%【答案】D【解析】理想气体定压加热过程的加热量为,过程中的热力学能变化,将空气作为理想气体,双原子理想气体的比热容取定值时,比热容比为1.4,故。

6.当锅炉内的温度等于该压力对应饱和温度时,锅炉内可能为()。

工程热力学第三章气体和蒸气的性质

工程热力学第三章气体和蒸气的性质


capacity per unit of mass)
•质量定容热容(比定容热容)
•及
•(constant volume specific heat
• capacity per unit of mass)
•二、理想气体比定压热容,比定容热容和迈耶公式
•1.比热容一般表达式
•代入式(A)得
•2. cV
h’=191.76, h”=2583.7
s’=0. 649 0, s”=8.1481
t
v
h
s
v
h
s
v
h
s
℃ m3/kg kJ/kg kJ/(kg· m3/kg kJ/kg kJ/(kg· m3/kg kJ/kg kJ/(kg·
K)
K)
K)
0 0.0010002 -0.05 -0.0002 0.0010002 -0.05 -0.0002 0.0010002 -0.04 -0.0002 10 130.598 2519.0 8.9938 0.0010003 42.01 0.1510 0.0010003 42.01 0.1510
•本例说明:低温高压时,应用理想气体假设有较大误差。
•例A411133
•讨论理想气体状态方程式
•3–2 理想气体的比热容
•一、比热容(specific heat)定义和分类 •c与过程有关
•定义: •分类:
•c是温度的函数
•按物 量
•质量热容(比热容)c J/(kg·K)
•(specific heat capacity per unit of mass)
• 干饱和蒸汽(dry-saturated vapor; dry vapor )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际气体
4-7 水蒸汽的基本过程
工程热力学
第三章
气体和蒸汽的性质 (1)
Properties of gas and vapor
机械与动力工程学院 曹军 (讲师) 2013年11月26日
内容
3-1 理想气体的概念 3-2 理想气体的比热容 3-3 理想气体的热力学能,焓和熵 3-4 水蒸气的饱和状态和相图 3-5 水的汽化过程和临界点 3-6 水和水蒸汽的状态参数 3-7 水蒸汽表和图 本章小结
摩尔体积
R—摩尔气体常数 与气体种类无关
Rg—气体常数 。与气体种类有关。
R 8.3145J/(mol K)

pV nRT
体积
理想气体状态方程式(克拉贝隆方程) ④
pv RgT
体积流量
两边同时乘以质量流量
pqV qm RgT
质量流量 两边同时乘以摩尔流量

pVm RT
pqV qn RT
第三章
第四章
第五章
逻辑关系
点→状态
3-1 理想气体的概念
线→过程
4-1 理想气体的 可逆多变过程
4-2 定容过程 4-3 定压过程 4-4 定温过程 4-5 绝热过程
面→循环
5-1 热力学第二定律 5-2 卡诺循环和 多热源循环分析 5-3 卡诺定理 5-4 熵,热力学第二 定律的数学表达式
3-2 理想气体的比热容
3-1
理想气体的概念
理想气体
理想气体
分子是弹性的, 不具体积的质点; 分子间相互没有作用力。
高温低压气体
气体比体积大到分子本身 体积远小于其活动空间 分子间的平均距离 远到作用力及其微弱
理想气体是气体压力趋近于零,比体积趋近于无穷大时的极限状态。
O2,N2,H2,CO, 空气,燃气,烟气等气体,在温度不太低,压力不太高时, 均可作为理想气体处理。误差在工程计算允许的精度范围之内。 实际气体: 水蒸气,氟利昂蒸气,氨蒸气等,分子本身体积及分子间作用力不 容忽略。
点→状态
3-1 理想气体的概念
线→过程
4-1 理想气体的 可逆多变过程
4-2 定容过程 4-3 定压过程 4-4 定温过程 4-5 绝热过程
面→循环
5-1 热力学第二定律 5-2 卡诺循环和 多热源循环分析 5-3 卡诺定理 5-4 熵,热力学第二 定律的数学表达式
3-2 理想气体的比热容
3-3 理想气体的 热力学能,焓和熵
M1Rg M 2 Rg
摩尔气体常数 和 气体常数 摩尔气体常数
p0Vm 0 R MRg =8.3145J/ mol K T0
各种气体的气体常数
R 8.3145J/ mol K Rg M M
理想气体状态方程式(克拉贝隆方程) ①
pv RgT
比体积

pVm RT
1 cp Rg 1
利用比热容计算热量
1. 真实比热容
2. 平均比热容表
3. 平均比热容的直线关系式 4. 定值比热容
5. 算数平均值
工程热力学
第三章
气体和蒸汽的性质 (2)
Properties of gas and vapor
机械与动力工程学院 曹 军 2013年11月28日
Review
→ 理想气体的
cv 和 c p
也都仅仅是温度的函数。
比热容的计算公式
h u pv u RgT
dh du Rg dT dT
迈耶公式
cp cv Rg
cp cv Rg

cp cv C p,m Cv,m
Cp,m Cv,m R
比热容比
cp Rg 1
体积热容:标准状态下 1m3物质的热容。以C’表示。 (J/m3.K)
Cm Mc Vm0C
'
比热容的计算公式
定压过程中的比热容,称为比定压热容,以cp表示.
定容过程中的比热容,称为比定容热容,以cv表示.
dh cp 力学能和焓都仅仅是温度的函数
几个基本概念
物质的量:物质中包含的基本单元数与12g碳12的原子数目相同时 的物 质的量,即为 1mol。 → 6.0225×1023个 摩尔质量: 1mol物质的质量。以M表示,单位:g/mol 数值上等于物质的相对分子质量。
阿伏伽德罗定律:同温同压下,各种气体的摩尔体积都相同。
标准状态
(101325Pa, 273.15K),
3-1 理想气体的概念 3-2 理想气体的比热容 3-3 理想气体的热力学能,焓和熵 3-4 水蒸气的饱和状态和相图 3-5 水的汽化过程和临界点 3-6 水和水蒸汽的状态参数 3-7 水蒸汽表和图 本章小结
理想气体
理想气体
分子是弹性的, 不具体积的质点; 分子间相互没有作用力。
高温低压气体
气体比体积大到分子本身 体积远小于其活动空间 分子间的平均距离 远到作用力及其微弱
理想气体
3-4 水蒸气的 饱和状态和相图 3-5 水的汽化过程 和临界点 3-6 水和水蒸汽 的状态参数 3-7 水蒸汽表和图
5-5 熵方程 5-6 孤立系统熵增原理
5-7 㶲参数的基本概念 热量㶲 5-8 工质㶲及系统 㶲平衡方程
4-6 理想气体热力过程 综合分析
实际气体
4-7 水蒸汽的基本过程
内容
3-3 理想气体的 热力学能,焓和熵
理想气体
3-4 水蒸气的 饱和状态和相图 3-5 水的汽化过程 和临界点 3-6 水和水蒸汽 的状态参数 3-7 水蒸汽表和图
5-5 熵方程 5-6 孤立系统熵增原理
5-7 㶲参数的基本概念 热量㶲 5-8 工质㶲及系统 㶲平衡方程
4-6 理想气体热力过程 综合分析
体积流量 摩尔流量
3-2
理想气体的比热容
比热容的定义
定义:物体温度升高1K(或1℃)所需的热量成为热容,以C表示。(J/K) 1kg物质温度升高1K (或1℃)所需的热量称为质量热容, 又称比热容,以 c 表示。(J/kg.K)
C
Q
dT
c
q
dT
(J/mol.K)
摩尔热容: 1mol物质的热容,以Cm表示.
1mol任何气体的体积均为:Vm0= 0.0224141m3/mol (22.4L/mol) (下角标0是指标准状态)
理想气体状态方程式(克拉贝隆方程)
理想气体状态方程
pv RgT
pv M MRgT
两边同时乘以摩尔质量
pVm MRgT
摩尔体积
p1Vm1 M1 Rg T1
p2Vm 2 M 2 Rg T2
相关文档
最新文档