Eviews第四讲格兰杰因果解读
格兰杰因果检验
格兰杰因果关系检验一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP和广义货币供给量M,各自都有滞后的分量GDP (-1),GDP(-2)…,M(-1),M(-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M引起GDP的变化,还是GDP引起M的变化,或者两者间相互影响都存在反馈,即M引起GDP的变化,同时GDP也引起M的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP是M的因,还是M是GDP的因,或者M和GDP互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Walter N. Thurman和Mark E. Fisher用美国1930——1983年鸡蛋产量(EGGS)和鸡的产量(CHICKENS)的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的因果关系。
他给因果关系的定义为“依赖于使用过去某些时点上所有信息的最佳最小二乘预测的方差。
格兰杰因果 耦合
格兰杰因果耦合
格兰杰因果耦合是一种神奇的现象,指的是两个或多个事件之间存在某种特殊的联系,其中一个事件的发生会直接或间接地引起另一个事件的发生。
这种因果联系不仅仅是简单的因果关系,而是一种相互依存、相互影响的关系。
在生活中,我们经常可以观察到格兰杰因果耦合的现象。
比如,当一个人遭遇了一次车祸,他的身体受到了严重的伤害,这个事件会导致他的生活发生巨大的改变。
他可能需要接受长期的康复治疗,甚至可能失去工作能力,而这些变化又会对他的心理产生影响,使他变得沮丧和消沉。
格兰杰因果耦合还可以在社会层面上观察到。
比如,一次重大的自然灾害往往会引发一系列的连锁反应。
灾害导致房屋倒塌,人们无家可归,这就需要政府提供紧急救援和灾后重建的支持。
然而,这些救援和重建工作又需要大量的资源和人力,从而对国家经济产生影响。
这种因果耦合的连锁反应不仅仅是简单的灾后救援,而是一个复杂的社会系统的运行。
格兰杰因果耦合也可以在科学研究中得到应用。
科学家们通过研究不同因素之间的联系,来揭示事物发展的规律。
例如,在地球科学领域,科学家们发现大气温度的变化会对气候产生影响,而气候的变化又会对生态系统和人类活动产生重要影响。
这种因果耦合的研
究帮助我们更好地理解地球的变化和演化。
格兰杰因果耦合是一个值得深入研究的领域。
它帮助我们理解事物之间的联系和相互作用,揭示出复杂系统的运行规律。
通过深入研究格兰杰因果耦合,我们可以更好地应对生活中的挑战,推动社会的发展,并为科学的进步做出贡献。
让我们保持对格兰杰因果耦合的好奇心,不断探索和发现,为人类的未来创造更美好的前景。
格兰杰因果关系检验.
格兰杰因果关系检验.格兰杰因果关系检验一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP 和广义货币供给量M ,各自都有滞后的分量GDP (-1),GDP (-2)…,M (-1),M (-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M 引起GDP 的变化,还是GDP 引起M 的变化,或者两者间相互影响都存在反馈,即M 引起GDP 的变化,同时GDP 也引起M 的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP 是M 的因,还是M 是GDP 的因,或者M 和GDP 互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Walter N. Thurman 和Mark E. Fisher 用美国1930——1983年鸡蛋产量(EGGS )和鸡的产量(CHICKENS )的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的因果关系。
格兰杰因果检验原理
格兰杰因果检验原理嘿,朋友们!今天咱来聊聊格兰杰因果检验原理。
这玩意儿啊,就像是生活中的一种奇妙关系探索器。
你想啊,在生活中,我们常常会琢磨一些事情之间是不是有某种特别的关联。
比如说,你发现每次你一打喷嚏,天就好像要下雨,那打喷嚏和下雨之间是不是有啥因果关系呢?格兰杰因果检验原理就像是个超级侦探,专门来探究这些关系。
它可不是随便看看就下结论的哦!它会仔细分析数据,从各种角度去研究。
比如说,A 事件发生在前,B 事件跟着就来了,那是不是 A 导致了 B 呢?但这可没那么简单,不能光看先后顺序呀,还得看它们之间是不是真的有那种内在的、稳定的联系。
好比说,你每天早上喝杯咖啡,然后就觉得精神特别好。
但到底是喝咖啡让你精神好呢,还是你本来就会精神好,喝咖啡只是个巧合呢?格兰杰因果检验原理就会去深入挖掘这些细节,试图找出真正的答案。
它就像是个严谨的裁判,不会轻易被表面现象迷惑。
它要的是确凿的证据,要确定这个因果关系是真的存在,而不是我们自己想象出来的。
再打个比方,你觉得自己每次穿红色衣服出门就会遇到好事,这真的是因为穿红色衣服导致的吗?也许只是巧合呢?格兰杰因果检验原理会帮你搞清楚这到底是怎么回事。
这原理在很多领域都大有用处呢!经济学里可以用它来看看不同经济变量之间的关系,医学里可以用它来研究某种治疗方法和康复效果之间有没有因果联系。
你说这格兰杰因果检验原理是不是特别神奇?它就像一把钥匙,能打开我们对事物之间关系认知的大门。
让我们能更准确地理解这个世界,知道什么是真正的因果,而不是被一些虚假的关联所误导。
总之,格兰杰因果检验原理是个非常有价值的工具,能帮助我们在复杂的世界中找到真正的因果关系。
它让我们不再盲目地相信一些表面的联系,而是用科学的方法去分析、去验证。
所以啊,大家可别小瞧了它哟!原创不易,请尊重原创,谢谢!。
格兰杰因果检验解读
格兰杰因果关系检验一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP和广义货币供给量M,各自都有滞后的分量GDP(-1),GDP(-2)…,M(-1),M(-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M引起GDP的变化,还是GDP引起M的变化,或者两者间相互影响都存在反馈,即M引起GDP的变化,同时GDP也引起M的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP是M的因,还是M是GDP的因,或者M和GDP互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Walter N. Thurman和Mark E. Fisher用美国1930——1983年鸡蛋产量(EGGS)和鸡的产量(CHICKENS)的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的因果关系。
他给因果关系的定义为“依赖于使用过去某些时点上所有信息的最佳最小二乘预测的方差。
Eviews格兰杰因果关系检验结果说明
Eviews格兰杰因果关系检验结果说明一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP和广义货币供给量M,各自都有滞后的分量GDP(-1),GDP(-2)…,M(-1),M(-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M引起GDP的变化,还是GDP引起M的变化,或者两者间相互影响都存在反馈,即M引起GDP的变化,同时GDP也引起M的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP是M的因,还是M是GDP的因,或者M和GDP互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Walter N. Thurman和Mark E. Fisher用美国1930——1983年鸡蛋产量(EGGS)和鸡的产量(CHICKENS)的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验strengthen the sense of responsibility, work to solve the lack of decent occupation explain away, conduct problems. To establish theoverall concept, eliminate departmentalism. Strict assessment and accountability, to solve the spiritual slack, nianqingpazhong, status quo, and other issues. To establish and perfect the muddle along Bureau staff conduct work regulations, standardize the behavior of personnel. 2. To strengthen the responsibility system. One is the in-depth study and implement the "Hunan provincial Party and government leading cadres Interim Provisions on the work safety of a pair of > (Hunan Officeissued 2013 No. 5)," Hunan province safety supervision and management responsibilities of the provisions on the production (Hunan Zhengban made 2013 No. 4) And resolutely implement the safety production of the party with responsibility, a pair of responsibility. "Two is issued safety production administration and inspection to promote the responsibilities bear safety production supervision departments strictly and effectively assumed responsibility. The three is to establish risk self correction self reporting system for safety in production enterprises, promote the enterprises to implement the mainresponsibility for production safety is introduced. Four strengthen the county safety production supervision ability construction work, promote safe production responsibility to the grassroots. 3, strictaccountability and target management. Adhere to the" who is in charge, who is responsible for the pipe industry must be safe, Guan Sheng production and operation must be safe, pipe business must controlsecurity "principle, the implementation of safety The production of "cure." stagnation supervision and leadership responsible system. The safety production of key towns, key enterprises and key problems, by the township government and the Department responsible for the stagnationled the lump sum, to tackle tough. To further increase the production safety index assessment, strictly implement the safety production of the "one vote veto" and the reward system, strengthen the safety incentive and restraint mechanism. (six) the implementation of the work force is not strong. The documents, meeting, long work arrangement, check and supervise the implementation of small, poor implementation of the system, the work is not effective. Some leading cadres sense of purpose, consciousness of the masses is not strong, the ruling " For the people "," the interests of the masses no matter "concept understanding is not in place. The specific work treats with the deployment, a few leading cadres complain that work is too complicated, too much responsibility, the pressure is too large, too much emphasis on the difficulty of the work, such as underground mines to avoid the disaster of" six systems "construction and construction of mechanical ventilation to file the form, forwarding arrangements work, no in-depth mining enterprises to promote the specific work, the increase in the number of files, but the effect is not good, not according to the actual situation of non coal mines in the county, to engage in" across the board ", and the quality 经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
4格兰杰因果检验
宣称某两个变量间存在一种因果关系,也需
要给以经验上的支持。 Granger从预测的角度给出了因果关系的一 种定义。
Dept.of Economic,Huashang College GuangDong University of Business Studies
Granger因果关系检验
EViews操作: 1. View/Granger Causality/选择滞后期数; 2. Quick/Group Statisics/Granger Causality Test/输入“Y X” /选择滞后期数。
通过前面的学习:因果关系不同于相关 关系,虽说回归方程中解释变量是被解释变 量的原因,但是,这一因果关系通常是在回 归模型给定之前就要确定的。
Dept.of Economic,Huashang College GuangDong University of Business Studies
实际上,很多情况下,变量间的因果关 系并非一目了然;此外,就算某一经济理论
Dept.of Economic,Huashang College GuangDong University of Business Studies
Granger因果关系检验
滞后期一般选择5以下,选择具有技术性。 对于滞后期长度的选择有时很敏感。不同的 滞后期可能会得到完全不同的检验结果。 一般首先以模型随机误差项不存在序列相关 为标准选取滞后期,然后进行因果关系检验。 (第十章具体了解)
Dept.of Economic,Huashang College GuangDong University of Business Studies
Granger因果关系检验
两个假设被接受→两者之间不存在“因果关 系”,第三者或多个第三者才是它们的因。 两个假设被拒绝→X是Y的因,Y也是X的因 ,两者之间存在“双向因果关系”。 一个假设被拒绝,另一个假设被接受→才能 推断出其间存在Granger因果关系。
格兰杰因果检验简要介绍
格兰杰(Granger)因果性检验目前在计量经济学中应用比较多,不过我们当初学习计量并没有学这个检验方法,经济学专业的学生应该会学到吧。
上次谭英平师姐给我们讲宏观经济统计分析课时曾经给我们介绍过,不过也只是很肤浅地说了说原理(这种教学有一定的危险性啊)。
要探讨因果关系,首先当然要定义什么是因果关系。
这里不再谈伽利略抑或休谟等人在哲学意义上所说的因果关系,只从统计意义上介绍其定义。
从统计的角度,因果关系是通过概率或者分布函数的角度体现出来的:在宇宙中所有其它事件的发生情况固定不变的条件下,如果一个事件A的发生与不发生对于另一个事件B的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又先后顺序(A前B后),那么我们便可以说A是B的原因。
早期因果性是简单通过概率来定义的,即如果P(B|A)>P(B)那么A就是B的原因(Suppes,1970);然而这种定义有两大缺陷:一、没有考虑时间先后顺序;二、从P(B|A)>P(B)由条件概率公式马上可以推出P(A|B)>P(A),显然上面的定义就自相矛盾了(并且定义中的“>”毫无道理,换成“<”照样讲得通,后来通过改进,把定义中的“>”改为了不等号“≠”,其实按照同样的推理,这样定义一样站不住脚)。
事实上,以上定义还有更大的缺陷,就是信息集的问题。
严格讲来,要真正确定因果关系,必须考虑到完整的信息集,也就是说,要得出“A是B的原因”这样的结论,必须全面考虑宇宙中所有的事件,否则往往就会发生误解。
最明显的例子就是若另有一个事件C,它是A和B的共同原因,考虑一个极端情况:若P(A|C)=1,P(B|C)=1,那么显然有P(B|AC)=P(B|C),此时可以看出A事件是否发生与B事件已经没有关系了。
因此,Granger(1980)提出了因果关系的定义,他的定义是建立在完整信息集以及发生时间先后顺序基础上的。
EVIEWS格兰杰检验解读
Eviews做单位根检验和格兰杰因果分析一,首先我根据ADF检验结果,来说明这两组数据对数情况下是否是同阶单整的(同阶单整即说明二者是协整的,这是一种协整检验的方法),我对你的两组数据分别作了单位根检验,结果如下:1.LNFDI水平下的ADF结果:Null Hypothesis: LNFDI has a unit rootExogenous: ConstantLag Length: 2 (Automatic based on AIC, MAXLAG=3 Augmented Dickey-Fuller test statistict-Statistic Prob.*-1.45226403166189 0.526994561264069Test critical values:1% level -4.004424924017175% level -3.0988964053233710% level -2.69043949557234*MacKinnon (1996 one-sided p-values.Warning: Probabilities and critical values calculated for 20observations and may not be accurate for a sample size of 14从上面的t-Statistic对应的值可以看到, -1.45226403166189大于下面所有的临界值,因此LNFDI在水平情况下是非平稳的。
然后我对该数据作了二阶,再进行ADF检验结果如下:t-Statistic Prob.*- 2.8606168858628 0.0770552989049772Test critical values:1% level -4.057909684396635% level -3.1199095651240810% level -2.70110325490427看到t-Statistic的值小于10% level下的-2.70110325490427,因此可以认为它在二阶时,有90%的可能性,是平稳的。
格兰杰因果关系检验
例二
经过Eviews进行格兰杰检验结果如下
可以看出在滞后期为2的情况下,两者互为原因,不 符合格兰杰因果检验。
例三
经过Eviews进行格兰杰检验结果如下 可以看出在滞后期为2的情况下,两者互不为原因。
四、格兰杰因果检验的评价
• 格兰杰的统计学本质上是对平稳时间序列数据一种预测,格兰杰 因果关系检验的结论只是一种预测,是统计意义上的格兰杰因果 性,而不是真正意义上的因果关系,不能作为肯定或否定因果关 系的根据。
二、Granger因果关系检验
变量X是否为变量Y的Granger原因,是可以检验的。
检验X是否为引起Y变化的Granger原因的过程如下:
第一步,检验原假设“H0:X不是引起Y变化的
Granger原因”。首先,估计下列两个回
t 0 i1 i t i i1 i t i t
降水量 20 5 5 15 8 15 41 23 39 5 47 30 28 81 137 35 41 31 57 18 93 67 1 15 10 9
解:(1)建立工作文件。
由于本例数据的时间间隔为旬,Eviews没有提供相应的时 期度量,故应利用鼠标左键单击主菜单选项File,在打开 的下拉菜单中选择New/Workfile,并在工作文件定义对话 框(Workfile Range)的Workfile frequency一栏选择 Undated or irregular项。在起止项中分别输入1和78,表 示每个序列的观测值个数为78个。
有约束回归模型(r): Y
p
Y
t 0 i 1 i t i t
式中,0表示常数项;p和q分别为变量Y和X的最大滞后期 数,通常可以取的稍大一些;t为白噪声。
• 然后,用这两个回归模型的残差平方和RSSu和RSSr 构造F统计量:
时间序列的平稳、非平稳、协整、格兰杰因果关系
时间序列的平稳、非平稳、协整、格兰杰因果关系步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。
如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。
1.单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
常用的ADF检验包括三个模型方程。
在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t 检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。
2.当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3.当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验:(1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性;(2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)。
4.当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。
5.格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
Eviews第四讲格兰杰因果
精品课件
12
精品课件
13
格兰杰因果检验
得到平稳的序列X,Y后,我们开始进行格 兰杰因果检验
1. 选定变量Y,X,open—as group 2. view---Granger causality
阶单整:Y—I(1), X—I(1),则通过一阶差分使 得序列平稳 Eviews里可以通过命令:
genr dY=D(Y) genr dX=D(X)
精品课件
6
若序列是二阶单整:Y—I(2), X—I(2) Eviews里可以通过命令: genr dY=D(Y) genr dX=D(X) genr ddY=D(DY) genr dX=D(DX)
方差分解)
精品课件
20
数据非平稳
模型及步骤: 1. 单位根检验,得出数据平稳I(1)或I(2) 2.协整检验 (3. 格兰杰因果检验) 4. VAR (误差修正模型)--数据不平稳
精品课件
21
一般我们要做的VAR有两种区分: 一类是做脉冲响应和方差分析; 另一类是做vecm。 如果要做脉冲响应和方差分析, 要求变量是
精品课件
14
精品课件
15Байду номын сангаас
精品课件
16
格兰杰因果检验表格的形成
精品课件
17
关于协整和格兰杰检验
先做单位根检验,看变量序列是否平稳 序列,若平稳,可构造回归模型等经典 计量经济学模型;若非平稳,进行差分 ,当进行到第i次差分时序列平稳,则服 从i阶单整(注意趋势、截距不同情况选 择,根据P值和原假设判定)。
精品课件
格兰杰因果实例-概述说明以及解释
格兰杰因果实例-概述说明以及解释1.引言1.1 概述格兰杰因果实例是指一种特殊的因果关系示例,其名称源于英国统计学家格兰杰(Francis Galton)。
在社会科学研究中,格兰杰因果实例被广泛用于探究变量之间的因果关系。
通过分析观察数据和统计模型,研究者可以揭示出变量之间的相互影响和原因与结果之间的因果关系。
格兰杰因果实例的核心思想是基于因果关系的非随机性观察。
传统的统计分析方法往往默认变量之间是独立的,并未考虑可能存在的因果关系。
然而,在现实生活中,变量之间往往是相互关联的,并存在着相互影响的因果关系。
格兰杰因果实例通过将观察数据与统计模型相结合,能够揭示出变量之间潜在的因果关系。
在格兰杰因果实例中,研究者首先选择一个主要的结果变量,然后观察其他可能影响该结果的变量。
通过对这些变量进行分析并建立统计模型,可以确定哪些变量对结果产生了显著的因果影响,从而揭示出潜在的因果关系。
格兰杰因果实例的应用非常广泛。
它可以用于解答各种实际问题,例如探究教育投入对学生学业成绩的影响、分析广告投放对销售额的影响、研究环境因素对健康状况的影响等。
通过运用格兰杰因果实例,可以帮助决策者更好地理解变量之间的因果关系,为决策制定提供科学的依据。
总而言之,格兰杰因果实例是一种有效的研究方法,通过分析观察数据和统计模型,揭示出变量之间的因果关系。
其应用范围广泛,可以帮助决策者做出科学合理的决策。
在本文中,我们将深入探讨几个格兰杰因果实例,通过详细分析这些实例,展示格兰杰因果实例在实际问题中的应用和影响。
1.2 文章结构文章结构部分主要是对整个文章的结构进行介绍,以便读者能够清晰了解文章的组成和逻辑。
以下是文章结构部分的内容:文章结构为了更好地展示格兰杰因果实例的相关信息,本文将按照以下结构组织内容:1. 引言:在引言部分,我们将对格兰杰因果实例进行一个概述,介绍其背景和相关概念,以及本文的目的。
2. 正文:正文部分将呈现两个关于格兰杰因果实例的具体案例。
Eviews格兰杰因果关系检验结果说明
Eviews格兰杰因果关系检验结果说明一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP和广义货币供给量M,各自都有滞后的分量GDP(-1),GDP(-2)…,M(-1),M(-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M引起G DP的变化,还是GDP引起M的变化,或者两者间相互影响都存在反馈,即M引起GDP的变化,同时GDP也引起M的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP是M的因,还是M是GDP的因,或者M和GDP互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Wal ter N. Thurman和MarkE. Fisher用美国1930——1983年鸡蛋产量(EGGS)和鸡的产量(CHICKEN S)的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的因果关系。
格兰杰因果检验
格兰杰因果关系检验一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP和广义货币供给量M,各自都有滞后的分量GDP (-1),GDP(-2)…,M(-1),M(-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M引起GDP的变化,还是GDP引起M的变化,或者两者间相互影响都存在反馈,即M引起GDP的变化,同时GDP也引起M的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP是M的因,还是M是GDP的因,或者M和GDP互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Walter N. Thurman和Mark E. Fisher用美国1930——1983年鸡蛋产量(EGGS)和鸡的产量(CHICKENS)的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的因果关系。
他给因果关系的定义为“依赖于使用过去某些时点上所有信息的最佳最小二乘预测的方差。
Eviews第四讲格兰杰因果 ppt课件
Eviews第四讲格兰杰因果
模型及步骤: 1. 单位根检验,得出数据平稳I(0) 2. 格兰杰因果检验 3. 平稳数据可进行OLS/ VAR(脉冲反应/
方差分解)
Eviews第四讲格兰杰因果
模型及步骤: 1. 单位根检验,得出数据平稳I(1)或I(2) 2.协整检验 (3. 格兰杰因果检验) 4. VAR (误差修正模型)--数据不平稳
Eviews第四讲格兰杰因果
得到平稳的序列X,Y后,我们开始进行格 兰杰因果检验
1. 选定变量Y,X,open—as group 2. view---Granger causality
Eviews第四讲格兰杰因果
Eviews第四讲格兰杰因果
Eviews第四讲格兰杰因果
Eviews第四讲格兰杰因果
causality,输入滞后项后确定 (最优滞后阶数由AIC准则确定)
Eviews第四讲格兰杰因果
1. 差分法 首先对时间序列进行单位根检验,若序列是一
阶单整:Y—I(1), X—I(1),则通过一阶差分使 得序列平稳 Eviews里可以通过命令:
genr dY=D(Y) genr dX=D(X)
先做单位根检验,看变量序列是否平稳 序列,若平稳,可构造回归模型等经典 计量经济学模型;若非平稳,进行差分 ,当进行到第i次差分时序列平稳,则服 从i阶单整(注意趋势、截距不同情况选 择,根据P值和原假设判定)。
Eviews第四讲格兰杰因果
若所有检验序列均服从同阶单整,可构 造VAR模型,做协整检验(注意滞后期的 选择),判断模型内部变量间是否存在 协整关系,即是否存在长期均衡关系。 如果有,则可以构造VEC模型或者进行 Granger因果检验,检验变量之间“谁引 起谁变化”,即因果关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若所有检验序列均服从同阶单整,可构 造VAR模型,做协整检验(注意滞后期的 选择),判断模型内部变量间是否存在 协整关系,即是否存在长期均衡关系。 如果有,则可以构造VEC模型或者进行 Granger因果检验,检验变量之间“谁引 起谁变化”,即因果关系。
数据平稳
ห้องสมุดไป่ตู้
模型及步骤: 1. 单位根检验,得出数据平稳I(0) 2. 格兰杰因果检验 3. 平稳数据可进行OLS/ VAR(脉冲反应/ 方差分解)
格兰杰因果分析
在进行单位根和协整分析后,可对协整 变量之间的因果关系进行探索 如果一对时间序列是协整的,则至少在 某一方面存在Granger原因 格兰杰因果检验的前提条件:平稳序列
格兰杰因果检验的操作
直接用Eviews可操作得出结果 步骤: 1.单位根检验数据平稳性 1.ctrl+变量名,同时选择GDP和GINI,右击 open—as group 2.在打开的group窗口点击View--- granger causality,输入滞后项后确定 (最优滞后阶数由AIC准则确定)
数据非平稳
模型及步骤: 1. 单位根检验,得出数据平稳I(1)或I(2) 2.协整检验 (3. 格兰杰因果检验) 4. VAR (误差修正模型)--数据不平稳
一般我们要做的VAR有两种区分: 一类是做脉冲响应和方差分析; 另一类是做vecm。 如果要做脉冲响应和方差分析, 要求变量是 平稳的; 如果是vecm,需要用johansen检验变量是否 有协整关系,有的话就可做vecm
格兰杰因果检验
得到平稳的序列X,Y后,我们开始进行格 兰杰因果检验 1. 选定变量Y,X,open—as group 2. view---Granger causality
格兰杰因果检验表格的形成
关于协整和格兰杰检验
先做单位根检验,看变量序列是否平稳 序列,若平稳,可构造回归模型等经典 计量经济学模型;若非平稳,进行差分 ,当进行到第i次差分时序列平稳,则服 从i阶单整(注意趋势、截距不同情况选 择,根据P值和原假设判定)。
如何得到平稳序列
1. 差分法 首先对时间序列进行单位根检验,若序列是一 阶单整:Y—I(1), X—I(1),则通过一阶差分使 得序列平稳 Eviews里可以通过命令: genr dY=D(Y) genr dX=D(X)
若序列是二阶单整:Y—I(2), X—I(2) Eviews里可以通过命令: genr dY=D(Y) genr dX=D(X) genr ddY=D(DY) genr dX=D(DX)
2. H-P法(卡曼-滤波法)
首先打开序列Y,单击工具栏中的proc--Hodrick-Prescott Filter,可以得到一个对 话框,见下图
然后对趋势项和周期进行命名,可以生成 新的Y变量的趋势序列和周期序列
生成新的Y变量平稳序列
genr gini2=gini-ginit (原数据减去趋势项) 对gini2 进行单位根检验(ADF)