函数基本性质基础练习(含答案)
函数的基本性质练习题及答案
高中数学必修一1.3函数的基本性质练习题及答案一:单项选择题: (共10题,每小题5分,共50分)1。
已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A 。
1 B 。
2 C 。
3 D 。
42. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A 。
)2()1()23(f f f <-<-B 。
)2()23()1(f f f <-<- C.)23()1()2(-<-<f f f D.)1()23()2(-<-<f f f3。
如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是()A.增函数且最小值是5- B 。
增函数且最大值是5-C 。
减函数且最大值是5-D 。
减函数且最小值是5-4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A 。
奇函数 B.偶函数C 。
既是奇函数又是偶函数D 。
非奇非偶函数5. 函数)11()(+--=x x x x f 是( )A.是奇函数又是减函数B.是奇函数但不是减函数C.是减函数但不是奇函数D.不是奇函数也不是减函数6。
下列函数既是奇函数,又在区间上单调递减的是( )A 。
B 。
C. D 。
7。
设函数|| + b + c 给出下列四个命题:①c = 0时,y 是奇函数 ②b 0 , c 〉0时,方程0 只有一个实根③y 的图象关于(0 , c)对称 ④方程0至多两个实根其中正确的命题是( )A .①、④B .①、③C .①、②、③D .①、②、④8。
已知函数f(x)=3-2|x|,g(x)=x2—2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)〈g(x)时,F(x)=f(x)。
函数的基本性质练习(含答案)
函数的基本性质练习(含答案)基础训练A组1.若函数f(x)为偶函数,则f(-x)=f(x),代入函数f(x),得到:m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)(-x)^2+(m-2)(-x)+(m^2-7m+12)化简得到:(m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)x^2-(m-2)x+(m^2-7m+12)移项得到:4x=0,因此m=2,选B。
2.偶函数在[-∞,-1]上是增函数,说明在[1,+∞)上也是增函数,因此f(-3/2)<f(-1)<f(2),选A。
3.因为f(x)是奇函数,所以在[-7,-3]上也是增函数,最小值为-5,因此选A。
4.F(x) = f(x) - f(-x),代入f(-x)得到:F(x) = f(x) - (-f(x)) = 2f(x)因此F(x)是偶函数,选B。
5.对于y=x,有y'=1>0,在(0,1)上是增函数,选A。
6.化简得到f(x)=-x^2+x,因此在[0,1]上是减函数,但f(-x)=-f(x),因此是奇函数,选B。
填空题1.因为f(x)是奇函数,所以f(0)=0,不等式化简得到f(x)<0,解为(-5,0)U(0,5)。
2.值域为(-∞,+∞),因为2x+x+1可以取到任意大的值。
3.y=x+1,因此值域为(1,2]。
4.f(x)的导数为2(k-2)x+(k-1),当x(k-1)/(2(k-2))时导数小于0,因此f(x)的递减区间为(-∞,-(k-1)/(2(k-2)))U((k-1)/(2(k-2)),+∞)。
5.命题(1)和(2)正确,命题(3)和(4)错误,因此正确的命题个数为2.解答题1.一次函数y=kx+b的单调性取决于k的符号,当k>0时单调递增,当k0时单调递减,当k0时开口向上,单调递增,当a<0时开口向下,单调递减。
2.因为定义域为(-1,1),所以f'(x)=2x-1<0当x<1/2时,f(x)单调递减,因此f(x)在(-1/2,1/2)上取得最大值,最小值为f(1)=3.x0时,f(x)为正数。
函数性质综合练习(含详解答案)
函数性质综合练习(含详解答案)一、选择题1.若函数1y ax =+在[]1,2上的最大值与最小值的差为2,则实数a 的值是( )A. 2B. 2-C. 2或2-D. 02.若函数()()2212f x x a x =+-+在区间[)4,+∞上单调递增.则a 的取值范围是( ) A. [3,)-+∞B. (,3]-∞-C. (,5]-∞D. [)3,+∞3.已知定义在R 上的奇函数()f x ,当0x >时, ()21f x x x =+-,那么当0x <时, ()f x 的解析式为( )A. ()21f x x x =++ B. ()21f x x x =--+C. ()21f x x x =-+- D. ()21f x x x =-++ 4.函数282y x x =-+的增区间是( )A.(],4-∞-B.[)4,-+∞C.(],4-∞D.[)4,+∞5.函数11y x =-在区间[]2,3上的最小值为( ) A.2 B.12 C.13D.12- 6.设()f x 为定义在(),-∞+∞上的偶函数,且()f x 在[)0,+∞上为增函数,则()()()2,π,3f f f --的大小顺序是( )A.()()()π32f f f ->>-B.()()()π23f f f ->->C.()()()π32f f f -<<-D.()()()π23f f f -<-<7.函数()1f x x x =-的图象关于( ) A.y 轴对称B.直线y x =-对称C.原点对称D.直线y x =对称二、填空题 8.已知22()1x f x x=+,那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++=__________。
9.已知函数()132f x x +=+,则函数()f x 的解析式为__________.10.若函数()[)22,2,4f x x x x =-∈则f x 的值域是__________.11.若函数()211f x x +=-,则()2f =12.已知函数()y f x =为奇函数,若()()321f f -=,则()()23f f ---=__________.13.若函数()()22121f x mx m x =++-是偶函数,则m =__________.14若函数,,则的最小值是 。
函数的基本性质知识点及习题(附答案)
函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
函数基础练习(题型大全)含答案
函数基础练习(题型大全)含答案一、选择题(本大题共17小题,共85.0分) 1. 函数f(x)=1lg(x+1)+√2−x 的定义域为( )A. (−1,0)∪(0,2]B. [−2,0)∪(0,2]C. [−2,2]D. (−1,2]2. 若函数f(x)={−x 13,x ≤−1x +2x −7,x >−1,则f[f(−8)]=( ) A. −2 B. 2 C. −4 D. 4 3. 函数f(x)=ln(x 2−2x −8)的单调递增区间是( )A. (−∞,−2)B. (−∞,−1)C. (1,+∞)D. (4,+∞)4. 设,,c =30.7,则a ,b ,c 的大小关系是( )A. a <b <cB. c <b <aC. b <c <aD. b <a <c 5. 在下列区间中,函数f(x)=e x +4x −3的零点所在的区间为( )A. (−2,−1)B. (−1,0)C. (0,12)D. (12,1)6. 已知函数f(x)=cosx e x,则函数f(x)的图象在点(0,f(0))处的切线方程为( )A. x +y +1=0B. x +y −1=0C. x −y +1=0D. x −y −1=07. 已知函数y ={x 2+1(x ⩽0)2x(x >0),若f(a)=10,则a 的值是( )A. 3或−3B. −3或5C. −3D. 3或−3或58. 若函数,且满足对任意的实数x 1≠x 2都有成立,则实数a 的取值范围是( ) A. (1,+∞) B. (1,8) C. (4,8) D. [4,8)9. 定义在R 上的奇函数f(x)满足f(x +2)=−1f(x),且在(0,1)上f(x)=3x ,则f(log 354)=( )A. 32B. 23C. −32D. −2310. 函数y =2x 2−e |x|在[−2,2]的图象大致为( )A.B.C.D.11. 设函数f(x)=ln(1+|x|)−11+x 2,则使得f(x)>f(2x −1)成立的x 的取值范围是( )A.B. (13,1) C. (−13,13)D.12. 若函数f(x)=lnx +ax +1x 在[1,+∞)上是单调函数,则a 的取值范围是( )A. (−∞,0]∪[14,+∞)B. (−∞,−14]∪[0,+∞)C. [−14,0]D. (−∞,1]13. 已知函数f(x)=ln(√1+x 2−x)+2,则f(lg5)+f(lg 15)=( )A. 4B. 0C. 1D. 214. 已知函数f(x)={14x +1,x ≤1lnx,x >1,则方程f(x)=ax 恰有两个不同的实数根时,实数a 的取值范围是( )A. (0,1e )B. [14,1e )C. (0,14]D. (14,e)15. 已知函数f(x)(x ∈R)满足f(−x)=2−f(x),若函数y =x+1x与y =f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 ∑(x i +y i )=( )m i=1 A. 0B. mC. 2mD. 4m 16. 设函数f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e2的最大值为M ,最小值为N ,则(M +N -1)2019的值为( ) A.1 B.2 C.22019 D.3201917. 已知函数f (x )的导函数为f ′(x ),若2f (x )+f ′(x )>2,f (0)=5,则不等式f (x )-4e-2x>1的解集为( )A.(1,+∞)B.(-∞,0)C.(-∞,0)∪(1,+∞) D .(0,+∞)二、填空题(本大题共5小题,共25.0分)18. 函数y =log a (2x −3)+8的图象恒过定点P ,P 在幂函数f(x)的图象上,则f(4)= ______. 19. 求曲线f (x )=x 3−3x 2+2x 过原点的切线方程__________. 20. ∫(√1−x 2+x)dx =10________.21. 设函数f(x)={x +1,x ≤02x ,x >0,则满足f(x)+f(x −12)>1的x 的取值范围是______.22. 函数f(x)=lgx 2+1|x|(x ≠0,x ∈R),有下列命题:①f(x)的图象关于y 轴对称;②f(x)的最小值是2;③f(x)在(−∞,0)上是减函数,在(0,+∞)上是增函数; ④f(x)没有最大值.其中正确命题的序号是______ .(请填上所有正确命题的序号) 三、解答题(本大题共5小题,共60.0分)23. 已知函数f(x)=13x 3+ax 2+6x −1.当x =2时,函数f(x)取得极值. (I)求实数a 的值;(II)若1≤x ≤3时,方程f(x)+m =0有两个根,求实数m 的取值范围. 24. 设函数f(x)=ln(x +1)+a(x 2−x),其中a ∈R ,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由; (Ⅱ)若∀x >0,f(x)≥0成立,求a 的取值范围.25.已知函数f(x)=x2−x,g(x)=e x−ax−1(e为自然对数的底数).(1)讨论函数g(x)的单调性;(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.26.已知函数.(1)讨论函数f(x)的单调性;(2)若a=1,若f(x)有两个零点,求证:.27.已知函数f(x)=(x+1)lnx−ax+2.(1)当a=1时,求在x=1处的切线方程;(2)当a=2时求证:,n∈N∗.答案和解析1.【答案】A【解析】【分析】本题考查了函数的定义域,考查学生的计算能力,属于基础题. 由题意列出不等式组:{x +1>0x +1≠12−x ≥0,解出即可求解.【解答】解:由题意得:{x +1>0x +1≠12−x ≥0,解得−1<x ≤2且x ≠0, ∴函数的定义域为(−1,0)∪(0,2].故选A . 2.【答案】C【解析】【分析】本题主要考查了分段函数,考查了函数的定义域与值域.属于基础题, 利用分段函数函数值的计算得结论. 【解答】解:∵函数f(x)={−x 13,x ≤−1x +2x−7,x >−1, 又∵−8<−1,∴f(−8)=−(−8)13=2, ∵2>−1,∴f[f(−8)]=f(2)=2+22−7=−4.故选C . 3.【答案】D【解析】【分析】本题主要考查复合函数的单调性及对数函数的图象和性质,属于基础题.由x 2−2x −8>0得:x <−2或x >4,令t =x 2−2x −8,结合复合函数单调性“同增异减”的原则,可得答案. 【解答】解:由x 2−2x −8>0得:x <−2或x >4, 即f(x)的定义域为{x|x <−2或x >4}, 令t =x 2−2x −8,y =lnt 在t ∈(0,+∞)内单调递增,而x ∈(−∞,−2)时,t =x 2−2x −8为减函数,x ∈(4,+∞)时,t =x 2−2x −8为增函数, 故函数f(x)=ln(x 2−2x −8)的单调递增区间是(4,+∞). 故选D . 4.【答案】D【解析】【分析】本题考查指数函数、对数函数的单调性的应用,属于基础题.利用指数函数及对数函数的性质,借助中间量0或1即可求解. 【解答】解:0=log 71<a =log 73<log 77=1, b =log 137<log 131=0,c =30.7>30=1, ∴b <a <c . 故选D . 5.【答案】C【解析】【分析】本题考查函数零点存在性定理,属于基础题.若函数f(x)在[a,b]上是连续的,如果函数f(x)满足f(a)·f(b)<0,则f(x)在(a,b)上至少存在一个零点. 【解答】解:∵函数f(x)=e x +4x −3在上连续, 且f(0)=e 0−3=−2<0,f(12)=√e +2−3=√e −1=e 12−e 0>0,∴f(0)·f(12)<0,∴函数f(x)=e x +4x −3的零点所在的区间为(0,12).故选C . 6.【答案】B【解析】【分析】本题考查了基本函数导数公式,导数的四则运算,导数的几何意义,求已知切点的切线方程的方法,属基础题. 先求函数的导函数f′(x),再求所求切线的斜率即f′(0),由于切点为(0,1),故由点斜式即可得所求切线的方程. 【解答】 解:∵f(x)=cosx e x, ∴f′(x)=−sinx−cosxe ,∴f′(0)=−1,f(0)=1,即函数f(x)图象在点(0,1)处的切线斜率为−1, ∴图象在点(0,f(0))处的切线方程为y =−x +1, 即x +y −1=0. 故选B . 7.【答案】B【解析】【分析】本题考查了由分段函数的函数值求参数,解题的关键是确定f(a)的表达式,考查了运算求解能力和分类讨论思想,属于基础题.结合题意,需要对a 进行分类讨论,若a ≤0,则f(a)=1+a 2;若a >0,则f(a)=2a ,从而可求a . 【解答】解:由题意,函数y ={x 2+1(x ⩽0)2x(x >0), f(a)=10,若a ≤0,则f(a)=a 2+1=10,解得a =−3或a =3(舍去); 若a >0,则f(a)=2a =10, ∴a =5,综上可得,a =5或a =−3. 故选B .8.【答案】D【解析】【分析】本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键,属于中档题. 根据函数单调性的定义,由f(x 1)−f(x 2)x 1−x 2>0恒成立,得到f(x)单调递增,则分段f(x)在各段上都是递增,且衔接处非减,得到不等式求解即可. 【解答】解:∵对任意的实数x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2>0成立,∴函数f(x)={a x ,x ≥1(4−a 2)x +2,x <1在R 上单调递增, ∴{a >14−a 2>0a 1≥(4−a 2)×1+2 , 解得a ∈[4,8), 故选D . 9.【答案】C【解析】【分析】本题考查函数值的求法,指数函数、对数函数的运算与性质,函数的周期性及奇函数性质的综合应用,利用条件求出函数的周期以及利用函数的性质逐步转化自变量是解题的关键.由已知条件和函数周期性的定义求出函数的周期,利用函数的周期性、奇函数的性质和函数的解析式,逐步转化由运算性质求出f(log 354)的值. 【解答】解:由f(x +2)=−1f(x)得,f(x +4)=−1f(x+2)=f(x), 所以函数f(x)的周期是4,因为f(x)是定义在R 上的奇函数,且3<log 354<4, 则0<4−log 354<1, 且在(0,1)上,f(x)=3x ,所以f(log 354)=f(log 354−4)=−f(4−log 354).故选C .10.【答案】D【解析】【分析】本题考查的知识点是函数的图象,属于中档题.根据已知函数的解析式,分析函数的奇偶性,特殊点处的函数值以及单调性,利用排除法,可得答案. 【解答】解:∵f (x )=y =2x 2−e |x |,∴f(−x)=2(−x)2−e|−x|=2x2−e|x|,故函数为偶函数,当x=±2时,y=8−e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2−e x,f′(x)=4x−e x,设g(x)=4x−e x,g′(x)=4−e x,当x∈(0,ln4)时,g′(x)<0,g(x)单调递减,即f′(x)=4x−e x单调递减,当x∈(ln4,2)时,g′(x)>0,g(x)单调递增,即f′(x)=4x−e x单调递增,因为f′(0)=−1<0且f′(ln4)=4ln4−4>0,则f′(x)=4x−e x=0在[0,ln4]有解,设为x0,当x∈(0,x0)时,f′(x)<0,f(x)单调递减,当x∈(x0,ln4)时,f′(x)>0,f(x)单调递增,故函数y=2x2−e|x|在[0,ln4]不是单调的,又ln4<2,故函数y=2x2−e|x|在[0,2]不是单调的,排除C,故选D.11.【答案】B【解析】【分析】本题主要考查函数奇偶性和单调性的应用,考查函数性质的综合应用,运用偶函数的性质是解题的关键,属于中档题.根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:f(x)的定义域为R,,∴函数f(x)=ln(1+|x|)−11+x2为偶函数,且在x≥0时,f(x)=ln(1+x)−11+x2,而为[0,+∞)上的单调递增函数,且y=−11+x2为[0,+∞)上的单调递增函数,∴函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x−1)等价为f(|x|)>f(|2x−1|),即|x|>|2x−1|,平方得3x2−4x+1<0,解得:13<x<1,所求x的取值范围是(13,1).故选B.12.【答案】B【解析】【分析】本题主要考查求导公式和法则,导数与函数单调性的关系,以及恒成立问题的转化,考查分离常数法,整体思想、分类讨论思想,属于较难题.由求导公式和法则求出f′(x),由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数,利用整体思想和二次函数的性质求出函数的最值,可得a的取值范围.【解答】解:由题意得,f′(x)=1x +a−1x2,因为f(x)=lnx+ax+1x在[1,+∞)上是单调函数,所以f′(x)≥0或f′(x)≤0在[1,+∞)上恒成立,①当f′(x)≥0时,则1x +a−1x2≥0在[1,+∞)上恒成立,即a≥1x2−1x,设g(x)=1x2−1x=(1x−12)2−14,因为x∈[1,+∞),所以1x∈(0,1],当1x=1时,g(x)取到最大值是:0,所以a≥0,②当f′(x)≤0时,则1x +a−1x2≤0在[1,+∞)上恒成立,即a≤1x2−1x,设g(x)=1x2−1x=(1x−12)2−14,因为x∈[1,+∞),所以1x∈(0,1],当1x =12时,g(x)取到最小值是:−14,所以a≤−14,综上可得,a≤−14或a≥0,所以数a的取值范围是(−∞,−14]∪[0,+∞),故选B.13.【答案】A【解析】【分析】本题考查了对数的运算以及函数的性质,属于基础题.先得出f(x)+f(−x)=4,即可得出结果.【解答】解:∵f(x)=ln(√1+x2−x)+2,∴f(x)+f(−x)=ln(√1+x2−x)+2+ln(√1+x2+x)+2=ln1+4=4,则f(lg5)+f(lg15)=f(lg5)+f(−lg5)=4.故选A.14.【答案】B【解析】【分析】本题考查了函数的图象与性质、导数的应用问题,考查函数与方程的关系,属于中档题.题意转化为y=f(x)与y=ax有2个交点,画出函数的图象,观察满足题意的直线y=ax的条件,利用导数求出切线的斜率,结合图形得出a的取值范围.【解答】解:∵方程f(x)=ax恰有两个不同实数根,∴y=f(x)与y=ax有2个交点,画出y =f(x)的图象和y =ax 的图象,如图所示:其中l 1是直线y =ax 与对数部分图象相切时的情况,l 2是与x ≤1时函数的直线部分平行的直线, 由图可以看出,直线y =ax 的斜率a 应当在l 1与l 2的斜率之间,可以与l 2重合. 当x >1时,f(x)=lnx ,∴y ′=f ′(x)=1x , 设切点为P(x 0,y 0),则k =1x 0,∴切线方程为y −y 0=1x 0(x −x 0),而切线过原点,O(0,0)代入,得y 0=1,∴x 0=e ,k =1e , ∴直线l 1的斜率为1e ,又∵直线l 2与y =14x +1平行,∴直线l 2的斜率为14, ∴实数a 的取值范围是[14,1e ), 故选B . 15.【答案】B【解析】【分析】由条件可得f(x)+f(−x)=2,即有f(x)关于点(0,1)对称,又函数y =x+1x,即y =1+1x 的图象关于点(0,1)对称,即有(x 1,y 1)为交点,即有(−x 1,2−y 1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题. 【解答】解:函数f(x)(x ∈R)满足f(−x)=2−f(x), 即为f(x)+f(−x)=2, 可得f(x)关于点(0,1)对称, 函数y =x+1x,即y =1+1x 的图象关于点(0,1)对称,即有(x 1,y 1)为交点,即有(−x 1,2−y 1)也为交点, (x 2,y 2)为交点,即有(−x 2,2−y 2)也为交点,…则有∑i =1m(x i +y i )=(x 1+y 1)+(x 2+y 2)+⋯+(x m +y m )=12[(x 1+y 1)+(−x 1+2−y 1)+(x 2+y 2)+(−x 2+2−y 2)+⋯+(x m +y m )+(−x m +2−y m )] =m .故选B .16.答案 A解析 由已知x ∈R ,f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e 2=sinπx +x 2+e 2+2e x x 2+e 2=sinπx +2e x x 2+e 2+1,令g (x )=sinπx +2e xx 2+e2,易知g (x )为奇函数,由于奇函数在对称区间上的最大值与最小值的和为0,M +N =f (x )max +f (x )min =g (x )max +1+g (x )min +1=2,(M +N -1)2019=1. 17.答案 D解析 设F (x )=e 2x f (x )-e 2x -4, 则F ′(x )=2e 2x f (x )+e 2x f ′(x )-2e 2x =e 2x [2f (x )+f ′(x )-2]>0,所以函数F (x )=e 2x f (x )-e 2x -4在R 上为增函数. 又f (0)=5,所以F (0)=f (0)-1-4=0. 又不等式f (x )-4e-2x>1等价于e 2x f (x )-e 2x -4>0,即F (x )>0,解得x >0, 所以不等式的解集为(0,+∞).18.【答案】64【解析】【分析】本题考查对数函数的性质和幂函数,属于基础题.先找到定点P 的坐标,通过P 点坐标求解幂函数f (x )=x b 的解析式,从而求得f(4). 【解答】解:由题意,令2x −3=1,则x =2, 故点P(2,8),设幂函数f(x)=x b , 则2b =8,解得b =3, 所以f(x)=x 3, 故f(4)=64, 故答案为64.19.【答案】y =2x 和y =−14x【解析】【分析】本题考查导数的几何意义:切点处的导数值是切线的斜率;注意“在点处的切线”与“过点的切线”的区别,属于基础题.求出函数的导数,利用导数的几何意义:切点处的导数值是切线的斜率,分原点是切点和原点不是切点两类求. 【解答】解:f ′(x)=3x 2−6x +2.设切线的斜率为k .(1)当切点是原点时,k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 03−3x 02+2x 0,k =f ′(x 0)=3x 02−6x 0+2,①又k =y 0x 0=x 02−3x 0+2,②由①②得x 0=32,k =y 0x 0=−14. ∴所求曲线的切线方程为y =−14x.故答案为:y =2x 和y =−14x. 20.【答案】π+24【解析】【分析】本题考查了定积分的计算,巧用几何意义,由面积求积分,为中档题.【解答】解:∫01(√1−x 2+x)dx =∫01√1−x 2dx +∫01x dx=π4+12x 2|01=π4+12=π+24. 故答案为π+24.21.【答案】(−14,+∞)【解析】【分析】本题考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键,属于中档题.根据分段函数的表达式,分别讨论x 的取值范围,进行求解即可.【解答】解:若x ≤0,则x −12≤−12,则f(x)+f(x −12)>1等价为x +1+x −12+1>1,即2x >−12,则x >−14,此时−14<x ≤0,当x >0时,f(x)=2x >1,x −12>−12,当x −12>0即x >12时,满足f(x)+f(x −12)>1恒成立,当0≥x −12>−12,即12≥x >0时,f(x −12)=x −12+1=x +12>12,此时f(x)+f(x−12)>1恒成立,综上x>−14,故答案为:(−14,+∞).22.【答案】①④【解析】【分析】本题考查复合函数的性质,属于中档题.从偶函数的角度可知是否关于y轴对称,先求x 2+1|x|的范围再求f(x)的范围,由复合函数的“同增异减”判断单调性.【解答】解:①f(−x)=lg x 2+1|x|=f(x),∴函数f(x)是偶函数,f(x)的图象关于y轴对称,故①正确;②x2+1|x|=|x|+1|x|≥2,∴f(x)=lg x2+1|x|≥lg2,∴f(x)的最小值是lg2,故②不正确;③函数g(x)=x2+1|x|=|x|+1|x|在(−∞,−1),(0,1)上是减函数,在(−1,0),(1,+∞)上是增函数,故函数f(x)=lg x 2+1|x|在(−∞,−1),(0,1)上是减函数,在(−1,0),(1,+∞)上是增函数,故③不正确;④由③知,f(x)没有最大值,故④正确;故答案为①④.23.【答案】解:(I)由f(x)=13x3+ax2+6x−1,则f′(x)=x2+2ax+6,因在x=2时,f(x)取到极值,所以f′(2)=0⇒4+4a+6=0,解得,a=−52;(II)由(I)得f(x)=13x3−52x2+6x−1,且1≤x≤3,则f′(x)=x2−5x+6=(x−2)(x−3),由f′(x)=0,解得x=2或x=3,f′(x)>0,解得x>3或x<2;f′(x)<0,解得2<x<3;∴f(x)的递增区间为:(−∞,2)和(3,+∞);f(x)递减区间为:(2,3),又f(1)=176,f(2)=113,f(3)=72,要f(x)+m=0有两个根,则f(x)=−m有两解,分别画出函数y=f(x)与y=−m的图象,如图所示.由图知,实数m 的取值范围:−113<m ≤−72. 24.【答案】解:(Ⅰ)函数f(x)=ln(x +1)+a(x 2−x),其中a ∈R ,x ∈(−1,+∞). f ′(x)=1x+1+2ax −a =2ax 2+ax−a+1x+1.令g(x)=2ax 2+ax −a +1,x ∈(−1,+∞).(1)当a =0时,g(x)=1,此时f′(x)>0,函数f(x)在(−1,+∞)上单调递增,无极值点.(2)当a >0时,Δ=a 2−8a(1−a)=a(9a −8).①当0<a ≤89时,Δ≤0,g(x)≥0,f′(x)≥0,函数f(x)在(−1,+∞)上单调递增,无极值点.②当a >89时,Δ>0,设方程2ax 2+ax −a +1=0的两个实数根分别为x 1,x 2,x 1<x 2. ∵x 1+x 2=−12, ∴x 1<−14,x 2>−14. 由g(−1)=1>0,可得−1<x 1<−14.∴当x ∈(−1,x 1)时,g(x)>0,f′(x)>0,函数f(x)单调递增; 当x ∈(x 1,x 2)时,g(x)<0,f′(x)<0,函数f(x)单调递减; 当x ∈(x 2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增. 因此当a >89时,函数f(x)有两个极值点.(3)当a <0时,Δ>0.由g(−1)=1>0,可得x 1<−1<x 2. ∴当x ∈(−1,x 2)时,g(x)>0,f′(x)>0,函数f(x)单调递增; 当x ∈(x 2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减. 因此当a <0时,函数f(x)有一个极值点.综上所述:当a <0时,函数f(x)有一个极值点;当0≤a ≤89时,函数f(x)无极值点;当a >89时,函数f(x)有两个极值点.(Ⅱ)由(Ⅰ)可知:(1)当0≤a ≤89时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x ∈(0,+∞)时,f(x)>0,符合题意.(2)当89<a ≤1时,由g(0)=1−a ≥0,可得x 1,x 2≤0,函数f(x)在(0,+∞)上单调递增. 又f(0)=0,∴x ∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a 时,由g(0)=1−a <0,可得x 2>0,∴x ∈(0,x 2)时,函数f(x)单调递减.又f(0)=0,∴x ∈(0,x 2)时,f(x)<0,不符合题意,舍去;(4)当a <0时,设ℎ(x)=x −ln(x +1),x ∈(0,+∞),ℎ′(x)=x x+1>0. ∴ℎ(x)在(0,+∞)上单调递增.因此x ∈(0,+∞)时,ℎ(x)>ℎ(0)=0,即ln(x +1)<x , 可得:f(x)<x +a(x 2−x)=ax 2+(1−a)x ,当x >1−1a 时,ax 2+(1−a)x <0,此时f(x)<0,不合题意,舍去. 综上所述,a 的取值范围为[0,1]. 25.【答案】解:(1)∵g(x)=e x −ax −1,∴g ′(x )=e x −a ,①若a ≤0,g ′(x )>0,g(x)在(−∞,+∞)上单调递增; ②若a >0,当x ∈(−∞,lna]时,g′(x )≤0,g(x)单调递减; 当x ∈(lna,+∞)时,g′(x )>0,g(x)单调递增,综合上述,若a ≤0,则g(x)在上单调递增;若a >0,则g(x)在(lna,+∞)上单调递增,在(−∞,lna]上单调减.(2)当x >0时,x 2−x ≤e x −ax −1,即a ≤e x x −x −1x +1, 令ℎ(x)=e x x −x −1x +1(x >0),则ℎ′(x)=e x (x−1)−x 2+1x 2,令φ(x)=e x (x −1)−x 2+1(x >0),则φ′(x)=x(e x −2),当x ∈(0,ln2)时,φ′(x)<0,φ(x)单调递减;当x ∈(ln2,+∞)时,φ′(x)>0,φ(x)单调递增,又φ(0)=0,φ(1)=0,∴当x ∈(0,1)时,φ(x)<0,即ℎ′(x)<0,∴ℎ(x)单调递减,当x ∈(1,+∞)时,φ(x)>φ(1)=0,即ℎ′(x)>0,∴ℎ(x)单调递增,∴ℎ(x)min =ℎ(1)=e −1,∴实数a 的取值范围是(−∞,e −1]. 26.【答案】解:(1)函数的定义域为(0,+∞), f′(x )=b x 2−1x =b−xx 2,当b ≤0,f′(x )<0在(0,+∞)上恒成立,当b >0时,f′(x )<0得x ∈(b,+∞);f′(x )>0得x ∈(0,b), 所以,当b ≤0时,f (x )在(0,+∞)上单调递减,当b >0时,f (x )在(0,b)上单调递增,在(b,+∞)单调递减;(2)证明:由题意知,f(x 1)=f(x 2)=0,即1x 1+lnx 1=1x 2+lnx 2, 于是x 2−x 1x 1x 2=ln x2x 1, 记x 2x 1=t ,t >1,则lnt =t−1tx 1,解得x 1=t−1tlnt ,于是,x 1+x 2=x 1+tx 1=(1+t)x 1=t 2−1tlnt , ∴x 1+x 2−2=t 2−1tlnt −2=2(t 2−12t −lnt)lnt , 记函数g(t)=t 2−12t −lnt ,∴g′(x )=(t−1)22t 2,当t >1时g′(t )>0,故g(t)在(1,+∞)上单调增.于是,t >1时,g(t)>g(1)=0.又lnt >0,所以即x 1+x 2>2成立.27.【答案】解:(1)当a =1时,f(x)=(x +1)lnx −x +2(x >0), f ′(x)=lnx +1x ,因为f ′(1)=1,f(1)=1,所以曲线f(x)在x =1处的切线方程为y =x .(3)当a =2时,f(x)在(1,+∞)上单调递增,所以当x ∈(1,+∞)时,f(x)>f(1)=0,即(x +1)lnx −2x +2>0,所以lnx >2(x−1)x+1在(1,+∞)上恒成立, 令x =n+1n ,得ln n+1n >2(n+1n −1)n+1n +1,化简得ln(n +1)−lnn >22n+1,所以ln2−ln1>22+1,ln3−ln2>24+1,…,ln(n +1)−lnn >22n+1,累加得ln(n +1)−ln1>23+25+⋯+22n+1,即13+15+17+⋯+12n+1<12ln(n +1),n ∈N ∗.。
高一数学函数的基本性质练习
数 的取值范围是( )
A.
B.
28. (5分)已知函数
的取值范围是( )
A.
B.
C.
D.
在区间
上是减函数,那么实
C. 满足对任意的实数
D. 都有
,则
C.
D.
29. (5分)已知函数
在区间
A.
C.
30. (5分)(2019·佛山市南海区月考) 函数
上是单调函数,则实数 的取值范围是( ) B. D. 在 上是减函数,则( )
上是增函数;
(2)求函数 在区间
上的最大值和最小值.
4. (5分)(2018·南海市石门中学(狮山校区)月考) 己知函数
,
(1)判断 在区间 上的单调性并证明; (2)求 的最大值和最小值.
5. (5分)已知
(1) ;
(2)
;
(3)
.
,当 的定义域为下列区间时,求函数的最大值和最小值.
6. (5分) 求
A.
B.
C.
三、填空题(共11小题,每小题5分,共55分)
41. (5分)如果函数
为奇函数,那么
是增函数,且 D.
.
42. (5分)已知函数
是奇函数,则实数
.
43. (5分) 已知函数 具有奇偶性,且其定义域为
,则
.
44. (5分)(2018·佛山市荣山中学期中考试) 若函数
为奇函数,则实数
.
45. (5分)(2017·中山市第一中学月考) 已知函数
绝密★启用前
高中数学函数的基本性质
一、解答题(共14小题,每小题5分,共70分)
1. (5分)已知函数
.
(1)用定义法求证: 在
高一数学函数的基本性质试题答案及解析
高一数学函数的基本性质试题答案及解析1.已知函数是上的偶函数,满足,当时,,则()A.B.C.D.【答案】D【解析】当时,,即函数在上单调递增,由可得,即函数的周期为2,所以函数在上单调递增,又因为函数是上的偶函数,所以函数在上单调递减,而,所以.【考点】本小题主要考查函数的奇偶性、周期性、单调性的判断和应用,考查学生对问题的分析和应用能力以及转化问题的能力.点评:对于此类问题,关键是根据题意找出函数的周期,然后画出函数的简图,数形结合解决问题.2.(本小题满分10分)已知为常数,且,,方程有两个相等的实数根。
求函数的解析式;【答案】。
【解析】本试题主要是考查了二次函数与方程的求解问题的综合运用。
方程f(x)=x有两个相等的实数根且f(x)=ax2+bx则满足判别式等于零,可知参数b的值。
又因为f(2)=0,可知a的值。
解:(1)方程有两个相等的实数根且又3.证明:函数是偶函数,且在上是减少的。
(本小题满分12分)【答案】见解析。
【解析】本试题主要是考查了函数的奇偶性的定义以及单调性的性质。
现分析定义域,然后结合偶函数的定义证明,并运用设出变量,作差,变形定号,下结论得到。
证明:函数的定义域为,对于任意的,都有,∴是偶函数.(Ⅱ)证明:在区间上任取,且,则有∵,,∴即∴,即在上是减少的.4.已知函数是定义在上的奇函数,当时,,则当时, ( ) A.B.C.D.【答案】A【解析】因为函数是定义在上的奇函数,当时,,则当,-x>0,则=-f(x)解得函数的解析式为,故选A.5.若奇函数在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上( )A.是减函数,有最小值-7B.是增函数,有最小值-7C.是减函数,有最大值-7D.是增函数,有最大值-7【答案】D【解析】解:由奇函数的性质,∵奇函数f(x)在[1,3]上为增函数∴奇函数f(x)在[-3,-1]上为增函数,又奇函数f(x)在[1,3]上有最小值7,∴奇函数f(x)在[-3,-1]上有最大值-7,故选D6.已知= log[a+2(ab)-b+1],其中a>0,b>0,求使<0的x的取值范围【答案】使<0的x的取值范围是:当a>b>0时,x>log(-1);当a = b>0时,x∈R;当b>a>0时,x<log(-1).【解析】要使<0,因为对数函数y = log x是减函数,须使a+2(ab)-b+1>1,即a+2(ab)-b>0,即a+2(ab)+b>2b,∴(a+b)>2b,又a>0,b>0,∴a+b>b,即a>(-1)b,所以()>-1.当a>b>0时,x>log(-1);当a = b>0时,x∈R;当b>a>0时,x<log(-1).综上所述,使<0的x的取值范围是:当a>b>0时,x>log(-1);当a = b>0时,x∈R;当b>a>0时,x<log(-1).7.如图,A,B,C为函数的图象上的三点,它们的横坐标分别是t, t+2, t+4(t1).(1)设ABC的面积为S 求S="f" (t) ;(2)判断函数S="f" (t)的单调性;(3) 求S="f" (t)的最大值.【答案】(1) S=(2) S="f" (t)在是是减函数(3) 最大值是f (1)【解析】解:(1)过A,B,C,分别作AA1,BB1,CC1垂直于x轴,垂足为A1,B1,C1,则S=S梯形AA1B1B+S梯形BB1C1C-S梯形AA1C1C.(2)因为v=在上是增函数,且v5,上是减函数,且1<u; S上是增函数,所以复合函数S="f(t)" 上是减函数(3)由(2)知t=1时,S有最大值,最大值是f (1)8.求函数y=3的定义域、值域和单调区间.【答案】定义域(-∞,+∞)值域为原函数单调减区间为[1,+∞【解析】解:(1)定义域显然为(-∞,+∞).(2)是u的增函数,当x=1时,ymax =f(1)=81,而y=>0.∴.(3) 当x≤1 时,u=f(x)为增函数,是u的增函数,由x↑→u↑→y↑∴即原函数单调增区间为(-∞,1];当x>1时,u=f(x)为减函数,是u的增函数,由x↑→u↓→y↓∴即原函数单调减区间为[1,+∞.9.设是实数,,试证明:对于任意在上为增函数.【答案】见解析【解析】证明:设,则,由于指数函数在上是增函数,且,所以即,又由,得,,∴即,所以,对于任意在上为增函数.10.已知函数f(x)=(a-a)(a>0且a1)在(-, +)上是增函数, 求实数a的取值范围【答案】a(0, 1)(3, +)【解析】解: 由于f(x)递增,若设x<x,则f(x)-f(x)=[(a-a)-(a-a)]=(a-a)(1+a·a)<0, 故(a-9)( (a -a)<0.(1), 解得a>3; (2) , 解得0<a<1.综合(1)、(2)得a(0, 1)(3, +)。
函数的基本性质(单调性、奇偶性、周期性)(含答案)
函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2) 一些单调性的判断规则:①若f (x)与g(x)在定义域内都是增函数(减函数),那么f (x) + g(x)在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。
②复合函数的单调性规则是“同增异减”。
2.函数的奇偶性的定义:(1)对于函数f (x)的定义域内任意一个x,都有f (-x) = —f (x),则称f (x)为.奇函数的图象关于对称。
(2)对于函数f (x)的定义域内任意一个x,都有f (-x) = f (x),则称f (x)为.偶函数的图象关于对称。
(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。
3.奇偶函数图象的对称性(1)若y = f (a + x)是偶函数,则 f (a + x) = f (a - x) o f (2a - x) = f (x) o f (x)的图象关于直线x= a对称;(2)若y = f (b + x)是偶函数,则 f (b - x) = - f (b + x) o f (2b - x) = - f (x) o f (x)的图象关于点(b,0)中心对称;4.若函数满足f Q + a)= f Q),则函数的周期为T=a。
二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+ 8)上单调递减的函数是()A. y = 2|x|B. y = x3C. y = -x2+1D. y=cosx【答案】C【解析】试题分析:偶函数需满足f (-x) = f (x),由此验证可知A,C,D都是偶函数,但要满足在区间(0,+ 8) 上单调递减,验证可知只有C符合.考点:偶函数的判断,函数的单调性.2. f (x) = x2-2x + 4的单调减区间是.【答案】(fl) 【解析】试题分析:将函数进行配方得/(,) =,2—2x + 4 = (x —1)2+3,又称轴为x = l,函数图象开口向上,所 以函数的单调减区间为(-8,1) . 考点:二次函数的单调性.3 .函数y = log (%2 +2% —3)的单调递减区间为()2A. (— °°, —3)B. (— °°, — 1)C. (1, +°°)D. ( — 3, — 1) 【答案】A 【解析】试题分析:由x2 + 2x —3>0,得%<—3或x>l, .♦./(%)的定义域为(―8,—3)U(L+8).y = log (%2 + 2% —3)可看作由 y = log 沈和 M = %2 + 2% — 3 复合而成的,u - X2 +2x-3 = (x +1)2 -4 2 2在(—8,—3)上递减,在(1,+8)上递增,又y = log "在定义域内单调递增,.・.y = log (%2+2%-3)在2 2(—8,—3)上递减,在(1,+8)上递增,所以y = log (%2+ 2% —3)的单调递减区间是(―叫—3),故选A.2考点:复合函数的单调性.4 .已知丁 = %2+2(〃 — 2)% + 5在区间(4,+8)上是增函数,则a 的范围是( )【答案】B 【解析】试题分析:函数y = %2+2(〃-2)% + 5的图像是开口向上以x = 2-a 为对称轴的抛物线,因为函数在区 间(4,+8)上是增函数,所以2 —a V 4,解得“之―2 ,故A 正确。
高考数学专题复习-2.2函数的基本性质-高考真题练习(附答案)
2.2函数的基本性质考点一函数的单调性及最值1.(2016北京文,4,5分)下列函数中,在区间(-1,1)上为减函数的是()A.y=11−B.y=cosxC.y=ln(x+1)D.y=2-x答案D选项A中,y=11−=1-(t1)的图象是将y=-1的图象向右平移1个单位得到的,故y=11−在(-1,1)上为增函数,不符合题意;选项B中,y=cosx在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;选项C 中,y=ln(x+1)的图象是将y=lnx的图象向左平移1个单位得到的,故y=ln(x+1)在(-1,1)上为增函数,不符合题意;选项D符合题意.评析本题考查了基本函数的图象和性质以及图象的变换,属中档题.2.(2015课标Ⅱ文,12,5分)设函数f(x)=ln(1+|x|)-11+2,则使得f(x)>f(2x-1)成立的x的取值范围是(),1 B.-∞C.-13D.-∞∞答案A当x>0时,f(x)=ln(1+x)-11+2,∴f'(x)=11++2(1+2)2>0,∴f(x)在(0,+∞)上为增函数,∵f(-x)=f(x),∴f(x)为偶函数,由f(x)>f(2x-1)得f(|x|)>f(|2x-1|),∴|x|>|2x-1|,即3x2-4x+1<0,解得13<x<1,故选A.3.(2016浙江,7,5分)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤bB.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥bD.若f(a)≥2b,则a≥b答案B依题意得f(a)≥2a,若f(a)≤2b,则2a≤f(a)≤2b,∴2a≤2b,又y=2x是R上的增函数,∴a≤b.故选B.4.(2020课标Ⅲ文,12,5分)已知函数f(x)=sinx+1sin,则()A.f(x)的最小值为2B.f(x)的图象关于y轴对称C.f(x)的图象关于直线x=π对称D.f(x)的图象关于直线x=π2对称答案D对于A,令sinx=t,t∈[-1,0)∪(0,1],则g(t)=t+1,当t∈(0,1]时,g(t)=t+1≥2,当且仅当t=1时,取“=”,故g(t)∈[2,+∞),又∵g(t)=-g(-t),∴g(t)为奇函数,∴g(t)的值域为(-∞,-2]∪[2,+∞),故A错误;对于B,由f(x)≠f(-x),知f(x)不是偶函数,故B错误;对于C,f(2π-x)=sin(2π-x)+1sin(2π-p=-sinx-1sin≠f(x),故C错误;对于D,f(π-x)=sin(π-x)+1sin(π-p=sinx+1sin=f(x),故f(x)的图象关于直线x=π2对称,故D正确.故选D.5.(2021全国甲文,4,5分)下列函数中是增函数的为()A.f(x)=-xB.f(x)3C.f(x)=x2D.f(x)=3答案D解题指导:排除法,利用基本初等函数的性质逐一判断四个选项.解析对于f(x)=-x,由正比例函数的性质可知,f(x)是减函数,故A不符合题意;对于f(x),由指数函数的单调性可知,f(x)是减函数,故B不符合题意;对于f(x)=x2,由二次函数的图象可知,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,故C不符合题意;对于f(x)=3=13,由幂函数的性质可知,f(x)在(-∞,+∞)上单调递增,故选D.方法总结:一次函数y=kx+b(k≠0)单调性的判断:若k>0,则函数在R上单调递增;若k<0,则函数在R上单调递减.指数函数y=a x(a>0且a≠1)单调性的判断:若a>1,则函数在R上单调递增;若0<a<1,则函数在R上单调递减.幂函数y=xα单调性的判断:若α>0,则函数在(0,+∞)上单调递增;若α<0,则函数在(0,+∞)上单调递减.6.(2021全国乙文,8,5分)下列函数中最小值为4的是()A.y=x2+2x+4B.y=|sin xC.y=2x+22-xD.y=ln x+4ln答案C解题指导:对于A,利用配方法或二次函数的单调性求最值,对于B,C,D,利用换元法转化为对勾函数进行判断.解析对于A,y=x2+2x+4=(x+1)2+3≥3,所以它的最小值为3,所以A不符合题意;对于B,设|sin x|=t,则0<t≤1,y=|sin x=+4,t∈(0,1],易知y=t+4在(0,1]上单调递减,故t=1时,y min=1+41=5,所以B不符合题意;对于C,令2x=t(t>0),则y=2x+22-x=t+4,t>0,易知y=t+4在(0,2)上单调递减,在(2,+∞)上单调递增,所以当t=2时,y取最小值,y min=2+42=4,故C符合题意;对于D,令ln x=t,t∈R且t≠0,则y=ln x+4ln=+4,显然t<0时,函数值小于0,不符合题意.故选C.7.(2020新高考Ⅰ,8,5分)若定义在R的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是() A.[-1,1]∪[3,+∞) B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]答案D∵f(x)是定义在R上的奇函数,∴f(x-1)的图象关于点(1,0)中心对称,又∵f(x)在(-∞,0)上单调递减,∴f(x-1)在(-∞,1)上单调递减,在(1,+∞)上也单调递减,且过(-1,0)和(3,0),f(x-1)的大致图象如图:当-1≤x≤0时,f(x-1)≤0,∴xf(x-1)≥0;当1≤x≤3时,f(x-1)≥0,∴xf(x-1)≥0.综上,满足xf(x-1)≥0的x的取值范围是[-1,0]∪[1,3].故选D.8.(2016北京文,10,5分)函数f(x)=t1(x≥2)的最大值为.答案2解析解法一:∵f'(x)=-1(t1)2,∴x≥2时,f'(x)<0恒成立,∴f(x)在[2,+∞)上单调递减,∴f(x)在[2,+∞)上的最大值为f(2)=2.解法二:∵f(x)=t1=t1+1t1=1+1t1,∴f(x)的图象是将y=1的图象向右平移1个单位,再向上平移1个单位得到的.∵y=1在[2,+∞)上单调递减,∴f(x)在[2,+∞)上单调递减,故f(x)在[2,+∞)上的最大值为f(2)=2.解法三:由题意可得f(x)=1+1t1.∵x≥2,∴x-1≥1,∴0<1t1≤1,∴1<1+1t1≤2,即1<t1≤2.故f(x)在[2,+∞)上的最大值为2.评析本题考查函数的最值,有多种解法,属中档题.9.(2015浙江文,12,6分)已知函数f(x)=2,x≤1,+6-6,x>1,则f(f(-2))=,f(x)的最小值是.答案-12;26-6解析f(-2)=(-2)2=4,f(f(-2))=f(4)=4+64-6=-12.当x≤1时,f(x)=x2≥0,当x>1时,f(x)=x+6-6≥26-6,当且仅当x=6时,等号成立,又26-6<0,所以f(x)min=26-6.考点二函数的奇偶性1.(2015北京文,3,5分)下列函数中为偶函数的是()A.y=x2sinxB.y=x2cosxC.y=|lnx|D.y=2-x答案B A中函数为奇函数,B中函数为偶函数,C与D中函数均为非奇非偶函数,故选B.2.(2014课标Ⅰ,理3,文5,5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数答案C由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B 项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.评析本题考查函数奇偶性的定义及其应用,考查学生的知识应用能力及逻辑推理论证能力,准确理解函数奇偶性的定义是解决本题的关键.3.(2011课标,理2,文3,5分)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|答案B y=x3是奇函数,y=-x2+1和y=2-|x|在(0,+∞)上都是减函数,故选B.评析本题考查函数的奇偶性和单调性的判定,属容易题.4.(2021全国乙理,4,5分)设函数f(x)=1−1+,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+1答案B解题指导:思路一:将函数f(x)的解析式分离常数,通过图象变换可得函数图象关于(0,0)对称,此函数即为奇函数;思路二:由函数f(x)的解析式,求出选项中的函数解析式,由函数奇偶性定义来判断.解析解法一:f(x)=-1+2r1,其图象的对称中心为(-1,-1),将y=f(x)的图象沿x轴向右平移1个单位,再沿y 轴向上平移1个单位可得函数f(x-1)+1的图象,关于(0,0)对称,所以函数f(x-1)+1是奇函数,故选B.解法二:选项A,f(x-1)-1=2-2,此函数为非奇非偶函数;选项B,f(x-1)+1=2,此函数为奇函数;选项C,f(x+1)-1=−2K2r2,此函数为非奇非偶函数;选项D,f(x+1)+1=2r2,此函数为非奇非偶函数,故选B.5.(2021全国甲理,12,5分)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则() A.-94 B.−32 C.74 D.52答案D解题指导:利用奇偶性得到f(x+2)=-f(x),将出现的自变量0,3,92对应的函数值转化为[1,2]内自变量对应的函数值,进而得到a,b以及.解析由题知o−+1)=−o+1),o−p=o+4),从而f(x+4)=-f(x+2),即f(x+2)=-f(x), o−+2)=o+2),即o−p=−o+2),所以6=f(0)+f(3)=-f(2)+[-f(1)]=-(4a+b)-(a+b)=-5a-2b,即5a+2b=-6.①又由题知f(x+1)为奇函数,x∈R,所以f(1)=0,即a+b=0.②由①②得=−2,从而f(x)=-2x2+2,x∈[1,2].所以=2=−==−=−(−2)×+2=52.故选D.一题多解因为f(x+1)与f(x+2)分别为奇函数和偶函数,所以函数f(x)的图象关于点(1,0)和直线x=2对称,且f(x)为周期函数,周期T=4,从而f(0)=-f(2),①f(3)=f(1)=0,②==−由①②结合f(0)+f(3)=6,知a=-2,b=2,所以=−(−2)×+2=52.6.(多选)(2022新高考Ⅰ,12,5分)已知函数f(x)及其导函数f'(x)的定义域均为R,记g(x)=f'(x).若2,g(2+x)均为偶函数,则() A.f(0)=0 B.g−C.f(-1)=f(4)D.g(-1)=g(2)答案BC解法一:若设f(x)=1,则g(x)=0,易知所设f(x)符合题意,此时f(0)=1,故选项A错误.设f(x)=sin(πx),则g(x)=f'(x)=πcos(πx),由于2=sin22π=-cos(2πx),g(2+x)=πcos[π(2+x)]=πcos(2π+πx)=πcos(πx),所以2,g(2+x)均为偶函数,则所设f(x)符合题意.于是g(-1)=πcos(-π)=-π≠g(2),故选项D错误.由于22是奇函数,即2是奇函数,则,注意到g(2+x)是偶函数,于是g−=2=−2=-g−32+22=2=2=2=,故选项B正确.由2=2,取x=54,则f(-1)=f(4),故选项C正确.故选BC.解法二:由题意知2=2⇔=⇔f(-x)=f(3+x)①,取x=1,知f(-1)=f(4),C正确.对①两边求导知-f'(-x)=f'(3+x)⇔f'(-x)=-f'(3+x),即g(-x)=-g(3+x)②,取x=-32,知.g(2+x)=g(2-x)⇔g(-x)=g(x+4)③,由②③知g(x+4)=-g(x+3),即g(x+1)=-g(x),所以g(x+2)=-g(x+1)=g(x).从而g−=2=,B正确.同解法一可判断A,D错误.故选BC.7.(2018课标Ⅲ文,16,5分)已知函数f(x)=ln(1+2-x)+1,f(a)=4,则f(-a)=.答案-2解析本题考查函数的奇偶性.易知f(x)的定义域为R,令g(x)=ln(1+2-x),则g(x)+g(-x)=0,∴g(x)为奇函数,∴f(a)+f(-a)=2,又f(a)=4,∴f(-a)=-2.解题关键观察出函数g(x)=ln(1+2-x)为奇函数.8.(2017课标Ⅱ文,14,5分)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.答案12解析本题主要考查运用函数的奇偶性求函数值.由题意可知f(2)=-f(-2),∵x∈(-∞,0)时,f(x)=2x3+x2,∴f(2)=-f(-2)=-[2×(-8)+4]=-(-12)=12.9.(2016天津,13,5分)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-2),则a的取值范围是.答案解析由题意知函数f(x)在(0,+∞)上单调递减.因为f(2|a-1|)>f(-2),f(-2)=f(2),所以f(2|a-1|)>f(2),所以2|a-1|<212,解之得12<a<32.10.(2014课标Ⅱ文,15,5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=.答案3解析∵函数y=f(x)的图象关于直线x=2对称,∴f(2+x)=f(2-x)对任意x恒成立,令x=1,得f(1)=f(3)=3,∴f(-1)=f(1)=3.11.(2012课标文,16,5分)设函数f(x)=(r1)2+sin2+1的最大值为M,最小值为m,则M+m=.答案2解析f(x)=2+1+2x+sin2+1=1+2rsin2+1,令g(x)=2rsin2+1,则g(x)为奇函数,有g(x)max+g(x)min=0,故M+m=2.12.(2021新高考Ⅰ,13,5分)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=.答案1解题指导:利用偶函数的定义,取定义域内的特殊值即可求出a的值.解析∵f(x)=x3(a·2x-2-x)为偶函数,∴f(1)=f(-1),∴2a-12=−−2,∴a=1.当a=1时,f(x)=x3(2x-2-x),定义域为R,且满足f(-x)=f(x),即f(x)为偶函数.一题多解y=x3和y=2x-2-x为奇函数,利用结论:奇函数×奇函数=偶函数,可快速判断出a=1.13.(2022全国乙文,16,5分)若f(x)=ln b是奇函数,则a=,b=.答案-12;ln2解析∵f(x)是奇函数,∴f(x)的定义域关于原点对称.由已知得x ≠1,∴x ≠-1,即当x =-1时,,∴a +12=0,∴a =-12,此时f (x )b ,∵f (x )为奇函数且在x =0处有意义,∴f (0)=0,即+=ln 12+b =0,∴b =-ln 12=ln 2.综上可知,a =-12,b =ln 2.考点三函数的周期性1.(2016山东,9,5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x 3-1;当-1≤x≤1时,f(-x)=-f(x);当x>12时,ft 则f(6)=()A.-2B.-1C.0D.2答案D 当x>12时,由ft f(x)=f(x+1),所以f(6)=f(1),而f(1)=-f(-1),f(-1)=(-1)3-1=-2,所以f(6)=f(1)=2,故选D.2.(2021全国甲文,12,5分)设f (x )是定义域为R 的奇函数,且f (1+x )=f (-x ).若f −=13,则()A.-53B.−13C.13D.53答案C 解题指导:求出函数f (x )的周期再进行转化,即可求解.解析由f (1+x )=f (-x ),且f (x )是定义在R 上的奇函数,可得f (1+x )=f (-x )=-f (x ),所以f (2+x )=-f (1+x )=f (x ),所以f (x )的周期为2,则=2=−=13,故选C .知识延伸:若函数f (x )为奇函数,且满足f (a +x )=f (-x ),则f (x )图象的对称轴为直线x =2,周期为2a ;若函数f (x )为偶函数,且满足f (a +x )=f (-x ),则f (x )图象的对称轴为直线x =2,周期为a.3.(2022新高考Ⅱ,8,5分)已知函数f (x )的定义域为R,且f (x +y )+f (x -y )=f (x )f (y ),f (1)=1,则∑=221i f (k )=()A.-3B.-2C.0D.1答案A 令y =1,得f (x +1)+f (x -1)=f (x )①,故f (x +2)+f (x )=f (x +1)②.由①②得f (x +2)+f (x -1)=0,故f (x +2)=-f (x -1),所以f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),所以函数f (x )的周期为6.令x =1,y =0,得f (1)+f (1)=f (1)·f (0),故f (0)=2,同理,令x =1,y =1,得f (2)=-1;令x =2,y =1,得f (3)=-2;令x =3,y =1,得f (4)=-1;令x =4,y =1,得f (5)=1;令x =5,y =1,得f (6)=2.故f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=0,所以∑=221i f (k )=f (1)+f (2)+f (3)+f (4)=-3.故选A .4.(2022全国乙理,12,5分)已知函数f (x ),g (x )的定义域均为R,且f (x )+g (2-x )=5,g (x )-f (x -4)=7.若y =g (x )的图象关于直线x =2对称,g (2)=4,则∑=221i f (k )=()A.-21B.-22C.-23D.-24答案D 由y =g (x )的图象关于直线x =2对称,得g (2+x )=g (2-x ),故g (x )=g (4-x ),由g (x )-f (x -4)=7,得g (2+x )-f (x -2)=7①,又f (x )+g (2-x )=5②,所以由②-①,得f (x )+f (x -2)=-2③,则f (x +2)+f (x )=-2④,所以由④-③,得f (x +2)=f (x -2),即f (x +4)=f (x ),所以函数f (x )是以4为周期的周期函数.对于④,分别令x =1,2,得f (1)+f (3)=-2,f (2)+f (4)=-2,则f (1)+f (2)+f (3)+f (4)=-4.对于①,令x =-1,得g (1)-f (-3)=7,则g (1)-f (1)=7⑦,对于②,令x =1,得f (1)+g (1)=5⑧,由⑦⑧,得f (1)=-1.对于②,令x =0,得f (0)+g (2)=5,又g (2)=4,所以f (0)=1.对于③,令x =2,得f (2)+f (0)=-2,所以f (2)=-3.则∑=221i op =5×(-4)+f (1)+f (2)=-20+(-1)+(-3)=-24.故选D .5.(2016四川,14,5分)已知函数f(x)是定义在R 上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f +f(1)=.答案-2解析∵f(x)是定义在R 上的奇函数,∴f(x)=-f(-x),又∵f(x)的周期为2,∴f(x+2)=f(x),∴f(x+2)=-f(-x),即f(x+2)+f(-x)=0,令x=-1,得f(1)+f(1)=0,∴f(1)=0.又∵f-412=-2.∴f-6.(2017山东文,14,5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=.答案6解析本题考查函数的奇偶性与周期性.由f(x+4)=f(x-2)得f(x+6)=f(x),故f(x)是周期为6的函数.所以f(919)=f(6×153+1)=f(1).因为f(x)为R上的偶函数,所以f(1)=f(-1).又x∈[-3,0]时,f(x)=6-x,所以f(-1)=6-(-1)=6.从而f(1)=6,故f(919)=6.方法小结函数周期性的判断:一般地,若f(x+T)=f(x),则T为函数的一个周期;若f(x+T)=-f(x),则2T为函数的一个周期;若f(x+T)=1op(f(x)≠0),则2T为函数的一个周期.7.(2014安徽文,14,5分)若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=o1-p,0≤x≤1,sinπs1<≤2,则.答案516解析依题意得8=f=-34×14=-316,f8=-sin7π6=sinπ6=12,因此=-316+12=516.。
(完整版)函数的性质练习(奇偶性、单调性、周期性、对称性)(附答案)
函数的性质练习(奇偶性,单调性,周期性,对称性)1、定义在R 上的奇函数)(x f ,周期为6,那么方程0)(=x f 在区间[6,6-]上的根的个数可能是A.0B.1C.3D.52、f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数至少是( )A .1B .4C .3D .23、已知)(x f 是R 上的偶函数,)(x g 是R 上的奇函数,且)(x g =)1(-x f ,那么=)3120(fA.0B.2C. 2-D.2± 4、已知112)(-+=x x x f ,那么=+++++-+-+-)8()6()4()2()0()2()4()6(f f f f f f f f A.14 B.15 C. 16- D.165、已知)(x f 的定义域为R ,若)1()1(+-x f x f 、都为奇函数,则A.)(x f 为偶函数B.)(x f 为奇函数C.)(x f =)2(+x fD.)3(+x f 为奇函数6、定义在R 上的函数)(x f 对任意的实数x 都有)1()1(--=+x f x f ,则下列结论一定成立的是A.)(x f 的周期为4B. )(x f 的周期为6C. )(x f 的图像关于直线1=x 对称D. )(x f 的图像关于点(1 , 0) 对称 7、定义在R 上的函数)(x f 满足:)()(x f x f -=-,)1()1(x f x f -=+,当∈x [1-, 1] 时,3)(x x f =,则=)2013(fA.1-B.0C.1D.28、定义在R 上的函数)(x f 对任意的实数x 都有)2()2(x f x f -=+,并且)1(+x f 为 偶函数. 若3)1(=f ,那么=)101(fA.1B.2C.3D.49、已知f (x )(x ∈R)为奇函数,f (2)=1,f (x +2)=f (x )+f (2),则f (3)等于( )A.12 B .1 C.32 D .2 10、若奇函数f (x )(x ∈R)满足f (3)=1,f (x +3)=f (x )+f (3),则f ⎝⎛⎭⎫32 等于( )A .0B .1 C.12 D .-1211、已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12、设()f x 为定义在R 上的奇函数,满足()()2f x f x +=-,当01x ≤≤时()f x x =,则 ()7.5f 等于 ( )A .0.5B .0.5-C .1.5D . 1.5-13、设()f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则()2f -与()223f a a -+ (a R ∈)的大小关系是 ( )A .()2f -<()223f a a -+B .()2f -≥()223f a a -+C .()2f ->()223f aa -+D .与a 的取值无关14、若函数()f x 为奇函数,且当0x >时,()1f x x =-,则当0x <时,有 ( )A .()f x 0>B .()f x 0<C .()f x ()f x -≤0D .()f x -()f x -0> 15、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≥-3C .a ≤5D .a ≥317、已知函数()()221,f x x ax b b a b R =-++-+∈对任意实数x 都有()()11f x f x -=+ 成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是 ( ) A .10b -<< B .2b >C .12b b <->或 D .不能确定 18、已知函数()()2223f x x x =+-,那么( )A .()y f x =在区间[]1,1-上是增函数B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数19、函数()y f x =在()0,2上是增函数,函数()2y f x =+是偶函数,则下列结论中正确的 是 ( ) A .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ C .()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭20、设函数()f x 是R 上的奇函数,且当0x >时,()23xf x =-,则()2f -等于( )A .1-B .114C .1D .114-21、设函数)(x f 是R 上的偶函数,且在()+∞,0上是减函数,且12210x x x x >>+,,则 A.)()(21x f x f > B.)()(21x f x f = C.)()(21x f x f < D.不能确定23、已知函数=)(x f ⎩⎨⎧<-≥-0,10,sin x e x x x x ,若)()2(2a f a f >-,则实数a 取值范围是A. (1,-∞-)),2(+∞YB. (1,2-)C. (2,1-)D. (2,-∞-)+∞,1(Y )A .0B .1C .2D .3二、填空题:24、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为25、已知()f x 为偶函数,()g x 是奇函数,且()f x ()22g x x x -=+-,则()f x 、()g x 分别为 ; 26、定义在()1,1-上的奇函数()21x mf x x nx +=++,则常数m = ,n = ;28、.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+.(1)求证: ()f x 是奇函数;(2)若(3),(24)f a a f -=试用表示.29、若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭⑴求()1f 的值;⑵若()61f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭.30.函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。
高一数学《函数的基本性质》知识点及对应练习(详细答案)
函数的基本性质一、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.概念重点疑点:对于定义域中任何x,都有唯一确定的y=f(x)与x相对应。
即在直角坐标系中的图像,对于任意一条x=a(a是函数的定义域)的直线与函数y=f(x)只有一个交点;例1、下列对应关系中,x为定义域,y为值域,不是函数的是()A.y=x²+x³B.y=C.|y|=xD.y=8x解:对于|y|=x,对于任意非零x,都有两个y与x对应,所以|y|=x不是函数。
图像如下图,x=2的直线与|y|=x的图像有两个交点。
故答案选C例2、下列图象中表示函数图象的是()解析:对于任意x=a的直线,只有C选项的图形与x=a的直线只有一个交点,即对于定义域中任何x,都有唯一确定的y=f(x)与x相对应。
故选C。
注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。
函数的基本性质练习题
函数的基本性质练习题函数的基本性质练习题函数是数学中的重要概念,它在各个学科中都有广泛的应用。
了解函数的基本性质对于解决问题和理解数学概念非常重要。
在本文中,我们将通过一些练习题来巩固对函数基本性质的理解。
练习题一:定义域和值域1. 给定函数 f(x) = 2x + 1,求函数的定义域和值域。
解析:函数的定义域是指函数可以取值的所有实数的集合。
对于给定的函数 f(x) = 2x + 1,由于 x 可以取任意实数,所以定义域为全体实数集 R。
值域是函数在定义域上所有可能的取值的集合。
由于 f(x) = 2x + 1 是一个线性函数,其斜率为 2,所以函数的值域是全体实数集 R。
2. 给定函数g(x) = √(x - 3),求函数的定义域和值域。
解析:对于给定的函数g(x) = √(x - 3),由于根号下的表达式必须大于等于 0,所以 x - 3 ≥ 0,即x ≥ 3。
因此,函数的定义域是大于等于 3 的所有实数的集合[3, +∞)。
对于值域,由于函数的平方根只能取非负实数,所以值域是大于等于 0 的所有实数的集合[0, +∞)。
练习题二:奇偶性和周期性1. 给定函数 h(x) = x^3 + x,判断函数的奇偶性和周期性。
解析:对于给定的函数 h(x) = x^3 + x,我们可以将其分解为两个部分:一个是x^3,一个是 x。
由于 x^3 是一个奇函数,而 x 是一个奇函数,所以 h(x) 是两个奇函数的和,因此 h(x) 也是一个奇函数。
关于周期性,我们观察函数的图像可以发现,无论 x 取什么值,函数的图像都不会重复,所以函数 h(x) 是无周期的。
2. 给定函数 k(x) = sin(x) + cos(x),判断函数的奇偶性和周期性。
解析:对于给定的函数 k(x) = sin(x) + cos(x),我们知道正弦函数是奇函数,余弦函数是偶函数。
由于 k(x) 是两个函数的和,所以 k(x) 既不是奇函数也不是偶函数。
函数的性质基础题型训练(含答案)
函数的性质题型一:(函数的单调性)1、已知函数()f x 在R 上是单调递增函数,且2()()f m f m >-,则实数m 的取值范围为 .2、定义在(1,1)-上的函数()f x 是单调递减函数,且(1)(21)f a f a -<-,则实数a 的取 值范围为 .3、已知函数22()(41)2f x x a a x =+-++在区间(],1-∞上是单调递减函数,则实数a 的取值范围为 .4、已知函数()(0)a f x x a x =+>在区间3(,)4+∞上单调递增函数,则实数a 的取值范围 为 .5、函数x x x f -=ln )(的单调增区间是 .6、函数2()(1)xf x x x e =++()x R ∈的单调减区间为 .7、已知函数1,()|1|,x a f x x x x a⎧<⎪=⎨⎪+⎩≥在区间(,)a -∞上单调递减,在(,)a +∞上单调递增,则实数a 的取值范围是 .8、已知函数,1()3,1ax f x x x a x ⎧⎪=⎨⎪-+<⎩≥在R 上是单调函数,则实数a 的取值范围为 .9、已知函数321()33f x x x ax a =+-+在区间[1,2]上单调递增,则实数a 的取值范围是 . 10、已知函数21()2x f x x ax e =--是定义在R 上的单调递减函数,则实数a 的取值范围 是 .11、已知函数()()2x xe af x a R e =-∈在区间[]1,2上单调递增,则实数a 的取值范围是.题型二:(函数的奇偶性)12、已知函数2()3f x ax bx a b =+++是定义域为[1,2]a a -的偶函数,则a b +的值是 .13、已知函数()f x 是定义在R 上的奇函数,且当0x >时,2()2xf x x =-,则(0)(1)f f +-= .14、若函数(),0()(2),0x x b x f x ax x x -⎧=⎨+<⎩≥(,R a b ∈)为奇函数,则()f a b +的值为 .15、已知函数()1xxa e f x ae-=+(e 为自然对数的底数)在定义域上为奇函数,则实数a 的值 为 .16、已知函数()f x 的定义域为R ,且满足(2)()f x f x +=,2(cos 1)2sin f θθ-=()R θ∈,则(2017)f = .17、已知函数2221,0(),0ax x x f x x bx c x ⎧--=⎨++<⎩≥是偶函数,直线y t =与函数()y f x =的图象自左向右依次交于四个不同点,,,A B C D .若AB BC =,则实数t 的值为 .18、已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21xf x =-,函数m x x x g +-=2)(2.如果1[2,2]x ∀∈-,2[2,2]x ∃∈-,使得21()()g x f x =,则实数m 的取值范围为 .题型三:(函数的奇偶性、单调性和周期性的综合)19、已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()8xf x =,则19()3f -= .20、已知函数()f x 是定义在R 上的奇函数,且(2)()f x f x +=-,当02x <<时,()2f x x =+,则(7)f = .21、已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()3f x x x =--,则不等式(1)4f x x ->-+的解集是 .22、已知函数()f x 是定义在R 上的奇函数,当0x <时,()221f x x x =-+,不等式()()232f x f x ->的解集用区间表示为 .23、已知函数()f x 为奇函数,且在区间(0,)+∞上单调递增,(2)0f =,则不等式()()0f x f x x--<的解集为 .24、已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数,且函数()f x 在区间[1,2]a --上单调递 增,则实数a 的取值范围为 .25、已知函数21,0()0,021,0x x f x x x x +>⎧⎪==⎨⎪-<⎩,则不等式2(2)()0f x f x -+<的解集是 .26、已知知函数)(11)(R x x x x f ∈++=,则不等式)43()2(2-<-x f x x f 的解集是 .27、已知函数)(x f 是定义在R 上的奇函数,当0>x 时,)12(log )(21+=x x f ,则满足不等式0)2())2((log 3>++f x f 的x 的取值范围是 .28、已知函数3()2f x x x =+,若1(1)(log 3)0af f +>(0a >且1a ≠),则实数a 的取值范围为 .29、已知函数)(x f 是定义在R 上的奇函数,且当0x <时,不等式()()0f x xf x '+<恒成立,若0.30.333113(3),(log 3)(log 3),(log )(log )99a fb fc f ππ===,则,,a b c 的大小关系是 .30、已知函数()()R f x x ∈满足(1)1f =,且函数()f x 在R 上的导函数1()2f x '<,则不 等式lg 1(lg )2x f x +<的解集为 .31、已知定义在R 上的可导函数()f x 导函数为()f x ',对于R x ∀∈,()()f x f x '<,且(1)f x +为偶函数,(2)1f =,则不等式()x f x e <的解集为 .32.连续抛掷两颗骰子得到的点数分别是,a b ,则函数()2f x ax bx =-在1x =处取得最值的概率是 .33.已知函数()3sin 4f x ax b x =++(),a b ∈R ,()()2lg log 105f =,则()()lg lg2f = . 34.已知函数()lg f x x =,若存在互不相等的实数,a b ,使()()f a f b =,则ab = .35.已知函数()()2,11,1xx f x f x x ⎧⎪=⎨->⎪⎩,则()2log 32016f += .36.若函数()log 1a f x x x =-+()01a a >≠且的最小值为2,则a = .37.若函数()3231f x x x =-+在区间(),1a a +上是减函数,则实数a 的取值范围是 . 38.已知函数()3231f x ax x x =+-+在R 上是减函数,则a 的取值范围是 . 39.已知函数()2ln 2a f x x x x x =--在定义域内为单调函数,则实数a 的取值范围是 . 40.)函数()()12,1,1x a x a x f x a x ⎧-+<=⎨⎩()01a a >≠且,在(),-∞+∞上不是单调函数......,则实数a 的取值范围是 .41.已知函数()f x =2x ,当0x ∆>时,恒有()()f x x f x +∆>,则实数a 的取值范围是 .42.已知()22cos f x x x =+,x ∈R .若()()313log log 21f a f a f ⎛⎫+ ⎪⎝⎭,则实数a 的取值范围是 . 43.设函数()21ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 . 44.设函数()221ln f x x x a x =-++存在极大值和极小值,则实数a 的取值范围是 .45.已知函数()()121,022,2x x f x f x x -⎧-<⎪=⎨->⎪⎩,则关于x 的方程()2016x f x =的实数根的个数为 .46.在平面直角坐标系xOy 中,已知点P 是函数()ln f x x =()1x 的图象上的动点,该图象在P 处的切线l 交x 轴于点M ,过点P 作l 的垂线交x 轴于点N ,设线段MN 的中点的横坐标为t ,则t 的最大值是 .47.已知函数()21,01,0x x f x x x ⎧-=⎨-->⎩,若函数()()y f f x k =-有3个不同的零点,则实数k 的取值范围是 . 48.设函数()ln mf x x x=+,m ∈R ,若对任意210x x >>,()()2121f x f x x x -<-恒成立,则实数m 的取值范是 .49.设0a >,若函数()2,0ln ,0x x x f x ax x x ⎧+=⎨->⎩有且仅有两个零点,则a 的值为 .50.已知函数()32log ,031108,333x x f x x x x ⎧<<⎪=⎨-+⎪⎩,若存在实数,,,a b c d 使得()()()()f a f b f c f d ===,其中a b c d <<<,则2abc d 的取值范围是 .51.已知函数()212f x x m =+的图像与函数()lng x x =的图像有四个交点,则实数m 的取值范围是 .1.()()∞+⋃∞,,01-- 2. ⎪⎭⎫ ⎝⎛320, 3.[]31, 4.⎥⎦⎤⎝⎛1690, 5.()10, 6.()1-2-, 7.[]01-, 8.⎪⎭⎫⎢⎣⎡∞+,21 9.(]3-,∞10.[)∞+,1- 11⎥⎦⎤⎢⎣⎡2,2-22e e 12.31 13.1- 14.1- 15.1± 16.2 17.47- 18.[]2-5-, 19.2- 20.3- 21.(]∞+,4 22.()31-, 23.()()2002-,,⋃ 24.(]31, 25.()12-,26.()21, 27⎪⎭⎫ ⎝⎛917-2-, 28.()()∞+⋃,,310 29a b c >>30.()∞+,10 31.()∞+,0 32.12133.3 34.1 352336.e 37.[]10,38.(]3--,∞ 39.⎪⎭⎫⎢⎣⎡+∞,1e 40()∞+⋃⎪⎭⎫⎝⎛,,1210 41.[]44-, 42.⎥⎦⎤⎢⎣⎡331,43.()∞+,1- 44.⎪⎭⎫⎝⎛210, 45.201646.e e 212+ 47.[)1-2-, 48.⎪⎭⎫⎢⎣⎡∞+,41 49.e 1 50.()9663, 51.⎪⎭⎫ ⎝⎛∞21--,。
专题12(5.2 函数的基本性质)(有答案)
专题12(5.2 函数的基本性质)一、单选题1.(2020·上海高一课时练习)对于定义域是R 的任意奇函数()f x ,都有( ) A .()()0f x f x --> B .()()0f x f x --≤ C .()()0f x f x ⋅-≤ D .()()0f x f x ⋅->【答案】C【分析】根据()f x 为奇函数,可得()()f x f x -=-,再对四个选项逐一判断即可得正确答案.【详解】∵()f x 为奇函数, ∴()()f x f x -=-,∴()()()()()2=0f x f x f x f x f x ⎡⎤⎡⎤⋅-⋅-=-≤⎣⎦⎣⎦, 又()0=0f ,∴()20f x -≤⎡⎤⎣⎦, 故选:C【点睛】本题主要考查了奇函数的定义和性质,属于基础题.2.(2020·上海高一课时练习)下列函数中在区间(1,)+∞单调递增的是( )A .2(2)y x =-B .13y x=- C .|4|y x =+ D .y =【答案】C【分析】结合基本初等函数的图象与性质,逐项判定,即可求解.【详解】根据二次函数的图象与性质,可得函数2(2)y x =-在(2,)+∞单调递增,不符合题意; 由函数1133y x x ==---,可得函数在(,3),(3,)-∞+∞上单调递增,不符合题意; 由函数4,444,4x x y x x x +≥-⎧=+=⎨--<-⎩,可得函数在[4,)-+∞上单调递增,所以在区间(1,)+∞单调递增,符合题意;由函数y =10x -≥,解得1≥x ,即函数的定义域为[1,)+∞,结合幂函数的性质,可得函数y =[1,)+∞上单调递减,不符合题意. 故选:C.【点睛】本题主要考查了函数的单调性的判定,其中解答中熟记基本初等函数的图象与性质是解答的关键,着重考查推理与运算能力.3.(2017·上海徐汇·南洋中学高一月考)已知定义在R 上的偶函数()f x ,对任意不相等的(]120x x ∈-∞,,,有()()()21210x x f x f x -->⎡⎤⎣⎦,当*n N ∈时,有( )A .()()()11f n f n f n -<-<+B .()()()11f n f n f n -<-<+ C .()()()11f n f n f n +<-<- D .()()()11f n f n f n +<-<- 【答案】C【分析】由已知不等式得函数在(,0]-∞上的单调性,再由偶函数性质得在[0,)+∞上的单调性,结合偶函数性质得距离y 轴越远的自变量的函数值越小,从而可得结论.【详解】由题意,函数在区间(]0-∞,上单调递增,函数图象关于y 轴对称,所以函数在()0+∞,上单调递减;又*n N ∈,11n n n +>->-,距离y 轴越远的自变量的函数值越小,则()()()11f n f n f n +<-<-, 故选:C.【点睛】本题考查的奇偶性与单调性,利用奇偶性性质得函数在关于y 轴对称区间上的单调性,从而可比较函数值大小.4.(2019·宝山·上海交大附中高一期中)已知函数(1)y f x =+为偶函数,则下列关系一定成立的是( ) A .()()f x f x =- B .(1)(1)f x f x +=-+ C .(1)(1)f x f x +=-- D .(1)()f x f x -+=【答案】B【分析】函数(1)y f x =+为偶函数,可得函数()y f x =的图像关于1x =对称,在四个选项中选择能表示函数()y f x =的图像关于1x =对称的,得到答案. 【详解】函数(1)y f x =+为偶函数,可得()y f x =的图像向左平移1个单位后关于y 轴对称, 所以()y f x =的图像关于1x =对称,在所给四个选项中,只有选项B. (1)(1)f x f x +=-+也表示()y f x =的图像关于1x =对称, 故选B.【点睛】本题考查函数的奇偶性和对称性,属于简单题.5.(2018·上海杨浦·复旦附中高一期末)函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值为2, m 的取值范围是 A .(,2]-∞ B .[0,2] C .[1,2] D .[1,)+∞【答案】C【分析】本题利用数形结合法解决,作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =,欲使函数2()23=-+f x x x 在闭区间[0,]m 上的上有最大值3,最小值2,则实数m 的取值范围要大于等于1而小于等于2即可.【详解】解:作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =,函数2()23=-+f x x x 在闭区间[0,]m 上上有最大值3,最小值2, 则实数m 的取值范围是[1,2]. 故选:C .【点睛】本题考查二次函数的值域问题,其中要特别注意它的对称性及图象的应用,属于中档题.6.(2018·上海市敬业中学高一期末)关于函数()232f x x =-的下列判断,其中正确的是( )A .函数的图像是轴对称图形B .函数的图像是中心对称图形C .函数有最大值D .当0x >时,()y f x =是减函数【答案】A【分析】判断函数为偶函数得到A 正确,B 错误 ,取特殊值,排除C 和D 得到答案.【详解】()232f x x =-定义域为:{x x ≠ ,()23()2f x f x x -==-函数为偶函数,故A 正确,B 错误当x →且x >时,()f x →+∞ ,C 错误3(1)3,(2)2f f =-=,不满足()y f x =是减函数,D 错误 故选A【点睛】本题考查了函数的性质,意在考查学生对于函数性质的灵活运用. 7.(2019·上海宝山·高一期末)设函数()f x 是定义在R 上的奇函数,当0x <时,2()5f x x x =--,则不等式()(1)0f x f x --<的解集为( )A .(1,2)-B .(1,3)-C .(2,3)-D .(2,4)-【答案】C【分析】根据题意,结合函数的奇偶性分析可得函数的解析式,作出函数图象,结合不等式和二次函数的性质以及函数图象中的递减区间,分析可得答案. 【详解】根据题意,设0x >,则0x -<,所以2()5f x x x -=-+,因为()f x 是定义在R 上的奇函数,所以2()5()f x x x f x -=-+=-,所以2()5f x x x =-,即0x ≥时,当0x <时,2()5f x x x =--,则()f x 的图象如图:在区间55(,)22-上为减函数,若()(1)0f x f x --<,即(1)()f x f x ->,又由1x x -<,且(3)(2),(2)(3)f f f f -=-=,必有133x x ->-⎧⎨<⎩时,()(1)0f x f x --<,解得23x -<<,因此不等式的解集是(2,3)-,故选C.【点睛】本题主要考查了函数奇偶性的应用,利用函数的奇偶性求出函数的解析式,根据图象解不等式是本题的关键,属于难题.8.(2019·上海虹口·高一期末)一次函数()()f x 3a 2x 1a =-+-,在[﹣2,3]上的最大值是()f 2-,则实数a 的取值范围是( )A .2a 3≥B .2a 3>C .2a 3≤D .2a 3<【答案】D【分析】根据函数的最值和函数单调性的关系即可求出a 的范围.【详解】因为一次函数()()f x 3a 2x 1a =-+-,在[﹣2,3]上的最大值是()f 2-,则函数f (x )在[﹣2,3]上为减函数,则3a ﹣2<0,解得2a 3<, 故选D .【点睛】本题考查了一次函数的单调性和最值的关系,考查了转化与化归思想,属于基础题. 9.(2019·上海外国语大学附属大境中学高一期末)下列函数在(0,)+∞上是增函数的是( )A .12()f x x =- B .1()()2xf x =C .1()1f x x x =++ D .21()f x x=【答案】C【分析】根据已知的函数模型,得到AB 的正误,再由,当x 值变大时,y 值变小,得到D 的单调性;C 选项通过换元得到熟悉的对勾函数的模型,根据内外层函数的单调性得到结果.【详解】函数()12f x x =-=()0,+∞上是减函数,()12xf x ⎛⎫= ⎪⎝⎭在()0,+∞上是减函数,()11f x x x =++,设t=x+1,故得到11y t t=+-在()1,+∞上单调增,内层也是增函数,故函数在()0,+∞上是增函数;()21f x x=在()0,+∞上是减函数. 故答案为C.【点睛】这个题目考查了函数单调性的判断,判断函数的单调性,方法一:可以由定义证明单调性,方法二,可根据熟悉的函数模型得到函数的单调性;方法三,可根据函数的性质,例如增函数加增函数还是增函数,减函数加减函数还是减函数来判断.二、填空题10.(2020·上海高一课时练习)如图所示,已知奇函数()y f x =在y 轴右边部分的图像,则()0f x >的解集为_________.【答案】[)()5,30,3--【分析】根据奇函数的图象关于原点对称,画出()y f x =在y 轴左边部分的图像,即得()0f x >的解集.【详解】由()y f x =是奇函数,其图象关于原点对称,根据()y f x =在y 轴右边部分的图像, 画出()y f x =在y 轴左边部分的图像,如图所示则()0f x >的解集为[)()5,30,3--.故答案为:[)()5,30,3--.【点睛】本题考查函数的奇偶性,属于基础题.11.(2020·上海高一课时练习)已知下列各命题:①若在定义域内存在12x x <使得()()12f x f x <成立,则函数()f x 是增函数;②函数3y x =-在其定义域内是减函数;③函数1y x=在其定义域内是增函数.其中是真命题的是___________(填写序号).【答案】②【分析】由函数单调性的定义可判断①,由一次函数的单调性可判断②,由反比例函数的性质可判断③,即可得解.【详解】对于①,由函数单调性的定义可知,若在定义域内任意的12x x <,均有()()12f x f x <成立,则函数()f x 是增函数,故①错误;对于②,由一次函数的单调性可知函数3y x =-在其定义域内是减函数,故②正确; 对于③,函数1y x=的单调递减区间为(),0-∞,()0,∞+,故③错误.故答案为:②.【点睛】本题考查了函数单调性定义的应用,考查了常见函数单调性的判断,属于基础题. 12.(2020·上海市大同中学)已知函数()f x 的定义域为R ,则下列命题中: ①若()2f x -是偶函数,则函数()f x 的图象关于直线2x =对称; ②若()()22f x f x +=--,则函数()f x 的图象关于原点对称; ③函数()2y f x =+与函数()2y f x =-的图象关于直线2x =对称; ④函数()2f x -与函数()2y f x =-的图象关于直线2x =对称. 其中正确的命题序号是________. 【答案】④【分析】结合函数图象的平移变换规律,及函数图象的对称性,对四个命题逐个分析,可得出答案.【详解】对于①,函数()2f x -的图象向左平移2个单位,得到函数()f x 的图象, 因为()2f x -是偶函数,其图象关于0x =对称, 所以()f x 的图象关于2x =-对称,故①错误;对于②,由()()22f x f x +=--,可得()()62f x f x +=-+,则()()()622f x f x f x +=-+=-,所以()()8f x f x +=, 即函数()f x 是周期函数,周期为8,不能得出()f x 的图象关于原点对称,故②错误;对于③,()f x 的图象向左平移2个单位,得到()2y f x =+的图象,()f x -的图象向右平移2个单位,得到()2y f x =-的图象.因为函数()y f x =和()y f x =-的图象关于0x =对称,所以函数()2y f x =+与函数()2y f x =-的图象关于0x =对称,故③错误; 对于④,()f x 的图象向右平移2个单位,得到()2y f x =-的图象,()f x -的图象向右平移2个单位,得到()2y f x =-的图象.因为函数()y f x =和()y f x =-的图象关于0x =对称,所以函数()2y f x =-与函数()2y f x =-的图象关于2x =对称,故④正确. 故答案为:④.【点睛】本题考查函数图象的平移变换规律,及函数图象的对称性,考查学生的推理能力,属于中档题.13.(2020·上海市大同中学)已知2()y f x x =+是奇函数,且()11f =,若()()2g x f x =+,则(1)g -=___.【答案】-1【分析】由题意,可先由函数是奇函数求出(1)3f -=-,再将其代入(1)g -求值即可得到答案【详解】由题意,2()y f x x =+是奇函数,且f (1)1=,所以f (1)21(1)(1)0f ++-+-=解得(1)3f -=- 所以(1)(1)2321g f -=-+=-+=- 故答案为:1-.【点睛】本题考查函数奇偶性的性质,利用函数奇偶性求值,解题的关键是根据函数的奇偶性建立所要求函数值的方程,基本题型.14.(2019·上海浦东新·华师大二附中高一月考)已知()f x x x =,若对任意[]2,2x a a ∈-+,()()2f x a f x +<恒成立,则实数a 的取值范围是______.【答案】a <【分析】通过分类讨论分析得到1)a x <恒成立,再求函数()1)g x x =,[]2,2x a a ∈-+的最值得解.【详解】(1)当0x ≥时,2()f x x =,222()2))f x x f ===;当0x <时,222(),2()2))f x x f x x f =-=-=-=,所以在R 上,2()),())f x f f x a f =∴+<,因为在R 上,函数()f x 单调递增,,1)x a a x ∴+<∴<恒成立,(2)记()1)g x x =,[]2,2x a a ∈-+,min ()(2)1)(2),1)(2),g x g a a a a a ∴=-=-∴<-∴<.故答案为a <【点睛】本题主要考查函数的单调性和应用,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.15.(2018·上海市第八中学高一月考)函数()f x =【答案】[)3,+∞【分析】求出函数()y f x =的定义域,然后利用复合函数法可求出函数()f x =.【详解】令2230x x --≥,解得1x ≤-或3x ≥,函数()f x =(][),13,-∞-+∞.内层函数223u x x =--的减区间为(],1-∞-,增区间为[)3,+∞.外层函数y =[)0,+∞上为增函数,由复合函数法可知,函数()f x =[)3,+∞.故答案为[)3,+∞.【点睛】本题考查函数单调区间的求解,常用的方法有复合函数法、图象法,另外在求单调区间时,首先应求函数的定义域,考查分析问题和解决问题的能力,属于中等题. 16.(2018·上海市七宝中学高一月考)若幂函数3(*)my x m N -=∈是奇函数,则实数m 的最小值是__________ 【答案】1【分析】由幂函数3(*)my x m N -=∈是奇函数,得到m 是奇数,再由*m N ∈,能求出实数m 的最小值.【详解】幂函数3(*)m y xm N -=∈是奇函数,m ∴是奇数,*m N ∈,∴实数m 的最小值是1.【点睛】本题考查幂函数的定义、奇偶性,考查运算求解能力,是基础题.17.(上海普陀·曹杨二中高一期中)定义在R 上的奇函数()f x 在[)0,+∞上的图像如图所示,则不等式()0xf x <的解集是______.【答案】()(),22,-∞-+∞【分析】解不等式组00()0()0x x f x f x ><⎧⎧⎨⎨<>⎩⎩或得解.【详解】因为函数f(x)是奇函数, 所以函数的图像为因为()0xf x <,所以函数的第二、四象限的图像满足题意,所以x >2或x <-2.所以不等式的解集为()(),22,-∞-+∞.故答案为()(),22,-∞-+∞【点睛】本题主要考查奇函数的图像和性质,意在考查学生对这些知识的理解掌握水平.18.(2020·徐汇·上海中学高一期末)已知函数23()4f x ax =+,()ag x x x =+,对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,则a 的取值范围为__________. 【答案】5,42⎡⎤⎢⎥⎣⎦【分析】对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,等价于min max ()()f x g x ≥在区间[1,2]上恒成立,对a 的取值进行分类讨论,利用单调性求出min ()f x 和min ()g x ,列出关于a 的不等式组求得答案.【详解】当0a <时,23()4f x ax =+在区间[1,2]上单调递减,min 3()(2)44f x f a ==+,()ag x x x=+在区间[1,2]上单调递增,min ()1g x a =+, 所以3414a a +≥+,解得112a ≥,因为0a <,所以无解; 当0a ≥时,可知min 3()(1)4f x f a ==+, 当01a ≤≤时,()ag x x x=+在区间[1,2]上单调递增,其最小值为(1)1g a =+, 所以有01314a a a ≤≤⎧⎪⎨+≥+⎪⎩,无解,当14a <<时,()ag x x x=+在区间上单调减,在4]上单调增,其最小值为g =所以有1434a a <≤⎧⎪⎨+≥⎪⎩,解得542a ≤≤, 所以a 的取值范围是5[,4]2,故答案为:5[,4]2.【点睛】该题考查的是有关根据恒成立求参数的取值范围的问题,涉及到的知识点有根据题意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.19.(2019·徐汇·上海中学高一期末)若函数()()2log 2a f x x ax =-+(0a >且1a ≠)满足:对任意1x ,2x ,当122ax x <≤时,()()120f x f x ->,则a 的取值范围为______.【答案】(【分析】确定函数为单调减函数,利用复合函数的单调性:知道1a >且真数恒大于0,求得a 的取值范围.【详解】解:令2222()224a a y x ax x =-+=-+-在对称轴左边递减,∴当122ax x <时,12y y > 对任意的1x ,2x 当122ax x <时,21()()0f x f x -<,即12()()f x f x > 故应有1a >又因为22y x ax =-+在真数位置上所以须有2204a ->∴a -<综上得1a <<故答案为(【点睛】本题考查了复合函数的单调性.复合函数的单调性的遵循原则是单调性相同复合函数为增函数,单调性相反复合函数为减函数.20.(2019·上海市高桥中学高一期末)设m R ∈,若函数()()2311f x m x mx =+++是偶函数,则()f x 的单调递增区间是_________. 【答案】[0,)+∞【分析】由()()f x f x -=,化简得所以()()22331111m x mx m x mx +-+=+++,即可求解,得到答案.【详解】由题意,函数()()2311f x m x mx =+++是偶函数,所以()()f x f x -=,即()()()22331()()111f x m x m x m x mx -=+-+-+=+-+, 所以()()22331111m x mx m x mx +-+=+++,可得0m =, 所以函数的解析式为()231f x x =+,根据幂函数的性质,可得函数()f x 的单调递增区间为[0,)+∞. 故答案为[0,)+∞.【点睛】本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记函数的奇偶性的定义,根据多项式相等求得m 的值,再根据幂函数的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题21.(2019·上海市曹杨中学高一期末)已知函数()224422f x x ax a a =-+-+在区间[0,2]上的最小值为3,求a 的值.【答案】1a =5a =.【分析】将f (x )转化为顶点式,求得对称轴,讨论区间和对称轴的关系,结合函数单调性,得最小值所对应方程,解方程可得a 的值【详解】函数()f x 的表达式可化为()()24222a f x x a ⎛⎫=-+- ⎪⎝⎭.① 当022a<<,即04a <<时,()f x 有最小值22a -,依题意应有223a -=,解得12a =-,这个值与04a ≤≤相矛盾.②当2a 0≤,即a 0≤时,()2022f a a =-+是最小值,依题意应有2223a a -+=,解得1a =a 0≤,∴1a =③当2a 2≥ ,即a 4≥时,()2216822f a a a =-+-+是最小值,依题意应有2168223a a a -+-+=,解得5a =±,又∵a 4≥,∴5a =综上所述,1a =-5a =.【点睛】本题考查了二次函数求最值,解题中要注意对称轴和区间的关系,考查分类讨论的思想方法和运算能力.22.(2017·上海徐汇·南洋中学高一月考)已知函数()f x 对于任意的,x y 都有()()()f x y f x f y +=+,当0x >时,则()0f x <且(1)2f =-(1)判断()f x 的奇偶性;(2)求()f x 在[3,3]-上的最大值;(3)解关于x 的不等式2()2()()4f ax f x f ax -<+.【答案】(1) 函数f (x )为奇函数.(2)6.(3)见解析.分析:(1)取x=y=0可得f (0)=0;再取y=﹣x 代入即可; (2)先判断函数的单调性,再求函数的最值;(3)由于f (x )为奇函数,整理原式得 f (ax 2)+f (﹣2x )<f (ax )+f (﹣2);即f (ax 2﹣2x )<f (ax ﹣2);再由函数的单调性可得ax 2﹣2x >ax ﹣2,从而求解. 详解:(1)取x=y=0, 则f (0+0)=f (0)+f (0); 则f (0)=0;取y=﹣x ,则f (x ﹣x )=f (x )+f (﹣x ), ∴f (﹣x )=﹣f (x )对任意x ∈R 恒成立 ∴f (x )为奇函数;(2)任取x 1,x 2∈(﹣∞,+∞)且x 1<x 2,则x 2﹣x 1>0; ∴f (x 2)+f (﹣x 1)=f (x 2﹣x 1)<0; ∴f (x 2)<﹣f (﹣x 1), 又∵f (x )为奇函数 ∴f (x 1)>f (x 2);∴f (x )在(﹣∞,+∞)上是减函数;∴对任意x ∈[﹣3,3],恒有f (x )≤f (﹣3)而f (3)=f (2+1)=f (2)+f (1)=3f (1)=﹣2×3=﹣6; ∴f (﹣3)=﹣f (3)=6;∴f (x )在[﹣3,3]上的最大值为6; (3)∵f (x )为奇函数,∴整理原式得 f (ax 2)+f (﹣2x )<f (ax )+f (﹣2); 即f (ax 2﹣2x )<f (ax ﹣2); 而f (x )在(﹣∞,+∞)上是减函数, ∴ax 2﹣2x >ax ﹣2; ∴(ax ﹣2)(x ﹣1)>0. ∴当a=0时,x ∈(﹣∞,1); 当a=2时,x ∈{x|x≠1且x ∈R}; 当a <0时,2{|1}x x x a∈<<; 当0<a <2时,2{|1}x x x x a∈>或<当a >2时,2{|1}x x x x a∈<或>. 点睛:根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成()()()()f g x f h x ≥ 后再利用单调性和定义域列不等式组.23.(2020·浦东新·上海师大附中高一期中)已知函数()1()||3,,0m f x x m R x x-=+-∈≠.(1)判断函数()y f x =的奇偶性,并说明理由;(2)若对于任意的[]()1,4,1x f x ∈≥-恒成立,求满足条件的实数m 的最小值M . (3)对于(2)中的M ,正数a ,b 满足22a b M +=,证明: 2a b ab +≥.【答案】(1) 当1m =时,()f x 为偶函数, 当1m ≠时,既不是奇函数也不是偶函数,理由见解析;(2)2;(3) 证明见解析.【分析】(1)对m 分类讨论,结合奇偶性的定义进行判断可得;(2)将不等式转化为212m x x -≥-+对任意的[1,4]x ∈都成立,再构造函数,利用单调性求出最大值即可得到答案;(3)由(2)知2M =,所以1ab ≤,2a b+≤变形可证. 【详解】(1)(i)当m=1时,()||3f x x =-,(,0)(0,)x ∈-∞⋃+∞, 因为()||3||3()f x x x f x -=--=-=, 所以()f x 为偶函数;(ii)当1m ≠时,(1)3f m =-,(1)1f m -=-,(1)(1)f f ≠-,(1)(1)f f ≠--, 所以既不是奇函数也不是偶函数. (2) 对于任意的[]()1,4,1x f x ∈≥-,即131m x x-+-≥-恒成立, 所以212m x x -≥-+对任意的[1,4]x ∈都成立, 设2()2,[1,4]g x x x x =-+∈, 则()g x 为[1,4]上的递减函数, 所以1x =时,()g x 取得最大值1, 所以11m -≥,即2m ≥.所以2M =.(3)证明: 由(2)知2M =,222a b ab +≥,所以22ab ≥,1ab ∴≤,1≤,当且仅当a b =时取等号,①又1,22a b ab +≤≤2ab a b ∴≤+,当且仅当a b =时取等号,② 由①②得,12ab a b ≤+, 所以2a b ab +≥,【点睛】本题考查了函数奇偶性的讨论,不等式恒成立问题,不等式的证明问题,属于中档题.24.(2017·上海市七宝中学高一期中)已知函数2()log (41)xf x ax =+-.(1)若函数()f x 是R 上的偶函数,求实数a 的值; (2)若4a =,求函数()f x 的零点.【答案】(1)1a =;(2)4log x =【分析】(1)由题意得()()f x f x -=,即()()0f x f x --=,根据函数解析式整理可得21log 22204xax x ax +=-+=,故得1a =.(2)当4a =时得到函数的解析式,然后根据指数与对数的关系可得4412x x +=,整理得()24410xx --=,求得142x +=,于是可得41log 2x +=. 【详解】(1)∵()f x 是R 上的偶函数, ∴()()f x f x -=,即()()0f x f x --=,∴()()][()22log 41log 410x xa x ax -⎡⎤+---+-=⎣⎦,整理得241log 2041x x ax -++=+,∴21log 22204xax x ax +=-+=, ∴1a =.(2)当4a =时,()()2log 414xf x x =+-令()0f x =,可得()2log 414xx +=,∴4412x x += 整理得()24410xx --=,解得4x =或4x =(舍去)∴4log x = 【点睛】本题考查函数的性质及函数与方程的关系,考查计算能力和转化能力,解题的关键是根据相关概念及所求将问题进行转化,逐步达到求解的目的.另外,由于题目中涉及到大量的计算,所以在求解过程中要注意运算的准确性,合理进行指数和对数间的转化. 25.(2019·上海市建平中学高一期末)已知()()x x mf x e m R e=-∈是定义在[]1,1-上的奇函数.(1)求实数m 的值;(2)求证:()f x 在[]1,1-上是单调递减函数;(3)若()()2120f a f a -+≤,求实数a 的取值范围.【答案】(1)1;(2)证明见解析;(3)122a ≤≤【分析】(1)根据奇函数性质得()00=f ,代入求实数m 的值; (2)根据单调性定义证明;(3)根据单调性与奇偶性化简不等式,再解一元二次不等式得结果. 【详解】(1)因为()()xx m f x e m R e=-∈是定义在[]1,1-上的奇函数, 所以()001011mf m =∴-=∴= 当1m =时()()111,(),x x xx x xf x e f x e e f x e e e --=-∴-=-=-=- 所以1m =;(2)设12,x x 为[]1,1-上任意两数,且12x x < 所以()()1212121212111()(1)x x x x x x x x f x f x e e e e e e e e -=-+-=-++ 因为12x x <,所以120x x e e <<∴()()12f x f x > 即()f x 在[]1,1-上是单调递减函数;(3)因为()f x 是定义在[]1,1-上的奇函数,且在[]1,1-上是单调递减函数;()()()()()()2221202121f a f a f a f a f a f a -+≤∴≤--∴≤-所以21211a a ≥≥-≥-,211122222a a a a a ⎧⎪≤⎪⎪∴≥≤-∴≤≤⎨⎪⎪-≤≤⎪⎩或 【点睛】本题考查奇偶性、单调性证明、利用单调性解不等式,考查综合分析求解能力,属中档题.26.(2019·上海市第八中学高一期末)已知函数f (x )=22x x ax++,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值; (2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.【答案】(1)72;(2)(-3,+∞). 【分析】(1)1()22f x x x=++,利用作差法判断[1,+∞)上的单调性,即可求得;(2)f (x )>0恒成立,等价于f (x )的最小值大于零,令y =x 2+2x +a ,求y 的最小值即可.【详解】(1)当a =12时,1()22f x x x=++, 设1≤x 1<x 2,则122121212112(21)11()()2(2)()222x x f x f x x x x x x x x x --=++-++=-, ∵1≤x 1<x 2,∴2x 1x 2>2,2x 1x 2-1>0,21x x ->0, ∴21()()0f x f x ->,∴f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=72, (2)在区间[1,+∞)上f (x )>0恒成立⇔x 2+2x +a >0恒成立,设y =x 2+2x +a ,x ∈[1,+∞),则函数y =x 2+2x +a =(x +1)2+a -1在区间[1,+∞)上是增函数,∴当x =1时,y 取最小值,即y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )>0恒成立, 故a >-3,实数a 的取值范围为(-3,+∞).【点晴】(1)判断函数单调性的方法有:(1)定义法;(2)图像法;(3)四则运算法;(4)复合函数法;(5)导数法;此题也可以利用对勾函数的图像解决; (2)()f x a >恒成立等价于min ()f x a >.27.(2020·上海市控江中学高一期末)已知函数()f x ,()g x 的定义域分别为12,D D ,若存在常数C R +∈,满足:①对任意01x D ∈,恒有01x C D +∈,且()()00f x f x C ≤+.②对任意01x D ∈,关于x 的不等式组()()0f x g x ≤≤()()0g x C f x C +≤+恒有解,则称()g x 为()f x 的一个“C 型函数”.(1)设函数()1103113x f x x ⎧-≤≤⎪⎪=⎨⎪>⎪⎩和()1102102x g x x ⎧≤≤⎪⎪=⎨⎪>⎪⎩,求证:()g x 为()f x 的一个“12型函数”; (2)设常数a R ∈,函数()()31f x x ax a =+≥-,()()21g x x x =≥-.若()g x 为()f x 的一个“1型函数”,求a 的取值范围;(3)设函数()()240f x x x x =-≥.问:是否存在常数t R +∈,使得函数()()220t x x g x x=+>为()f x 的一个“t 型函数”?若存在,求t 的取值范围;若不存在,说明理由.【答案】(1)证明见解析;(2)7,4⎡⎫+∞⎪⎢⎣⎭;(3)[)7,+∞.【分析】(1)由()1103113x f x x ⎧-≤≤⎪⎪=⎨⎪>⎪⎩,()00112f x f x ⎛⎫+=≥ ⎪⎝⎭恒成立,①成立,根据()g x 解析式,0x =为不等式组()()0011()()22f xg x g x f x ≤≤+≤+的一个解,得②成立,即可证明结论;(2)()g x 为()f x 的一个“1型函数”,满足①对任意0001,()(1)x f x f x ≥-≤+,求出a 的范围,②对任意01x ≥-,关于x 的不等式组00()()(1)(1)f x g x g x f x ≤≤+≤+恒有解, 转化为求函数的最值,可求出a 的范围,即可求解;(3)由()()220t x x g x x=+>为()f x 的一个“t 型函数”,与(2)同理,将同时满足①②条件的参数t 求出,即可求解. 【详解】(1)①00000115[0,],()1,[,],()1()2211623x f x x f x f x ∈=-∈>++=, 当000015(,),(),()()1361122x x f x f x ∈+∞∈++∞+==, 任意0[0,)x ∈+∞,且()0012f x f x ⎛⎫≤+⎪⎝⎭, ②()1102102x g x x ⎧≤≤⎪⎪=⎨⎪>⎪⎩,1(0)()12f f ==,因为()()00110()()22f xg g f x ≤≤≤+,0x =为不等式()()0011()()22f xg x g x f x ≤≤+≤+的一个解,所以()g x 为()f x 的一个“12型函数”; (2)①对任意0001,()(1)x f x f x ≥-≤+,22000113313()024x x a x a +++=+++≥,20min 1111[3()]0,2444x a a a ∴+++=+≥≥-;②对任意01x ≥-,关于x 的不等式组00()()(1)(1)f x g x g x f x ≤≤+≤+恒有解,()()()()30030022122111x x ax x x x x a x ⎧≥+⎪⎪+≥⎨⎪+≤+++⎪⎩,即300320002231x x ax x x ax x a ⎧≥+⎨≤+++-⎩, 因为关于x 的不等式组恒有解,所以323000000331x ax x x a x ax ++++-≥+,22000173313()024x x a x a ∴++-=++-≥恒成立,74a ∴≥;综上,74a ∴≥; (3)①对任意对任意0000,()()x f x f x t ≥≤+,222000004()4(),420x x x t x t t t x t -≤+-+-+≥,00min ,420,(42)40,4t R t x t x t t +∈∴-+≥-+=-≥∴≥;②对任意00x ≥,关于x 的不等式组00()()()()f x g x g x t f x t ≤≤+≤+恒有解,()()220022222200242220224t x x x x t t x t x x tx t x t x t x t x t x t x t x t ⎧+≥-⎪⎪⎪++≥+⇒+-≥⇒≥⎨+⎪⎪++≤+-+⎪+⎩, 考虑22min 002()()4(),t x t x t x t x t x t++≤+-+≥+,令(2)x t m m t +=≥,则2222min 00022()23()4()(2)42t t m t t x t x t x t m t+=+=≤+-+=+--,由于204,(2)4t y x t ≥=+--在00x ≥时,单调递增,220min 3[(2)4](2)4,7t x t t t ≤+--=--∴≥或0t ≤(舍去),由()(2)3g t g t t ==,记方程()3f x t =的根为1x , 若010x x ≤≤,则00()3()(2)()f x t g t g t f x t ≤==≤+, 即x t =为不等式组的一个解, 若01x x >,取2x t >且0()()g x f x =,220022()()()()t t g x t x t x t g x t f x t f x t x t x+=++<++=+=+≤++,综上,7t ≥.【点睛】本题考查函数新定义问题,要充分理解题意,考查不等式恒成立和能成立问题,熟练利用二次函数求最值是解题的关键,着重考查了转化思想,以及分析问题和解决问题的能力,属于难题.28.(2019·上海宝山·高一期末)对于三个实数a 、b 、k ,若22(1)(1)1a b k a b ab ++≥⋅-⋅-成立,则称a 、b 具有“性质k ”.(1)试问:①()x x ∈R ,0是否具有“性质2”;②tan y (124y ππ<<),0是否具有“性质4”;(2)若存在03[,2]4x ππ∈及01[,2]2t ∈,使得00001sin 22sin 0x x t m t ----≤成立,且0sin x ,1具有“性质2”,求实数m 的取值范围;(3)设1x ,2x ,⋅⋅⋅,2019x 为2019个互不相同的实数,点(,)m n x x ({},1,2,,2019m n ∈⋅⋅⋅) 均不在函数1y x=的图象上,是否存在(),i j i j ≠,且{},1,2,,2019i j ∈⋅⋅⋅,使得i x 、j x具有“性质2018”,请说明理由.【答案】(1)①具有“性质2”,②不具有“性质4”;(2)52m ≥-;(3)存在.【分析】(1)①根据题意需要判断212||x x +≥的真假即可② 根据题意判断21tan 4|tan |y y +≥是否成立即可得出结论;(2)根据具有性质2可求出0x 的范围,由存在性问题成立转化为00max (sin 22sin )x x -≤ 0max 01()t m t ++,根据函数的性质求最值即可求解. 【详解】(1)①因为212x x +≥,212x x +≥-成立,所以212||x x +≥,故()x x ∈R ,0具有“性质2”②因为124y ππ<<,设tan t y =,则316t <<设2()41f t t t =-+,对称轴为2t =,所以函数2()41f t t t =-+在t ∈上单调递减,当1t →时,min ()20f t →-<, 所以当124y ππ<<时,21tan 4tan 0y y +-≥不恒成立,即21tan 4|tan |y y +≥不成立,故tan y (124y ππ<<),0不具有“性质4”.(2)因为0sin x ,1具有“性质2”所以22000(1sin )(1+12|sin 1||1sin |x x x +≥--)化简得2200(1sin )(1sin )x x +≥-解得034x ππ≤≤或02x π= . 因为存在03[,2]4x ππ∈及01[,2]2t ∈,使得00001sin 22sin 0x x t m t ----≤成立,所以存在03[,]4x ππ∈{2}π 及01[,2]2t ∈使00max (sin 22sin )x x -≤ 0max 01()t m t ++即可. 令00sin 22sin y x x =-,则200002cos 22cos 2(2cos cos 1)y x x x x '=-=--,当03[,]4x ππ∈时,0y '>, 所以00sin 22sin y x x =-在03[,]4x ππ∈上是增函数, 所以0x π=时,0max 00(sin 22si )n x x =-,当02x π=时,00sin 22sin =0x x -,故03[,]4x ππ∈{2}π时,0max 00(sin 22si )n x x =-因为1y x m x=++在1[,1]2上单调递减,在[1,2] 上单调递增,所以0max 015()=2t m m t +++, 故只需满足502m ≤+即可,解得52m -≤. (3)假设具有“性质2018”,则22(1)(1)20181i j i j i j x x x x x x ++≥⋅-⋅-, 即证明在任意2019个互不相同的实数中,一定存在两个实数,i j x x ,满足:22(1)(1)20181i j i j i j x x x x x x ++≥⋅-⋅-.证明:由()()()22111122222221111|111j j j j jj i i ji jijx x x x x x x x x x x x x x x x x x --+-⋅-==-++++++, 令tan i x α=,由万能公式知2111sin 2,1222i i x x α⎡⎤=∈-⎢⎥+⎣⎦, 将11,22⎡⎤-⎢⎥⎣⎦等分成2018个小区间,则1220191i ,,11s n 2sin 2,sin 2222a a a 这2019个数必然有两个数落在同一个区间,令其为:11sin 2,sin 222ϕγ,即111sin 2sin 2222018ϕγ-≤, 也就是说,在1x ,2x ,⋅⋅⋅,2019x 这2019个数中,一定有两个数满足221112018i i i i x x x x -≤++, 即一定存在两个实数,i j x x ,满足22(1)(1)20181i j i j i j x x x x x x ++≥⋅-⋅-, 从而得证.【点睛】本题主要考查了不等式的证明,根据存在性问题求参数的取值范围,三角函数的单调性,万能公式,考查了创新能力,属于难题.29.(2018·上海嘉定·高一期末)已知x ∈R ,定义:()f x 表示不小于x 的最小整数,例如:2f =,(0.6)0f -=.(1)若()2018f x =,求实数x 的取值范围; (2)若0x >,且1(3())(6)31xf x f x f +=++,求实数x 的取值范围; (3)设()()2f x g x x a x =+⋅-,2242022()57x x h x x x -+-=-+,若对于任意的123(2,4]x x x ∈、、,都有123()()()g x h x h x >-,求实数a 的取值范围.【答案】(1)(2017,2018](2)45(,]33(3)(5,)+∞试题分析:⑴由()2018f x =及已知条件,可以得到20172018x <≤,即可得出答案;⑵先求出16731x f ⎛⎫+= ⎪+⎝⎭,得到()637x f x <+≤,然后分类讨论01x <≤、 12x <≤、2x >时的取值,从而得出结果;⑶对于任意的(]1224x x ∈,,,,都有()()()123g x h x h x >-,即有()()()max min g x h x h x ⎡⎤⎡⎤>-⎣⎦⎣⎦对任意的(]2,4x ∈恒成立.讨论(]23x ∈,,(]34x ∈,时,结合新定义和分离参数,由二次函数的最值的求法,即可解得实数a 的取值范围解析:(1)解:由()2018f x =及题意得20172018x <≤. 所以所求实数x 的取值范围是(]2017,2018. (2)解:因为()30,x∈+∞,则()311,x+∈+∞,()10,131x ∈+,()166,731x +∈+, 所以16731xf ⎛⎫+= ⎪+⎝⎭. 由题意得当0x >,且()()37f x f x +=,所以()637x f x <+≤.若()1f x =,即01x <≤时,6317x <+≤,解得523x <≤,所以x ∈∅; 若()2f x =,即12x <≤时,6327x <+≤.解得4533x <≤,所以45,33x ⎛⎤∈ ⎥⎝⎦; 若()3f x ≥,即2x >时,36x >,()39x f x +>,不符合题意.所以x ∈∅.综上,所求实数x 的取值范围是45,33⎛⎤⎥⎝⎦.(3)解:对于任意的(]123,,2,4x x x ∈,都有()()()123g x h x h x >-. 只需()()()max min g x h x h x ⎡⎤⎡⎤>-⎣⎦⎣⎦对任意的(]2,4x ∈恒成立.又()224202257x x h x x x -+-=-+ 2645324x =-+⎛⎫-+ ⎪⎝⎭. 因为(]2,4x ∈,所以当52x =时,()max 4h x ⎡⎤=⎣⎦;当4x =时,()min2h x ⎡⎤=-⎣⎦. 因此()6g x >对任意的(]2,4x ∈恒成立. ①当(]2,3x ∈时,()326ag x x x=+->恒成立. 即238a x x >-恒成立,所以()2max3815a x x>-=,解得5a >;②当(]3,4x ∈时,()426ag x x x=+->恒成立. 即248a x x >-恒成立,所以()2max4816a x x>-=,解得4a >.综上,所求实数a 的取值范围是()5,+∞.点睛:本题主要考查的是新定义的理解和应用,归纳推理,在解题过程中应当审清题意,然后按照题目要求进行解答,在解答不等式恒成立问题时注意方法,需要将其转化为最值问题,然后求解范围问题,本题难度较大.。
人教版高中数学必修一《函数的基本性质》练习题含答案
人教版高中数学必修一《函数的基本性质》练习题含答案一、选择题1.B2.B3.D4.B5.A6.D二、填空题1.x∈(-5,-1)∪(0,1)2.(-∞,∞)3.(-∞,∞)4.(-∞,0)5.2三、解答题1.一次函数y=kx+b的单调性取决于k的正负性。
当k>0时,函数单调递增;当k0时,函数在(0,∞)上单调递减;当k<0时,函数在(-∞,0)上单调递减。
2.因为f(x)是奇函数,所以f(1-a)+f(-(1-a))=0,即f(1-a)=-f(1+a)。
由于f(x)在定义域上单调递减,所以f(1-a)f(1-a)>f(1),即f(0)>-f(1+a)>f(1)。
又因为f(1-a)=-f(1+a),所以f(0)>f(1+a)>f(1)。
由此可得1+a<0,即a<-1.3.函数y=x+1+2x的定义域为(-∞,∞),因为x+1的单调性为单调递增,2x的单调性为单调递增,所以y的单调性为单调递增。
因此,y的值域为(-∞,∞)。
已知函数$f(x)=x+2ax+2,x\in[-5,5]$,二次函数$y=ax^2+bx+c$,其中:①当$a=-1$时,求函数的最大值和最小值;当$a=-1$时,二次函数为$y=-x^2+bx+c$,由于$a<0$,所以开口向下,最大值为顶点,顶点横坐标为$x_0=-\frac{b}{2a}=0$,代入得$y_{\max}=c$,最小值为区间端点处的值,即$f(-5)$和$f(5)$中的较小值。
因此,函数$f(x)$的最大值为$c$,最小值为$\min\{f(-5),f(5)\}$。
②求实数$a$的取值范围,使$y=f(x)$在区间$[-5,5]$上是单调函数。
二次函数$y=ax^2+bx+c$在开口方向上单调递增的充分必要条件是$a>0$,在开口方向上单调递减的充分必要条件是$a0$时,$y=f(x)$在$[-5,5]$上是单调递增函数;当$a<0$时,$y=f(x)$在$[-5,5]$上是单调递减函数。
高中数学集合和函数基本性质基础专练一含答案
集合与函数基本性质基础专练一一.选择题(共12小题)1.设集合P={x|x2﹣2>0},Q={1,2,3,4},则P∩Q的非空子集的个数为()A.8B.7C.4D.32.设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{﹣1,2,3}D.{1,2,3,4} 3.已知全集U={﹣1,0,1,2,3},集合A={0,1,2},B={﹣1,0,1},则(∁U A)∩B=()A.{﹣1}B.{0,1}C.{﹣1,2,3}D.{﹣1,0,1,3} 4.已知集合A={x|x>﹣1},B={x|x<2},则A∩B=()A.(﹣1,+∞)B.(﹣∞,2)C.(﹣1,2)D.∅5.已知集合A={x|﹣1<x<2},B={x|x>1},则A∪B=()A.(﹣1,1)B.(1,2)C.(﹣1,+∞)D.(1,+∞)6.已知全集U={1,2,3,4,5,6},A={1,2,6},B={2,4,5},则(∁U A)∩B=()A.{4,5}B.{1,2,3,4,5,6}C.{2,4,5}D.{3,4,5}7.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.48.设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C =()A.{﹣1,1}B.{0,1}C.{﹣1,0,1}D.{2,3,4}9.设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2} 10.已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}11.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}12.设f(x)为奇函数,且当x≥0时,f(x)=e x﹣1,则当x<0时,f(x)=()A.e﹣x﹣1B.e﹣x+1C.﹣e﹣x﹣1D.﹣e﹣x+1二.填空题(共11小题)13.已知f(x)=,若f(a)+f(﹣2)=0,则a=______14.已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=______.15.函数y=的定义域是______.16.已知集合A={1,2,3,4,5},B={3,5,6},则A∩B=______.17.已知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是______.18.已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是______.19.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为______.20.函数y=的定义域是______.21.函数的定义域为______.22.已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=______.23.若函数f(x)=x3+a为奇函数,则实数a=______.三.解答题(共7小题)24.x1、x2∈R,f(0)≠0,且f(2x1)+f(2x2)=f(x1+x2)•f(x1﹣x2).(1)求f(0);(2)求证f(x)为偶函数;(3)若f(π)=0,求证f(x)为周期函数.25.自选题:已知函数f(x)=|x﹣8|﹣|x﹣4|.(Ⅰ)作出函数y=f(x)的图象;(Ⅱ)解不等式|x﹣8|﹣|x﹣4|>2.26.设a为实数,函数f(x)=x2+|x﹣a|+1,x∈R(1)讨论f(x)的奇偶性;(2)求f(x)的最小值.27.设函数,求f(x)的单调区间,并证明f(x)在其单调区间上的单调性.28.根据函数单调性的定义,证明函数f(x)=﹣x3+1在(﹣∞,+∞)上是减函数.29.求函数.30.30.画出函数的图象.集合和函数基本性质基础专练一参考答案与试题解析一.选择题(共12小题)1.解:;∴P∩Q={2,3,4};∴P∩Q的非空子集的个数为:个.故选:B.2.解:设集合A={﹣1,1,2,3,5},C={x∈R|1≤x<3},则A∩C={1,2},∵B={2,3,4},∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4};故选:D.3.解:∵∁U A={﹣1,3},∴(∁U A)∩B={﹣1,3}∩{﹣1,0,l}={﹣1}故选:A.4.解:由A={x|x>﹣1},B={x|x<2},得A∩B={x|x>﹣1}∩{x|x<2}=(﹣1,2).故选:C.5.解:∵A={x|﹣1<x<2},B={x|x>1},∴A∪B={x|﹣1<x<2}∪{x|x>1}=(﹣1,+∞).故选:C.6.解:由全集U={1,2,3,4,5,6},A={1,2,6},得∁U A={3,4,5},B={2,4,5},则(∁U A)∩B={3,4,5}∩{2,4,5}={4,5}.故选:A.7.解:当x=﹣1时,y2≤2,得y=﹣1,0,1,当x=0时,y2≤3,得y=﹣1,0,1,当x=1时,y2≤2,得y=﹣1,0,1,即集合A中元素有9个,故选:A.8.解:∵A={1,2,3,4},B={﹣1,0,2,3},∴(A∪B)={1,2,3,4}∪{﹣1,0,2,3}={﹣1,0,1,2,3,4},又C={x∈R|﹣1≤x<2},∴(A∪B)∩C={﹣1,0,1}.故选:C.9.解:∵A={x|0<x<2},B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1}.故选:B.10.解:集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B={0,2}.故选:A.11.解:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.故选:C.12.解:设x<0,则﹣x>0,∴f(﹣x)=e﹣x﹣1,∵设f(x)为奇函数,∴﹣f(x)=e﹣x﹣1,即f(x)=﹣e﹣x+1.故选:D.二.填空题(共11小题)13.解:(1)若a<0,则:f(a)+f(﹣2)=2a﹣4=0;解得a=2,不满足a<0,这种情况不存在;(2)若a≥0,则:f(a)+f(﹣2)=a2﹣4=0;∴a=2;综上得,a=2.故答案为:2.14.解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.15.解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].16.解:∵集合A={1,2,3,4,5},B={3,5,6},∴A∩B={3,5}.故答案为:{3,5}.17.解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,在射线y=x的下方或在y =x上,由﹣x2+2x﹣2a≤x,即x2﹣x+2a≥0,由判别式△=1﹣8a≤0,得a≥,综上≤a≤2,故答案为:[,2].18.解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x=,开口向上,所以函数的最小值为:f()==.最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].19.解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,当a=1时,A={1,2},B={1,4},成立;a2+3=1无解.综上,a=1.故答案为:1.20.解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],故答案为:[﹣3,1]21.解:由x﹣2≥0得,x≥2.∴原函数的定义域为[2,+∞).故答案为[2,+∞).22.解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.23.解:∵f(x)是R上的奇函数;∴f(0)=a=0.故答案为:0.三.解答题(共7小题)24.解:(1)f(2x1)+f(2x2)=f(x1+x2)•f(x1﹣x2),可令x1=x2=0,可得f(0)+f(0)=f(0)•f(0),由f(0)≠0,可得f(0)=2;(2)证明:可令x1=,x2=﹣,则f(x)+f(﹣x)=f(0)f(x)=2f(x),可得f(﹣x)=f(x),则f(x)为偶函数;(3)证明:可令x1=+π,x2=,则f(x+2π)+f(x)=f(x+π)f(π)=0,即有f(x+2π)=﹣f(x),将x换为x+2π,可得f(x+4π)=﹣f(x+2π)=f(x),可得f(x)为最小正周期为4π的函数.25.解:(Ⅰ)f(x)=图象如下:(Ⅱ)不等式|x﹣8|﹣|x﹣4|>2,即f(x)>2,观察知当4<x<8时,存在函数值为2的点.由﹣2x+12=2得x=5.由函数f(x)图象可知,原不等式的解集为(﹣∞,5).26.解:(1)当a=0时,函数f(﹣x)=(﹣x)2+|﹣x|+1=f(x)此时,f(x)为偶函数当a≠0时,f(a)=a2+1,f(﹣a)=a2+2|a|+1,f(a)≠f(﹣a),f(a)≠﹣f(﹣a)此时f(x)既不是奇函数,也不是偶函数(2)①当x≤a时,当,则函数f(x)在(﹣∞,a]上单调递减,从而函数f(x)在(﹣∞,a]上的最小值为f(a)=a2+1.若,则函数f(x)在(﹣∞,a]上的最小值为,且.②当x≥a时,函数若,则函数f(x)在[a,+∞)上的最小值为;若,则函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上,当时,函数f(x)的最小值为当时,函数f(x)的最小值为a2+1当时,函数f(x)的最小值为.27.解:函数的定义域为(﹣∞,﹣b)∪(﹣b,+∞).f(x)在(﹣∞,﹣b)内是减函数,f(x)在(﹣b,+∞)内也是减函数.证明f(x)在(﹣b,+∞)内是减函数.取x1,x2∈(﹣b,+∞),且x1<x2,那么=,∵a﹣b>0,x2﹣x1>0,(x1+b)(x2+b)>0,∴f(x1)﹣f(x2)>0,即f(x)在(﹣b,+∞)内是减函数.同理可证f(x)在(﹣∞,﹣b)内是减函数.28.证明:证法一:在(﹣∞,+∞)上任取x1,x2且x1<x2则f(x2)﹣f(x1)=x13﹣x23=(x1﹣x2)(x12+x1x2+x22)∵x1<x2,∴x1﹣x2<0.当x1x2<0时,有x12+x1x2+x22=(x1+x2)2﹣x1x2>0;当x1x2≥0时,有x12+x1x2+x22>0;∴f(x2)﹣f(x1)=(x1﹣x2)(x12+x1x2+x22)<0.即f(x2)<f(x1)所以,函数f(x)=﹣x3+1在(﹣∞,+∞)上是减函数.证法二:在(﹣∞,+∞)上任取x1,x2,且x1<x2,则f(x2)﹣f(x1)=x13﹣x23=(x1﹣x2)(x12+x1x2+x22).∵x1<x2,∴x1﹣x2<0.∵x1,x2不同时为零,∴x12+x22>0.又∵x12+x22>(x12+x22)≥|x1x2|≥﹣x1x2∴x12+x1x2+x22>0,∴f(x2)﹣f(x1)=(x1﹣x2)(x12+x1x2+x22)<0.即f(x2)<f(x1).所以,函数f(x)=﹣x3+1在(﹣∞,+∞)上是减函数.29.解:解得:{x|﹣2≤x<1}∪{x|1<x≤2}.30.解:y =的图象为然后把次图象向左平移一个单位可得第1页(共1页)。
函数的基本性质(含答案)
x+ ≥2 = (当且仅当x= 即x= 时取“=”).
∴当底边长为 m时造价最低,最低造价为(160 a+ a)元.
答案:y=12a(x+ )+ a(0,+∞) 160 a+ a
【课堂小练】
1.已知 是定义 上的奇函数,且 在 上是减函数.下列关系式中正确的是 ( )
A. B.
∴- ≤x≤ .
∴不等式的解集为{x|- ≤x≤ }.
(3)由-1≤x-c≤1,得-1+c≤x≤1+c,
∴P={x|-1+c≤x≤1+c}.
由-1≤x-c2≤1,得-1+c2≤x≤1+c2,
∴Q={x|-1+c2≤x≤1+c2}.
∵P∩Q= ,
∴1+c<-1+c2或-1+c>1+c2,
解得c>2或c<-1.
教师辅导讲义
年 级: 高一辅导科目: 数学 课时数:3
课 题
函数的基本性质
教学目的
通过综合的练习与巩固,是学生掌握对一些基本函数的性质进行研究的方法
教学容
【知识梳理】
函数的基本性质:奇偶性、单调性、周期性、函数的最值、函数的零点(周期性后面讲)
【典型例题分析】
例1、函数f(x)的定义域为R,且对任意x、y∈R,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2.
(1)证明f(x)是奇函数;
(2)证明f(x)在R上是减函数;
(3)求f(x)在区间[-3,3]上的最大值和最小值.
(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),∴f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),∴f(0)=0.从而有f(x)+f(-x)=0.
(完整版)《函数的基本性质》练习题
(完整版)《函数的基本性质》练习题一、选择题1. 设函数 f(x) = 3x^2 + 2x + 1,在区间 [-2, 2] 上,f(x) 的最小值出现在区间的哪个点?A. x = -2B. x = -1C. x = 0D. x = 1E. x = 2答案:C. x = 02. 若函数 g(x) 的定义域为实数集,且对任意 x,g(x) = g(x + 1),则函数 g(x) 的图像具有什么样的性质?A. 对称性B. 周期性C. 单调性D. 渐近性E. 不对称性答案:B. 周期性二、填空题1. 设函数 h(x) = 2^(x - 1),则 h(0) = ____答案:12. 设函数i(x) = √(x^2 - 9),则定义域为 ____ 的实数集。
答案:[-∞, -3] 并[3, +∞]三、解答题1. 证明函数 f(x) = x^3 - 6x^2 + 9x + 2 在整个实数集上是递增的。
解答:首先,计算 f'(x) = 3x^2 - 12x + 9。
我们可以使用求函数的导数的方法证明 f(x) 的递增性。
根据二次函数的性质,当 3x^2 - 12x + 9 > 0 时,即 x^2 - 4x + 3 > 0 时,函数 f(x) 在该区间上是递增的。
化简方程得到 (x - 1)(x - 3) > 0,所以 f(x) 在 (-∞, 1)U(3, +∞) 上是递增的。
因此,函数 f(x) 在整个实数集上是递增的。
2. 设函数 g(x) = |x + 3| - 2x,求函数 g(x) 的定义域以及其在定义域上的单调区间。
解答:对于函数 g(x) 来说,|x + 3| 在定义域内的取值范围为 x+ 3 ≥ 0 和 x + 3 < 0 两种情况,即x ≥ -3 或 x < -3。
同时,2x 在定义域内的取值范围为 x 属于实数集。
综合两种情况,g(x) 的定义域为x 属于实数集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、下列函数中哪一个与函数x y =是同一个函数?⑴2)(x y = ⑵xx y 2= ⑶33x y = ⑷2x y =2、求列函数的值域(1)}3,2,1{,)(2∈+=x x x x f(2)(]2,1,1)(∈+=x x x f答案为:(1) (2) 3、判断下列对应f 是否为从集合A 到集合B 的函数(是的打√,不是的打×,并注明原因)⑴、{}()123,31,621,1,3,6,23,1,21=⎪⎭⎫⎝⎛-=-=⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧=f f f B A ( )⑵、{}{}()()()83,721,9,8,7,3,2,1=====f f f B A ( )⑶、{}()12,3,2,1-===x x f B A ( )⑷、{}()12,1|+=-≥==x x f x x B A ( )⑸、{}1,1,-==B Z A ,n 为奇数时,()1-=n f ,n 为偶数时,()1=n f ( )4、已知函数()b ax x f +=,且()(),15,73-==f f 求()()1,0f f 的值。
5、求下列函数的定义域 (1)43523--+=x x x y(2)xxx y 3121112--++= 答案为:(1) (2)1、画出下列函数的图象,再求出每个函数的值域 (1))2,1[,12)(-∈-=x x x f (2)),0(,11)(+∞∈+=x xx f(3)]3,0[,)1()(2∈-=x x x f (4){}2,1,0,1,2,1)(--∈+=x x x f ;2、函数)(x f y =的图象如图所示,填空:(1)=)0(f ______;(2)=)1(f ______;(3)=)2(f _________(4)若1121<<<-x x ,则)()(21x f x f 与的大小关系是3、设函数32)(+=x x f ,函数53)(-=x x g ,求[()]f g x =[()]g f x = 。
4、已知)0(1)]([,131)(22≠-=+=x x x x g f x x g ,求)2(f 的值 。
函数的表示方法(第3份)1、(1)设)(x f 是定义在R 上的函数,且1)32(2-+=-x x x f 。
求)(x f 的解析式。
(2)已知)(x f 是一次函数,且[]14)(-=x x f f ,求)(x f 的解析式。
2、定义在闭区间[]2,1-上的函数)(x f 的图象如图所示, 求此函数的解析式、定义域、值域及1()4f ,))41((f f 的值。
3、画出函数3)(+=x x f 的图象。
4、设函数x x f 31)(-=,它的值域为{}4,3,1,1,2--,求此函数的定义域 。
5、若函数52)(+=x x f ,则)(2x f = 。
6、已知1)(2+=x x f ,则=+)1(x f ,=))((x f f 。
7、若函数⎩⎨⎧-+=xx y 212 )0()0(>≤x x 则)3(-f 的值为 。
8、若函数212x y x⎧+=⎨⎩ )0()0(>≤x x 则使函数值为10的x 的集合为 。
9、已知函数⎩⎨⎧< ≥=00)(2x x x x x f ,试求))2((-f f 的值 。
10、设函数)(x f 满足52)1(+=-x x f ,求)(x f ,)(2x f 。
(试试看,相信自己能完成此题)11、若函数()f x 为二次函数,0)0(=f ,且1)()1(++=+x x f x f 对任意R x ∈成立。
求)(x f 。
1、求证:函数11)(--=xx f 在区间)0,(-∞上是单调增函数。
2、判断下列说法正确的是 。
(1)若定义在R 上的函数)(x f 满足(2)(1)f f >,则函数)(x f 是R 上的单调增函数; (2)若定义在R 上的函数)(x f 满足(2)(1)f f >,则函数)(x f 在R 上不是单调减函数; (3)若定义在R 上的函数)(x f 在区间(]0,∞-上是单调增函数,在区间[)+∞,0上也是单调增函数,则函数)(x f 是R 上的单调增函数;(4)若定义在R 上的函数)(x f 在区间(]0,∞-上是单调增函数,在区间()+∞,0上也是单调增函数,则函数)(x f 是R 上的单调增函数。
3、函数1)(2-=x x f 在),0(+∞上是___ ___;函数x x x f 2)(2+-=在)0,(-∞上 是__ _ ____。
(单调性)4、若函数12)1(2+-=+x x x f ,求函数)(x f 的单调区间。
1、已知函数,1)(2-+=mx x x f 且3)1(-=-f ,求函数)(x f 在区间[2,3]内的最值。
2、函数2)1(2)(2+-+=x a x x f 在区间(]4,∞-上是减函数,求实数a 的取值范围。
3、(1)函数12+-=x y 在]2,1[-上的最大值和最小值分别是____ _____。
(2)、函数2y x=-在]3,1[上的最大值为__________,最小值为_________。
(3)、求函数132)(2-+-=x x x f 在]1,2[-上的最大值为 ,最小值为 。
4、函数12)(2++-=mx x x f ,当),2(+∞-∈x 时是减函数,则m 的取值范围是 。
函数的奇偶性(第6份)1、判断下列函数是否为偶函数或奇函数(1)1)(2-=x x f (2)x x f 2)(= (3)||2)(x x f = 2、证明函数x x x f 5)(3+=在R 上是奇函数。
3、设3()1f x ax bx =++,且0)2(=f ,求)2(-f 的值 。
4、函数5)(2+=x x f ( )、A 是奇函数但不是偶函数 、B 是偶函数但不是奇函数 、C 既是奇函数又是偶函数 、D 既不是奇函数又不是偶函数 5、下列4个判断中,正确的是_______.(1)1)(=x f 既是奇函数又是偶函数; (2)1)(2--=x x x x f 是奇函数(3)xx x x f -+⋅-=11)1()(是偶函数; (4)12)(2+-=x x x f 是非奇非偶函数2、函数3x y =的奇偶性是 ,它的图象关于_______对称。
3、设函数x x f -=)(,则)(x f 的奇偶性是___________。
5、设)(x f 在[]5,5-上是偶函数,则)2(-f 与)2(f 的大小关系是___________。
6、已知函数12)(2--=x x x f ,试判断函数)(x f 的奇偶性。
答案为:**7、已知)0()(2≠++=a c bx ax x f 是偶函数,试判断函数cx bx ax x g ++=23)(的奇偶性。
答案为:函数的奇偶性与单调性(第7份)1、若32)1()(2++-=mx x m x f 为偶函数,则m= 。
2、设奇函数)(x f 在区间[]7,3上是增函数,且5)3(=f ,求)(x f 在区间[]3,7--上 的最大值 。
3、奇函数)(x f y =在区间(1,3)上是增函数,则它在区间(31--,)上是 函数。
(填增或减)4、设)(x f 与)(x g 都是奇函数,且两函数的定义域的交集非空,试选择“奇”或“偶” 填空:(1))(x f +)(x g 为 函数; (2))(x f ⋅)(x g 为 函数。
映射的概念(第8份)1、下图所示的对应中,哪些是A 到B 的映射?(1) (2) (3) (4) 2、下列从集合A 到集合B 的对应中,构成映射的是 。
(1) A=B=N +,对应法则|3|:-=→x y x f (2) {}1,0,==B R A ,对应法则⎩⎨⎧<≥=→)0(0)0(1:x x y x f(3) R B A ==,对应法则x y x f ±=→: (4) Q B Z A ==,,对应法则xy x f 1:=→3、下列对应关系中,哪些是A 到B 的映射?(1){}9,4,1=A ,{}3,2,1,1,2,3---=B ,x x f →:的平方根; (2)R A =,R B =,x x f →:的倒数; (3)R A =,R B =,2:2-→x x f 。
4、设{}20|≤≤=x x M ,{}20|≤≤=y y N ,给出下列六个图形,其中表示从M 到N 的映射共有 个。
(1) (2) (3) (4) (5) (6)B B A AA BB函数的概念(第1份)答案1、(3)2、(1){}{}2,6,12,(2)|23y y <≤3、(1)√(2)√(3)×(4)√(5)√4、分析:4,19,(0)19,(1)15a b f f =-===5、(1){}|41x x x ≠≠-或(2)11|022x x x ⎧⎫-≤<≠⎨⎬⎩⎭且 函数的图象(第2份)答案1、(1){}{}{}{}|33,(2)|1,(3)|04,(4)1,0,1,2,3y y y y y y -≤<>≤≤-2、(1)122,(2)3,(3)0,(4)()()f x f x <3、67,64x x - +4、89-函数的表示方法(第3份)答案1、(1)2811()4x x f x ++=(2)1()2()213f x x f x x =-=-+或2、1,10()1,022x x f x x x +-≤≤⎧⎪=⎨-<≤⎪⎩定义域[1,2]-,值域[1,1]-,1117(),()4848f f f ⎛⎫=-= ⎪⎝⎭ 3、略 4、221,,0,,133⎧⎫--⎨⎬⎩⎭5、225x +6、222,x x ++ 4222x x ++7、5- 8、{}3,5-9、4 10、22()27,()27f x x f x x =+ =+11、2()2x xf x +=11 函数单调性(第4份)答案1、 略2、 (2)(3)3、 增函数,增函数4、 增区间[)2,+∞,减区间(],2-∞函数单调性(第5份)答案1、最大值17,最小值92、3a ≤-3、(1)最大值3,最小值3-(2)最大值23-,最小值2-(3)最大值18,最小值15- 4、8m ≤-函数的奇偶性(第6份)答案1、偶函数,奇函数,偶函数2、略3、24、B5、)2(-f =)2(f6、偶函数7、奇函数函数的奇偶性与单调性(第7份)答案 1、02、5-3、增4、(1)奇(2)偶映射的概念(第8份)答案1、(4)2、(2)3、(3)4、3。