第三章糖和苷类化合物

合集下载

天然产物课件第三章 糖和苷类化合物

天然产物课件第三章 糖和苷类化合物

O O O OH OH HO HO HO HO
毛茛苷
红景天苷
3.2 糖苷的分类
2、糖苷的结构 a、苷键:苷中的苷元与糖之间的化学键称为苷键。 b、苷原子:苷元上形成苷键以连接糖的原子,称为苷键原子,也 称为苷原子。苷键原子通常是氧原子,也有硫原子、氮原子;少数 情况下,苷元碳原子上的氢与糖的半缩醛羟基缩合,形成碳-碳直 接相连的苷键。 c、苷的构型:由于单糖有α及β二种端基异构体,因此在形成苷 类时就有二种构型的苷,即α-苷和β-苷。在天然的苷类中,由D型糖衍生而成的苷多为β-苷,而由L-型糖衍生而成的苷多为α-苷 。 苷键原子 OH
6
5
苷元
苷键
O OR
1 2
4
OH
3
HO
端基碳原子
3.2 糖苷的分类
二.糖苷的分类
1.按苷键原子分类 根据苷键原子的不同,苷类可以分为氧苷、硫苷、氮苷 和碳苷。 (1)氧苷 苷元通过氧原子和糖相连接而成的苷称为 氧苷。氧苷是数量最多、最常见的苷类。根据形成苷键的 苷元羟基类型不同,又分为醇苷、酚苷、酯苷和氰苷等, 其中以醇苷和酚苷居多,酯苷较少见。 ① 醇苷 是苷元的醇羟基与糖缩合而成的苷。
D-甘露糖
CH2OH
D-葡萄糖
CH2OH
D-半乳糖
差向异构体:含有多个手性碳原子的对映异构体相应的手性碳中只有
一个手性碳原子的构性不同,其余的手性碳原子的构型都相同的两个异
构体称为差向异构体。
3、糖的环状结构哈武斯(Haworth)式(异头异构)
书写方法:
CHO 放成水平 HOH2C CH2OH CH2OH 以C4-C5键 为轴旋转120度
糖的定义和分类
定义: 糖类是一类多羟基醛(或酮),或通过水解能产生这些醛酮的物质。 也称碳水化合物(Carbohydrates)。

中药化学-3.糖和苷

中药化学-3.糖和苷

个新的手性碳原子。
该碳原子形成的一对异构体为端基差向异构体 (anomer),有α、β两种构型。 端基碳上H被称为端基H,OH被称为端-OH
#
Fischer投影式: 新形成的羟基与距离羰基最远的手性碳原子上 的羟基在同侧时为α构型,在异侧时为β构型。
H H HO H H CH2OH OH OH H OH O
苷—亲水性(与连接糖的数目、位置有关)。一般随着糖基 的增多而增大。大分子苷元(如甾醇等)的单糖苷常可 溶解于低极性的有机溶剂,如果糖基增多,亲水性增加, 在水中的溶解度也就增加。
#
因此,用不同极性的溶剂顺次提取药材时,
在各提取部分都有发现苷类化合物的可能。 碳苷与氧苷不同,无论在水中还是在其他溶 剂中溶解度一般都较小。
由半缩醛或半缩酮上的羟基通过脱水缩合而成的聚糖没
有还原性,为非还原糖。
#
O HOH O O
O O O
β-D-Glcp-(1→2)-D-glcp
槐糖(还原糖)
α-D-Fruf-(1→1)-α-D-Glcp
蔗糖(非还原糖)
#
植物中的三糖大多是以蔗糖为基本结构再接上其它单 糖而成的非还原性糖,四糖和五糖是三糖结构再延长,也 是非还原性糖。 O
1、植物多糖: (1)纤维素:直链葡聚糖。不易被稀酸或碱水解。 (2)淀粉: ������ 直链的糖淀粉:1α 4连接的D-葡萄吡喃糖,聚 合度300-350,可溶于热水成透明溶液。 ������ 支链的胶淀粉:1α 4连接的D-葡萄吡喃糖,但 有1α 6的分支链,平均支链长25个单位,不溶于冷 水,溶于热水成粘胶状。 ������ 糖淀粉遇碘显兰色,胶淀粉显紫色。 ������ 淀粉在制剂中作赋形剂,工业上作生产葡萄糖 的原料。 (3)植物树胶及粘液质 #

第三章糖和苷类分析

第三章糖和苷类分析

先用水 饱和
EtOAc 提取液 (含单糖苷或含糖较少的苷)
残留物
n-BuOH 提取 n-BuOH 提取液(含糖较多的苷)
9
2、分离
经初步提取得到的苷类通常极性较大,且多为非
结晶性物质,同时不同程度地混有其他物质,分离 困难,一般需先除去杂质,再进一步分离纯化。
除杂:可用溶剂沉淀法,也可用大孔树脂吸附法来富集、
硅胶——生物碱 碱性氧化铝——黄酮、蒽醌等
半化学吸附:氢键,选择性较弱,多可逆
聚酰胺
12
物理吸附的基本规律:极性相似者易于吸附
极性吸附剂:硅胶、氧化铝
对极性物质亲和力强 溶剂极性 非极性吸附剂:活性炭
对非极性成分吸附强
溶剂极性 吸附剂对溶质的吸附力
吸附剂对溶质的吸附力
A.吸附剂:30~60倍,有时100~200倍
径高比(d/h)1:15~1:20
干法装柱/湿法装柱 干法上样/湿法上样 等度/梯度(洗脱剂极性递增) 化学吸附:硅胶—碱性成分 Rf=0.2~0.3 洗脱剂中加入碱
氧化铝—酸性成分 洗脱剂中加入酸
F.洗脱系统的选择: TLC
16
3)聚酰胺柱色谱
性 质
甲醇(31.2)
氯仿(5.20)
水(81.0)
乙酸乙酯(6.11) 乙醇(26.0)
14
1)简单吸附法用于物质的浓缩与精制
活性炭吸附法
结晶、重结晶中脱色、脱臭
从大量稀水液中浓缩微量物质
15
2)吸附柱色谱法
硅胶吸附柱色谱
B.装柱:
C.上样: D.洗脱: E.托尾:
氧化铝吸附柱色谱
(适于分子量不同的苷类,如蒽醌、二蒽酮类)

第三章 糖和苷类

第三章 糖和苷类
R-CHO + AgNO3 + NH3 H2O R-COONH4 + Ag
章目录
3.Molisch反应的机理:
Molisch反应
章目录
第三节
苷键的裂解
章目录
一、酸催化水解
酸催化水解反应一般在水或乙醇溶液中进行。常用的酸: 稀盐酸、稀硫酸、8%~10%甲酸、40%~50%醋酸等。 酸水解:反应剧烈
O OH
O
D-葡萄糖醛酸
D-洋地黄毒糖(甲基五碳糖; 2、6去氧糖)
D-呋喃果糖(五元环、六元环 为吡喃糖) 章目录
(二)低聚糖
由2-9个单糖聚合而成,
(三)多糖
由10个以上单糖分子聚
合而成。分为均多糖和杂多
分为还原性低聚糖与非还
原性低聚糖。
OH O OH OH OH O O OH CH3 OH
糖。
OH
OH
H
苷键原子质子化
阳碳离子中间体
CH2OH O OH OH
H2O OH
CH2OH O OH2+ -H+ OH OH OH
H,OH
阳碳离子溶剂化
失去质子形成糖 章目录
难点释疑
1、苷键原子不同:在形成苷的N、O、S 、C四个原子中,N的电子云
密度最高,最容易质子化。而C上无共用电子对,电子云密度最小, 最难质子化。
O
C H 1
2 3
5
O
OH
C1
OH OH
OH OH
OH
OH
C5上羟基进攻C1醛基生成半缩醛结构
D-葡萄糖 (多羟基醛) 章目录
CH2OH
1 2 3
C HO H C
O H
HO

天然药物化学第三章糖和苷类

天然药物化学第三章糖和苷类

最简单的糖,不能再被水解成更小的分子。
按苷类在植物体内存在的形式:原生苷、次生苷。
氰苷:是指具有α-羟基腈的苷。经酶水解生成的苷 (四)碳苷:是一类不通过苷键原子,苷元直接以碳原子与糖的端基碳连接而成的苷类。
酯苷:是苷元的羧基和糖的端基羟基脱水缩合而成。
酯苷:是苷元元的羧不基和糖稳的端定基羟,基脱立水缩即合而分成。解为醛(酮)和氢氰酸。
天然药物化学第三章糖和苷类
第一节 糖 类
概念:糖是多羟基醛或多羟基酮及其衍生物 、聚合物的总称。
结构:碳水化合物 分布:糖类在自然界分布极为广泛 生物活性:香菇多糖、灵芝多糖具有抗肿瘤
活性,黄芪多糖具有增强免疫功能的作用。
糖的分类

单糖 低聚糖 高聚糖
由最2简-9单个由的单10糖糖个,分以不子上能脱的再单被糖 水水解缩成分合更子而小脱成的水。分缩子合。而
醇苷
氧苷
酚苷
氰苷
酯苷
吲哚苷
醇苷:是由苷元醇羟基与糖端基羟基脱水缩合而
成。
红景天苷
脱水缩合过程
酚苷:是由苷元酚羟基与糖端基羟基脱水缩合而
成。
HOH 2C
OH
OO
HO
OH OH
天麻苷
脱水缩合过程
(四)碳苷:是一类不通过苷键原子,苷元直接以碳原子与糖的端基碳连接而成的苷类。
生物活性:香菇多糖、灵芝多糖具有抗肿瘤活性,黄芪多糖具有增强免疫功能的作用。
(一)单糖
L-阿拉伯糖
HO
O
CH3 H,O H
OH OH
D-葡萄糖
O HO HO
OH
L-鼠李糖
(OH)CH2OH
D-果糖
(二)低聚糖(寡糖)

糖和苷类化合物

糖和苷类化合物

D-木糖——D-鸡纳糖——D-木糖
—— 2-β1
1β-3
D-葡萄糖甲醚——D-葡萄糖
(AcO)2O 四乙酰木糖+四乙酰鸡纳糖
ZnCl2
+乙酰化三糖+乙酰化四糖
O OH HO
HO
Me
O
OH O
OH OH O
OMe
HO HO
O OR OH O
OH O O
O HO
HO
五糖苷(R=苷元基)
O OAc H,OAc
原人参二醇(20R)
HO O
人参二醇
HO
对难水解的碳苷,用此法水解,以避免使用 剧烈的酸,可获得连有一个醛基、但其它结 构保持不变的苷元。
OH OR
OH
HO HO
CH2OH
CHOH +
CH2OH
R CHOH CH2OH
+ R-CHO HCOOH
课后练习
写出下列糖氧化开裂的产物?
O OR
O OR CH3
葡萄糖酸钠
凡能被多伦试剂和费林试剂氧化的糖叫做还原糖 。 不能被氧化的糖叫做非还原糖。 单糖:都是还原糖。
双糖:麦芽糖、乳糖为还原糖。蔗糖为非还原糖
可以利用这两个反应来区别还原糖和非还原糖。
苷的检识
理化检识的应用
水解

糖 + 苷元 (鉴别特点和意义)
菲林试剂 (-) 多伦试剂 (-) Molish反应(+) (a-萘酚、浓硫酸)
室温,条件温和,可得到原生苷元。 C-苷难以酸水解,可用Smith裂解水解。
机理
用过碘酸氧化糖苷,使之生成二元醛以及甲酸
四氢硼钠还原成二元醇(二元醇具有简单的缩醛结 构,比苷的稳定性差得多)

第三章 糖类和苷类

第三章 糖类和苷类
糠醛衍生物和许多芳胺、酚类可缩合成有色物质,可 用于糖苷类的检测。如Molisch试剂是浓硫酸和α-萘酚, 现象为:两相液层交界面呈紫红色环。
三、苷键的裂解
*酸催化水解 *碱催化水解
*酶催化水解
*氧化开裂反应
(一)酸催化水解 端基碳为缩醛结构对酸不稳定易裂解 试剂:稀酸(盐酸、硫酸、乙酸等) 溶剂:水或稀醇 产物:苷元和糖
3、凝胶色谱 根据分子大小不同而分离。 吸附剂:葡聚糖凝胶(LH20 ) 4、聚酰胺色谱 以氢键缔合产生吸附作用 “双重色谱”性能 5、多种色谱的配合 HPLC,离心薄层色谱,柱色谱等
The End
中 药 EtOH EtOH 提取物 减压回收 EtOH 浓缩物 石油醚提取 石油醚部分 (多为油脂) 残留物 Et2 O 或 CHCl3 提取
3. 系 统 溶 剂 提 取 法
Et2 O 或 CHCl3 提取物(苷元)
残留物 EtOAc 提取
EtOAc 提取液 (含单糖苷或含糖较少的苷)
残留物
n-BuOH 提取 n-BuOH 提取液(含糖较多的苷)
肝糖原(glycogan):与淀粉相似,分枝更甚, 遇碘不呈蓝色而呈红褐色。 甲壳素(chitin):似纤维素。 肝素:具有强抗凝血作用,用于防治血栓形成
透明质酸(hyaluronic acid):是一种酸性粘
多糖,为动物皮肤中的天然成分,近年多用于护
肤霜基质。
本 章 内 容
第一节 糖类
一、单糖立体化学 二、糖的分类
O O
O
蔗糖 (非还原糖)
3. 多聚糖(polysaccharides, 多糖) 是由10个以上的单糖基通过苷键连接而成。
聚合度:100以上至几千 性质:与单糖和寡糖不同,无甜味,非还原性

第三章 糖和苷类化合物2

第三章  糖和苷类化合物2
α-D-糖
R
H OH
O
β-D-糖
OH H
O
β-L-糖
H OH
R
O
α-L-糖
OH H
R
(二)、低聚糖
根据是否含有游离的醛基或酮基,分为: 非还原糖:单糖以端基羟基脱水缩合,无还原性。 如蔗糖,大多数的三、四、五糖 还原糖:单糖不以端基羟基脱水缩合,有还原性。 如芸香糖、麦芽糖、龙胆二糖等
HO
OH
O
O
还原
D-木糖醇 4.去氧糖 单糖分子一个或二个羟基为氢原子代替,该 类糖在强心苷中多见,并有特殊的性质。
糖的绝对构型:
六碳吡喃糖的C5(五碳呋喃糖的C4)上取 代基,向上为D型,向下为L型。
糖端基碳原子相对构型:
C1羟基与六碳糖C5(五碳糖的C4)取代基在 环同侧的为β 型。 C1羟基与六碳糖C5(五碳糖的C4)取代基在 环异侧的为α 型。
苦杏仁苷(镇咳)
(2)硫苷 糖半缩醛羟基和苷元上巯基(-SH)缩合 植物体内芥子酶常与硫苷共存,水解后的 苷元不含巯基,多为异硫氰酸酯类。
-
O3SO
N CH3 O
N CH2 CH CH2 C S
OSO3K glc
HO
S
O OH
黑芥子苷
OH
OH
萝卜苷
(3)氮苷 糖的端基碳原子与苷元上氮原子缩合。 生物化学中占重要位置:核酸重要组成 O
OH
D-呋喃甘露糖
D-呋喃阿洛糖
D-呋喃半乳糖
D-呋喃葡萄糖
结论2:六碳醛糖(含甲基五碳糖)的呋喃型 Haworth式中,C5-R为D, C5-S为L。
补充
糖的立体化学 3、F-H转化
2)五碳醛糖和六碳酮糖

天然产物化学03__糖与苷类 (3)

天然产物化学03__糖与苷类 (3)

CHO
H
OH
HO
H
H
OH
H
OH
CH2OH
葡萄糖
H OH
H OH HO H O
H OH H
CH2OH
a-D-葡萄糖
H OH
H HO
H HOCH2
OH HO OH H
HO H
H OH HO H O
H OH H
CH2OH
-D-葡萄糖
HO H
H HO
H HOCH2
OH HO OH H
Fisher
CH2OH
因此,用不同极性的溶剂顺次提取药材时,在各 提取部分都有发现苷类化合物的可能。
碳苷与氧苷不同,无论在水中还是在其他溶剂中 溶解度一般都较小。
三、旋光性:
多数苷类化合物呈左旋,但水解后,由于生成 的糖常是右旋的,因而使混合物呈右旋。因此, 比较水解前后旋光性的变化,也可以用以检识苷 类化合物的存在。但必须注意,有些低聚糖或多 糖的分子也都有类似的性质,因此一定要在水解 产物中肯定苷元的有无,才能判断苷类的存在。
1、 氧苷:
苷元与糖基通过氧原子相连,根据苷元与糖 缩合的基团的性质不同,分为以下几类: (1) 醇苷:是通过醇羟基与糖端基脱水而成的苷。 比较常见,如本书所讲皂苷,强心苷均属此类。 (2) 酚苷:苷元的酚羟基与糖端基脱水而成的苷。
较常见,如黄酮苷、蒽醌苷多属此类。
(3) 氰苷:主要是指α-羟基腈的苷。 该类化合物多为水溶性,不易结晶,在酸和酶催
色:苷类化合物的颜色是由苷元的性质决定 的。糖部分没有颜色 。
二、溶解性:
化合物糖苷化以后,由于糖的引入,结构中增加 了亲水性的羟基,因而亲水性增强。
苷类的亲水性与糖基的数目有密切的关系,往往 随着糖基的增多而增大,大分子苷元(如甾醇等)的 单糖苷常可溶解于低极性的有机溶剂,如果糖基增多, 则苷元占的比例相应变小,亲水性增加,在水中的溶 解度也就增加。

中药化学第三章 糖和苷类

中药化学第三章 糖和苷类
是组成甲壳类昆虫外壳的主要成分,其结构
和安定性与纤维素类似。甲壳素及脱乙酰甲壳素 应用非常广泛,可制成透析膜、超滤膜,用作药
物的载体,还可用于人造皮肤、人造血管等。
第二节 苷类化合物
一、概述
(一)定义 苷类(配糖体):糖或糖的衍生物与另
一非糖物质(苷元、配基)通过糖的端基 碳连接而成的化合物。 其连接的键为苷键。
第三节 提取分离方法
一、糖和苷类的提取 (一)糖的提取
糖类一般用水和稀醇。抑制酶水解保持糖的原存形式。 加入无机盐或加热回流破坏酶。避免与酸接触。
P56页提取方法。 多糖为大分子极性化合物,多数采用不同温度的水和稀
碱液、稀醇。避免用酸提取。 可过滤或离心除去不溶物后,上清液加2~5倍量的乙醇
2. 多糖采用分级沉淀法
使不同分子量的多糖分步沉淀。
除蛋白:三氟三氯乙烷法和sevag法。即正丁醇-氯仿1: 4混合后与多糖水溶液振摇放置,使蛋白质变性。
凝胶柱层析 常用有DEAE-Sephadex
A-25或A-50。大分子先洗下。
电泳法:分离酸性多糖 超速离心法:根据分子量大小。
第三章 糖和苷类化合物
授课教师:北京中医药大学 李强
目标要求
1. 糖类化合物
单糖(葡萄糖,鼠李糖);二糖(麦芽糖,蔗糖,芸 香糖);多糖的分类
糖的分离:常用的填料
2. 苷类化合物:
分类;不同苷键原子的代表化合物名称 不同苷键的水解难易情况
3. 检识 4. 苷的结构研究
糖与糖连接位置的确定—全甲基化—甲醇解 苷键构型的研究
(四)苷键的裂解
苷键的裂解反应是研究苷键和糖链结构的重 要反应。
常用的裂解方法有酸水解,碱水解,酶水解, 氧化开裂法。

第三章糖和苷类

第三章糖和苷类

苦杏仁苷 R=glc
野樱苷
R=H
9
天然药物化学
西安医学院
4、酯苷 是通过苷元羧基与糖缩合而成的苷。
OH O OH OH OH O R O CH2
CH2OH
山慈菇苷A 山慈菇苷B
R=H R=OH
5、吲哚苷 是由苷元吲哚醇中的羟基与糖缩合而成的苷。
O O glc N H H
+
OH N H
H N
[O] N H O
CHO HO H HO HO H OH H H CH2OH
L
CHO HO HO H HO H H OH H CH2OH
H HO H HO
CHO OH H OH H CH2OH

天然药物化学
西安医学院
4
②Haworth式:看不对称碳原子C5 取代基的
方向,向上为D,向下为L。
CH2OH O
O CH2OH OH
①碳原子数目少的糖>碳原子数目多的糖
②去氧糖>酮糖>醛糖
天然药物化学
西安医学院
17
[显色剂]
硝酸银试剂 还原糖显棕黑色
2、薄层色谱法 固定相 硅胶 移动相 极性大的溶剂系统 用 0.03mol/L硼酸溶液或无机盐水溶液代替 水制备薄层。 [显色剂]
硫酸的水或乙醇溶液
茴香醛-浓硫酸试剂
天然药物化学
西安医学院
1、醇苷 是通过苷元醇羟基与糖端基羟基脱水而成的苷。
OH O O OH HO OH
红景天苷
OH
天然药物化学
西安医学院
8
2、酚苷 是通过苷元酚羟基与糖端基羟基脱水缩合而 成的苷。
CH2OH
CH2OH

第三章 糖和苷类

第三章   糖和苷类

此外还有一些特殊的糖及衍生物
以上要能分出是哪个结构类型的糖,其中glc,gal,rha,fru 等最好记忆一下。
单糖由于有手性碳,因此有旋光异构体,我们复习一下糖的 构型。
(2)单糖的构型
以glu为例复习一下单糖构型确定的方法
确定D或L型看离羰基C最远的手性碳上的-OH的位置,右 为D-型,左为L-型。
单糖
低聚糖
多糖
(一)
单糖(Monosaccharides)
中草药中常见的单糖及构型 单糖是糖类可被水解的最小糖单位。按含糖或醛基的不 同又可分为
(1)常见的单糖 中草药中存在最多的是己糖和戊糖,最常见的是以下几种 五碳醛糖
1.
六碳醛糖
六碳酮糖:
去氧糖 甲基五碳醛糖(6-去氧糖)
2,6-去氧糖(主要存在于强心苷) 去氧糖由于比2 -羟基糖少氧,理 化性质也有不同。
第三章
糖和苷类
Carbohydrate or Saccharides and glycosides
第一节 糖 类 化 合 物
一. 概述
糖和苷是自然界分布很广的两大类成分。中草药中存在的糖 类成分有两个特点: 1、几乎所有的中药(矿物药除外)都含有糖或苷,并几乎占 植物体内有机物总量的85~90﹪。 2、除葡萄糖和葡萄糖醛酸对人体有营养和解毒作用,香菇、 灵芝、人参、黄芪等所含多糖有一定抗肿瘤及提高免疫活性作 用外,大多数糖至今还未发现有别的显著的生理活性。 二. 糖类的结构与分类
支链淀粉与直链淀粉在淀粉中的比例为1:3~4。因此,淀粉不溶于冷水和乙 醇等有机试剂,溶于热水呈粘胶状。 淀粉由于是螺旋结构因此能与I2络和显色。且随聚合度不同其色调也不同。
聚合度 4 ~6 不显色 20~50 紫色或蓝紫

中药化学 第三章 糖和苷类化合物

中药化学 第三章  糖和苷类化合物

② 酚苷 苷元分子中的酚性羟基与糖脱水而成的苷。
③ 酯苷 苷元中羧基与糖缩合而成的苷,其苷键既有缩 醛性质又有酯的性质,易为稀酸和稀碱所水解。如山慈菇 苷A和B(是山慈菇中抗霉菌的活性成分)被水解后,苷元 立即环合生成山慈菇内酯A和B。
④ 吲哚苷:靛苷,苷元为吲哚醇。 ⑤ 氰苷 氰苷主要是指一类具有α-羟基腈的苷,数目不多,但 分布广泛。这种苷易水解,尤其是在有稀酸和酶催化时水 解更快,生成的苷元α-羟腈很不稳定,立即分解为醛(酮 )和氢氰酸;而在浓酸作用下,苷元中的-CN基易氧化成COOH基,并产生NH4+;在碱性条件下,苷元容易发生异 构化而生成α-羟基羧酸盐。 苦杏仁苷(amygdalin)存在于杏的种子中,具有α 羟基腈结构,属于氰苷类(cyanogenic glycosides)。苦杏 仁苷在人体内会缓慢分解生成不稳定的α -羟基苯乙腈, 进而分解成为具有苦杏仁味的苯甲醛以及氢氰酸。小剂量 口服时,由于释放少量氢氰酸,对呼吸中枢产生抑制作用 而镇咳。大剂量口服时因氢氰酸能使延髓生命中枢先兴奋 而后麻痹,并能抑制酶的活性而阻断生物氧化链,从而引 起中毒,严重者甚至导致死亡。
2.其它分类方法 (1)按苷元的化学结构类型:分为香豆素苷、蒽醌苷、 黄酮苷、吲哚苷等。 ( 2 ) 按苷类 在 植 物体 内 的 存在 状 况:分 为 原生苷 ( primary glycosides原存在于植物体内),苷,称为次生苷( secondary glycosides原生苷水解失去一部分糖后生成的)。 如苦杏仁苷是原生苷,野樱苷是次生苷。 (3)按苷的生理作用分类:强心苷。 (4)按苷的特殊物理性质分类:皂苷。 (5)按糖的种类或名称分类:葡萄糖苷、木糖苷、去氧 糖苷等。 (6)按苷分子所含单糖的数目分类,可分为单糖苷、双 糖苷、三糖苷等。 (7)按苷分子中的糖链数目分类,可分为单糖链苷、双 糖链苷等。 (8)按其植物来源分类,例如人参皂苷、柴胡皂苷等。

中药化学 第三章 糖苷类化合物

中药化学 第三章 糖苷类化合物
特点:专属性强,高效。
用途:保护苷元的结构,得到次级苷。
获得苷元与糖、糖与糖的连接方式。 例如:
麦芽糖酶:一种α-苷酶,它只能使α-葡萄糖苷水解。
苦杏仁苷酶:一种β-苷酶,它能水解β-葡萄糖苷,但专属性较差。 纤维素酶:一种β-苷酶。
鼠李属酶:一种β-苷酶。
转化糖酶:β-果糖苷酶。 芥子苷酶:水解芥子苷 。
OH CN O OH OH OH OH OH O OH OH OH O O OH CN O OH O + OH OH OH OH O H,OH
苦杏仁酶
三、按苷的特殊性质分类 例如: 皂苷
四、按生理作用分类 例如: 强心苷
五、按糖的名称分类 例如: 木糖苷、葡萄糖苷、鼠李糖苷等。 六、按联接单糖基的数目分类 例如: 单糖苷、二糖苷、三糖苷 等。 七、按联接的糖链数目分类 可分为单糖链苷、双糖链苷等。这 种分类常 见于皂苷。 注意:双糖苷 双糖链苷
OH O OH OH H,OH
酸催化水解的难易与苷键原子的碱度,即苷原子上的电子云密度 以及它的空间环境有密切关系。只要有利于苷键原子的质子化的, 就有利于水解的进行。
苷键具有缩醛结构,易为稀酸催化水解,不同的苷水解难易程度 不 同, 规律如下: 1、N-苷最易水解,C-苷最难,其顺序为 N-苷>O-苷>S-苷>C-苷。 2、呋喃糖苷较吡喃糖容易水解。 3、酮糖较醛糖容易水解。 4、在吡喃糖苷中 ,C5上的取代基越大越难水解,因此五碳糖最易 水解,其顺序为五碳糖苷>甲基五碳糖苷>六碳糖苷>七碳糖苷> 糖 醛酸苷。 5、氨基糖最难水解,羟基糖次之,去氧糖最易水解, C2上的取代基 影响最大,其顺序为α-去氧糖、2-羟基糖、α-氨基糖。
注意:PH值, 温度

糖和苷类化合物

糖和苷类化合物

第三章 糖和苷类化合物本章重点是苷类化合物,苷类是糖或糖的衍生物与另一非糖物质(苷元)通过糖的端基碳原子连接而成的一类化合物,在自然界中,由于各种类型的天然成分均可以和糖结合成苷,因此,苷类的分布广泛,化合物很多,是普遍存在的天然产物,苷的共性在糖的部分,所以学习时,要先了解糖的结构和苷健性质。

第一节 糖类化合物这一节要掌握糖的含义、结构和分类、常见单糖和糖的检识方法。

重点和难点是单糖的绝对构型、端基差向异构体以及低聚糖还原性判断。

㈠糖的表示式单糖是多羟基醛或酮。

从三碳糖至八碳糖天然界都有存在。

以Fischer 式表示天然常见糖如下:单糖在水溶液中形成半缩醛环状结构,即成呋喃糖和吡喃糖。

具有六元环结构的糖——吡喃糖(pyranose ) 具有五元环结构的糖——呋喃糖(furanose ) 单糖处于环状结构时,可用Haworth 式表示。

如:葡萄糖(糖游离状态时用Fischer 式表示,苷化后成环用Haworth 式表示)CH 2OHCHOCHOCH 3CHOCH 2OHOCHO CH 2OHD-木糖L-鼠李糖D-葡萄糖D-果糖五碳醛糖甲基五碳醛糖六碳醛糖六碳酮糖CHOCH 2OH OD-葡萄糖~㈡Fischer 与Haworth 的转换及其相对构型单糖成环后新形成的一个不对称碳原子称为端基碳(如上述D-葡萄糖的C1),生成的一对差向异构体有α、β二种构型。

从Fischer 式看(C 1与C 5的相对构型)C 1-OH 与原C 5(六碳糖)或C 4(五碳糖)-OH ,顺式为α,反式为β。

从Haworth 式看C 1-OH 与C 5(或C 4)上取代基之间的关系:同侧为β,异侧为α。

㈢糖的绝对构型(D 、L )以α-OH 甘油醛为标准,将单糖分子的编号最大的不对称碳原子的构型与甘油醛作比较而命名分子构型的方法。

Fischer 式中最后一个手性碳原子上-OH 向右的为D 型,向左的为L 型。

第三章糖和苷

第三章糖和苷

亚麻氰苷 R=H 百脉苷 R=CH3
(d)酯苷—— R-CO-OH
CH2 O O OH HO OH
1 25
OH O O OH OH
1 25
OH CH2 O O OH
HOH
山慈姑苷A
OH
O
OH O OH OH OH
1 25
CH3 O
HO CH3
O
OCOCH 3
土槿乙酸葡萄糖苷R=COOH (有强抑制肿瘤细胞生长 作用) 土槿甲素葡萄糖苷R=CH3
Me O OH HO HO O OH OH O OMe HO HO OH O OH O O O AcO OAc O OH OAc O OR O H,OAc Me O OAc AcO OAc H,OAc
+
四乙酰木糖 HO
四乙酰鸡纳糖
HO Me O H,OAc O OAc OAc O AcO OAc OAc O OMe AcO OAc O H,OAc
合线等。
透明质酸:是由D-葡萄糖醛酸1β→4和乙酰D-葡萄糖胺1β→3连接而
成的直链酸性粘多糖。存在于动物的 玻璃体、脐带和关节滑液中。 可用于
视网膜脱离手术,并作为天然保湿因子,广泛用于化妆品中。
硫酸软骨素:从动物的软骨组织中得到的酸性粘多糖,硫酸软骨素A能
增强脂肪酶的活性,使乳糜微粒中的甘油三酯分解成脂肪酸,使血液中乳 糜 微粒减少而澄清,还具有抗凝和抗血栓形成的作用。
3000左右。
有1→6的分支链; 聚合度
糖淀粉(直链淀粉):1→4连接的D-葡聚糖,聚合度为300~350。 糖淀粉遇碘呈蓝色,胶淀粉遇碘呈紫红色。
纤维素:由3000~5000分子的D-葡萄糖通过1→4苷键以反向连接聚
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、超速离心法:沉积速率不同。
3.2 苷类
一、苷的定义、结构及分类 (一)定义
苷类(配糖体glycosides):糖或糖的衍生物与另一非糖 物质(苷元)通过糖的端基碳连接而成的化合物。 苷 元与糖连接的键为苷键。
α-构型:C1-OH与C5取代在异侧 β-构型:C1-OH与C5-取代在同侧
O
(二)苷的分类
氯仿(4:1)处理使蛋白质变
性沉淀出来。
2、除色素:活性炭或氧化脱色。
(二)分离纯化
1、分级沉淀法:
不同浓度的低级醇梯度加入,使含 醇量达到15%,30%,40%,50%, 60%,使不同分子量的多糖分步沉淀。 也可改变pH值、温度或加入无机盐。主 要是除去非糖物质。
2、色谱法:
葡聚糖凝胶色谱、琼脂糖凝胶、聚 丙烯酰胺凝胶。
提取原生苷时,必须设法抑制或破坏酶的
活性,防止酶解产生次生苷,方法是:用甲醇、
乙醇、沸水提取,或在药材中拌入CaCo3,并 在提取过程中要避免与酸碱接触,尽可能保持
中性。
提取次生苷时,可利用发酵、酶解酸碱水 解等方法处理药材,提高目标产量。
提取苷元时,先用适当方法彻底水解苷类
(酶解或酸水解),再用乙酸乙酯、氯仿、石 油醚等有机溶剂提出苷元;也可先提取总苷, 再水解成苷元。
(1)醇苷:是苷元的醇羟基与糖缩合而成的苷。 例如,强心苷和皂苷。
(2)酚苷:是由苷元的酚羟基与糖脱水缩合而 成的苷。(自然界中以酚苷为多,如黄酮苷)
(3)氰苷:
பைடு நூலகம்
主要指具有α-羟基腈的苷元与糖组成的氧
苷。具有水溶性,不宜结晶,易水解。水解生
成 的 苷 元 α- 羟 基 腈 很 不 稳 定 , 立 即 分 解 为 醛
和乙酰化的寡糖。从而推断多糖的结构。
方法:将多糖或乙酰化多糖溶解于醋酐或醋酐与
冰醋酸的混合溶液里,并加入浓硫酸少许,于室温放
置1-10天,然后置冰水中,加碳酸氢钠中和至PH3-4,
氯仿提单糖和寡糖,柱色谱分离。
2) 过碘酸及其盐的氧化 作用于1,2-邻二醇或1,2,3-邻三
醇。通过反应后测定过碘酸盐的消耗, 甲酸的生成和剩余糖的比例,可确定多 糖中各种单糖的键型及其比例。
(3)酶水解 * 特点:专属性高,反应温和,不破坏
苷元结构,水解有渐进性,可得到次级苷, 从而提供更多结构信息。
* 常用的酶: 麦芽糖酶 :仅水解α-葡萄糖苷键 苦杏仁酶:水解β-苷键(专属性低) 转化糖酶:水解β-果糖苷键
(4)氧化裂解
Smith降解法是常用的氧化裂解,适 用于苷元结构不稳定的苷及难水解的C苷。不适用于有邻二醇结构的苷元。
3、旋光性
多数苷为左旋。水解后生成的糖为 右旋,因而混合物呈右旋。旋光度的大 小与苷元和糖的结构以及苷元与糖、糖 与糖的连接方式有关。
4、苷键的裂解
苷键的裂解反应是研究苷键和糖链结构的 重要反应。
常用的裂解方法有酸水解,碱水解,酶水解, 氧化开裂法。
(1) 酸催化水解
苷键容易被稀酸催化水解,在水或稀醇中 进行,所用的酸有盐酸、硫酸、甲酸、乙酸。
* 氨基糖较难水解,羟基糖次之,去氧糖最易水 解。去氧糖苷>羟基糖苷>氨基糖苷
* 芳香苷比脂肪苷容易水解。
注意:可采用二相水解反应,使对酸不稳定
的苷元结构得以保留。
(2)碱催化水解 一般的苷键为缩醛结构,对稀碱较稳
定,不容易被碱水解,很少用碱水解。 只适用于酯苷、酚苷、烯醇苷及β位
有吸电子基的苷。
3.4 苷类的结构测定 一般程序: 1、测定各种物理常数。 2、确定分子式。 3、苷水解, 糖的鉴定,苷元结构的鉴定。 4、苷键构型的确定。 5、糖的连接顺序、连接位置的确定。
3.1 糖类化合物
一、概述
糖(saccharides)是多羟基醛或酮及其衍生物、 聚合物的总称。通式为Cx(H2O)y,所有生物均含糖及 其衍生物。
二、结构和分类
按能否水解和分子量大小分为: 单糖(monosaccharides):不能再被水解,最小单位。 低聚糖(oligosaccharides):2~9个单糖聚合而成。 多糖(polysaccharides):10个以上单糖聚合而成。植物多
(酮)和氢氰酸。例如:苦杏仁苷。
(4) 酯苷:苷元的羧基与糖脱水而成。苷键既有 缩醛性质又有酯的性质。易被稀酸和稀碱水解。例如: 山慈姑苷A、B。三萜皂苷中酯苷较多见。
2、硫苷:由苷元上巯基与糖的端羟基脱水缩合而成。 常存在于十字花科植物中,如萝卜苷、黑芥子苷。
3、氮苷:由苷元上氮原子与糖的端基碳直接相连而 成。例如:腺苷、鸟苷、巴豆苷。
凝胶:Sephadex LH-20、Sephadex G系列。水醇系统洗脱。
3.3 糖和苷的检识
一、理化检识
1、Molish反应 试剂:5% α-萘酚乙醇液,浓硫酸 现象:液面间产生紫色环 注意:(1)检识苷类要排除糖的干扰(正丁醇萃取苷类)。
(2)碳苷和糖醛酸反应阴性。 2、菲林反应和多伦反应:仅还原糖反应阳性,非还原糖和 苷类反应阴性。 3、水解反应:苷类在酸水中水解出苷元后,苷元水溶性差 会析出沉淀。
2、分离
(1)初步精制:可用溶剂沉淀法(粗提物溶于 少量甲醇或水,加丙酮或乙醚沉淀),也可用大 孔树脂吸附法来富集、纯化总苷(粗提物溶于水, 上大孔树脂柱,先用水洗去无机盐、糖、多肽等 杂质,再用稀醇洗脱苷类)。
(2)分离:多用色谱法
正相硅胶:多用氯仿-甲醇-水系统洗脱。
反相硅胶:水-甲醇或水-乙腈系统。
4、碳苷:苷元的碳原子与糖的端基碳直接连接而成。 碳苷的苷元多为黄酮、蒽醌等化合物。水溶性小、难 水解。例如:牡荆素(抗肿瘤、降压、抗炎)、芦荟 苷(致泻)。
OO
OCH3
OH Oglc
COCH3
CN CH2OH
O OCH
O CHO
HCN
R
NO C
SO3 K
S glu
NH 2
N
N
N
N O
HO
O
OH
H
糖、菌类多糖、动物多糖。
1、植物多糖:
(1)纤维素:直链葡聚糖。
(2)淀粉:
直链的糖淀粉:1α 4连接的D-葡萄吡喃糖, 聚合度300-350,可溶于热水成透明溶液。
支链的胶淀粉:1α 4连接的D-葡萄吡喃糖, 但有1α 6的分支链,平均支链长25个单位, 不溶于冷水,溶于热水成粘胶状。
糖淀粉遇碘显兰色,胶淀粉显紫色。
淀粉在制剂中作赋形剂,工业上作生产葡 萄糖的原料。
(3)植物树胶及粘液质
2、菌类多糖
猪苓多糖、茯苓多糖、灵芝多糖——抗肿瘤
3、动物多糖
(1)肝素:含有硫酸酯的粘多糖,为天然抗凝 血物质,预防血栓。
(2)甲壳素:是螃蟹、虾等动物外壳的主要成 分,可作药物的载体,具有缓释优点,也可用 于人造皮肤、血管、手术缝合线等。
(3)透明质酸:为天然保湿因子,用于化妆品。 (4)硫酸软骨素:硫酸软骨素A能增强脂肪酶活
性、抗凝、抗血栓形成。
三、多糖的主要理化性质
1、性状:非晶形,无甜味,难溶于冷水,可溶于热水成
胶体溶液,不溶于乙醇等有机溶剂。无还原性。
2、主要化学反应 (1)molish (2)水解反应 1) 乙酰解:多糖经过乙酰解可以生成乙酰化的单糖
CH2OH
(四) 苷的理化性质
1、性状
固体,无定型粉末、有吸湿性(含糖基多 的苷),一般无味,但有的有苦味,也有的为 甜味。
2、溶解性
糖基越多,水溶性越大;苷类一般极性较 大,可溶于水、甲醇、乙醇、含水正丁醇等极 性大的溶剂;如果苷元为低极性大分子,又为 单糖苷,则水溶性差,可溶于低极性有机溶剂 中(氯仿);因此,当用不同极性的溶剂顺次 萃取时,苷在各部分都有发现的可能;C-苷较 特殊,在水或其它溶剂中溶解度都较小。
Smith降解的过程:过碘酸氧化,
四氢硼钠还原在PH2左右放置,水解得
到苷元、多元醇、羟基乙醛等。
(5)乙酰解
自学 ,54页。
O OR IO4- CHO O OR BH4-
OHC
OH O OR PH2
CH2OHCH2OH
OH OH
+
CHO
+ ROH
CH2OH CH2OH
(五)苷的提取分离
1、提取:
1)酸催化水解的机理:
苷键原子质子化,苷键断裂成苷元和糖的 正碳离子,正碳离子在水中溶剂化后脱去氢离 子形成糖分子。书上53页。
2)酸催化水解的规律:
酸催化水解的难易与苷键原子的电子密 度及其空间环境有密切关系。苷元结构有 利于苷键原子质子化的,易于水解。
* 按苷键原子的不同,酸水解由易到难:
1. 按苷在生物体内存在的形式:原生苷、 次生苷 2. 按苷元的结构:甾苷、黄酮苷 3. 按连接单糖的数目:单糖苷、双糖苷 4. 按连接糖的链数:单糖链苷、双糖链苷 5. 按生理活性:强心苷 6. 按苷键原子分类:氧苷、硫苷、氮苷、碳苷
(三) 苷的结构类型
1、氧苷:苷元通过氧原子与糖相连而成的苷。
N-苷 > O-苷 > S-苷 > C-苷
(因为N易接受质子,易水解,C上无共享 电子对,不易质子化。)
* 呋喃糖苷较吡喃糖苷容易水解:水解速率大50100倍。(五元呋喃环的平面性使各取代基处于 重叠位置,形成水解中间体后可使张力减小)
* 酮糖苷比醛糖苷容易水解。
* 吡喃醛糖苷中(5位上的取代基越大越难水解, 空间位阻现象):五碳糖>甲基五碳糖>六碳糖> 七碳糖> 糖醛酸。
3) Smith降解 4) 碱降解 5) 酶解 6) 酸水解
四、多糖的提取分离
(一)提取
多糖为大分子极性化合物,多数采用不同
温度的水提取,也可用稀醇、稀碱、稀盐等, 避免用酸提取。
相关文档
最新文档