对称密码体制
对称密码体制和非对称密码体制

对称密码体制和⾮对称密码体制⼀、对称加密 (Symmetric Key Encryption)对称加密是最快速、最简单的⼀种加密⽅式,加密(encryption)与解密(decryption)⽤的是同样的密钥(secret key)。
对称加密有很多种算法,由于它效率很⾼,所以被⼴泛使⽤在很多加密协议的核⼼当中。
⾃1977年美国颁布DES(Data Encryption Standard)密码算法作为美国数据加密标准以来,对称密码体制迅速发展,得到了世界各国的关注和普遍应⽤。
对称密码体制从⼯作⽅式上可以分为分组加密和序列密码两⼤类。
对称加密算法的优点:算法公开、计算量⼩、加密速度快、加密效率⾼。
对称加密算法的缺点:交易双⽅都使⽤同样钥匙,安全性得不到保证。
此外,每对⽤户每次使⽤对称加密算法时,都需要使⽤其他⼈不知道的惟⼀钥匙,这会使得发收信双⽅所拥有的钥匙数量呈⼏何级数增长,密钥管理成为⽤户的负担。
对称加密算法在分布式⽹络系统上使⽤较为困难,主要是因为密钥管理困难,使⽤成本较⾼。
⽽与公开密钥加密算法⽐起来,对称加密算法能够提供加密和认证却缺乏了签名功能,使得使⽤范围有所缩⼩。
对称加密通常使⽤的是相对较⼩的密钥,⼀般⼩于256 bit。
因为密钥越⼤,加密越强,但加密与解密的过程越慢。
如果你只⽤1 bit来做这个密钥,那⿊客们可以先试着⽤0来解密,不⾏的话就再⽤1解;但如果你的密钥有1 MB⼤,⿊客们可能永远也⽆法破解,但加密和解密的过程要花费很长的时间。
密钥的⼤⼩既要照顾到安全性,也要照顾到效率,是⼀个trade-off。
分组密码:也叫块加密(block cyphers),⼀次加密明⽂中的⼀个块。
是将明⽂按⼀定的位长分组,明⽂组经过加密运算得到密⽂组,密⽂组经过解密运算(加密运算的逆运算),还原成明⽂组,有 ECB、CBC、CFB、OFB 四种⼯作模式。
序列密码:也叫流加密(stream cyphers),⼀次加密明⽂中的⼀个位。
03、对称密码体制

数据加密标准(Data Encryption Standard,DES)是至 今为止使用 最为广泛的加密算法。
1974年8月27日, NBS开始第二次征集,IBM提交了算法LUCIFER ,该算法由IBM的工程师在1971~1972年研制。
1975年3月17日, NBS公开了全部细节1976年,NBS指派了两个
序列密码算法(stream cipher)
每次可加密一个比特戒一个字节 适合比如进程终端输入加密类的应用
对称密码体制
4
3.1 分组密码原理
分组密码
分组密码是将明文消息编码表示后的数字(简称明文数字)序列,划
分成长度为n的组(可看成长度为n的矢量),每组分别在密钥的控制 下发换成等长的输出数字(简称密文数字)序列。
构,如FEAL、Blowfish、RC5等。
对称密码体制
9
3.1.2 分组密码的一般结构
Feistel密码结构的设计动机
分组密码对n比特的明文分组迚行操作,产生出一个n比特的密文分
组,共有2n个丌同的明文分组,每一种都必须产生一个唯一的密文 分组,这种发换称为可逆的戒非奇异的。 可逆映射 00 01 10 11 11 10 00 01 丌可逆映射 00 01 10 11 11 10 01 01
对称密码体制Biblioteka 193.2.1 简化的DES
简化的DES
简化的DES(Simplified - DES)是一个供教学而非安全的加密算法, 它不DES的特性和结构类似,但是参数较少。 S - DES的加密算法以8bit的明文分组和10位的密钥作为输入,产生 8bit的明文分组做为输出。 加密算法涉及五个凼数:
常见的密码体制

常见的密码体制
常见的密码体制分为两种:私⽤密钥加密技术和公开密钥加密技术,前者是对称加密,后者是⾮对称加密。
1.私⽤密钥加密技术(对称加密):
加密和解密采⽤相同的密钥,对于具有n个⽤户的系统需要n(n-1)/2个密钥。
在⽤户群不是很⼤的情况下存放,对于⼤⽤户分布式,密钥的分配和保存会成为问题。
DES是对机密信息进⾏加密和验证随机报⽂⼀起发送报⽂摘要来实现。
DES密钥长度为56bit,Triple DES(DES的⼀种变形)将56bit的密钥长度的算法对实现信息进⾏3次加密,是长度达到了112bit。
对称加密系统仅能⽤于对数据进⾏加解密处理,提供数据的机密性,不能⽤于数字签名。
2.公开密钥加密技术(⾮对称加密):
加密和解密相对独⽴,分别⽤两种不同的密钥,公钥向公众公开,谁都可以使⽤,私钥只有解密⼈知道,公钥⽆法⽤于解密。
RSA算法就是典型的⾮对称加密。
公钥⽅便实现数字签名和验证,但算法复杂,效率低。
对于n个⽤户的系统,仅需要2n个密钥,公钥加密提供⼀下功能:
A.机密性
B.确认性
C.数据完整性
D.不可抵赖性
DES中明⽂按64位进⾏分组,密钥事实上是56位参与DES运算(64为只⽤56为具有较⾼的安全性,第8,16,24,32,40,48,56,64位⽤于校验位)。
分组后的明⽂组和56位的密钥按位交替或交换的⽅法形成密⽂组的加密⽅法。
⼊⼝参数有三个:key(密钥)、data(加解密的数据)、mode(⼯作模式)。
mode有两种,加密模式和解密模式,对应key的加密和解密过程。
客户端和服务端都需要保存key不泄露。
描述对称密码体制与公钥密码体制的认识

对称密码体制与公钥密码体制是现代密码学中两种基本的密码体制,它们在保护信息安全,防止信息被未经授权者获取和篡改方面发挥着重要的作用。
下面将从定义、特点、优缺点、应用领域等方面来详细描述对称密码体制与公钥密码体制。
一、对称密码体制1. 定义:对称密码体制是指加密和解密使用同一个密钥的密码系统,也就是通信双方需要共享同一个密钥来进行加解密操作。
2. 特点:对称密码体制具有以下特点:1) 加密速度快:因为加密和解密使用同一个密钥,所以运算速度快。
2) 安全性依赖于密钥的安全性:只要密钥泄露,整个系统的安全就会受到威胁。
3) 密钥管理困难:通信双方需要事先共享密钥,密钥的分发和管理是一个很复杂的问题。
3. 优缺点:对称密码体制的优缺点如下:1) 优点:加密速度快,适合对大数据进行加密;算法简单,易于实现和设计。
2) 缺点:密钥管理困难,安全性依赖于密钥的安全性。
4. 应用领域:对称密码体制主要应用于一些对加密速度要求较高,密钥管理相对容易的场景中,比如网络通信、数据库加密等领域。
二、公钥密码体制1. 定义:公钥密码体制是指加密和解密使用不同密钥的密码系统,也就是通信双方分别有公钥和私钥,公钥用于加密,私钥用于解密。
2. 特点:公钥密码体制具有以下特点:1) 加密和解密使用不同的密钥,安全性更高。
2) 密钥管理相对容易:每个用户都拥有自己的一对密钥,不需要事先共享密钥。
3) 加密速度较慢:因为加密和解密使用不同的密钥,计算复杂度较高。
3. 优缺点:公钥密码体制的优缺点如下:1) 优点:安全性更高,密钥管理相对容易。
2) 缺点:加密速度较慢,算法复杂,设计和实现难度大。
4. 应用领域:公钥密码体制主要应用于对安全性要求较高,加密速度要求相对较低的场景中,比如数字签名、安全传输等领域。
三、对称密码体制与公钥密码体制的比较根据对称密码体制与公钥密码体制的特点、优缺点和应用领域,下面对它们进行比较:1. 安全性:公钥密码体制的安全性更高,因为加密和解密使用不同的密钥,不容易受到攻击;而对称密码体制的安全性依赖于密钥的安全性,一旦密钥泄露,整个系统的安全将受到威胁。
对称密码体制

分组密码的工作模式
电码本模式(1/2) ECB (electronic codebook mode)
P1 K 加密
P2
K
加密
…K
Pn 加密
C1
C2
Cn
C1 K 解密
C2
K
解密
…K
Cn 解密
P1
P2
Pn
Ci = EK(Pi) Pi = DK(Ci)
对称密码体制
分组密码的工作模式
电码本模式(2/2) ECB特点
对称密码体制
分组密码的工作模式
密码反馈模式(2/6)
加密:Ci =Pi(EK(Si)的高j位) Si+1=(Si<<j)|Ci
V1
Shift register 64-j bit |j bit
64
Shift register 64-j bit |j bit
64
Cn-1 Shift register 64-j bit |j bit
对称密码体制
分组密码的工作模式
密码反馈模式(6/6) Pi=Ci(EK(Si)的高j位) 因为: Ci=Pi(EK(Si)的高j位)
则: Pi=Pi(EK(Si)的高j位) (EK(Si)的高j位) =Pi 0 = Pi
CFB的特点 ❖分组密码流密码 ❖没有已知的并行实现算法 ❖隐藏了明文模式 ❖需要共同的移位寄存器初始值V1 ❖对于不同的消息,V1必须唯一 ❖误差传递:一个单元损坏影响多个单元
对称密码体制
分组密码的工作模式
密码分组链接模式(3/3)
CBC特点 ❖没有已知的并行实现算法 ❖能隐藏明文的模式信息 ❖需要共同的初始化向量V1 ❖相同明文不同密文 ❖初始化向量V1可以用来改变第一块 ❖对明文的主动攻击是不容易的 ❖信息块不容易被替换、重排、删除、重放 ❖误差传递:密文块损坏两明文块损坏 ❖安全性好于ECB ❖适合于传输长度大于64位的报文,还可以进行用 户鉴别,是大多系统的标准如 SSL、IPSec
对称密钥密码体制

第三,流密码能较好地隐藏明文的统计特征等。
流密码的原理
❖ 在流密码中,明文按一定长度分组后被表示成一个序列,并 称为明文流,序列中的一项称为一个明文字。加密时,先由 主密钥产生一个密钥流序列,该序列的每一项和明文字具有 相同的比特长度,称为一个密钥字。然后依次把明文流和密 钥流中的对应项输入加密函数,产生相应的密文字,由密文 字构成密文流输出。即 设明文流为:M=m1 m2…mi… 密钥流为:K=k1 k2…ki… 则加密为:C=c1 c2…ci…=Ek1(m1)Ek2(m2)…Eki(mi)… 解密为:M=m1 m2…mi…=Dk1(c1)Dk2(c2)…Dki(ci)…
同步流密码中,消息的发送者和接收者必须同步才能做到正确 地加密解密,即双方使用相同的密钥,并用其对同一位置进行 操作。一旦由于密文字符在传输过程中被插入或删除而破坏了 这种同步性,那么解密工作将失败。否则,需要在密码系统中 采用能够建立密钥流同步的辅助性方法。
分解后的同步流密码
பைடு நூலகம்
密钥流生成器
❖ 密钥流生成器设计中,在考虑安全性要求的前提下还应考虑 以下两个因素: 密钥k易于分配、保管、更换简单; 易于实现,快速。
密钥发生器 种子 k
明文流 m i
明文流m i 加密算法E
密钥流 k i 密钥流 发生器
密文流 c i
安全通道 密钥 k
解密算法D
密钥流 发生器
明文流m i
密钥流 k i
图1 同步流密码模型
内部状态 输出函数
内部状态 输出函数
密钥发生器 种子 k
k
Lecture05_对称密码体制

20
输出反馈(OFB)模式
加密 IV 移位寄存器 64-j 密钥 j 移位寄存器 64-j j 移位寄存器 64-j j
m (m0, m , m2, mL1) , 1
明文分组
k (k0 , k1, k2 ,, kt 1)
k (k0 , k1, k2 ,, kt 1)
图5-1 分组密码原理框图
2
对分组密码算法的要求
分组长度足够大
密钥量足够大 密码变换足够复杂
3
分组密码原理
扩散
就是将每一位明文的影响尽可能迅速地作用到较多的输 出密文位中去,以便隐藏明文的统计特性。
加密 选择丢弃处理 j P1 64-j P2
加密 选择丢弃处理 j 64-j PN
加密 选择丢弃处理 j 64-j
⊕
⊕
⊕
密文分组C1
密文分组C2
密文分组CN
密文分组C1 P1
密文分组C2 P2 64-j
密文分组CN PN 64-j
⊕
j 选择丢弃处理 加密
⊕
j 选择丢弃处理 加密
⊕
j 64-j 选择丢弃处理 加密
A
解密D
B
加密E
C
(2)DES-EDE3模式 K1 K2 K1
P
加密E
A
加密E
B
加密E
C
(3)DES-EEE2模式 K1 K2 K1
P
加密E
A
2对称密码体制

2011-12-10
15
1997 年 DESCHALL 小 组 经 过 近 4 个 月 的 努 力 , 通 过 Internet搜索了 × 1016 个密钥,找出了DES的密钥, 恢 搜索了3× 个密钥, 找出了 的密钥, 搜索了 的密钥 复出了明文。 复出了明文。 1998年5月美国 年 月美国 月美国EFF(electronics frontier foundation) 宣布,他们以一台价值20万美元的计算机改装成的专用解 宣布,他们以一台价值 万美元的计算机改装成的专用解 密机, 小时破译了56 比特密钥的 比特密钥的DES。 密机,用56小时破译了 小时破译了 。
2011-12-10
14
DES首次被批准使用五年,并规定每隔五年由美国国 首次被批准使用五年, 首次被批准使用五年 家保密局作出评估, 家保密局作出评估,并重新批准它是否继续作为联邦加密 标准。最近的一次评估是在1994年1月,美国已决定 标准。最近的一次评估是在 年 月 美国已决定1998年 年 12月以后将不再使用 月以后将不再使用DES。因为按照现有的技术水平,采 月以后将不再使用 。因为按照现有的技术水平, 用不到几十万美元的设备,就可破开 密码体制。 用不到几十万美元的设备,就可破开DES密码体制。目前 密码体制 的新标准是AES,它是由比利时的密码学家Joan Daemen和 ,它是由比利时的密码学家 的新标准是 和 Vincent Rijmen设计的分组密码 设计的分组密码—Rijndael(荣代尔)。 设计的分组密码 (荣代尔)。
置换选择pc1循环移位置换选择pc2置换选择pc2置换选择164比特201492731子密钥产生器?给出每次迭代加密用的子密钥ki子密钥产生器框图密钥64bit置换选择1pc1除去第816?64位8个校验位201492732置换选择2pc2ci28bitdi28bit循环左移ti1bit循环左移ti1bitki57494133251791585042342618102595143352719113605044366355473931231576254463830221466153453729211352820124置换选择1pc1迭代次数12345678循环左移位位数11222222左循环移位位数2014927331417112415328156211023191242681672720132415231374755304051453348444939563453464250362932置换选择2pc2迭代次数910111213141516循环左移位数12222221201492734des的安全性?穷举攻击分析穷举攻击就是对所有可能的密钥逐个进行脱密测试直到找到正确密钥为止的一种攻击方法方法
对称密码体制

对称密码体制对称密码体制是一种有效的信息加密算法,它尝试在满足基本安全约束的同时提供最大的加密强度和性能。
它是最常用的信息加密类型之一,甚至在金融机构、政府机构、企业以及个人之间都被广泛使用。
对称密码体制通过使用单个密钥(称为“秘密密钥”)来确保信息的安全传输和接收,而无需在发送方和接收方之间共享保密信息。
这一密钥的特点在于,既可以用来加密信息,也可以用于解密信息。
由于秘密密钥是由发送方和接收方共同拥有,因此不需要额外的通信,也无需额外的身份验证。
在使用对称密码体制时,发送方必须在发送数据之前将其加密,而接收方则必须使用相同的密钥对数据进行解密,以此来识别发送方。
然而,有一种特殊情况除外,即发送方可以使用密钥来加密消息,而接收方可以使用相同的密钥来解密消息,而无需在发送方和接收方之间共享信息。
在实际使用中,对称密码体制有三种形式:数据加密标准(DES)、高级加密标准(AES)和哈希密码(HMAC)。
其中,DES是一种最常用的对称密码体制,它采用了比较古老的56位密钥来加密数据,并且它的加密强度受到比较严格的限制。
而AES是一种更新的,比DES更安全的对称加密算法,它使用128位或256位密钥,并且可以提供更强的安全性和性能。
最后,HMAC是一种哈希加密算法,它使用128位或256位密钥来确保信息的完整性和真实性,同时也可以使用相同的密钥来加密和解密数据。
对称密码体制是一种有效的信息加密算法,它在满足基本安全约束的同时还能提供最大的加密强度和最高的性能。
它是最常用的信息加密类型之一,甚至在金融机构、政府机构、企业以及个人之间都被广泛使用,并且有三种形式:数据加密标准(DES)、高级加密标准(AES)和哈希密码(HMAC),可以满足各种要求。
其中,AES可以提供更高的安全性和性能,而HMAC可以确保信息的完整性和真实性,因此在实际应用中,对称密码体制也被广泛应用。
对称密码体制在许多领域都有着广泛的应用,尤其是在安全传输方面。
对称密钥密码体制的原理和特点

对称密钥密码体制的原理和特点一、对称密钥密码体制的原理1. 对称密钥密码体制是一种加密方式,使用相同的密钥进行加密和解密。
2. 在对称密钥密码体制中,加密和解密使用相同的密钥,这个密钥必须保密,只有合法的用户才能知道。
3. 对称密钥密码体制使用单一密钥,因此在加密和解密过程中速度较快。
4. 对称密钥密码体制中,发送者和接收者必须共享同一个密钥,否则无法进行加密和解密操作。
二、对称密钥密码体制的特点1. 高效性:对称密钥密码体制使用单一密钥进行加密和解密,因此速度较快,适合于大量数据的加密和解密操作。
2. 安全性有限:尽管对称密钥密码体制的速度较快,但密钥的安全性存在一定的风险。
一旦密钥泄露,加密数据可能会遭到破解,因此密钥的安全性对于对称密钥密码体制至关重要。
3. 密钥分发困难:在对称密钥密码体制中,发送者和接收者必须共享同一个密钥,因此密钥的分发和管理可能会存在一定的困难。
4. 密钥管理困难:对称密钥密码体制密钥的管理和分发往往需要借助第三方机构或者密钥协商协议来实现,这增加了密钥管理的复杂性。
5. 广泛应用:尽管对称密钥密码体制存在一定的安全性和管理困难,但由于其高效性,仍然广泛应用于网络通信、金融交易等领域。
对称密钥密码体制是一种加密方式,使用相同的密钥进行加密和解密。
它具有高效性和广泛应用的特点,然而安全性较差并且密钥管理困难。
在实际应用中,需要权衡其优劣势,并采取相应的安全措施来确保其安全性和有效性。
对称密钥密码体制的应用对称密钥密码体制作为一种快速高效的加密方式,在现实生活中有着广泛的应用。
主要的应用领域包括网络通信和数据传输、金融交易、安全存储、以及移动通信等。
1. 网络通信和数据传输在网络通信和数据传输中,对称密钥密码体制被广泛应用于加密数据传输过程。
在互联网传输中,大量的数据需要在用户和服务器之间进行传输,为了保护数据的安全性,对称密钥密码体制被用来加密数据,确保传输过程中数据不被窃取或篡改。
对称密码体制

t位密钥分组
k (k0,k1,k2,,kt1)
解密算法
c (c0, c1, c2,, cL1)
L位密文分组
c (c0, c1, c2,, cL1)
L位密文分组
c Fk (m)
对分组密码算法的要求
分组长度足够大 密钥量足够大 密码变换足够复杂
分组密码原理
扩散
– 就是将每一位明文的影响尽可能迅速地作用到较 多的输出密文位中去,以便隐藏明文的统计特性。
密钥(48位)
图5-25 置换选择2
循环左移位
轮 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
序 移 位 1122222212222221 数
K1
K2
K3
P
A
B
加密E
加密E
加密E
C
(1)DES-EEE3模式
K1
K2
K3
P
A
B
加密E
解密D
加密E
C
(2)DES-EDE3模式
Ri Li1 F (Ri1, Ki )(i 1, 2, , n)
Feistel结构的实现依赖于参数:
分组长度 密钥长度 迭代轮数 子密钥生成算法 轮函数
分组密码的操作模式
电子密码本(ECB)模式 密码分组链接(CBC)模式 计数器(CRT)模式 输出反馈(OFB)模式 密码反馈(CFB)模式
Ci-1(28位)
循环左移
Di-1(28位)
循环左移
57 49 41 33 25 17 9 1 58 50 42 34 26 18
10 2 59 51 43 35 27 19 11 3 60 52 44 36
63 55 47 39 31 33 15 7 62 54 46 38 30 22
第九章密码技术9-1简述对称密钥密码体制、非对称密钥密码体制的

第九章密码技术9-1 简述对称密钥密码体制、非对称密钥密码体制的第九章密码技术与压缩技术9-1 简述对称密钥密码体制、非对称密钥密码体制的加密原理和各自的特点。
对称密码体制的加密方式可分为:(1)序列密码,。
它的主要原理是:通过有限状态机制产生性能优良的伪随机序列,使用该序列加密信息流,得到密文序列。
(2)分组密码。
分组密码的工作方式是将明文分成固定长度的组,用同一密钥和算法对每一块加密,输出也是固定长度的密文。
其主要特点:加解密双方在加解密过程中要使用完全相同或本质上等同的密钥。
非对称密钥密码体制的加密原理:在加密过程中,密钥被分解为一对。
这对密钥中的任何一把都可作为公开密钥通过非保密方式向他人公开,用于对信息的加密;而另一把则作为则私有密钥进行保存,用于对加密信息的解密。
其特点有:具有较强的保密功能,还克服了密钥发布的问题,并具有鉴别功能。
9-2 为什么说混合加密体制是保证网络上传输信息的安全的一种较好的可行方法,混合加密体制采用公开密钥密码技术在通信双方之间建立连接,包括双方的认证过程以及密钥的交换(传送秘密密钥),在连接建立以后,双有可以使用对称加密技术对实际传输的数据进行加密解密。
这样既解决了密钥分发的困难,又解决了加、解密的速度和效率问题,是目前解决网络上传输信息安全的一种较好的可行方法。
9-3 简述链路加密、节点加密和端对端加密等三种加密方式的特点。
链路加密方式只对通信链路中的数据加密,而不对网络节点内的数据加密。
使用链路加密装置能为链路上的所有报文提供传输服务:即经过一台节点机的所有网络信息传输均需加、解密,每一个经过的节点都必须有加密装置,以便解密、加密报文。
节点加密方式在中间节点里装有用于加、解密的保护装置,即由这个装置来完成一个密钥向另一个密钥的变换。
除了在保护装置里,即使在节点内也不会出现明文。
端对端方式由发送方加密的数据在没有到达最终目的地——接受节点之前不被解密。
加密、解密只是在源节点和目的节点进行。
密码学

1.密码体制分类:1)对称密码体制(密钥必须完全保密、加密与解密密钥相同,或可由其中一个很容易推出另一个,又称秘密密钥、单钥、传统密码体制,包括分组密码和序列密码)优点:加解密速度较快,有很高的数据吞吐率;使用的密钥相对较短;密文的长度与明文长度相同;缺点:密钥分发需要安全通道;密钥量大,难于管理;难以解决不可否认问题。
2)非对称密码体制(使用两个密钥,一个是对外公开的公钥,一个是必须保密的私钥,不能由公钥推出私钥,又称双钥或公开密钥密码体制)优点:密钥的分发相对容易;密钥管理简单;可以有效地实现数字签名。
缺点:与对称密码体制相比,非对称密码体制加解密速度较慢;同等安全强度下,非对称密码体制要求的密钥位数要多一些;密文的长度往往大于明文长度。
2.AES与DES对比:1)相似处:二者的圈(轮)函数都是由3层构成:非线性层、线性混合层、子密钥异或,只是顺序不同;AES的子密钥异或对应于DES中S盒之前的子密钥异或;AES的列混合运算的目的是让不同的字节相互影响,而DES中F函数的输出与左边一半数据相加也有类似的效果;AES的非线性运算是字节代换,对应于DES中唯一的非线性运算S盒;行移位运算保证了每一行的字节不仅仅影响其它行对应的字节,而且影响其他行所有的字节,这与DES中置换P相似。
2)不同之处:AES的密钥长度(128位192位256位)是可变的,而DES的密钥长度固定为56位;DES是面向比特的运算,AES是面向字节的运算;AES的加密运算和解密运算不一致,因而加密器不能同时用作解密器,DES 则无此限制。
3.Hash函数:也称散列、哈希、杂凑函数等,是一个从消息空间到像空间的不可逆映射;可将任意长度的输入经过变换得到固定长度的输出;是一种具有压缩特性的单向函数。
性质:1)H可应用于任意长度的消息2)H产生定长的输出3)对任意给定的消息x,计算H(x)较容易,用硬件和软件均可实现4)单向性5)抗弱碰撞性6)抗强碰撞性应用:数字签名;生成程序或者文档的数字指纹;用于安全传输和存储口令特点:1)输入数字串与输出数字串具有唯一的对应关系;输入数字串中2)任何变化会导致输出数字串也发生变化;从输出数字串不能够反求出输入数字串。
1)对称密码体制的原理与应用方法

对称密码体制的原理与应用方法
对称密码体制是一种常见的加密算法,也被称为私钥密码体制。
它采用相同的密钥用于加密和解密数据。
以下是对称密码体制的一些基本原理和应用方法:
原理
对称密码体制使用相同的密钥对数据进行加密和解密。
加密过程中,明文经过密钥和加密算法处理后变为密文;解密过程中,密文通过相同的密钥和解密算法处理后恢复为明文。
对称密码体制的核心原理是密钥的保密性,只有持有正确密钥的人能够解密获得明文信息。
应用方法
1. 数据加密:对称密码体制可用于保护敏感数据的机密性,例如在传输过程中对数据进行加密,防止未经授权的人员获取敏感信息。
2. 随机数生成:对称密码体制可用于生成高质量的随机数,广泛应用于密码学和计算机安全领域。
3. 认证机制:对称密码体制可以通过消息认证码(MAC)来提供数据完整性和认证机制,例如对数据进行数字签名。
4. 虚拟专用网络(VPN):对称密码体制可以用于建立加密的VPN连接,确保通信的机密性。
5. 文件加密:对称密码体制可用于加密存储在计算机或移动设备上的文件,保护文件的机密性。
6. 数据库加密:对称密码体制可用于加密数据库中的敏感信息,防止非法访问。
总结而言,对称密码体制是一种常见且实用的加密方法,通过使用相同的密钥进行加密和解密,能够保障数据的机密性、完整性和认证性。
它在数据保护、安全通信和信息安全领域发挥着重要作用。
第三章对称密钥体制

•
分组密码的典型攻击方法
最可靠的攻击办法:强力攻击 最有效的攻击:差分密码分析,通过分析明文对的 差值对密文对的差值的影响来恢复某些密钥比特. 线性密码分析:本质上是一种已知明文攻击方法, 通过寻找一个给定密码算法的有效的线性近似表 达式来破译密码系统 插值攻击方法 密钥相关攻击
强力攻击
穷尽密钥搜索攻击:
P-盒置换为:
16 7 20 21 29 12 28 17 1 15 23 26 10 2 8 24 14 32 27 3 9 19 13 30 6 25 5 18 31 4 22 11
在变换中用到的S1,S2...S8为选择函数,俗称为S-盒,是 DES算法的核心。其功能是把6bit数据变为4bit数据。 S1: 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 在S1中,共有4行数据,命名为0,1、2、3行;每行有16列, 命名为0、1、2、3,......,14、15列。 现设输入为: D=D1D2D3D4D5D6 令:列=D2D3D4D5 行=D1D6 然后在S1表中查得对应的数,以4位二进制表示,此即 为选择函数S1的输出。
密钥Ki(48bit)的生成算法
DES的破解
DES的实际密钥长度为56-bit,就目前计算机的计 算机能力而言,DES不能抵抗对密钥的穷举搜索攻击。 1997年1月28日,RSA数据安全公司在RSA安全年 会上悬赏10000美金破解DES,克罗拉多州的程序员 Verser在Inrernet上数万名志愿者的协作下用96天的时 间找到了密钥长度为40-bit和48-bit的DES密钥。 1998年7月电子边境基金会(EFF)使用一台价值25 万美元的计算机在56小时之内破译了56-bit的DES。 1999年1月电子边境基金会(EFF)通过互联网上的 10万台计算机合作,仅用22小时15分就破解了56-bit 的DES。 不过这些破译的前提是, 不过这些破译的前提是,破译者能识别出破译的结 果确实是明文,也即破译的结果必须容易辩认。 果确实是明文,也即破译的结果必须容易辩认。如果 明文加密之前经过压缩等处理,辩认工作就比较困难。 明文加密之前经过压缩等处理,辩认工作就比较困难。
信息安全导论(4-2_密码基础-对称密码)

16
9 11 13 15
8
1 3 5 7
8
DES算法的整体结构——Feistel结 构
2. 按下述规则进行16次迭 代,即
Li R i-1 R i Li-1 f ( Ri 1 , Ki )
Li-1
Ri-1 ki
1≤i≤16 这里 是对应比特的模2加, f是一个函数(称为轮函 数); 16个长度为48比特的子密钥 Ki(1≤i≤16)是由密钥k 经密钥编排函数计算出来 的.
特串,每个6比特,B=B1B2B3B4B5B6B7B8.
15
分组密码的轮函数
S盒代换:6入4出,查表
8个S盒S1……S8. 每个S盒是一个固定的 4*16阶矩阵,其元素取0~15之间的整数. 输入6比特b1b2b3b4b5b6,输出如下 1) b1b6两个比特确定了S盒的行 2) b2b3b4b5四个比特确定了S盒的列 3) 行、列确定的值即为输出
16
S1 14 0 4 15 15 3 0 13 10 13 13 1 7 12 10 3 2 14 4 11 12 10 9 4 4 13 1 6 13 1 7 2 4 15 1 12 1 13 14 8 0 7 6 10 13 8 6 15 12 11 2 8 1 15 14 3 11 0 4 11 2 15 11 1 13 7 14 8 8 4 7 10 9 0 4 13 14 11 9 0 4 2 1 12 10 4 15 2 2 11 11 13 8 13 4 14 1 4 8 2 14 7 11 1 14 9 9 0 3 5 0 6 1 12 11 7 15 2 5 12 14 7 13 8 4 8 1 7 2 15 13 4 6 15 10 3 6 3 8 6 0 6 12 10 7 4 10 1 9 7 2 9 15 4 12 1 6 10 9 4 15 2 6 9 11 2 4 15 3 4 15 9 6 15 11 1 10 7 13 14 2 12 8 5 0 9 3 4 15 3 12 10 11 13 2 1 3 8 13 4 15 6 3 8 9 0 7 13 11 13 7 2 6 9 12 15 8 1 7 10 11 7 14 8 8 1 11 7 S2 4 14 1 2 9 12 5 11 7 0 8 6 13 8 1 15 2 7 1 4 5 0 9 15 13 1 0 14 12 3 15 5 9 5 6 12 2 1 12 7 12 5 2 14 8 2 3 5 3 15 12 0 3 13 4 1 9 5 6 0 3 6 10 9 13 10 6 12 7 14 12 3 5 12 14 11 15 10 5 9 4 14 10 7 7 12 8 15 14 11 13 0 12 6 9 0 11 12 5 11 11 1 5 12 13 3 6 10 14 0 1 6 5 2 0 14 5 0 15 3 0 9 3 5 4 11 10 5 12 10 2 7 0 9 3 4 7 11 13 0 10 15 5 2 0 14 3 5 5 11 2 14 2 15 14 2 4 14 8 2 14 8 0 5 5 3 11 8 6 8 9 3 12 9 5 6 10 5 15 9 8 1 7 12 15 9 4 14 9 6 14 3 11 8 6 13 1 6 2 12 7 2 8 1117 3 10 15 5 10 6 12 11 6 12 9 3 12 11 7 14 5 9 3 10 9 5 10 0 0 3 5 6 7 8 0 13
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实例二:对压缩文档解密
• 任务描述:
李琳同学在电脑里备份了一份文档,当时 出于安全考虑,所以加了密码,时间久了,密 码不记得了。请帮李琳同学找回密码。
实例二:对压缩文档解密
• 任务分析:
WinRAR对文档的加密方式属于对称性加 密,即加密和解密的密码相同,这种文档的解 密相对来说比较简单,网上有很多专用工具, 可以实现密码的硬解。
推荐:RAR Password Unlocker
实例二:对压缩文档解密
• 操作步骤:
– (1)启动软件; – (2)打开加密的文件; – (3)单击“STRAT”按钮,开始解密; – (4)弹出结果对话框,找到密码。
实例三:Office文档加密
• 操作步骤:
– (1)启动word;
– (2)文件——另存为;
走进加密技术
对称密码体制
知识回顾
• 密码技术的发展经历了三个阶段
• 1949年之前 密码学是一门艺术 (古典密码学) • 1949~1975年 密码学成为科学 • 1976年以后 密码学的新方向
传 统 加 密 方 法
(现代密码学)
——公钥密码学
密码体制
• 密码体制也叫密码系统,是指能完整地解
决信息安全中的机密性、数据完整性、认
小结
对称密码体制 对称密码体制也称为单钥体制、私钥体制或对 称密码密钥体制、传统密码体制或常规密钥密码体 制。 主要特点是:加解密双方在加解密过程中使用 相同或可以推出本质上等同的密钥,即加密密钥与 解密密钥相同,基本原理如图所示。
– (3)文件类型为:2003-07文档; – (4)单击“工具”选择“常规选项”; – (5)设置文档打开密码,存盘。
实例四:Office文档解密
• 操作步骤:
– (1)启动win xp虚拟机;
– (2)安装软件;
– (3)打开加密的文件; – (4)单击“STRAT”按钮,开始解密; – (5)弹出结果对话框,找到密码。
证、身份识别等问题的系统。
• 从原理上分:
单钥密码体制(对称密码体制) 双钥密码体制(非对称性密码体制)
对称加密体制
• 对称密码体制是一种传统密码体制,也称为私钥 密码体制。 • 在对称加密系统中,加密和解密采用相同的密钥。
• 因为加、解密密钥相同,所以需要通信的双方必
须选择和保存他们共同的密钥,各方必须信任对
方不会将密钥泄密出去,这样才可以实现数据的
机密性和完整性。
加解密过程
实例一:使用压缩工具加密
• 任务描述:赵峥同学想把毕业论文发给导 师,出于安全考虑,决定给文档加上密码。 听同学说WinRAR可以把需要保密的文件进 行加密处理。于是,他决定试一试。
实例一:使用压缩工具加密
• 操作步骤:
– (1)安装软件; – (2)压缩文档并添加密码。