二次函数的定义
二次函数关系式
二次函数关系式一、二次函数的定义二次函数是形如f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0。
它的图像是一个开口向上或向下的抛物线。
二、二次函数关系式1. 顶点式二次函数的顶点式为f(x) = a(x - h)² + k,其中(h, k)为顶点坐标。
2. 标准式二次函数的标准式为f(x) = ax² + bx + c,其中a、b、c分别表示抛物线的形状和位置。
3. 一般式二次函数的一般式为y = ax² + bx + c,其中x和y表示平面直角坐标系中某个点的横纵坐标。
三、二次函数图像特征1. 对称轴二次函数的对称轴是过顶点且垂直于x轴的直线。
对称轴方程为x = h。
2. 开口方向当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 最值当a>0时,最小值等于k;当a<0时,最大值等于k。
4. 零点二次函数在x轴上与x轴交点称为零点。
零点可以通过求解ax²+bx+c=0得到。
四、二次函数的应用1. 求解问题二次函数可以用来求解各种实际问题,如求解最大值、最小值、零点等。
2. 经济学应用在经济学中,二次函数可以用来表示成本、收益、利润等与产量相关的关系。
3. 物理学应用在物理学中,二次函数可以用来表示自由落体运动的高度和时间之间的关系。
五、二次函数的图像绘制1. 找出顶点坐标通过顶点式或标准式可以找到抛物线的顶点坐标。
2. 找出对称轴方程对称轴方程为x = h,其中h为顶点横坐标。
3. 找出零点通过一般式可以求得零点,也可以通过图像上与x轴交点得到。
4. 确定开口方向和最值根据a的正负性可以确定抛物线开口方向和最值。
5. 绘制图像根据以上步骤确定抛物线的各个特征后,就可以绘制出完整的二次函数图像了。
六、总结本文介绍了二次函数的定义、关系式、图像特征以及应用,并详细说明了如何绘制一个完整的二次函数图像。
二次函数基本定义
二次函数基本定义一般地,把形如y=ax2+bx+c(其中a、b、c是常数,a≠0,b,c能够为0)的函数叫做二次函数(quadratic其中a称为二次项系数,b为一次项系数,c为常数项。
x为自变量,y为因变量。
等号右边自变量的最高次数是2。
二次函数图像是轴对称图形。
对称轴为直线[1],顶点坐标,交点式为(仅限于与x轴有交点的抛物线),与x轴的交点坐标是和注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。
“未知数”仅仅一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。
在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。
从函数的定义也可看出二者的差别,如同函数不等于函数的关系。
[2-3]函数性质1.二次函数是抛物线,但抛物线不一定是二次函数。
开口向上或者向下的抛物线才是二次函数。
抛物线是轴对称图形,不是中心对称图形。
对称轴为直线对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
2.抛物线有一个顶点P,坐标为P 当时,P在y轴上;当时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
|a|越小,则抛物线的开口越大。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0, c)6.抛物线与x轴交点个数:时,抛物线与x轴有2个交点。
时,抛物线与x轴有1个交点。
当时,抛物线与x轴没有交点。
当时,函数在处取得最小值;在上是减函数,在上是增函数;抛物线的开口向上;函数的值域是当时,函数在处取得最大值在上是增函数,在上是减函数;抛物线的开口向下;函数的值域是当时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(a≠0)。
二次函数知识点总结
二次函数知识点总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2b x a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧;当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k=-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k=-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少1、求有关点的坐标2、求函数解析式3、求最值4、求面积5、动点、动线、动图问题2-32。
二次函数中函数值的计算方法和性质
二次函数中函数值的计算方法和性质二次函数是高中数学中一个重要的概念,它在各个领域都有广泛的应用。
本文将介绍二次函数中函数值的计算方法和对应的性质。
一、二次函数的定义二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数且a ≠ 0。
其中的x表示自变量,而f(x)表示因变量。
二、函数值的计算方法要计算二次函数在特定点上的函数值,我们可以通过直接代入自变量的值来求得。
具体而言,将自变量x的值代入二次函数的表达式中,即可得到函数值。
例如,设二次函数为f(x) = 2x^2 + 3x + 1,若要计算在x = 2时的函数值,只需将x = 2代入函数表达式中:f(2) = 2(2)^2 + 3(2) + 1= 2(4) + 6 + 1= 8 + 6 + 1= 15所以,在x = 2时,函数f(x)的值为15。
需要注意的是,当二次函数的自变量为复数时,对应的函数值也可以是复数。
但在大部分情况下,我们只考虑实数解的情况。
三、二次函数的基本性质除了函数值的计算方法外,二次函数还具有一些基本性质,这些性质对于理解和分析二次函数的特点非常重要。
1. 对称性:二次函数的图像通常是关于一个对称轴对称的。
对于普通的二次函数f(x) = ax^2 + bx + c而言,其对称轴的表达式为x = -b/(2a)。
具体而言,如果某个点(x1, y1)在二次函数的图像上,那么点(-b/(2a) - x1, y1)也在图像上。
2. 零点和因子定理:二次函数的零点是指函数在自变量取值时,因变量为0的点。
要求解二次函数的零点,可以令 f(x) = 0,然后通过求解这个二次方程来得到。
根据因子定理,如果x = x1是二次函数的零点,那么该二次函数可以因式分解为 g(x) = a(x - x1)(x - x2),其中(x - x2)表示另一个因子。
3. 函数图像的开口和方向:二次函数的图像可以是开口向上的或开口向下的,其开口的方向取决于函数中的系数a的正负。
二次函数的知识点总结
二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。
其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。
2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。
4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。
零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。
5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。
二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。
通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。
2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。
3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。
4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。
三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。
2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。
二次函数的图像与性质
二次函数的图象与性质知识要点概述1、二次函数的定义:如果y=ax2+bx+c(a、b、c为常数,a≠0),那么y叫x的二次函数.2、二次函数的图象:二次函数y=ax2+bx+c的图象是一条抛物线.3、二次函数的解析式有下列三种形式:(1)一般式:y=ax2+bx+c(a≠0);(2)顶点式:y=a(x-h)2+k(a≠0);)(x-x2) (a≠0),这里x1,x2是抛物线与x轴两个交点的横坐标.(3)交点式:y=a(x-x1确定二次函数的解析式一般要三个独立条件,灵活地选用不同方法求出二次函数的解析式是解与二次函数相关问题的关键.4、抛物线y=ax2+bx+c中系数a、b、c的几何意义抛物线y=ax2+bx+c的对称轴是,顶点坐标是,其中a的符号决定抛物线的开口方向.a>0,抛物线开口向上,a<0,抛物线开口向下;a,b同号时,对称轴在y轴的左边;a,b异号时,对称轴在y轴的右边;c确定抛物线与y轴的交点(0,c)在x轴上方还是下方.5、抛物线顶点式y=a(x-h)2+k(a≠0)的特点(1)a>0,开口向上;a<0,开口向下;(2)x=h为抛物线对称轴;(3)顶点坐标为(h,k).依顶点式,可以很快地求出二次函数的最值.当a>0时,函数在x=h处取最小值y=k;当a<0时,函数在x=h处取最大值y=k.6、抛物线y=a(x-h)2+k与y=ax2的联系与区别抛物线y=a(x-h)2+k与y=ax2的形状相同,位置不同.前者是后者通过“平移”而得到.要想弄清抛物线的平移情况,首先将解析式化为顶点式.7、抛物线y=ax2+bx+c与x轴的两个交点为A、B,且方程ax2+bx+c=0的两根为x1,x2,则有A(x1,0),B(x2,0).典型剖析例1、已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①a+b+c<0;②a-b+c>0;③abc>0;④b=2a.其中正确结论的个数是()A.4B.3C.2D.1解:选A.令x=1及由图象知a+b+c<0,①正确;令x=-1及由图象a-b+c>0,②正确;由对称轴知,④正确;由④知a、b同号且抛物线与y轴的交点在x轴上方,即c>0,故③正确.所以选A.例2、二次函数y=x2+(a-b)x+b的图象如图所示.那么化简的结果是____________.解:原式=-1.∵图象与y轴交点在x轴上方,∴b>0.又∵图象的对称轴在y轴右边且二次项系数为1,一次项系数为a-b,例3、已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.(1)用配方法求顶点C的坐标(用含m的代数式表示);(2)若AB的长为,求抛物线的解析式.解:(1)∵y=x2-(2m+4)x+m2-10=[x-(m+2)] 2-4m-14,∴顶点C的坐标为(m+2,-4m-14).(2)∵A、B是抛物线y=x2-(2m+4)x+m2-10与x轴的交点且|AB|=,化简整理得:16m=-48,∴m=-3.当m=-3时,抛物线y=x2+2x-1与x轴有交点且AB=,符合题意.故所求抛物线的解析式为y=x2+2x-1.例4、如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴的正半轴上,B点在x轴的负半轴上,OA的长是a,OB的长是b.(1)求m的取值范围;(2)若a︰b=3︰1,求m的值,并写出此时抛物线的解析式.解:(1)设A、B两点的坐标分别为(x1,0),(x2,0).∵A、B分处原点两侧,∴xx2<0,1即-(m+1)<0,得m>-1.又∵△=[2(m-1)]2-4×(-1)(m+1)=4m2-4m+8=4(m-)2+7>0,∴m>-1为m的取值范围.(2)∵a︰b=3︰1.设a=3k,b=k(k>0),=3k,x2=-k.则x1例5、已知某二次函数,当x=1时有最大值-6,且其图象经过点(2,-8).求此二次函数的解析式.解:∵二次函数当x=1时有最大值-6,∴抛物线的顶点为(1,-6),故设所求的二次函数解析式为y=a(x-1)2-6.由题意将点(2,-8)的坐标代入上式得:a(2-1)2-6=-8,∴a=-2,∴二次函数的解析式为y=-2(x-1)2-6,即y=-2x2+4x-8.例6、二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C.当△AMC的面积为△ABC面积的倍时,求a的值.解:(1)由图象可知:a<0,图象过点(0,1),∴c=1.图象过点(1,0),∴a+b+c=0,∴b=-(a+c)=-(a+1).由题意知,当x=-1时,应有y>0,∴a-b+c>0,∴a+(a+1)+1>0,∴a>-1,∴实数a的取值范围是-1<a<0.(2)此时函数为y=ax2-(a+1)x+1,与x轴两交点A、C之间的距离为例7、根据下列条件,求抛物线的解析式.(1)经过点(0,-1),(1,),(-2,-5);(2)经过点(-3,2),顶点是(-2,3);(3)与x轴两交点(-1,0)和(2,0)且过点(3,-6).分析:求解析式应用待定系数法,根据不同的条件,选用不同形式求二次函数的解析式,可使解题简捷.但应注意,最后的函数式均应化为一般形式y=ax2+bx+c.解:(1)设y=ax2+bx+c,把(0,-1),(1,),(-2,-5)代入得方程组∴解析式为y=+x-1.(2)设y=a(x+2)2+3,把(-3,2)代入得2=a(-3+2)2+3,解得a=-1.解析式为y=-x2-4x-1.(3)设y=a(x+1)(x-2),把(3,-6)代入得-6=a(3+1)(3-2),解得.∴解析式为y=(x+1)(x-2),即.。
二次函数知识点归纳
二次函数知识点归纳二次函数是高中数学中的重要章节,它在数学和实际生活中有着广泛的应用。
所以,对于二次函数的知识点的掌握对于学习数学和解决实际问题都是非常重要的。
下面将从定义、图像、性质、解析式和实际应用等方面详细归纳二次函数的知识点。
一、定义和基本形态二次函数是指一个一元二次方程确定的函数,它的一般形式可以表示为:f(x) = ax² + bx + c,其中a、b、c为实数且a ≠ 0。
它的定义域是全体实数集R。
二次函数的图像是一个抛物线,其开口方向和抛物线的开口相同。
当a > 0时,抛物线向上开口;当a < 0时,抛物线向下开口。
这个基本形态是理解二次函数的关键。
二、图像的性质1. 零点:二次函数的零点是使得f(x) = 0的x值。
二次函数的零点可以通过解一元二次方程来求得,也就是求解 ax² + bx + c = 0 的解。
当零点存在时,它的个数最多为2个。
2. 对称轴:二次函数的图像总是关于一个直线对称的。
这条直线称为二次函数的对称轴。
对称轴方程的求法是x = -b / 2a。
3. 顶点和最值:二次函数总是有一个最值点,也就是函数的最大值或最小值。
当a > 0时,函数的最小值出现在顶点上;当a < 0时,函数的最大值出现在顶点上。
顶点的坐标可以通过对称轴的x坐标带入函数中求得。
4. 开口:二次函数的开口决定了其函数值的增减。
当 a > 0时,函数是向上开口的,函数值随着x的增大而增大;当a < 0时,函数是向下开口的,函数值随着x的增大而减小。
三、解析式及其对称性根据二次函数的定义,我们可以得到它的一般解析式 f(x) = ax² + bx + c。
在解析式中,a是二次项的系数,b是一次项的系数,c是常数项。
二次函数的解析式可以通过给定的系数a、b、c进一步确定函数的性质。
1. 对称性:二次函数具有对称性,也就是函数图像在对称轴两侧关于对称轴对称。
二次函数百科
二次函数百科一、二次函数的定义和基本形式二次函数是指一个含有二次项的函数,其一般形式为f(x) = ax + bx + c,其中a、b、c为实数,且a ≠ 0。
二次函数是初中数学中的重要内容,同时也是高中数学的基础。
二、二次函数的图像和性质1.图像:二次函数的图像是一个抛物线。
根据a的正负性,抛物线开口向上或向下。
2.性质:二次函数的顶点坐标为(-b/2a, f(-b/2a)),对称轴为x = -b/2a。
此外,二次函数还有两个实根,分别为x = (-b + √(b - 4ac))/2a 和x = (-b - √(b - 4ac))/2a。
三、二次函数的求解方法1.因式分解法:将二次函数转化为两个一次函数相乘的形式,如f(x) = ax + bx + c = (ax + m)(x + n)。
2.完全平方公式法:将二次函数转化为完全平方的形式,如f(x) = ax + bx + c = a(x + (b/2a)) - (b/4a)。
3.韦达定理:已知二次函数的两根为x和x,可得x + x = -b/a,xx =c/a。
四、二次函数在实际生活中的应用1.物理:如抛物线运动、弹簧的弹性势能等。
2.工程:如测量距离、构建信号传输模型等。
3.经济学:如成本函数、收益函数等。
五、二次函数与其他数学概念的关系1.一次函数:二次函数是一次函数的特殊情况,当a = 0时,二次函数退化为一元一次函数。
2.三角函数:二次函数与三角函数有密切的联系,如正弦函数、余弦函数的图像均为抛物线。
3.微积分:二次函数的求导和求积分是微积分的基本内容之一。
通过掌握二次函数的知识,我们可以更好地理解高中数学和实际生活中的许多问题。
二次函数百科
二次函数百科
摘要:
1.二次函数的定义与基本概念
2.二次函数的性质与图像
3.二次函数的应用领域
正文:
二次函数是指形如y=ax^2+bx+c(其中a≠0)的函数,其中a、b、c 为常数,x 为自变量,y 为因变量。
它是一种多项式函数,也是数学中最基本、最重要的函数类型之一。
二次函数在数学、物理、化学、工程等领域具有广泛的应用。
二次函数的性质与图像:
1.开口方向:当a>0 时,二次函数的图像开口向上,表示函数有最小值;当a<0 时,二次函数的图像开口向下,表示函数有最大值。
2.对称轴:二次函数的对称轴为x=-b/2a,即直线x=-b/2a。
3.顶点:二次函数的顶点为(-b/2a, c - b^2/4a),是函数的最值点。
二次函数的应用领域:
1.物理学:在物理学中,二次函数常常用于描述物体的位移、速度、加速度等运动规律。
2.工程学:在工程领域,二次函数被广泛应用于设计建筑物的拱形结构、机械设备的优化设计等。
3.经济学:在经济学中,二次函数可以用于描述生产成本、市场需求等经济指标的变化规律。
4.数学分析:在数学分析中,二次函数是微积分、概率论等高级数学分支的基础。
综上所述,二次函数作为一种基本的数学函数,具有重要的理论意义和广泛的应用价值。
二次函数知识点总结
二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4.()2y a x h k=-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx axy +++=2(或m c bx axy -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a<-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2b x a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k=-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k=-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222by ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数
二次函数1 二次函数1.1 二次函数的定义(1)二次函数的定义:一般地,形如c bx y ax ++=2(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.c bx y ax ++=2(a 、b 、c 是常数,a≠0)也叫做二次函数的一般形式.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.(2)二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义. 1、下列函数,其中图象为抛物线的是( ) A .y =x1B .y=2xC .y=x 2D .y=2x+32、已知方程02=++cy bx ax (a ≠0、b 、c 为常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式.则函数表达式为 ,成立的条件是 ,是 函数.1.2 根据实际问题列二次函数关系式根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.1、某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y= .2、如图,半圆O 的直径AB=4,与半圆O 内切的动圆O1与AB 切于点M ,设⊙O1的半径为y ,AM 的长为x ,则y 关于x 的函数关系式是 (要求写出自变量x 的取值范围).3、如图,四边形ABCD 中,∠BAD=∠ACB=90°,AB=AD ,AC=4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( ) A .y=x 2252 B .y=x 2254 C .y=x 252 D .y=x 2542 二次函数的图象与性质2.1 二次函数的图象2.2 二次函数的性质1、已知a ≠0,在同一直角坐标系中,函数y=ax 与y=ax 2的图象有可能是( )A .B .C .D .2、函数y=xk 与y=-kx 2+k (k ≠0)在同一直角坐标系中的图象可能是( ) A .B .C .D .3、抛物线y=-x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是 .4、如图,已知函数y=−x3与y=ax 2+bx (a >0,b >0)的图象交于点P .点P的纵坐标为1.则关于x 的方程ax 2+bx+x3=0的解为 .5、抛物线y=ax 2+bx+c 经过点A (-3,0),对称轴是直线x=-1,则a+b+c= .6、如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,則它的对称轴为 .7、对于二次函数y=)(12x +2的图象,下列说法正确的是( ) A .开口向下B .对称轴是x=-1C .顶点坐标是(1,2)D .与x 轴有两个交点8、二次函数y=ax 2+bx+c (a ≠0)的大致图象如图,关于该二次函数,下列说法错误的是( ) A .函数有最小值B .对称轴是直线x=21C .当x <21,y 随x 的增大而减小D .当-1<x <2时,y >02.3 二次函数图象与系数的关系 二次函数c bx y ax ++=2(a≠0)①二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置.当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ). ④抛物线与x 轴交点个数.△=ac b 42->0时,抛物线与x 轴有2个交点;△=ac b 42-=0时,抛物线与x 轴有1个交点;△=ac b 42-<0时,抛物线与x 轴没有交点.1、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是( ) A .c >0B .2a+b=0C .ac b 42->0D .a-b+c >02、二次函数y=x 2+bx+c ,若b+c=0,则它的图象一定过点( ) A .(-1,-1)B .(1,-1)C .(-1,1)D .(1,1)3、二次函数y=-x 2+bx+c 的图象如图所示,则一次函数y=bx+c 的图象不经过第 象限.4、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论: ①b 2>4ac ; ②abc >0; ③2a-b=0; ④8a+c <0; ⑤9a+3b+c <0.其中结论正确的是 .(填正确结论的序号)2.4 二次函数图象上点的坐标特征二次函数c bx y ax ++=2(a≠0)的图象是抛物线,顶点坐标是(a b 2-,ab ac 442-);.①抛物线是关于对称轴ab2-成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点. ②抛物线与y 轴交点的纵坐标是函数解析中的c 值.③抛物线与x 轴的两个交点关于对称轴对称,设两个交点分别是(x 1,0),(x 2,0),则其对称轴为x=221x x +.1、设抛物线c bx y ax ++=2(a ≠0)过A (0,2),B (4,3),C 三点,其中点C 在直线x=2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为 .2、已知点(x 1,y 1),(x 2,y 2)均在抛物线y=x 2-1上,下列说法中正确的是( )A .若y 1=y 2,则x 1=x 2B .若x 1=-x 2,则y 1=-y 2C .若0<x 1<x 2,则y 1>y 2D .若x 1<x 2<0,则y 1>y 22.5 二次函数图象与几何变换1)、将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; 2)、 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位1、若将抛物线y=x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( )A .y=)(22+x +3 B .y=)(22-x +3 C .y=)(22+x -3 D .y=)(22-x -3 2、在平面直角坐标系中,把抛物线y=-x221+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是 .2.6 二次函数的最值(1)当a >0时,抛物线在对称轴左侧,y 随x 的增大而减少;在对称轴右侧,y 随x 的增大而增大,因为图象有最低点,所以函数有最小值,当x=ab2-时,y=ab ac 442-.(2)当a <0时,抛物线在对称轴左侧,y 随x 的增大而增大;在对称轴右侧,y 随x 的增大而减少,因为图象有最高点,所以函数有最大值,当x=ab2-时,y=ab ac 442-.(3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.1、如图,P 是抛物线y=-x 2+x+2在第一象限上的点,过点P 分别向x 轴和y 轴引垂线,垂足分别为A ,B ,则四边形OAPB 周长的最大值为 .2、当-2≤x ≤1时,二次函数y=-)(2m x -+m 2+1有最大值4,则实数m 的值为( ) A .-47B .3或−3C .2或−3D .2或3或−472.7 待定系数法求二次函数解析式 用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.1、如图,二次函数y=x 2+bx+c 的图象过点B (0,-2).它与反比例函数y=-x8的图象交于点A (m ,4),则这个二次函数的解析式为( ) A .y=x 2-x-2B .y=x 2-x+2C .y=x 2+x-2D .y=x 2+x+22、抛物线y=ax 2+bx+c (a ≠0)经过点(1,2)和(-1,-6)两点,则a+c= .2.8 二次函数的三种形式1)、一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2)、顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3)、两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.1、函数y=a ·sin x ·cosx+b ·sinx+b ·cosx+c 运用换元法可以化简为:将 设为t ,则化简为 .友情提醒:x sin 2=1-x cos 22、把二次函数y=-41x2-x+3用配方法化成y=a )(2h x -+k 的形式( )A .y=-41)2(2-x +2B .y=41)2(2-x +4C .y=-41)2(2-x +4D .y=)2121(2-x +33 实践与探究3.1 抛物线于x 轴的交点求二次函数2y ax bx c =++(a ,b ,c 是常数,a≠0)与x 轴的交点坐标,令y=0,即c bx ax ++2=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数2y ax bx c =++(a ,b ,c 是常数,a≠0)的交点与一元二次方程c bx ax++2=0根之间的关系.ac 4b 2-=∆决定抛物线与x 轴的交点个数. ac 4b 2-=∆>0时,抛物线与x 轴有2个交点; ac 4b 2-=∆=0时,抛物线与x 轴有1个交点; ac 4b 2-=∆<0时,抛物线与x 轴没有交点.(2)二次函数的交点式:12()()y a x x x x =--(a ,b ,c 是常数,a≠0),可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).1、已知抛物线y=x 2-x-1与x 轴的一个交点为(m ,0),则代数式m 2-m+2014的值为( ) A .2012B .2013C .2014D .20152、如图,抛物线y=a x2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为.3.2 图象法求一元二次方程的近似根利用二次函数图象求一元二次方程的近似根的步骤是:(1)作出函数的图象,并由图象确定方程的解的个数;(2)由图象与y=h的交点位置确定交点横坐标的范围;(3)观察图象求得方程的根(由于作图或观察存在误差,由图象求得的根一般是近似的).1、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2= .2、根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.263.3 二次函数与不等式(组)二次函数2=++(a、b、c是常数,a≠0)与不等式的关系y ax bx c①函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围.②利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.1、二次函数2=++(a≠0)的图象如图所示,则函数值y>0时,x的取y ax bx c值范围是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32、如图是抛物线2=++的一部分,其对称轴为直线x=1,若其与x轴一y ax bx c交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.3.4 二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.1、如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.2、如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.3.5 二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.1、如图,已知抛物线y 1=-x 2+1,直线y 2=-x+1,当x 任取一值时,x 对应的函数值分别为y 1,y 2.若y 1≠y 2,取y 1,y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.例如:当x=2时,y 1=-3,y 2=-1,y 1<y 2,此时M=-3.下列判断中:①当x <0时,M=y 1;②当x >0时,M 随x 的增大而增大; ③使得M 大于1的x 值不存在;④使得M=21的值是-22或21,其中正确的个数有( ) A .1B .2C .3D .42、已知抛物线y =21x2+bx 经过点A (4,0).设点C (1,-3),请在抛物线的对称轴上确定一点D ,使得|AD-CD|的值最大,则D 点的坐标为 .。
二次函数及其图像特征
二次函数及其图像特征引言:二次函数是高中数学中的重要概念,也是数学中的一种基本函数类型。
它的图像特征丰富多样,反映了函数的性质和变化规律。
本文将从二次函数的定义、图像特征以及应用等方面进行论述,希望能够深入理解二次函数及其图像特征。
一、二次函数的定义二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
其中,a决定了二次函数的开口方向和开口程度,b决定了二次函数的对称轴位置,c决定了二次函数的纵向平移。
二、二次函数的图像特征1. 开口方向和开口程度当a > 0时,二次函数的图像开口向上;当a < 0时,二次函数的图像开口向下。
而a的绝对值越大,开口的程度越大,图像越陡峭。
2. 对称轴对称轴是指二次函数图像的中心线,对称轴的方程为x = -b/2a。
对称轴将图像分为两个对称的部分,左右两侧关于对称轴对称。
3. 顶点顶点是二次函数图像的最高点(当a > 0)或最低点(当a < 0)。
顶点的坐标为(-b/2a, f(-b/2a)),它是二次函数的极值点。
4. 零点零点是指二次函数图像与x轴相交的点,即f(x) = 0的解。
二次函数的零点个数取决于判别式Δ = b^2 - 4ac的值,当Δ > 0时,有两个不同的实根;当Δ = 0时,有一个重根;当Δ < 0时,无实根。
5. 函数值的变化当二次函数的a > 0时,函数值随着自变量x的增大而增大,当a < 0时,函数值随着自变量x的增大而减小。
当二次函数开口向上时,函数值的最小值为顶点的纵坐标;当二次函数开口向下时,函数值的最大值为顶点的纵坐标。
三、二次函数的应用1. 物体的抛体运动二次函数可以用来描述物体的抛体运动。
通过分析二次函数的图像特征,可以得到物体的最高点、最远点、落地点等信息,从而对物体的运动轨迹进行预测和分析。
2. 经济学中的成本函数在经济学中,成本函数常常用二次函数来表示。
二次函数的定义
二次函数的定义
一般地,把形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。
x为自变量,y为因变量。
二次函数的定义 1
一般地,把形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。
x为自变量,y为因变量。
等号右边自变量的最高次数是2。
注意:“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。
“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。
在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。
从函数的定义也可看出二者的差别。
二次函数的定义 2
1.一般式
y=ax²+bx+c(a,b,c为常数,a≠0)
2.顶点式
抛物线的顶点 P(h,k) :y=a(x-h)²+k(a,h,k为常数,a≠0) 3.交点式
仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线:y=(x-x1)(x-x2)(x1,x2为常数,)。
二次函数知识点归纳
二次函数知识点归纳二次函数知识点总结:1.二次函数的概念:一般地,形如 y = ax^2 + bx + c(a,b,c 是常数,a ≠ 0)的函数,叫做二次函数。
需要强调的是,和一元二次方程类似,二次项系数a ≠ 0,而 b,c 可以为零。
二次函数的定义域是全体实数。
2.二次函数 y = ax^2 + bx + c 的结构特征:⑴等号左边是函数,右边是关于自变量 x 的二次式,x 的最高次数是 2.⑵ a,b,c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二次函数基本形式:1.二次函数基本形式:y = ax^2 的性质:结论:a 的绝对值越大,抛物线的开口越小。
总结:a 的符号开口方向顶点坐标对称轴向上 a。
0 (0.0) y 轴x。
0 时,y 随 x 的增大而增大;x < 0 时,y 随 x 的增大而减小;x = 0 时,y 有最小值。
向下 a < 0 (0.0) y 轴x。
0 时,y 随 x 的增大而减小;x < 0 时,y 随 x 的增大而增大;x = 0 时,y 有最大值。
2.y = ax^2 + c 的性质:结论:上加下减。
总结:a 的符号开口方向顶点坐标对称轴向上 a。
0 (0.c) y 轴x。
0 时,y 随 x 的增大而增大;x < 0 时,y 随 x 的增大而减小;x = 0 时,y 有最小值 c。
向下 a < 0 (0.c) y 轴x。
0 时,y 随 x 的增大而减小;x < 0 时,y 随 x 的增大而增大;x = 0 时,y 有最大值 c。
3.y = a(x - h)^2 的性质:结论:左加右减。
总结:a 的符号开口方向顶点坐标对称轴向上 a。
0 (h。
0) x = hx。
h 时,y 随 x 的增大而增大;x < h 时,y 随 x 的增大而减小;x = h 时,y 有最小值。
向下 a < 0 (h。
0) x = hx。
二次函数的基本概念
二次函数的基本概念一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:上加下减。
3. ()2y a x h =-的性质:左加右减。
4、()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式【例题选讲】 一、二次函数的概念【例1】下列函数中是二次函数的是( )【例2】已知函数是二次函数,则。
二次函数的定义
二次函数的定义定义:一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c 若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a ≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。
二次函数的解析式有三种形式:(1)一般式:(a,b,c是常数,a≠0);(2)顶点式:(a,h,k是常数,a≠0)(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。
如果没有交点,则不能这样表示。
二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零。
二次函数的判定:二次函数的一般形式中等号右边是关于自变量x的二次三项式;当b=0,c=0时,y=ax2是特殊的二次函数;判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。
二次函数的最大值和最小值二次函数的最值:1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=;当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=。
也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。
2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1 时;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即
m 1 n2 1 n 22
小结 拓展
回味无穷
1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0) 的函数叫做x的二次函数.其中,是x自变量,a,b,c分别 是函数表达式的二次项系数、一次项系数和常数项.
y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同表示形式:
(1)y=ax²(a≠0,b=0,c=0,).
篮球运行的路线是什么曲线? 怎样出手才能把球投进篮圈? 起跳多高才能成功盖帽?等
问题:
正方体的六个面是全等的正方形,设正方体的 棱长为x,表面积为y,显然对于x的每一个值,y都有 一个对应值,即y是x的函数,它们的具体关系可以表
示为 y=6x2 ①
问题:
问题1 多边形的对角线数d与边数n有什么关系?
(2)当x=3时
y 232 203 42m2 x
答:当x=3时,矩形的面积为42m2。
3.一个圆柱的高等于底面半径,写出它 的表面积 s 与半径 r 之间的关系式.
S=4πr2
4. n支球队参加比赛,每两队之间进行
一场比赛,写出比赛的场次数 m与球队
数 n 之间的关系式.
m 1 nn 1
2
(2)y=ax²+c(a≠0,b=0,c≠0).
(3)y=ax²+bx(a≠0,b≠0,c=0).
2.定义的实质是:ax²+bx+c是整式,自变量x的最高次数 是二次,自变量x的取值范围是全体实数.
5. 圆的半径是1cm,假设半径增加xcm 时,圆的面积增加ycm².
(1)写出y与x之间的函数关系表达式;
2
2.函数 y (m 1)xm2m mx 1是二次函数, 求m的值。
2
用20米的篱笆围一个矩形的花圃(如图), 设连墙的一边为x,矩形的面积为y, 求:(1) 写出y关于x的函数关系式.
(2) 当x=3时,矩形的面积为多少?
解:(1) y x(20 2x)
2x2 20x (o<x<10)
由图可以想出,如果多边形有n条边,那么它有 n 个顶点,从
一个顶点出发,连接与这点不相邻的各顶点,可以作(n-3) 条
对角线.
因为像线段MN与NM那样,连
接相同两顶点的对角线是同一条 M
N
对角线,所以多边形的对角线总数
d 1 nn 3
2
即 d 1 n2 3 n②
22
②式表示了多边形的
对角线数d与边数n之 间的关系,对于n的每一 个值,d都有一个对应值, 即d是n的函数.
函数: 在一个变化过程中,如果有两个 变量x与y, 并且对于x的每一个确定的 值,y都有唯一确定的值与其对应,那么 就说y是x的函数, x是自变量.
一次函数 y=kx+b (k≠0)
函
(正比例函数) y=kx (k≠0)
数
观察下列函数:
(1)y = 2x+1
(2)y = -x-4
3y 2
x (5)y = -4x
(4)y = 5x2 (6)y = ax+1
其中,一次函数有_1_._2_.5_,那么一次函数的 一般形式是 y=kx+b(k≠0).
1.函数y=x+1 ,自变量是_x__,自变量的次数是 __1_,y是x的___一_函次数.
2.函数s=-2t-4 ,自变量是__t_,自变量的次数 是__1_,s是t的___一_函次数.
y 1 x2 13x
1
2
2
y x2
4
2
13
0
0
0
二次函数y=ax²+bx+c中a≠0,但b、c可以为0.
4.把函数 y=(5x+7)(x-3)+2x-5 化成一般形式,写出各项系数。
解: y=(5x+7)(x-3)+2x-5 =5x2-8x-21+2x-5 =5x2-6x-26
它是二次函数,二次项系数、一次项系数 及常数项分别是5,-6,-26
A
C
6CM
例3、若二次函数y=ax2+bx+c的图形经过 A(-1,0),B(0,1),C(1,6)三 点,求这个函数的解析式.
7.如图,△ABC中,∠C=90°,AC=6cm, BC=8cm, 点P从A开始沿AC向点C以1cm/s的速度,点Q从 C点开始沿BC向B点以2cm/s的速度移动.
(1)如果P,Q分别从A,C两点同时出发,求△PQC的 面积S与运动时间t的函数关系式.
(2)当t为何值时S=8cm2.
B
Q 8CM
P
年后的产量为 y 201x2
即 y 20 x2 40x 20③
③式表示了两年后的产量y与计划增产的倍数x之间 的关系,对于x的每一个值, y都有一个对应值,即y是x的 函数.
观察
函数①②③有什么共同点?
y=6x2①
d
1 2
n2
3 2
n②
y 20 x2 40x 20③
y是x的函数吗?y是x的一次函数?
(4)x的取值范围是 任意实数 。
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0)
二次函数的特殊形式:
– 当b=0时, y=ax2+c – 当c=0时, y=ax2+bx – 当b=0,c=0时, y=ax2
1.下列函数中,哪些是二次函数?
(1) y x2
是
(2)
y
y = ax2+bx+c
y 5 x2 1 x 5
3
12 6
y = mx2
y = 2x
A. 1个 B.2 个 C.3个
D.4个
试一试:
说出下列二次函数的二次项系数、一次项系数和常数项:
函数解析式 二次项系数 一次项系数 常数项
Hale Waihona Puke abcy x2 58x 112 -1
58 -112
y 2x2 4x 2 2
1 x2
(3) y x(1 x)
不是 是 y=-x2+x
(4) y (x 1)2 x2 不是
y=x2-2x+1-x2
=-2x+1 如果是整式,先化简后判断
3.下列函数关系式中,二次函数有 ( )个.
y = (3x-1)2-9x2
y = (x+2)2-4x
y x2 1 x
y x3 x
y = (a2+1)x2-ax+a
在上面的问题中,函数都是用自变量的二次式 表示的,
2、定义:一般地,形如 y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫 做x的二次函数。
注意: (1)等号左边是变量y,右边是关于自变 量x的 整式
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 2 ,可以没有
一次项和常数项,但不能没有二次项。
x 如果函数y=(k-3) k2 - 3k+ 2 +kx+1是二次函数,
则k的值一定是___0___
例2. y=(m+3)xm2-7 (1) m取什么值时,此函数是正比例函数? (2) m取什么值时,此函数是二次函数?
看谁算得快!
1.函数 y (k 1 )x2k2 k1 是一次函数,求k的值。0
问题:
问题2 某工厂一种产品现在的年产量是20件, 计划今后两年增加产量.如果每年都比上一年的产
量增加x倍,那么两年后这种产品的产量y将随计划 所定的x的值而确定,y与x之间的关系应怎样表示?
这种产品的原产量是20件, 一年后的产量是
20(1+x)件,再经过一年后的产量是 20(1+x)2 件,即两
(2)当圆的半径分别增加1cm, 2cm
2cm时,圆的面积增加多少?
6. 将进货单价为40元的商品按50元卖出时,就 能卖出500个,已知这种商品每涨1元,其销售量 就会减少10个,设售价定为X元(x>50)时的利 润为Y元。试求出Y与X的函数关系式,并按 所求的函数关系式计算出售定价为80元时所 得利润