第20章 数据的分析单元复习测试(含答案
人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)
人教新版八年级下册《第20章数据的分析》单元测试卷(1)一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.52.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.94.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为46.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是.9.(3分)已知样本方差S2=,则这个样本的容量是,样本的平均数是.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为分.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是环,众数是环.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是,方差是.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数111113220000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是;所有员工工资的中位数是.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.频数(人数)频率组别个人年消费金额x(元)A x≤2000180.15B2000<x≤4000a bC4000<x≤6000D6000<x≤8000240.20E x>8000120.10合计c 1.00根据以上信息回答下列问题:(1)a=,b=,c=.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?人教新版八年级下册《第20章数据的分析》单元测试卷(1)参考答案与试题解析一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.5【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选:D.2.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.9【考点】众数;算术平均数.【分析】根据题意先确定x的值,再根据定义求解即可.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去,当众数为10,根据题意得=10,解得x=10,∵这组数据的众数与平均数相同,∴这组数据的平均数是10;故选:B.4.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【考点】用样本估计总体;算术平均数.【分析】先计算出8条鱼的平均质量,然后乘以240即可.【解答】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选:B.5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为4【考点】方差;算术平均数.【分析】一般地设n个数据,x1,x2,…x n,平均数=(x1+x2+x3…+x n),方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].直接用公式计算.【解答】解:由题知,x1+1+x2+1+x3+1+…+x n+1=10n,∴x1+x2+…+x n=10n﹣n=9nS12=[(x1+1﹣10)2+(x2+1﹣10)2+…+(x n+1﹣10)2]=[(x12+x22+x32+…+x n2)﹣18(x1+x2+x3+…+x n)+81n]=2,∴(x12+x22+x32+…+x n2)=83n另一组数据的平均数=[x1+2+x2+2+…+x n+2]=[(x1+x2+x3+…+x n)+2n]=[9n+2n]=×11n=11,另一组数据的方差=[(x1+2﹣11)2+(x2+2﹣11)2+…+(x n+2﹣11)2]=[(x12+x22+…+x n2)﹣18(x1+x2+…+x n)+81n]=[83n﹣18×9n+81n]=2,故选:C.6.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是32.【考点】算术平均数.【分析】5x+3,5y﹣2,5z+5的平均数是(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3,因为x,y,z的平均数是6,则x+y+z=18;再整体代入即可求解.【解答】解:∵x,y,z的平均数是6,∴x+y+z=18;∴(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3=[5×18+6]÷3=96÷3=32.故答案为:32.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是2.【考点】中位数;众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出a的值,将数据从小到大排列可得出中位数.【解答】解:1,3,2,5,2,a的众数是a,∴a=2,将数据从小到大排列为:1,2,2,2,3,5,中位数为:2.故答案为:2.9.(3分)已知样本方差S2=,则这个样本的容量是4,样本的平均数是3.【考点】方差;总体、个体、样本、样本容量;算术平均数.【分析】从方差公式中可以得到样本容量和平均数.【解答】解:根据样本方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,其中n是这个样本的容量,是样本的平均数,所以本题中这个样本的容量是4,样本的平均数是3.故填4,3.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为89分.【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(80×3+90×5+100×2)÷(3+5+2)=89(分);故答案为:89.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是8.5环,众数是8环.【考点】众数;条形统计图;中位数.【分析】根据众数和中位数的概念求解.【解答】解:把数据按照从小到大的顺序排列为:7,8,8,8,9,9,10,10,中位数为:=8.5,众数为:8.故答案为:8.5,8.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是6,方差是8.【考点】方差;算术平均数.【分析】由题意可知,将这组数据的每个数都扩大2倍,那它的和也将扩大2倍,它的平均数也扩大2倍;根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.【解答】解:设这组数有x个,这组数的平均数是3,那么这组数的和为3x,如果这组数据的每个数都扩大2倍,则这组数的总和为3x×2,平均数为3x×2÷x=6.将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,∴新数据的方差是2×4=8,故答案为:6;8.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.【考点】加权平均数.【分析】根据三项成绩的不同权重,分别计算三人的成绩.【解答】解:班长的成绩=24×0.3+26×0.3+28×0.4=26.2(分);学习委员的成绩=28×0.3+26×0.3+24×0.4=25.8(分);团支部书记的成绩=26×0.3+24×0.3+26×0.4=25.4(分);∵26.2>25.8>25.4,∴班长应当选.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数1111132 20000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是4350;所有员工工资的中位数是2000.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?【考点】中位数;加权平均数.【分析】(1)根据加权平均数的定义和中位数的定义即可得到结论;(2)中位数描述该餐厅员工工资的一般水平比较恰当;(3)由平均数的定义即可得到结论.【解答】解:(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;工资的中位数为=2000元;故答案为:4350,2000;(2)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(3)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.【考点】众数;二元一次方程组的应用;统计表;中位数.【分析】(1)根据题意:设该班80分和90分的人数分别是x、y;得方程=76与x+y=30﹣2﹣5﹣7﹣3;解方程组即可.(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.求出a,b的值就可以.【解答】解:(1)据题意得,∴∴该班80分和90分的人数分别是8人,5人.成绩(分)5060708090100人数(人)257853(2)据题意得a=80,b=(80+80)÷2=80∴a+b=160四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x ≤2000180.15B 2000<x ≤4000abC 4000<x ≤6000D 6000<x ≤8000240.20Ex >8000120.10合计c1.00根据以上信息回答下列问题:(1)a =36,b =0.30,c =120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【考点】频数(率)分布表;条形统计图;中位数;用样本估计总体.【分析】(1)首先根据A 组的人数和所占的百分比确定c 的值,然后确定a 和b 的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.【解答】解:(1)观察频数分布表知:A 组有18人,频率为0.15,∴c =18÷0.15=120,∵a =36,∴b =36÷120=0.30;∴C 组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【考点】条形统计图;中位数;众数;扇形统计图.【分析】(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据众数的定义以及中位数的定义解答.【解答】解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示;(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?【考点】方差;算术平均数;极差.【分析】(1)根据平均数的公式进行计算即可;(2)根据极差和方差的计算公式计算即可;(3)从方差和极差两个数比较即可;(4)根据成绩稳定性与目标进行分析即可.【解答】解:(1)甲的平均数=(584+594+…+599)=600(cm),乙的平均数=(615+618+…+624)=600(cm);(2)甲的极差为:612﹣584=28;乙的极差为:624﹣579=45;S甲2=[(584﹣600)2+(594﹣600)2+…+(599﹣600)2]=59.4,S乙2=[(615﹣600)2+(618﹣600)2+…+(624﹣600)2]=266.8.(3)甲的方差较小,成绩较稳定,乙的方差较大,波动较大,但最好成绩较好,爆发力强.(4)若只想夺冠,选甲参加比赛,因为甲的方差较小,成绩较稳定,且大于或等于5.96m 的次数有8次;若要打破纪录,应选乙参加比赛,因为有四次超过6.10m,最好成绩较好,爆发力强.。
八年级数学(下)第二十章《数据的分析》测试题含答案
八年级数学(下)第二十章《数据的分析》测试题(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.某班第一小组6名女生在测仰卧起坐时,记录下她们的成绩(单位:个/分):45,48,46,50,50,49.这组数据的平均数是()A.49 B.48 C.47 D.462.有一组数据如下:3,6,5,2,3,4,3,6.那么这组数据的中位数是()A.3或4 B.4 C.3 D.3.53.A居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均用电为()A.41度 B.42度 C.45.5度 D.46度4.某小组10个女生做仰卧起坐,仰卧起坐次数的测试数据如下表,则这组数据的众数和中位数分别是()次数35 38 40 41 42人数 1 1 3 3 2A.38.8和40 B.40和40 C.40和40.5 D.38.8和40.55.数据70、71、72、73、74的方差是()A.2 B.2 C.52D.546.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的()A.众数 B.平均数 C. 中位数 D.方差7.甲、乙两人在相同的条件下各射靶 10 次,射击成绩的平均数都是 8 环,甲射击成绩的方差是 1.2,乙射击成绩的方差是 1.8.下列说法中不一定正确的是()A.甲、乙射击成绩的众数相同B.甲射击成绩比乙稳定C.乙射击成绩的波动比甲较大D.甲、乙射中的总环数相同8.一次体检中,某班学生视力检查的结果如图所示,从图中看出全班视力数据的众数是()(A)55% (B)24% (C)1.0 (D)1.0以上9.如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7、8 B.7、9 C.8、9 D.8、1010.李大伯有一片果林,共80棵果树,某日,李大伯开始采摘今年第一批成熟的果子,他随机选取2棵果树共摘得果子,质量分别为(单位:kg):0.28,0.26,0.24,0.23,0.25,0.24,0.26,0.26,0.25,0.23,以此计算,李大伯收获的这批果子的单个质量和总质量分别约为()A.0.25kg,200kg B.2.5kg,100kg C.0.25kg,100kg D.2.5kg,200kg二.填空题(共10小题,每题3分,共30分)11.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是小时。
人教版八年级下册数学初二第二十章数据的分析全章测试及答案
第二十章《数据的分析》全章测试班级姓名学号一、选择题(每小题3分,共24分)1.某地区100个家庭收入按从低到高是5 800元,…,10 000元各不相同,在输入计算时,把最大的数错误地输成100 000元,则算出的平均数比实际平均数多()(A)900元(B)942元(C)90 000元(D)9 000元2.A、B、C、D、E五名学生在一次语文测验中的平均成绩是80分,而A、B、C三同学的平均成绩是78分,那么下列说法一定正确的是()(A) D、E的成绩比其他三个都好(B) D、E两人的平均成绩是82分(C)最高分得主不是A、B、C、D(D) D、E中至少有一个成绩不少于83分3.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录 甲 90 83 95 乙 98 90 95 丙 80 88904. 小明对本班同学每天花多少零用钱进行了调查,计算出平均数为3,中位数为3,众数为2,极差为8,假如老师随机问一名同学每天花多少零用钱,最有可能得到的回答是( ).5. 由小到大排列的一组数据1a 、2a 、3a 、4a 、5a 其中每个数据都小于1-,则对于样本中1、1a 、﹣2a 、3a 、﹣4a 、5a 的中位数可表示为( )6. 若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则对于样本x 1+2,x 2+2,…,x n +2,下列结论正确的是( )(A )甲 (B )乙 (C )甲乙 (D )甲丙(A )3 (B )2 (C )8 (D )不能确定(A )212a + (B )212a a -(C )215a + (D )223a a -(A )平均数为12,方差为2 (B )平均数为11,方差为37. 方差为2的是( )8. 下列四种说法,其中正确的说法有( )①一组数据的平均数可以大于其中每一个数据;②分别用一组数据中的每一个减去平均数,再将所得的差相加,若和为零,则方差为零;③在一组数据中去掉一个等于平均数的数,这组数据的方差不变④如果一组数据的方差等于零,则这组数据中的每一个彼此相等;⑤极差较大的一组数据方差也大。
人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)
人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。
人教版-第二十章-《数据的分析》测试题及答案
初二数学 人教版第二十章 数据的分析 单元测试班级___________姓名_____________学号____ ___成绩__________一、选择题:(每小题3分,共30分)1.一组数据9.5,9,8.5,8,7.5的极差是 ( ) A .0.5 B .8.5 C .2.5 D .2 2.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:80==乙甲x x ,2402=甲s ,1802=乙s ,则成绩较为稳定的班级是 ( ) A .甲班 B .乙班 C .两班成绩一样稳定 D .无法确定 3这组数据的中位数和众数别是 ( ) A .24,25 B .24.5,25 C .25,24 D .23.5,24 4.下列说法错误的是 ( ) A.一组数据的众数、中位数和平均数不可能是同一个数B.一组数据的平均数既不可能大于,也不可能小于这组数据中的所有数据C.一组数据的中位数可能与这组数据的任何数据都不相等D.众数、中位数和平均数从不同角度描述了一组数据的集中趋势5.已知八年(4)班全班35人身高的平均数与中位数都是150cm ,但后来发现其中有一位同学的身高登记错误,误将160cm 写成166cm ,正确的平均数为a cm ,中位数为b cm 关于平均数a 的叙述,下列正确的是 ( ) A .大于158 B .小于158 C ..等于158 D ..无法确定 6.在5题中关于中位数b 的叙述。
下列正确的是 ( )A .大于158B .小于158C .等于158D ..无法确定 7.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生数学平均分80的差分别是5,-2,8,14,7,5,9,-6,则此8名学生数学竞赛的平均成绩是( ) A.80分 B.84分 C.85分 D.88分8.期中考试后,学生相约去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,但每人可以少分摊3元,原来参加春游的学生人数是 ( ) A .7 B .8 C .9 D .109. 甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是 ( ) A .100分 B .95分 C .90分 D .85分 10.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是31,那么另一组数据3 x 1-2,3 x 2-2,3 x 3-2,3 x 4-2,3 x 5-2的平均数和方差分别是 ( )A .2,31 B .2,1 C .4,32D .4,3二、填空题:(每空3分,共42分)11.一组数据-1,0,1,2,3的方差是_ _ __。
第二十章 数据的初步分析 单元测试题(含答案)
数据的初步分析单元测试题一、单选题1.(本题3分)益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是262.(本题3分)在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是93.(本题3分)已知A组数据为2、3、6、6、7、8、8、8,B组数据为4、5、8、8、9、10、10、10,则描述A、B两组数据的统计量中相等的是()A.众数 B.中位数 C.平均数 D.方差4.(本题3分)下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩根据统计图中的信息可得,下列结论正确的是A.甲队员成绩的平均数比乙队员的大 B.甲队员成绩的方差比乙队员的大C.甲队员成绩的中位数比乙队员的大 D.乙队员成绩的方差比甲队员的大5.(本题3分)在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是组员及项目甲乙丙丁戊方差平均成绩试卷第1页,总6页试卷第2页,总6页A . 88,B . 88,2C . 90,D . 90,26.(本题3分)朗读者是中央电视台推出的大型文化情感类节目,节目旨在实现文化感染人、鼓舞人、教育人的引导作用为此,某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是A . 平均数B . 中位数C . 众数D . 方差7.(本题3分)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=609千克,亩产量的方差分别是2S 甲=29.6, 2S 乙=2.则关于两种小麦推广种植的合理决策是( )A . 甲的平均亩产量较高,应推广甲B . 甲、乙的平均亩产量相差不多,均可推广C . 甲的平均亩产量较高,且亩产量比较稳定,应推广甲D . 甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙8.(本题3分)如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量的描述不正确的是( )A . 众数为30B . 中位数为25C . 平均数为24D . 方差为839.(本题3分)X,X,…X的平均数为4,X,X…X的平均数为6,则X,X,…X,X…X的平均数为( )A . 5B . 4C . 3D . 8得分918992909010.(本题3分)某地区某月前两周从周一至周五每天的最低气温是单位:,和,若第一周这五天的平均气温为,则第二周这五天的平均气温为A. B. C. D.二、填空题11.(本题4分)一组数据2、4、x、2、4、3、5的众数是2,则这组数据的中位数为______.12.(本题4分)某中学规定学生的学期总评成绩满分为100分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,小明的数学三项成绩(百分制)依次为85分,80分,90分,则小明这学期的数学总评成绩是______分.13.(本题4分)某市近8日每日最高气温折线统计图如图所示,这组每日最高气温数据的位数是_____度.14.(本题4分)某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有____人,投进4个球的有___人.进球数n(个) 0 1 2 3 4 5投进n个球的人数 1 2 7 215.(本题4分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:1号2号3号4号5号总分甲班100 98 110 89 103 500乙班86 100 98 119 97 500(1)根据上表提供的数据填写下表:优秀率中位数方差试卷第3页,总6页三、解答题16.(本题10分)某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.17.(本题10分)某校欲招聘一名数学教师,学校对甲乙丙三位候选人进行三项能力测试,各项成绩满分均为100分,根据结果择优录用,三位候选人测试成绩如下表:(1)如果根据三项测试成绩的平均成绩,谁将被录用?为什么?(2)根据实际需要学校将三项能力测试得分按8:2:2的比例确定每人的成绩,谁将被录用?为什么?18.(本题10分)18.(本题10分)春节联欢晚会往往对"最喜欢的节目"进行调查,下面表中是戏曲类节目收集的数据试卷第4页,总6页试卷第5页,总6页名 称ABCDE喜爱(人数) 1870万 728万 12405万 68万 520万(1)调查收集的数据有用吗?(2)最受欢迎的戏曲是哪个?说明你的理由?(3)能说戏曲D不好吗?19.(本题10分)甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环) 中位数(环) 众数(环) 方差甲 a 7 7 1.2乙 7 b 8 c(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?20.(本题10分)某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A 、B 、C 、D 、E 五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评结果如表所示:表1演讲答辩得分表单位:分A B C D E甲90 92 94 95 88乙89 86 87 94 91表2民主测评票数统计表单位:张“好”票数“较好”票数“一般”票数甲40 7 3乙42 4 4规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分“好”票数分“较好”票数分“一般”票数分;综合得分演讲答辩得分民主测评得分;当时,甲的综合得分是多少?如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.试卷第6页,总6页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)
人教新版八年级下册《第20章数据的分析》单元测试卷(2)一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.894.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9 9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是(精确到0.1),众数是,中位数是.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分345678910人数112289151214.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是(填“变大”“变小”或“不变”).三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.50.7高中队8.510(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.人教新版八年级下册《第20章数据的分析》单元测试卷(2)参考答案与试题解析一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【考点】标准差;算术平均数;中位数;方差.【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式分别进行求解即可.【解答】解:A、原来数据的平均数是(2+3+5+5+5+6+9)=5,去掉一个数据5后平均数仍为5,故A与要求不符;B、原来数据的众数是5,去掉一个数据5后众数仍为5,故B与要求不符;C、原来数据的中位数是5,去掉一个数据5后中位数仍为5,故C与要求不符;D、原来数据的方差是:[(2﹣5)2+(3﹣5)2+3×(5﹣5)2+(6﹣5)2+(9﹣5)2]=,去掉一个数据5后,方差是[(2﹣5)2+(3﹣5)2+2×(5﹣5)2+(6﹣5)2+(9﹣5)2]=5,发生变化的是方差;故选:D.3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89【考点】加权平均数.【分析】根据加权平均数的计算方法计算即可.【解答】解:她本学期的学业成绩为:20%×85+30%×90+50%×92=90(分).故选:B.4.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是=91(分),错误;D、×[(85﹣91)2×2+(90﹣91)2×5+(100﹣91)2+2(95﹣91)2]=19(分2),错误;故选:A.7.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小【考点】方差;算术平均数.【分析】根据平均数、中位数的意义、方差的意义,可得答案.【解答】解:原数据的平均数为×(160+165+170+163+172)=166(cm)、方差为×[(160﹣166)2+(165﹣166)2+(170﹣166)2+(163﹣166)2+(172﹣166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165﹣167)2+(170﹣167)2+(163﹣167)2+(172﹣167)2]=11.6(cm2),所以平均数变大,方差变小,故选:D.8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是:=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选:D.9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大【考点】方差;算术平均数;中位数.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:C.二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是7和8.【考点】众数;算术平均数.【分析】根据平均数先求出x,再确定众数.【解答】解:因为数据的平均数是7,所以x=42﹣8﹣9﹣7﹣8﹣3=7.根据众数的定义可知,众数为7和8.故答案为:7和8.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是 6.4(精确到0.1),众数是80和90,中位数是80.【考点】众数;加权平均数;中位数.【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【解答】解;平均数是:300÷(4+11+11+8+5+8)=300÷47≈6.4,90分的有11人,80分的有11人,出现的次数最多,则众数是80和90,把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;6.4,80和90,80.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为9.成绩/分345678910人数1122891512【考点】众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:本题中数据9出现了15次,出现的次数最多,所以本题的众数是9.故填9.14.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有9名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是90分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?【考点】众数;用样本估计总体;中位数.【分析】(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【解答】解:(1)由统计结果图得,参加“引体向上”测试的男生有9名;故答案为:9;(2)①九(1)班男生参加“耐久跑1000米”测试的部分成绩从高到低排列为:100,95,95,90,85,82,共有8名男生参加“耐久跑1000米”.若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,故答案为:90;则这8名男生中共有三名男生得分为90分,则参加“耐久跑1000米”测试的男生成绩的中位数是.则6÷8×120=90(人),∴该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有90人.15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是乙;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是变小(填“变大”“变小”或“不变”).【考点】条形统计图;方差.【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲的平均数是:=9(环),甲的方差是:×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=0.8,乙的平均数是:=9(环),乙的方差是:×[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=0.6,∵0.8>0.6,∴乙成绩稳定.甲又连续射击5次,环数均为9环,则平均数还为9,则方差为×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=<0.8,故方差变小.故答案为:乙;变小.三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.【考点】算术平均数.【分析】(1)根据平均数的计算公式列出算式,再进行计算即可得出答案;(2)根据这三个数的平均数是2,得出=2,然后求解即可得出答案.【解答】解:(1)﹣3,1这两个数的平均数为=﹣1;(2)∵这三个数的平均数是2,∴=2,∴m=8.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.【考点】方差;算术平均数;中位数;众数.【分析】(1)由条形图得出初中队和高中队成绩,再根据中位数、众数及方差的概念求解可得;(2)根据中位数的意义求解可得;(3)从平均数、中位数及方差的意义求解可得.【解答】解:(1)由图知初中队的成绩从小到大排列为:7.5、8、8.5、8.5、10,所以初中队成绩的中位数是8.5,众数是8.5;高中队成绩从小到大排列为:7、7.5、8、10、10,所以高中队成绩的中位数为8,方差为×[(7﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+2×(10﹣8.5)2]=1.6,补全表格如下:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明在初中队.理由如下:根据(1)可知,初中、高中队的中位数分别为8.5分和8分,∵8<8.5,∴小明在初中队.(3)初中队的成绩好些.因为两个队的平均数相同,初中队的中位数高,而且初中队的方差小于高中队的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【考点】中位数;众数;条形统计图;算术平均数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【考点】频数(率)分布直方图;加权平均数;中位数;用样本估计总体.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).。
人教版八年级数学下册《第二十章数据的分析》单元测试题(含答案)
第二十章数据的分析第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若一组数据有8个数,它们的平均数为12,另一组数据有4个数,它们的平均数为18,则这12个数的平均数为( )A.12 B.13C.14 D.152.在学校演讲比赛中,10名选手成绩的折线统计图如图1所示,则这10名选手成绩的众数是( )图1A.95分 B.90分C.85分 D.80分3.在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,下列说法错误的是( )A.小王的捐款数不可能最少B.小王的捐款数可能最多C.将捐款数按从少到多排列,小王的捐款数可能排在第十二位D.将捐款数按从少到多排列,小王的捐款数一定比第七名多4.图2是交警在一个路口统计的某个时段来往车辆的速度(单位:千米/时)情况,则这些车辆的车速的中位数(单位:千米/时)是( )图2A.51.5 B.52C.52.5 D.535.下列说法中,正确的有( )①在一组数据中,平均数越大,众数越大;②在一组数据中,众数越大,中位数越大;③在一组数据中,中位数越大,平均数越大;④在一组数据中,众数越大,平均数越大.A.0个 B.1个C.2个 D.3个6.在全国汉字听写大赛的热潮下,某学校进行了选拔赛,有15名学生进入了半决赛,他们的成绩各不相同,并且要按成绩取前8名进入决赛.小明只知道自己的成绩,他要判断自己能否进入决赛,可用下列哪个统计结果判断( )A.平均数 B.众数C.中位数 D.方差7.某学校教师分为四个植树小组参加植树节活动,其中三个小组植树的棵数分别为8,10,12,另一个小组的植树棵数与其他三组中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是( )A.8 B.10C.12 D.10或128.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表.对于不同的x,下列关于年龄的统计量不会发生改变的是(年龄(岁)13141516频数515x 10-xA.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差9.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表.现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权的比由2∶3∶5变成5∶3∶2,那么成绩变化情况是( )采访写作计算机创意设计小明70分60分86分小亮90分75分51分小丽60分84分72分A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩增加相同10.已知一组数据x1,x2,x3,x4,x5的平均数为8,方差为2,那么另一组数据4x1+1,4x2+1,4x3+1,4x4+1,4x5+1的平均数和方差分别为( )A.33与2B.8与2C.33与32D.8与33请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.如图3是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是________.(填“甲”或“乙”)图312.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为________分.13.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量为________只.14.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________.15.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,某市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及方差s2如右表所示.如果选拔一名学生去参赛,应派________去.16.有5个从小到大排列的正整数,中位数是3,唯一的众数是6,则这5个数的和为________.三、解答题(共52分)(1)小谢家的小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100 km需汽油8 L,汽油每升3.45元,求出小谢家一年(按12个月计算)的汽油费用是多少元.18.(本小题6分)已知一组数据8,9,6,m的平均数与中位数相等,求m的值.19.(本小题6分)某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示.根据表格回答问题:(1)商店出售的各种规格空调中,众数是多少?(2)假如你是经理,现要进货,6月份在有限的资金下将如何安排进货?20.(本小题6分)某公司欲聘请一位员工,三位应聘者A,B,C的原始评分(单位:分)如下表:(2)如果按仪表、工作经验、电脑操作、社交能力、工作效率的原始评分分别占10%,15%,20%,25%,30%综合评分,择优录取,应录取谁?为什么?21.(本小题6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1)该公司“高级技工”有________名;(2)所有员工月工资的平均数x为2500元,中位数为________元,众数为________元;(3)小张到这家公司应聘普通工作人员.请你回答图4中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.图422.(本小题7分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).图5甲、乙两人射箭成绩统计表小宇的作业:解:x 甲=15×(9+4+7+4+6)=6,s 甲2=15×[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=15×(9+4+1+4+0)=3.6.(1)a =________,x 乙=________.(2)请完成图中表示乙成绩变化情况的折线.(3)①观察统计图,可看出________的成绩比较稳定(填“甲”或“乙”),参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中.23.(本小题7分)某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前、后引体向上的个数进行统计分析,得到乙组男生训练前、后引体向上的平均个数分别是6个和10个,以及下面不完整的统计表和统计图.甲组男生训练前、后引体向上个数统计表(单位:个)(1)a =________,b =________,c =________;(2)甲组训练后引体向上的平均个数比训练前增长了________%; (3)你认为哪组训练效果较好?并提供一个支持你观点的理由; (4)小明说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.”你同意他的观点吗?请说明理由.图624.(本小题8分)为了迎接体育中考,九年级7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如图7.(1) 平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 91.7% 16.7% 女生1.383.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请你给出两条支持女生观点的理由;(3)体育老师说:“咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是全班优秀率达到50%.”如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?图7答案1.C 2.B 3.D 4.B 5.A 6.C 7.B 8.C 9.B 10.C 11.甲 12.135 13.14000 14.9 15.乙 16.1817.解:(1)由表中七天的数据可知,平均每天行驶的路程为:17×(46+39+36+50+54+91+34)=50(km),故小谢家的小轿车每月(每月按30天计算)要行驶50×30=1500(km). (2)小谢家一年的汽油费用为 1500×12100×8×3.45=4968(元). 18.解:①当m 为最大值时,排序为:m ,9,8,6, 根据题意,得m +9+8+64=9+82,解得m =11;②当m 为最小值时,排序为:9,8,6,m ,根据题意,得m +9+8+64=8+62,解得m =5;③当m 既不是最大值,也不是最小值时,排序为:9,8,m ,6或9,m ,8,6,根据题意,得m +9+8+64=8+m2,解得m =7. 综上可知,m 的值为5或7或11. 19.解:(1)众数为1.2匹.(2)通过观察可得:1.2匹的空调的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.20.解:(1)A 的平均分为15×(4+5+5+3+3)=4(分),B 的平均分为15×(4+3+3+5+4)=3.8(分),C 的平均分为15×(3+3+4+4+4)=3.6(分),因此应录取A.(2)应录取B.理由:根据题意,三人的综合评分如下: A 的综合评分为4×10%+5×15%+5×20%+3×25%+3×30%=3.8(分), B 的综合评分为4×10%+3×15%+3×20%+5×25%+4×30%=3.9(分), C 的综合评分为3×10%+3×15%+4×20%+4×25%+4×30%=3.75(分). 因此应录取B.21.解:(1)该公司“高级技工”的人数=50-1-3-2-3-24-1=16(名).故答案为16.(2)工资数从小到大排列,第25个和第26个分别是1600元和1800元,因而中位数是1700元; 在这些数中,1600元出现的次数最多,因而众数是1600元. 故答案为1700,1600.(3)这个经理的介绍不能反映该公司员工的月工资实际水平. 用1700元或1600元来介绍更合理些. (4)y =2500×50-21000-8400×346≈1713(元).y 能反映该公司员工的月工资实际水平.22.解:(1)4 6 (2)如图所示:(3)①观察统计图,可看出乙的成绩比较稳定;s 乙2=15×[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.因为s 乙2<s 甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 23.解:(1)a =(8+9+6+6+7+6)÷6=7, b =4,c =(6+7)÷2=6.5. (2)(7-4)÷4×100%=75%.(3)(答案合理即可)甲组训练效果较好.理由:因为甲组训练后的平均个数比训练前增长75%,乙组训练后的平均个数比训练前增长约67%, 甲组训练前、后平均个数的增长率大于乙组训练前后平均个数的增长率,所以甲组训练效果较好.(4)不同意.理由:因为乙组训练后的平均个数增加了50%×0+20%×7+20%×8+10%×10=4(个),所以我不同意小明的观点.24平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 7 91.7% 16.7% 女生71.3783.3%8.3%(2)从平均数上看,女生平均数高于男生;从方差上看,女生成绩的方差低于男生,波动性小(答案合理即可). (3)设男生新增优秀人数为x 人, 则2+4+x +2x =48×50%, 解得x =6, 故6×2=12.答:男生新增优秀人数为6人,女生新增优秀人数为12人.。
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9B .中位数是9C .众数是5D .极差是52.在方差的计算公式s 2=110[(x 1-20)2+(x 2-20)2+……+(x 10-20)2]中,数字10和20分别表示的意义可以是( ) A .数据的个数和方差 B .平均数和数据的个数 C .数据的个数和平均数D .数据组的方差和平均数3.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分4.若一组数据12345,,,,x x x x x 的方差是3,则1234523,23,23,23,23x x x x x -----的方差是( ) A .3B .6C .9D .125.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( ) A .25、25B .28、28C .25、28D .28、316.中国六个城市某日的污染指数如下表:在这组数据中的中位数是( ) 城市 北京 合肥 南京 哈尔滨 成都 郑州 污染指数 342 163 165 45 227 163 A .105B .163C .164D .1657. 一组数据1,4,5,2,8,它们的数据分析正确的是( )A.平均数是5 B.中位数是4 C.方差是30 D.极差是68.九年级1班30位同学的体育素质测试成绩统计如表所示,其中有两个数据被遮盖成绩24 25 26 27 28 29 30人数▄▄ 2 3 6 7 9下列关于成绩的统计量中,与被遮盖的数据无关的是()A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数9.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是010.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分11.数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是().A.2 B.3 C.4 D.612.小华续五次数学测验成绩与班级每次测试成绩平均分的差值分别为0,1,-1,3,2;与小华同班的小梅这五次数学测验成绩的方差为15,小华与小梅这五次数学测试的平均成绩恰好相等,则下列说法正确的是()A.小华的数学成绩更稳定B.小梅的数学成绩更稳定C.小华与小梅的数学成绩一样稳定D.无法判定谁的成绩更稳定二、填空题13.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:则这10名学生的数学周考成绩的中位数是________分. 14.已知一组数据2,3,4,5,x 2的众数为4,则x=________. 15.某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为________元/千克.16.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,55,25,这组数据的众数_____.17.一组数据-1、-2、x 、1、2其中x 是小于10的非负整数,且数据的方差是整数,则数据的标准差是_______________18.某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:那么这15名学生这一周在校参加体育锻炼的时间的中位数是 小时.19.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:乙 70 80该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 20.甲乙两组数据的平均数相同,方差分别为2=0.26S 甲和2=0.18S 乙,甲乙两组数据那一组数据较为稳定 .(填甲或乙)三、解答题21.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,表--是 成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,而冠军只能有一个,怎样才能确定冠军呢?此时有学生建议,可通过考查数据中的其他信息作为参考进行名次排列.请你完成下列解答:(1)根据表中提供的数据求出表二中a 1、b 1、c 1、a 2、b 2、c 2数据; (2)根据表二信息,你认为应该把冠军奖状发给哪一个班级?简述理由.22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生________ 2 8 7女生7.92 1.99 8 ________根据以上信息,解答下列问题:(1)这个班共有男生________人,共有女生________人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.23.某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.初三•一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是()A.12 B.10 C.9 D.82.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁3.某班派9名同学参加红五月歌咏比赛,他们的身高分别是(单位:厘米):167,159,161,159,163,157,170,159,165.这组数据的众数和中位数分别是()A.159,163 B.157,161 C.159,159 D.159,1614.为了预防新冠病毒,6名学生准备了口罩,口罩数量(单位:个)分别为:87、88、73、88、79、85,这组数据的众数是()A.79 B.87 C.88 D.855.2011年春季因干旱影响,政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6吨B.平均数是5.8吨C.众数是6吨D.极差是4吨6.数据5,2,3,0,5的众数是( )A.0 B.3 C.6 D.57.某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是().A.93,96 B.96,96 C.96,100 D.93,1008.从整体中抽取一个样本,计算出样本方差为1,可以估计总体方差()A.一定大于1 B.约等于1 C.一定小于1 D.与样本方差无关9.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲0 1 2 0 2乙 2 1 0 1 1关于以上数据的平均数、中位数、众数和方差,说法不正确...的是( )A.甲、乙的平均数相等B.甲、乙的众数相等C.甲、乙的中位数相等D.甲的方差大于乙的方差10.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;1411.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小明和小刚进行米短道速滑训练,他们的五次成绩如下表所示:设两个人的五次成绩的平均数依次为、,方差依次为、,则下列判断正确的是()A.B.C.D.12.某中学为了解学生参加“青年大学习”网上班课的情况,对九年级6个班的学习人数进行了统计,得到各班参加班课的人数数据为5,10,10,12,14,9.对于这组数据,下列说法错误的是()A.平均数是10B.众数是10C.中位数是11D.方差是23 3二、填空题13.某衬衫店为了准确进货,对一周中商店各种尺码的衬衫的销售情况进行统计,结果如下:38码的5件、39码的3件、40码的6件、41码的4件、42码的2件、43码的1件.则该组数据中的中位数是码.14.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是______.15.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是______队(填“甲”或“乙”).16.某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为_____cm.17.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.18.一组数据3,4,x,6,7的平均数为5.则这组数据的方差是______.19.数据组:26,28,25,24,28,26,28的众数是.20.若一组数据1,3,5,x,的众数是3,则这组数据的方差为______.三、解答题21.在“停课不停学”期间,某中学要求学生合理安排学习和生活,主动做一些力所能及的家务劳动,并建议同学们加强体育锻炼,坚持做“仰卧起坐”等运动项目.开学后,七年级甲、乙两班班主任想了解学生做“仰卧起坐”的情况,他们分别在各自班中随机抽取了5名女生和5名男生,测试了这些学生一分钟所做“仰卧起坐”的个数,测试结果统计如表:甲班组别个数x 人数A 25≤x<30 1B 30≤x<35 3C 35≤x<40 4D 40≤x<45 2请根据图中提供的信息,回答下列问题:(1)测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在哪个组?(2)求测得的乙班这10名学生所做“仰卧起坐”个数的平均数;(3)请估计这两个班中哪个班的学生“仰卧起坐”做得更好一些?并说明理由.22.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在 小组; (3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?23.某市开展“环境治理留住青山绿水,绿色发展赢得金山银山”活动,对其周边的环境污染进行综合治理.2018年对A 、B 两区的空气量进行监测,将当月每天的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,并将2018年空气污染指数绘制如下表.据了解,空气污染指数50≤时,空气质量为优:50<空气污染指数100≤时,空气质量为良:100<空气污染指数150≤时,空气质量为轻微污染.月份地区12 3 4 5 6 7 8 9 10 11 12A 区115 108 85 100 95 5080 70 50 50 100 45 B 区1059590 80 90 60 9085 60709045(1)请求出A 、B 两区的空气污染指数的平均数;(2)请从平均数、众数、中位数、方差等统计量中选两个对A区、B区的空气质量进行有效对比,说明哪一个地区的环境状况较好.24.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.25.在“新冠肺炎防控”知识宣传活动中,某社区对居民掌握新冠肺炎防控知识的情况进行调查.其中A、B两区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:(信息一)A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)图中,A小区从左往右第四组的成绩如下75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84(信息三)A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 79 40%277B75.1 77 76 45%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握新冠防控知识的情况.26.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:(1)请你根据左图填写右表:销售公司平均数方差中位数众数甲9乙9 17.0 8(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).27.某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40 (1)这组数据的平均数为,中位数为,众数为.(2)用哪个值作为他们年龄的代表值较好?28.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.29.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的众数是环;(2)通过计算说明甲、乙两人的成绩谁比较稳定.(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会.(填“变大”、“变小” 或“不变”)参考答案1.B2.D3.D4.C5.D6.D7.B8.B9.B10.C11.B12.C13.40.14.715.甲16.17017.4.518.219.28.20.221.(1)∵甲班共有10名学生,处于中间位置的是第5、第6个数的平均数,∴测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在C组;(2)乙班这10名学生所做“仰卧起坐”个数的平均数是:110(22+30×3+35×4+37+41)=33(个);(3)甲班的平均数是:110(27×1+32×3+37×4+42×2)=35.5(个),乙班的平均数是:110(22+30×3+35×4+37+41)=33(个),∵35.5>33,∴甲班的学生“仰卧起坐”的整体情况更好一些.22.(1)A区的空气污染指数的平均数是:112(115+108+85+100+95+50+80+70+50+50+100+45)=79;B区的空气污染指数的平均数是:112(105+95+90+80+90+60+90+85+60+70+90+45)=80;(2)∵A区的众数是50,B区的众数是90,∴A地区的环境状况较好.∵A区的平均数小于B区的平均数,∴A区的环境状况较好.24.(1)40;(2)30,50;(3)50500元25.(1)75;(2)240人;(3)从平均数看,两个小区居民对新冠肺炎防控知识掌握情况的平均水平相同;从方差看,B小区居民新冠肺炎防控知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.26.(1)(2)①甲、乙两个汽车销售公司去年一至十月份的销售平均数一样,都是9辆,但甲销售公司的方差较小,说明甲销售公司的销售情况更稳定。
第20章《数据的分析》单元测试题(含答案)
第20章《数据的分析》单元测试题(含答案)第⼆⼗章数据的分析单元测试题⼀、选择题1.⼀组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别(D)A.10和7B.5和7C.6和7D.5和62.⼀城市准备选购⼀千株⾼度⼤约为2m的某种风景树来进⾏街道绿化,?有四个苗圃⽣产基地投标(单株树的价格都⼀样).?采购⼩组从四个苗圃中都任意抽查了20株树苗的⾼度,得到的数据如下:请你帮采购⼩组出谋划策,应选购(D )A.甲苗圃的树苗B.⼄苗圃的树苗; C.丙苗圃的树苗D.丁苗圃的树苗3.(2017·安顺中考)如图是根据某班40名同学⼀周的体育锻炼情况绘制的条形统计图.那么该班40名同学⼀周参加体育锻炼时间的众数、中位数分别是(B)A.16,10.5B.8,9C.16,8.5D.8,8.54.⼀组数据2,3,2,3,5的⽅差是(C)A.6B.3C.1.2D.25.为⿎励市民珍惜每⼀滴⽔,某居委会表扬了100个节约⽤⽔模范户,8⽉份节约⽤⽔的情况如下表:那么,8⽉份这100户平均节约⽤⽔的吨数为(精确到0.01t)(A )A.1.5t B.1.20t C.1.05t D.1t6.甲、⼄、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出⼀位成绩较好且状态稳定的同学参加全国数学联赛,那么应选(B)A.甲B.⼄C.丙D.丁7.某校⼋年级甲、⼄两班学⽣在⼀学期⾥的多次检测中,其数学成绩的平均分相等,但两班成绩的⽅差不等,那么能够正确评价他们的数学学习情况的是(C)A.学习⽔平⼀样B.成绩虽然⼀样,但⽅差⼤的班⾥学⽣学习潜⼒⼤C.虽然平均成绩⼀样,但⽅差⼩的班学习成绩稳定D.⽅差较⼩的班学习成绩不稳定,忽⾼忽低8.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有(A )A.1个B.2个C.3个D.4个9.已知:⼀组数据x1,x2,x3,x4,x5的平均数是2,⽅差是,那么另⼀组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和⽅差分别是(D)A.2,B.2,1C.4,D.4,310.某射击⼩组有20⼈,教练根据他们某次射击的数据绘制成如图所⽰的统计图,则这组数据的众数和中位数分别是(C)A.7,7B.8,7.5C.7,7.5D.8,6.5⼆、填空题11.某班中考数学成绩如下:7⼈得100分,14⼈得90分,17⼈得80分,8⼈得70分,3⼈得60分,1⼈得50分,那么中考全班数学成绩的平均分为,中位数为,众数为.答案:82.2808012.某⽇天⽓预报说今天最⾼⽓温为8℃,⽓温的极差为10℃,则该⽇最低⽓温为_________.答案:-2?℃13..⼀组数据1,4,6,x的中位数和平均数相等,则x的值是__________.答案:-1或3或914.某校五个绿化⼩组⼀天的植树棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的⽅差是.答案:1.615.⼩明家去年的旅游、教育、饮⾷⽀出分别出3600元,1200元,7200元,今年这三项⽀出依次⽐去年增长10%,20%,30%,则⼩时家今年的总⽀出⽐去年增长的百分数是_________.答案:27.3%16.甲、⼄两班举⾏电脑汉字输⼊速度⽐赛,参加学⽣每分钟输⼊汉字的个数经统计计算后填⼊下表:某同学根据上表分析得出如下结论:①甲、⼄两班学⽣成绩的平均⽔平相同;②⼄班优秀的⼈数多于甲班优秀的⼈数(每分钟输⼊汉字数≥150个为优秀);③甲班的成绩的波动情况⽐⼄班的成绩的波动⼤.上述结论正确的是__________(填序号).答案:①②③三、解答题17.(6分)某公司共25名员⼯,下表是他们⽉收⼊的资料.(1)该公司员⼯⽉收⼊的中位数是元,众数是元;(2)根据上表,可以算得该公司员⼯⽉收⼊的平均数为6 276元.你认为⽤平均数、中位数和众数中的哪⼀个反映该公司全体员⼯⽉收⼊⽔平较为合适?说明理由.解:(1)共有25名员⼯,中位数是第13个数,则中位数是3 400元;3 000出现了11次,出现的次数最多,则众数是3 000元.(2)⽤中位数或众数来描述更为恰当.理由:平均数受极端值45 000元的影响,只有3个⼈的⼯资达到了6 276元,不恰当.18.(8分)为了了解某⼩区居民的⽤⽔情况,随机抽查了该⼩区10?户家庭的⽉⽤⽔量,结果如下:(1)计算这10户家庭的平均⽉⽤⽔量;(2)如果该⼩区有500户家庭,根据上⾯的计算结果,估计该⼩区居民每⽉共⽤⽔多少吨?答案:(1)=14(吨);(2)7000吨.19.某⼯⼚甲、⼄两个部门各有员⼯400⼈,为了解这两个部门员⼯的⽣产技能情况,进⾏了抽样调查,过程如下,请补充完整.收集数据从甲、⼄两个部门各随机抽取20名员⼯,进⾏了⽣产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377⼄9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为⽣产技能优秀,70-79分为⽣产技能良好,60-69分为⽣产技能合格,60分以下为⽣产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所⽰:得出结论:a.估计⼄部门⽣产技能优秀的员⼯⼈数为________;b.可以推断出________部门员⼯的⽣产技能⽔平较⾼,理由为________.(⾄少从两个不同的⾓度说明推断的合理性)【解析】按如下分数段整理数据:a.估计⼄部门⽣产技能优秀的员⼯⼈数为400×=240(⼈);b.答案不唯⼀,⾔之有理即可.可以推断出甲部门员⼯的⽣产技能⽔平较⾼,理由如下:①甲部门⽣产技能测试中,测试成绩的平均数较⾼,表⽰甲部门⽣产技能⽔平较⾼;②甲部门⽣产技能测试中,没有⽣产技能不合格的员⼯.可以推断出⼄部门员⼯的⽣产技能⽔平较⾼,理由如下:①⼄部门⽣产技能测试中,测试成绩的中位数较⾼,表⽰⼄部门⽣产技能⽔平优秀的员⼯较多;②⼄部门⽣产技能测试中,测试成绩的众数较⾼,表⽰⼄部门⽣产技能⽔平较⾼20.(8分)甲、⼄两台机床同时⽣产同⼀种零件,在10天中两台机床每天⽣产的次品数如下:甲:0,1,0,2,2,0,3,1,2,4;⼄:2,3,1,1,0,2,1,1,0,1.(1)分别计算两组数据的平均数和⽅差;(2)从结果看,在10天中哪台机床出现次品的波动较⼩?(3)由此推测哪台机床的性能较好解:(1)甲的平均数是甲=×(0+1+0+2+2+0+3+1+2+4)=1.5;⼄的平均数是⼄=×(2+3+1+1+0+2+1+1+0+1)=1.2.甲的⽅差是甲=[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(4-1.5)2]=1.65;⼄的⽅差是⼄=[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(1-1.2)2]=0.76.(2)因为甲=1.65,⼄=0.76,所以甲>⼄,所以⼄机床出现次品的波动较⼩.(3)⼄的平均数⽐甲的平均数⼩,且甲>⼄,所以⼄机床的性能较好.21.(12分)在某旅游景区上⼭的⼀条⼩路上,有⼀些断断续续的台阶,?下图是其中的甲、⼄两段台阶的⽰意图.请你⽤所学过的有关统计的知识(平均数、中位数、⽅差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路⾛起来更舒服?为什么?(3)为⽅便游客⾏⾛,需要重新整修上⼭的⼩路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表⽰每⼀级台阶的⾼度(?单位:cm).并且数据15,16,16,14,14,15的⽅差S甲2=23,数据11,15,18,17,10,19的⽅差S⼄2=353).答案:(1)相同点:两段台阶路台阶⾼度的平均数相同.不同点:?两段台阶路台阶⾼度的中位数、⽅差和极差均不相同.(2)甲段路⾛起来更舒服⼀些,因为它的台阶⾼度的⽅差⼩.(3)每个台阶⾼度均为15cm(原平均数)使得⽅差为0.22.(14分)某⾼中学校为使⾼⼀新⽣⼊校后及时穿上合⾝的校服,现提前对某校九年级(3)班学⽣即将所穿校服型号情况进⾏了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以⾝⾼作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学⽣?其中穿175型校服的学⽣有多少⼈?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型校服所对应扇形圆⼼⾓的⼤⼩;(4)求该班学⽣所穿校服型号的众数和中位数.解:(1)该班的学⽣总⼈数为15÷30%=50(名),穿175型校服的学⽣⼈数为50×20%=10(名).答:该班共有50名学⽣,其中穿175型校服的学⽣有10名.(2)穿185型校服的学⽣⼈数为50-3-15-15-10-5=50-48=2(名),补全条形统计图,如图所⽰.(3)185型校服所对应的扇形圆⼼⾓为×360°=14.4°.答:185型校服所对应的圆⼼⾓的⼤⼩为14.4°.(4)165型和170型出现的次数最多,都是15次,所以众数是165和170.共有50个数据,第25,26个数据都是170,所以中位数是170. 答:该班学⽣所穿校服型号的众数是165和170,中位数是170.。
人教版八年级数学下册单元复习:第20章 数据的分析单元综合检测+答案
第20章数据的分析单元综合检测(五)一、选择题(每小题4分,共28分)1.(岳阳中考)某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )A.12,13B.12,14C.13,14D.13,162.(天水中考)一组数据:3,2,1,2,2的众数、中位数、方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.23.四个数据:8,10,x,10的平均数与中位数相等,则x等于( )A.8B.10C.12D.8或124.某次射击训练中,一小组的成绩如下表所示:环数7 8 9人数 2 3已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A.5人B.6人C.4人D.7人5.(雅安中考)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,36.八年级一、二班的同学在一次数学测验中的成绩统计情况如下表:班级参加人数中位数平均数方差一50 84 80 186二50 85 80 161某同学分析后得到如下结论:①一、二班学生的平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是( )A.①②B.①③C.①②③D.②③7.某校A,B两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:队员1号2号3号4号5号A队176 175 174 171 174B队170 173 171 174 182设两队队员身高的平均数分别为,,身高的方差分别为,,则正确的选项是( ) A.=,> B.<,<C.>,>D.=,<二、填空题(每小题5分,共25分)8.(重庆中考)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:h) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是h.9.(营口中考)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为=0.56,=0.45,=0.61,则三人中射击成绩最稳定的是.10.某学生数学的平时成绩、期中考试成绩、期末考试成绩分别是:84分、80分、90分.如果按平时成绩∶期中考试成绩∶期末考试成绩=3∶3∶4进行总评,那么他本学期数学总评分应为分.11.某班同学进行知识竞赛,将所得成绩进行整理后,如图,竞赛成绩的平均数为分.12.某农科所在8个试验点对甲,乙两种玉米进行对比试验,这两种玉米在各个试点的亩产量如下:(单位:kg)甲:450 460 450 430 450 460 440 460乙:440 470 460 440 430 450 470 440在这些试验点中, 种玉米的产量比较稳定(填“甲”或“乙”).三、解答题(共47分)13.(11分)某市2018年的一次中学生运动会上,参加男子跳高比赛的有17名运动员,通讯员在将成绩表送组委会时不慎用墨水将成绩表污染掉一部分(如下表),但他记得这组运动员的成绩的众数是 1.75m,表中每个成绩都至少有一名运动员.根据这些信息,计算这17名运动员的平均跳高成绩(精确到0.01m).14.(11分)(扬州中考)为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生.(填“甲”或“乙”)(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.15.(12分)(威海中考)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分.前六名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩(分) 85 92 84 90 84 80面试成绩(分) 90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.16.(13分)(黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:t),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整.(2)求这100个样本数据的平均数、众数和中位数.(3)根据样本数据,估计黄冈市市直机关500户家庭中月平均用水量不超过12t的约有多少户?答案解析1.【解析】选B.在这组数据中,12出现了2次,出现的次数最多,因此,这组数据的众数是12,把这组数据从小到大排列为:12,12,13,14,16,17,18,最中间的数是14,因此这组数据的中位数是14.2.【解析】选B.从大到小排列此数据为:3,2,2,2,1;数据2出现了三次,次数最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.4,即中位数是2,众数是2,方差为0.4.3.【解析】选D.①x最小时,数据为x,8,10,10,中位数是(8+10)÷2=9,则(8+10+x+10)÷4=9,所以x=8;②x最大时,数据为8,10,10,x,中位数是(10+10)÷2=10,则(8+10+x+10)÷4=10,所以x=12;③当8≤x≤10时,中位数是(x+10)÷2,则(x+10)÷2=(8+10+x+10)÷4,可求得x=8.故选D.4.【解析】选A.设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得x=5.5.【解析】选A.∵一组数据2,4,x,2,4,7的众数是2,∴x=2,∴中位数为3,==3.5.6.【解析】选A.由平均数都是80知①正确;由二班的中位数大于一班的中位数知②正确;一班的方差大,其成绩相对不稳定,故③不正确.7.【解析】选D.∵=(176+175+174+171+174)=174(cm),=(170+173+171+174+182)=174(cm).=[(176-174)2+(175-174)2+(171-174)2+(174-174)2+(174-174)2]=2.8(cm2);=[(170-174)2+(173-174)2+(174-174)2+(171-174)2+(182-174)2]=18(cm2),∴=,<.8.【解析】由题意,可得这10名学生周末利用网络进行学习的平均时间是:(4×2+3×4+2×2+1×1+0×1)=2.5(h).答案:2.59.【解析】∵=0.56,=0.45,=0.61,∴<<,∴三人中射击成绩最稳定的是乙.答案:乙10.【解析】本学期数学总评分=84×30%+80×30%+90×40%=85.2(分).答案:85.211.【解析】==74(分).答案:7412.【解析】两种玉米的平均数都是450 kg,而=100,=200,所以甲种玉米的产量比较稳定.答案:甲13.【解析】设成绩是1.75m的有x人,1.80m的有y人,由题意得x+y=5,又x>3,y≠0,所以x=4,y=1.=≈1.69(m).答:这17名运动员的平均跳高成绩约是1.69m.14.【解析】(1)从条形统计图上看,甲组的成绩分别为3,6,6,6,6,6,7,8,9,10,因此甲组中位数为6,乙组成绩分别为5,5,6,7,7,8,8,8,8,9,平均分为×(5×2+6+7×2+8×4+9)=7.1(分),故填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,甲组的中位数是6,乙组的中位数是7.5,小明是7分,超过甲组的中位数,低于乙组的中位数,所以小明应该是甲组的学生.答案:甲(3)从统计图和表格中可以看出:乙组的平均分、中位数都高于甲组,方差小于甲组,且集中在中上游,所以支持乙组同学的观点,即乙组成绩好于甲组.15.【解析】(1)先将六位选手的笔试成绩按照大小顺序进行排序,位于第三位和第四位选手的平均分为中位数,笔试成绩出现次数最多的为众数.答案:84.5 84(2)设笔试成绩和面试成绩所占的百分比分别为x,y,由题意得解这个方程组得∴笔试成绩和面试成绩所占的百分比分别为40%和60%.(3)2号选手的综合成绩=92×0.4+88×0.6=89.6(分),3号选手的综合成绩=84×0.4+86×0.6=85.2(分),4号选手的综合成绩=90×0.4+90×0.6=90(分),5号选手的综合成绩=84×0.4+80×0.6=81.6(分),6号选手的综合成绩=80×0.4+85×0.6=83(分),∴综合成绩最高的两名选手是4号和2号.16.【解析】(1)100户家庭中月平均用水量为11t的家庭数量为:100-(20+10+20+10)=40(户).条形图补充完整如下:(2)平均数:==11.6.中位数:11.众数:11.(3)×500=350(户).答:估计不超过12t的用户约有350户.。
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.如图是嘉淇同学完成的作业,则他做错的题数是()A.0个B.1个C.2个D.3个2.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下:分数50 60 70 80 90 100人数 1 2 8 13 14 4 则该班学生成绩的中位数和众数分别是()A.70,80 B.70,90 C.80,90 D.80,1003.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.62,S丙2=0.48,S丁2=0.45,则四人中成绩最稳定的是( )A.甲B.乙C.丙D.丁4.为了解学校九年级学生某次知识问卷的得分情况,小红随机调查了50名九年级同学,结果如表:知识问卷得分(单位:分)65 70 75 80 85人数 1 15 15 16 3则这50名同学问卷得分的众数和中位数分别是()A.75,75 B.75,80 C.80,75 D.80,855.某校规定学生的学期数学成绩由研究性学习成绩与期末卷面成绩共同确定,其中研究性学习成绩占40%,期末卷面成绩占60%,小明研究性学习成绩为80分,期末卷面成绩为90分,则小明的学期数学成绩是()A.80分B.82分C.84分D.86分6.某课外小组的同学们在社会实践活动中调查了20户家庭莱月的用电量,如表所示则这20户家庭该月用电量的众数和中位数、平均数分别是()A.180,160,164 B.160,180;164 C.160,160,164 D.180,180,164 7.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表第1次第2次第3次第4次第5次第6次平均数方差甲134 137 136 136 137 136 136 1.0乙135 136 136 137 136 136 136有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是()A.甲的方差小于乙的方差,所以甲的成绩比较稳定;B.乙的方差小于甲的方差,所以乙的成绩比较稳定;C.甲的方差大于乙的方差,所以甲的成绩比较稳定;D.乙的方差大于甲的方差,所以乙的成绩比较稳定;8.已知一组数据:46,44,x,50,48,42的众数是46,则这组数据的平均数和中位数分别()A.44,43 B.43,45C.46,46 D.45,449.某校八年级共有四个班,在一次英语测试中四个班的平均分与各班参加考试的人数如表:班级一班二班三班四班参加人数51 49 50 60班平均分/分83 89 82 79.5则该校八年级参加这次英语测试的所有学生的平均分约为(精确到0.1)()A.83.1分B.83.2分C.83.4分D.83.5分10.某班50名学生的一次安全知识竞赛成绩分布如表所示(满分10分)这次安全知识竞赛成绩的众数是( ) A .5分B .6分C .9分D .10分11.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B .8,9,9,10,10,11这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是x ,那么()()()12n x x x x x x 0-+-+⋅⋅⋅+-=D .一组数据的方差是这组数据的极差的平方12.九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:这15名男同学引体向上数的中位数是( ) A .2 B .3C .4D .5二、填空题13.已知1x ,2x ,3x ,...,20x 的平均数是5,方差是2,则132x +,232x +,332x +, (2032)x +的平均数是_____,方差是____.14.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是______. 15.某公司销售部有五名销售员,2007年平均每人每月的销售额分别是6,8,11,9,8(万元),现公司需增加一名销售员,三人应聘试用三个月,平均每人每月的销售额分别为:甲是上述数据的平均数,乙是中位数,丙是众数,最后录用三人中平均月销售额最高的人是___. 16.某校合唱团成员的年龄分布如下表:对于不同的x,则表中数据的中位数是______.17.一组数据-4,-2,0,2,4的方差是.18.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲5kg种,乙种10kg,丙种10kg混在一起,则售价应定为每千克__________.19.某中学八年级开展“光盘行动”宣传活动,6个班级参加该活动的人数统计结果为:52,60,62,54,58,62,对于这组统计数据的众数是_____.20.如图,是某班50名同学的视力频数分布直方图,则这个班同学的视力众数为_______.三、解答题21.初二(1)班对数学期末总评成绩规定如下:总评成绩由考试成绩和平时成绩(满分120分)两部分组成,其中考试成绩占80%,平时成绩占20%,且总评成绩大于或等于100分时,该生综合评定为A等.(1)小敏的考试成绩为90分,它的综合评定有可能达到A等吗?为什么?(2)小浩的平时成绩为120分,综合评定若要达到A等,他的考试成绩至少要多少分?22.在学校组织的科学常识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分以上(包括70分)的人数为;(2)请你将表格补充完整:平均数(分)中位数(分)众数(分)一班77.6 80二班90(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数11 0 8(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.24.为了参加“中小学生诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班:85,86,82,91,86,八(2)班:80,85,85,92,88,通过数据分析,列表如下:(1)直接写出表中a,b,c,d的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?请说明理由.25.某校举办的八年级学生数学素养大赛共设3个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):七巧板拼图趣题巧解数学应用小米809088小麦908685()1若七巧板拼图,趣题巧解,数学应用三项得分分别40%,20%,40%按折算计入总分,最终谁能获胜?()2若七巧板拼图按20%折算,小麦(填“可能”或“不可能”)获胜.26.城南中学九年级共有12个班,每班48名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有.①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各随机抽取4名学生.整理数据(2)将抽取的48名学生的成绩进行分组,绘制出的频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为;;②估计全年级A、B类学生大约一共有名.成绩(单位:分)频数频率分析数据(3)教育主管部门为了解学校教学情况,将同层次的城南、城北两所中学的抽样数据进行对比,得下表:你认为哪所学校的教学效果较好?结合数据,请提出一个解释来支持你的观点.27.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.温馨提示:确定一个适当的月销售目标是一个关键问题;如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力.28.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩88 86 90 92 90 96(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用下图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)29.某企业生产部统计了15名工人某月加工的零件数:(1)写出这15人该月加工的零件数的平均数、中位数和众数;(2)若生产部领导把每位工人的月加工零件数定为260件,你认为是否合理,为什么?参考答案1.C2.C3.D4.C5.D6.A7.B8.C9.B11.C12.C13.17 1814.18915.甲16.1417.818.7.2元.19.6220.4.421.(1)设小敏的平时成绩为x分,根据题意得:90×80%+20%x≥100,解得:x≥140,∵满分是120分,∴小敏的综合评定不可能达到A等;(2)设小浩的考试成绩为x,根据题意得:80%x+20%×120≥100,解得:x≥95,∴他的考试成绩至少要95分.22.(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×84%=21人;(2)二班成绩的平均数:90×44%+80×4%+70×36%+60×16%=77.6(分);二班成绩的中位数:70(分);一班成绩的众数:80(分).填表如下:平均数(分)中位数(分)众数(分)一班77.68080二班77.6 70 90(3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.23.(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数为:5÷90360=20(人),即可得出8分的人数为:20-8-4-5=3(人),画出图形如图:甲校9分的人数是:20-11-8=1(人),(2)甲校的平均分为=120(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,∴中位数=12(7+7)=7(分);平均分相同,乙的中位数较大,因而乙校的成绩较好.24.(1)86,86,85,8.4;(2)八(1)班前5名同学成绩较好25.(1)小麦获胜;(2)不可能26.(1)②、③;(2)432;(3)本题答案不唯一27.(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.28.(1)10分;(2)90分;(3)89分;(4)93.5分29.(1)平均数为260(件);中位数为240件;众数为240件;(2)不合理。
人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案
第二十章《数据的分析》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.52.已知n个数据的和为108,平均数为12,则n为()A.7B.8C.9D.103.(跨学科融合)“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某校为了解同学们某季度学习“青年大学习”的情况,从中随机抽取5位同学,经统计他们的学习时间(单位:分钟)分别为78,80,85,90,80,则这组数据的众数为()A.78B.80C.85D.904.在以下一列数3,3,5,6,7,8中,中位数是()A.3B.5C.5.5D.65.现有相同个数的甲、乙两组数据,经计算得x甲=x乙,且s甲2=0.35,s乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定D.无法确定6.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分7.(跨学科融合)奥林匹克官方旗舰店统计了某一段时间内各款“冰墩墩”销售情况(如下表),厂家决定多生产20 cm高的“冰墩墩”,则依据的统计量是()A.平均数8.对于一组统计数据3,3,6,5,3,下列说法错误的是()A.众数是3B.平均数是4C.方差是1.6D.中位数是69.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元10.某市举行了一次数学竞赛,分段统计参赛同学的成绩,从中抽查了50名学生的成绩如下表:A.81分B.82分C.79分D.75.5分二、填空题(共5小题,每小题3分,共15分)11.冬天某地区一周最高气温的走势图如图所示,则这组数据的众数是℃.12.某班50人一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人,则本次测验的中位数是分.13.学校组织“我的青春我做主”演讲比赛,小红演讲内容得100分,语言表达得80分,若按演讲内容占40%,语言表达占60%的比例计算总成绩,则她的总成绩是分.14.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(从“平均数、中位数、众数、方差”中选择答案).15.(创新题)某学校随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图(如图),其中条形图被墨迹遮盖了一部分,则被调查的学生读课外书册数的中位数为.三、解答题(一)(共3小题,每小题8分,共24分)16.某饮料店为了解某一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,24,31.求这6天的日销售量的众数和平均数.17.在一次大学生一年级新生训练射击比赛中,某小组10人的成绩如下表:(1)该小组射击数据的众数是,中位数是;(2)该小组的平均成绩为多少?18.在校体育集训队中,跳高运动员小军和小明的9次成绩如下(单位:m):小军:1.41,1.42,1.42,1.43,1.43,1.43,1.44,1.44,1.45;。
第20章 数据的分析单元测试卷(答案版)
第20章数据的分析一、选择题(本大题共10小题 ,每题3分 ,共30分)1.假设1 ,3 ,x ,5 ,6五个数的平均数为4 ,那么x的值为(D) A.3B.4C.92D.52.假设m个数的平均数x ,另n个数的平均数y ,那么m+n个数的平均数是(C)A.x+y2B.x+ym+nC.mx+nym+nD.mx+nyx+y3.某校在一次歌咏比赛中 ,7位评委给各班演出的节目评分 ,在每班的7个评分中 ,去掉一个最|高分 ,再去掉一个最|低分 ,求得的平均数作为该班节目的实际得分.7位评委对该班的演出评分(单位:分)如下:9.65 ,9.70 ,9.68 ,9.75 ,9.72 ,9.65 ,9.78.那么该班节目的实际得分是(C)A.9.704分B.9.713分C.9.700分D.9.697分4.某学校九年级|一班十名同学定点投篮测试 ,每人投篮六次 ,投中的次数统计如下:5 ,4 ,3 ,5 ,5 ,2 ,5 ,3 ,4 ,1 ,那么这组数据的中位数、众数分别为(A)A.4 ,5B.5 ,4C.4 ,4D.5 ,55.在中秋节到来之前 ,学校食堂推荐了A,B,C三家月饼专卖店 ,对全校师生爱吃哪家的月饼进行调查 ,以决定最|终在哪家店采购 ,以下统计量最|值得关注的是(C)A.中位数B.平均数C.众数D.加权平均数6.在某校 "我的中国梦〞演讲比赛中 ,有9名学生参加决赛 ,他们决赛的最|终成绩各不相同.其中一名学生想要知道自己能否进入前5名 ,不仅要了解自己的成绩 ,还要了解这9名学生成绩的(D)A.众数B.方差C.平均数D.中位数7.在学校春季运动赛中李雷获得了1 000 m赛跑的第|一名.赛前他进行了刻苦训练 ,如果对他10次训练成绩进行统计分析 ,判断他的成绩是否稳定 ,那么需要知道李雷这10次成绩的(B)A.众数B.方差C.平均数D.中位数8.某学校把学生的期末测试、实践能力两项成绩分别按60% ,40%的比例计入学期总成绩 ,小明实践能力的得分是80分 ,期末测试的得分是90分 ,那么小明的学期总成绩是(C) A.80分B.85分C.86分D.90分9.假设一组数据a1 ,a2 ,… ,a n的方差是5 ,那么另一组新数据2a1 ,2a2 ,… ,2a n的方差是(B)A.50B.20C.10D.510.某校文学社成员的年龄分布如下表:A.平均数B.众数C.方差D.中位数二、填空题(本大题共7小题 ,每题4分 ,共28分)11.假设8个数的平均数是12,4个数的平均数为18,那么这12个数的平均数为__14______.12.数据3 ,3 ,4 ,7 ,8的方差是________.13.在一组数据x1 ,x2,x3,x4 ,x5中 ,数据x1,x2 ,x3 ,x4的权数分别是15% ,0.15 ,20% ,1 4 ,那么数据x5的权数是__25%______.14.为了了解学生使用零花钱的情况 ,小军随机地抽查了他们班的30名学生 ,结果如下表:这些同学每天使用零花钱的众数是__4______ ,中位数是__6______.15.2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是__2______.16.甲、乙、丙、丁四位同学在五次数学测验中 ,他们成绩的平均分相等 ,方差分别是 ,3.8 ,5.2 ,6.2 ,那么成绩最|稳定的同学是__甲______.17.七(1)班四个绿化小组植树的棵树如下:10 ,10 ,x ,8.这组数据的众数和平均数相等 ,那么这组数据的中位数是___10_____.三、解答题(本大题共5小题 ,共62分)18.(9分)某校规定学生期末数学总评成绩由三局部构成:卷面成绩、课外论文成绩、平日表现成绩(三局部所占比例如图).假设方方的三局部得分(单位:分)依次是92 ,80 ,84 ,那么她这学期期末数学总评成绩是多少?解:92×70%+80×20%+84×10%70%+20%+10%=88.8(分).那么方方这学期期末数学总评成绩是88.8分.19.(9分)某公司欲招聘一名工作人员 ,对甲、乙两位应聘者进行面试和笔试 ,他们的成绩(百分制)如下表:,谁将被录取.解:甲的平均成绩为(87×6+90×4)÷10=88.2(分) , 乙的平均成绩为(91×6+82×4)÷10=87.4(分). ∵88.2>87.4 ,∴甲将被录取.20.(12分)1 ,2 ,3 ,a 的平均数是3 ,而4 ,5 ,a ,b 的平均数是5.求: (1)a 和b (2)1 ,2 ,3 ,4 ,5 ,a ,b 这7个数的方差. 的值;解: (1 )∵1 ,2 ,3 ,a 的平均数是3 , ∴(1+2+3+a )=4×3 ,解得a =6. ∵4 ,5 ,a ,b 的平均数是5 , ∴(4+5+6+b )=4×5 ,解得b =5. ∴a 和b 的值分别是6 ,5; (2 ):∵a =6 ,b =5 ,∴1 ,2 ,3 ,4 ,5 ,6 ,5这7个数的平均数为267 ,∴方差为17×[⎝ ⎛⎭⎪⎫1-2672+⎝ ⎛⎭⎪⎫2-2672+⎝ ⎛⎭⎪⎫3-2672+⎝ ⎛⎭⎪⎫4-2672+2×⎝ ⎛⎭⎪⎫5-2672+⎝ ⎛⎭⎪⎫6-2672]≈2.78.21.(12分)在对某班的一次数学测验成绩进行统计分析中 ,各分数段(分数取正整数 ,总分值为100分)的人数如图 ,请观察图形 ,解答以下问题:(1)该班有___6_____名学生; 18______ ,频率是________; (3)请估算该班这次测验的平均成绩.解:平均成绩为160×(44.5×6+54.5×8+64.5×10+74.5×18+84.5×16+94.5×2)=70.5(分).22.(20分)在某市开展的 "好书伴我成长〞读书活动中 ,某中学为了了解八年级|300名学生的读书情况 ,随机调查了八年级|50名学生读书的册数 ,统计数据如下表:(1)求这50(2)根据样本数据 ,估计该校八年级|300名学生在本次活动中读书多于2册的人数. 解: (1 )0×3+1×13+2×16+3×17+4×150=2.那么这组数据的平均数是2 ,众数是3 ,中位数是2; (2 ):300×17+150=108(名).那么估计该校八年级|300名学生在本次活动中读书多于2册的学生有108名.。
人教版八年级下册《第二十章数据的分析》单元练习题(含答案)
第二十章《数据的分析》单元练习题一、选择题1.已知一组数据0,-1,1,2,3,则这组数据的方差为()A. 1B.-1C.D. 22.有甲、乙两班,甲班有m个人,乙班有n个人.在一次考试中甲班平均分是a分,乙班平均分是b分.则甲、乙两班在这次考试中的总平均分是()A.B.C.D.3.为了弘扬优秀传统文化,通州区30所中学参加了“名著·人生”戏剧展演比赛,最后有13所中学进入决赛,他们的决赛成绩各不相同.某中学已进入决赛且知道自己的成绩,但是否进入前7名,还必须知道这13所中学成绩的()A.中位数B.平均数C.众数D.方差4.“倡导全民阅读”、“推动国民素质和社会文明程度显著提高”已成为“十三五”时期的重要工作.教育主管部门对某学校青年学校青年教师2016年度阅读情况进行了问卷调查,并将收集的数据统计如表,根据表中的信息判断,下列结论错误的是()A.该学校中参与调查的青年教师人数为40人B.该学校中青年教师2016年平均每人阅读8本书C.该学校中青年教师2016年度看书数量的中位数为4本D.该学校中青年教师2016年度看书数量的众数为4本5.一组数据6、4、a、3、2的平均数是5,则a的值为()A. 10B. 5C. 8D. 126.某服装厂生产一批男衬衫,经过抽样调查60名中年男子,得知所需衬衫型号的人数如表所示.求出它的中位数是74,众数是76,平均数是74.6,下列说法正确的是()A.所需78号人数太少,78号的可以不生产B.这批衬衫可以一律按身长是74.6这个平均数生产C.因为众数是76,故76号的生产量要占第一位D.因为中位数是74,故74号的生产量要占第一位7.有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况如图所示:根据条形图提供的信息,下列说法中,正确的是()A.两次测试,最低分在第二次测试中B.第一次测试和第二次测试的平均分相同C.第一次分数的中位数在20~39分数段D.第二次分数的中位数在60~79分数段8.一组数据的方差为s2,将该组每一个数据都乘以4,所得到的一组新数据的方差是()A.B.s2C. 4s2D. 16s2二、填空题9.一组数据201、203、198、199、200、205的平均数为________.10.某次数学测验中,某班六位同学的成绩分别是:86,79,81,86,90,84,这组数据的中位数是________.11.在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委给某校的评分情况如下表所示:则这10位评委评分的平均数是________分.12.为了调查某小区居民的用水情况,随机抽查了若干户家庭月用水量,结果如表:则关于这若干户家庭的月用水量,中位数是________吨,月平均用水________吨.13.某校规定学生的学期学业成绩由三部分组成:平时占20%,期中占30%,期末占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为90分,这个成绩是________平均数.(填“算术”或“加权”)14.如下表记录的是某班级女生在一次跳绳练习中跳绳的次数及相应的人数,则该班级女生本次练习中跳绳次数的平均数是________.15.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为________.16.某乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为________.三、解答题17.我校50名学生在某一天调查了75户家庭丢弃塑料袋的情况,统计结果如下表:根据上表回答下列问题:(1)这天,一个家庭一天最多丢弃________个塑料袋.(2)这天,丢弃3个塑料袋的家庭户数占总户数的________.(3)该校所在的居民区共有居民0.8万户,则该区一天丢弃的塑料袋有多少个.18.我国淡水资源短缺问题十分突出,已成为我国经济和社会可持续发展的重要制约因素,节约用水是各地的一件大事.某校初三学生为了调查居民用水情况,随机抽查了某小区20户家庭的月用水量,结果如表所示:(1)求这20户家庭月用水量的平均数、众数及中位数.(2)政府为了鼓励节约用水,拟试行水价浮动政策.即设定每个家庭月基本用水量a(t),家庭月用水量不超过a(t)的部分按原价收费,超过a(t)的部分加倍收费.①你认为以平均数作为该小区的家庭月基本用水量a(t)合理吗?为什么?(简述理由)②你认为该小区的家庭月基本用水量a(t)为多少时较为合理?为什么?(简述理由)19.某次歌咏比赛,得分最高的三名选手的成绩统计如下表:若按算术平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?20.某地区教育部门要了解初中学生阅读课外书籍的情况,随机调查了本地区500名初中学生一学期阅读课外书的本数,并绘制了如下的统计图,请根据统计图反映的信息回答问题.(1)这些课外书籍中,哪类书的阅读数量最大?(2)这500名学生一学期平均每人阅读课外书多少本?(精确到1本)(3)若该地区共有2万名初中学生,请估计他们一学期阅读课外书的总本数.21.小红在期末考试中,语文,数学,外语,政治,物理,化学,生理卫生7门学科的总成绩是664分,其中语文和数学两门学科的总成绩是187分,求小红的外语,政治,物理,化学,生理卫生5门学科的平均成绩.第二十章《数据的分析》单元练习题答案解析1.【答案】D【解析】根据平均数的计算公式先算出这组数据的平均数,再根据方差公式进行计算即可.这组数据的平均数是:(-1+1+2+3)÷5=1,则这组数据的方差为:[(0-1)2+(-1-1)2+(1-1)2+(2-1)2+(3-1)2]=2;故选D.2.【答案】D【解析】根据加权平均数的定义可得:数据a的权是m,数据b的权是n,所以甲、乙两班在这次考试中的总平均分是.故选D.3.【答案】A【解析】∵共有13所中学参加决赛,取前7名,∴把所有学校的成绩按大小顺序排列,第7名的成绩是这组数据的中位数,所以该学校知道这组数据的中位数,才能知道自己是否进入前7名,故选A.4.【答案】B【解析】根据统计表可得出每个月课外阅读书籍的数量,即可求得平均数;出现次数最多的数据是众数;将这些数据按大小顺序排列,中间两个数的平均数为中位数;依此即可求解.A.8+6+5+10+4+7=40(人),故该学校中参与调查的青年教师人数为40人是正确的,不符合题意;B.平均数为:×(15×8+11×6+8×5+4×10+3×4+2×7)=7.3,原来的说法错误,符合题意;C.中间两个数都是4,所以中位数为4,故该学校中青年教师2016年度看书数量的中位数为4本,是正确的,不符合题意;D.4出现的次数最多,是10次,众数为4,故该学校中青年教师2016年度看书数量的众数为4本,是正确的,不符合题意.故选B.5.【答案】A【解析】根据平均数的定义列出方程,解方程可得.∵数据6、4、a、3、2的平均数是5,∴=5,解得:a=10,故选A.6.【答案】C【解析】因为众数是76,说明此型号的衬衫需求最大,故76号的生产量要占第一位.7.【答案】C【解析】解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.根据统计图各部分表示的意义,发现:A中,两次测试,最低分在第一次测试中,错误;B中,根据此条形统计图,显然第二次测试的分数明显高于第一次的分数,错误;C中,共有100名学生,所以中位数应是第50和51的平均数,显然第一次测试的中位数落在20~39段内,正确;D中,第二次测试的中位数应落在40~59段内,错误.故选C.8.【答案】D【解析】根据当数据都乘以一个数a时,方差变为原方差a2倍进行解答即可.∵一组数据的方差为s2,∴将该组每一个数据都乘以4,所得到的一组新数据的方差42×s2=16s2,故选D.9.【答案】201【解析】首先求出数据201、203、198、199、200、205的和是多少;然后用所有数据的和除以6,求出数据201、203、198、199、200、205的平均数为多少即可.(201+203+198+199+200+205)÷6=1206÷6=201,∴数据201、203、198、199、200、205的平均数为201.10.【答案】85【解析】把这组数据从小到大排列为79,81,84,86,86,90,共有6个数,中位数是第3,4个数的平均数,则中位数是(84+86)÷2=85.11.【答案】89【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,这10位评委评分的平均数是:(80+85×2+90×5+95×2)÷10=89(分).12.【答案】5,4.6【解析】将所有数据按照从小到大的顺序排列为:3,3,4,4,4,5,5,5,5,5,8,则中位数为:5,平均数为:≈4.6.故答案为:5,4.6.13.【答案】加权【解析】根据加权平均数的定义可得.∵85×20%+90×30%+92×50%=90,∴这个成绩是加权平均数.14.【答案】54【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,该班级女生本次练习中跳绳次数的平均数是==54. 15.【答案】89【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,这个小组的本次测试的平均成绩为:=89.16.【答案】13【解析】由于众数是一组数据中出现次数最多的数据,由此可以确定这组数据的众数.依题意得13在这组数据中出现四次,次数最多,则他们年龄的众数为13.17.【答案】解:(1)由表得:一个家庭一天最多丢弃5个塑料袋,故答案为5;(2)30÷75×100%=40%,故答案为40%;(3)×8000=28 800个.【解析】(1)由表直接写出结果;(2)由表看出,75户中丢弃3个塑料袋的家庭户数为30户,再求出所占总户数的百分比;(3)算出75户家庭丢弃塑料袋的总量,再求出该校所在的居民区共有居民0.8万户一天丢弃的塑料袋的总量.18.【答案】解:(1)平均数=(3×4+4×2+5×3+7×6+8×3+9×1+10×1)=6.这组数据是按从小到大排列的,第10,11位,都是7,则中位数为7.因为7出现的次数最多,则该组数据的众数为7,故众数和中位数均为7.(2)①以平均数6作为家庭月用水量a不合理.因为不能满足大多数家庭的月用水量.②以众数(中位数)7作为家庭月用水量a较为合理.因为这样可以满足大多数家庭的月用水量.【解析】平均数、中位数和众数都是刻画了数据的集中趋势,但是又各有特点,平均数受极端值的影响较大,中位数和众数不受极端值影响.19.【答案】解:王晓丽的平均分为:(98+80+80)÷3=86;李真的平均分为:(95+90+90)÷3=91;林飞扬的平均分为:(80+100+100)÷3=93.∵93>91>86,∴冠军是林飞扬,亚军是李真,季军是王晓丽.【解析】用每个选手的总分除以3,就是这名选手的平均分;求出平均分再比较它们的大小即可求解.20.【答案】解:(1)这些类型的课外书籍中,小说类课外书阅读数量最大.(2)(2.0+3.5+6.4+8.4+2.4+5.5)×100÷500=5.64≈6(本).答:这500名学生一学期平均每人阅读课外书6本.(3)2 0000×6=120 000(本)或2×6=12(万本)答:他们一学期阅读课外书的总数是12万本.【解析】由样本的情况可以估算出总体的情况,这在数学统计中是经常采用的一种方法.21.【答案】解:∵7门学科的总成绩是664分,其中语文和数学两门学科的总成绩是187分,∴5门的总分为664-187=477分,∴5门的平均分为477÷5=95.4分.答:小红这5门学科的平均成绩为95.4分.【解析】根据总分和另外两科的分数求得其他5科的总分,进而可以求得平均分.。
八年级数学上册《第二十章 数据的分析》单元测试卷附带答案-人教版
八年级数学上册《第二十章数据的分析》单元测试卷附带答案-人教版一、单选题1.在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数和中位数分别是()A.56,60B.60,72C.60,63D.60,602.小杭同学将自己前7次体育模拟测试成绩(单位一分)统计如表,第8次测试的成绩为a分,若这8次成绩的众数不止一个,则a的值为()次数第1次第2次第3次第4次第5次第6次第7次成绩272830282929283.已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差2S甲=0.06,乙同学1分钟跳绳的方差2S乙=0.35,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩-样稳定D.甲、乙两人的成绩稳定性不能比较4.某校团委组织团员开展“百年党史”知识竞赛,九(1)班6位参赛同学成绩为:83,87,80,83,88,83.则以下说法不正确...的是()A.6位同学成绩的平均数是84B.6位同学成绩的众数是83C.6位同学成绩的方差约为7.3D.6位同学成绩的中位数是81.55.对一组数据:-2,1,2,1,下列说法错误的是()A.平均数是1B.众数是1C.中位数是1D.方差是2.256.某班七个兴趣小组人数分别为4,4,5,X,6,6,7已知这组数据的平均数是5,则这组数据的中位数是()A.4B.5C.6D.77.为了从四名同学中选出一人参加计算机编程比赛,对他们进行了多次测试,并对每个人的测试成绩的平均数及方差进行了统计(如下表),则应选的同学是()学生学生一学生二学生三学生四平均数95969695方差55 4.8 4.88.某社区计划组织以“全民健身,‘毽’步如飞”为主题的踢毽子比赛活动,为了了解参赛成员踢毽子水平及稳定程度,在比赛前期甲、乙、丙、丁四名参赛成员分别记录了自己在规定时间内5 次踢毽子的数量,并计算出了各自的平均个数x及方差S2,如下表所示:甲乙丙丁x9010395108S226518512185)A.甲B.乙C.丙D.丁9.在某校举行的“我的中国梦”演讲比赛中,10名参赛学生的成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.中位数是80B.众数是80C.平均数是82D.极差是4010.甲、乙、丙三名射击运动员在集训期间的测试成绩如下表所以,若需要在其中遴选一名成绩优异并稳定的运动员参加比赛,比较适合的运动员是()成绩/(环)测试一测试二测试三测试四平均数方差甲9.28.89.48.69.00.1乙8.88.68.79.18.80.035丙8.88.99.19.39.00.035二、填空题11.已知数据x1,x2的平均数是2,数据x3,x4,x5的平均数是4,则x1,x2,x3,x4,x5这组数据的平均数是12.在校园歌手大奖赛上,比赛规则是:七位评委打分,去掉一个最高分和一个最低分后,所剩数据取平均数即为选手的最后得分.七位评委给某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,则这位歌手的最后得分是.13.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(x单位:千克)及方差2s,如表所示.今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是 .(填“甲”或“乙”或“丙”或“丁”)甲 乙 丙 丁 x24 24 23 20 2S2.11.921.914次的平均环数是8.3x x ==甲乙,8x =丙方差分别是2 1.5s=甲,2 2.8s =乙和2 1.5s =丙,那么根据以上提供的信息,你认为应该被推荐参加全市射击比赛的同学是 .三、解答题15.某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6:3:1.对应聘的王丽、张瑛两人的打分如下表:如果两人中只录取一人,根据表格确定个人成绩,谁将被录用?王丽 张瑛 专业知识 14 18 工作经验 16 16 仪表形象181216.11次航天发射完成空间站建设,空间站由“天和”楼心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦·航天情”系列活动.下面是八年级甲、乙两个班各项目的成绩(单位:分):项目班次知识竞赛演讲比赛甲 80 90 乙9582的最终成绩较高.17.如图,是甲、乙两名射击运动员一次训练中10次射击环数折线统计图.选出方差小的计算方差.18.甲、乙两个小组各6名学生的英语口试测验成绩如下(单位:分).甲组:76,90,88,82,85,83.乙组:81,90,91,89,79,74.请你利用统计知识,说明哪个小组学生的成绩比较稳定.19.某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为,图①中m的值为;(Ⅰ)求统计的这组月均用水量数据的平均数、众数和中位数.四、综合题20.2022年3月,新冠疫情突袭,社会各界众志成城,共同抗疫.严酷战疫中,我们又一次感受到祖国的强大,口罩也成为人们防护防疫的必备武器.钟楼区某药店有2500枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)统计的这组数据的平均数为,众数为,中位数为;(3)根据样本数据,估计这2500枚口罩中,价格为2.0元的约有为多少枚?21.近年来,网约车给人们的出行带来了便利,杨林和数学兴趣小组的同学对“美团”和“滴滴”两家网约车公司司机月收入进行了一项抽样调查,两家公司分别抽取的10名司机月收入(单位:千元)如图所示:“滴滴”网约车司机收入的频数分布表:月收入4千元5千元9千元11千元人数(个)4321平均月收入/千元中位数众数方差“滴滴”64 6.2“美团”6 1.2(2)杨林的叔叔决定从两家公司中选择一家做网约车司机,如果你是杨林,请从平均数、中位数,众数,方差这几个统计量中选择两个统计量进行分析,并建议他的权权选择哪家公司?22.某中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2) .回答下列问题:(1)这次调查一共抽查了名学生的植树量;请将条形图补充完整;(2)被调查学生每人植树量的众数是棵,中位数是棵;(3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵?参考答案与解析1.【答案】D【解析】【解答】解:将这组数据按从小到大排列为:56、60、60、60、63、72这组数据中出现次数最多的数据是60,故这组数据的众数是60这组数据共6个,排第3与第4位的数据都是60,所以中位数是60.故答案为:D.【分析】众数:在一组数据中,出现次数最多的数据叫做众数,(众数可能有多个),中位数:将一组数据按从小到大(或者从大到小)的顺序排列后,如果数据的个数是奇数个时,则处在最中间的那个数据叫做这组数据的中位数;如果数据的个数是偶数个时,则处在最中间的两个数据的平均数叫做这组数据的中位数,据此并结合题意,即可得出答案.2.【答案】C【解析】【解答】解:∵前7次体育模拟测试成绩27和30出现了1次,28出现了3次,29出现了2次,这8次成绩的众数不止一个∴第8次测试的成绩为29分∴a=29.故答案为:C.【分析】根据众数是出现次数最多的次数结合众数不止一个就可得到a的值.3.【答案】A【解析】【解答】解:∵0.06<0.35∴S甲2<S乙2∴甲的成绩比乙的成绩更稳定.故答案为:A【分析】利用方差越小,成绩越稳定,比较甲乙两个同学的方差大小,可得答案.4.【答案】D【解析】【解答】解:把6位参赛同学成绩从小到大排列:80,83,83,83,87,88.∴平均数为808383838788846+++++=,故选项A正确;众数是83,故选项B正确;方差为()()()()()()222222 8084838483848384878488846-+-+-+-+-+-≈7.3,故选项C正确;中位数是83,故选项D错误.故答案为:D.【分析】众数:在一组数据中,出现次数最多的数据叫做众数,(众数可能有多个),中位数:将一组数据按从小到大(或者从大到小)的顺序排列后,如果数据的个数是奇数个时,则处在最中间的那个数据叫做这组数据的中位数;如果数据的个数是偶数个时,则处在最中间的两个数据的平均数叫做这组数据的中位数;用数据的总和除以数据的总个数可得这组数据的平均数;各个数据与平均数差的平方和的平均数就是这组数据的方差,据此即可一一判断得出答案.5.【答案】A【解析】【解答】解:A、这组数据的平均数是:(-2+1+2+1)÷4=0.5,符合题意;B、1出现了2次,出现的次数最多,则众数是1,不符合题意;C、把这组数据从小到大排列为:-2,1,1,2,中位数是1,不符合题意;D、极方差为14×[(-2-0.5)2+(1-0.5)2+(2-0.5)2+(1-0.5)2]=2.25,不符合题意.故答案为:A.【分析】根据平均数,众数,中位数和方差的定义计算求解即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据的分析单元复习测试
一、选择题(每小题4分,共36分)
1、为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的期中考试数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有( )
A.1个
B.2个
C.3个
D.4个
2、人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:
80==乙甲x x ,2402=甲s ,1802
=乙s ,则成绩较为稳定的班级是( )
A.甲班
B.乙班
C.两班成绩一样稳定
D.无法确定 3、某地连续9天的最高气温统计如下:
这组数据的中位数和众数别是( )
A.24,25
B.24.5,25
C.25,24
D.23.5,24
4、在学校对学生进行的晨检体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0.1,0, 0.1,则在这10天中该学生的体温波动数据中不正确的是( )
A.平均数为0.12
B.众数为0.1
C.中位数为0.1
D. 方差为0.02 5、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( ) A.100分 B.95分 C.90分 D.85分
6、已知三年四班全班35人身高的算术平均数与中位数都是150厘米,但后来发现其中有一位同学的身高登记错误,误将160厘米写成166厘米,正确的平均数为a 厘米,中位 数为b 厘米关于平均数a 的叙述,下列何者正确( )
A.大于158
B.小于158
C.等于158
D.无法确定
7、在上题中关于中位数b的叙述。
下列何者正确()
A.大于158
B.小于158
C.等于158
D.无法确定
8、已知一组数据1、2、y的平均数为4,那么()
A.y=7
B.y=8
C.y=9
D.y=10
9、若一组数据a1,a2,…,a n的方差是5,则一组新数据2a1,2a2,…,2a n的方差是()
A.5
B.10
C.20
D.50
二、填空题(每空3分,共45分)
10、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4
的比例确定。
已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为________
11、在一次测验中,某学习小组的5名学生的成绩如下(单位:分)
68 、75、67、66、99
这组成绩的平均分x= ,中位数M= ;若去掉一个最高分后的平均分'x= ;那么所求的x,M,'x这三个数据中,你认为能描述该小组学生这次测验成绩的一般水平的数据是 .
12、从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,
其结果如下:
−1.2,0.1,−8.3,1.2,10.8,−7.0
这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为________ (结果保留到小数点后第一位)
13、已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是 .
14、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:
某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是 _________ (把你认为正确结论的序号都填上).
15、某班同学进行知识竞赛,将所得成绩进行整理后,如右图:竞赛成绩的平均数为
_____ .
16、物理老师布置了10道选择题作为课堂练习,右图是全班解题情况的统计,平均每个学生做对了 _________ 道题;做对题数的中位数为;众数为_________ ;
17、现有A、B两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,
2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A班的成绩如下表所示,B班的成绩如右图所示.
(1)由观察可知,______班的方差较大;
(2)若两班合计共有60人及格,问参加者最少获______分才可以及格.
(分)
题数
三、解答题(19分)
18、某工厂有220名员工,财务科要了解员工收入情况。
现在抽测了10名员工的本月收入,结果如下:(单位:元)。
1660 1540 1510 1670 1620 1580 1580 1600 1620 1620
(1)全厂员工的月平均收入是多少?
(2)平均每名员工的年薪是多少?
(3)财务科本月应准备多少钱发工资?
(4)一名本月收入为1570元的员工收入水平如何?
答案:
1-9:BBADC,BCCC
10. 84.5分
11. 75分,68分, 69分 , M
12. 19.1cm,164.3cm
13.2
14. ①②③
15. 74分
16.9(或8.78), 9,8和10
17.A,4
18. 解:(1)依题意得,
1
x=+++++++++=1600 (1660154015101670162015801580160016201620) 10
因此样本的平均数是1600元,由此可以推测出全厂员工的月平均收入约是1600元。
(2)由(1)得这个厂220名员工的月平均收入约是1600元,
16001219200
⨯=(元)
由此可以推测出这个厂平均每名员工的年薪约是19200元。
(3)由(1)得这个厂220名员工的本月平均收入约是1600元,
1600220352000
⨯=(元)
由此可以推测出财务科本月应准备约352000元发工资。
(4)样本的中位数是1610元,由此可以推测出全厂员工本月收入的中位数是1610元。
因为1570元小于1610元,由此推测出一名本月收入为1570元的员工的收入可能是中下水平。
或由(1)得这个厂220名员工的本月平均收入约是1600元。
因为1570元小于1600元,由此推测出一名本月收入为1570元的员工的收入可能是低于平均水平。