八年级数学上册第6章数据的分析单元综合测试题(含答案解析).doc

合集下载

最新北师大版八年级数学上册《第六章数据的分析》单元检测试题(含答案)

最新北师大版八年级数学上册《第六章数据的分析》单元检测试题(含答案)

北师大版八年级数学上册第六章《数据的分析》单元检测试题一.选择题(共12小题)1.一组数据﹣3,2,2, 0,2,1的众数是()A.﹣3 B.2 C.0 D.12.在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、x、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A.100 B.90 C.80 D.703.801班的全体同学为本校一贫困生共揖款125元,根据下表(不完整)中该班的捐款数和捐款人数,可以知道该班捐款数的平均数和中位数依次是()A.2.5元,2元B.2.5元,2.5元C.2元,2.5元D.2元,2元4.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民用电量(单位:度),下列说法错误的是()4A.中位数是55 B.众数是60 C.平均数是54 D.方差是29 5.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3 C. a D.a+156.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.57.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大8.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A.8 B.10C.21 D.229.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元B.6.8元C.7.5元D.8.6元10.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A.6 B.7 C.7.5 D.1511.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h.根据上述信息,你认为本次调查数据的中位数落在()A.B组B.C组C.D组D.A组12.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()A.3 B.6 C.12 D.5二.填空题(共5小题)13.有一组数据:3,a,4,6,7,它们的平均数是5,则a= ,这组数据的方差是.14.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是元.15.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如下表所示若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为16.某学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了如图所示的条形统计图,则30名学生参加活动的次数的中位数是次.17.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是分.三.解答题(共4小题)18.某农业科学研究所用新技术种植了一块棉花试验田,又在试验田旁边用老方法种植了一块面积相等的棉花田作比较,科研人员在棉花生长期间分别从两块地里各取了10株棉苗,测得它们的苗高如下:(单位:mm)(1)分别计算两块田里棉苗高度的平均数;(2)分别计算两块田里棉苗高度的方差,并指出哪块田里的棉苗长得整齐些.19.小明和小红5次数学单元测试成绩如下:(单位:分)小明:89、67、89、92、96;小红:86、62、89、92、92.他们都认为自己的成绩比另一位同学好.(1)分别计算小明和小红5次数学单元测试成绩的平均数、中位数和众数,并分析他们各自认为自己的成绩比另一位同学好的理由;(2)你认为谁的成绩更好些?说一说你的理由.20.小明的爸爸为了解小明这学期在家的作息时间,随机挑选了某个星期对小明进行了观察,并记录了他娱乐的时间:(1)小明这周内娱乐时间的平均数是分,中位数是分.(2)应选中位数和平均数中的哪一个表示小明这一周的一般娱乐时间更好?(3)是否可以用(2)的数据表示本学期小明在家娱乐的一般时间?(请填“可以”或“不可以”).21.为了从甲、乙两名选手中选拔一人参加射击比赛,对他们的射击水平做了一次测验,两人在相同条件下各射靶10次,命中的环数如下:甲:9 6 7 6 2 7 7 9 8 9乙:2 4 6 8 7 7 8 9 9 10为了比较两人的成绩,制作了如下的统计图表:1我们可以制定不同的规则来评判甲、乙两人的成绩.如:①平均数与方差相结合.平均数大的胜,平均数相同时,方差小的胜;②从射击命中的趋势来看,即看射击成绩发展趋势,有发展潜力的胜.在规则①下:甲胜,因为甲、乙两人平均数相等,甲的方差小;在规则②下:乙胜,因为从图中可以看出,乙的成绩处于上升趋势,有发展潜力.现在,请你制定两种不同的评判规则,并根据你的规则对甲、乙两人的成绩作出评判.参考答案一.选择题(共12小题)1.B;2.B;3.A;4.D;5.B;6.A;7.A;8.D;9.B;10.C;11.B;12.C;二.填空题(共5小题)13.5;2;14.15.3;15.84;16.2;17.100;三.解答题(共4小题)18.略 19.略 20.130;65;中位数;可以;21.略。

北师大版数学八年级上册 第六章 数据的分析综合测评(含答案)

北师大版数学八年级上册 第六章 数据的分析综合测评(含答案)

第六章 数据的分析综合测评(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 一组数据4,6,5,5,10中,平均数是( )A .5B .6C .7D .82. 某车间5名工人日加工零件数(个)分别为5,9,3,4,3,这组数据的众数是( ) A .3个 B .4个 C .5个 D .9个3. 学校举行演讲比赛,共有13名同学进入决赛,比赛将评出金奖1名,银奖2名,铜奖3名.某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的( )A .平均数B .中位数C .众数D .方差 4. 某校八年级八个班级向“希望工程”捐献图书的册数如下:所捐图书册数的中位数和众数分别是( ) A .90册,500册 B .93册,500册 C .90册,90册 D .93册,90册 5. 某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是3.6,4.6,6.3,7.3,则这4名同学3次数学成绩最稳定的是( )A .甲B .乙C .丙D .丁6.(2021年黑龙江)一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是( ) A .众数 B .中位数 C .平均数 D .方差7. 某公司招聘职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行测试.测试结果如下表:(各项满分均为10分)如果将学历、经验和工作态度三项得分按1∶2∶3的比例确定各应聘者的最终得分,并以此为依据录取得分最高者,那么将被录取的是( )A .甲B .乙C .丙D .丁8. 在对一组数据进行分析时,小华列出了方差的计算公式:()()()()22222-3-3-4-x x x xn+++,由公式提供的信息,下列说法错误的是( )A .这组数据共有4个B .这组数据的中位数是3C .这组数据的众数是3D .这组数据的平均数是3.59. 在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x10. 下列说法:①一组数据:3,2,5,5,4,6的众数是5;②甲、乙两种麦种连续3年的平均亩产量相同,它们的方差分别为5和0.5,则乙麦种产量比较稳定;③一组数据2,4,x ,2,4,10的众数为2,则它的中位数是3,方差是48;④如果x 1,x 2,…x n ,的平均数是x ,那么(x 1−x )+(x 2−x )+…+(x n −x )=0.其中正确的有()A.①②③B.①③④C.①②④D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)11. 已知一组数据1,3,a,10的平均数为5,则a=__________.12. 在“英语达人”中学生竞赛中,5位评委给小明的评分分别是:8,7,7,9,9,这组数据的的方差是__________.13. 某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元,3元,2元,1元.这四种矿泉水某天的销售量如图1所示,则这天销售的矿泉水的平均单价是__________元.图1 图214. 若一组数据8,3,x,y,5的众数和中位数分别是8和6,则这组数据的平均数为__________.15. 若一组数据a1,a2,…,a n的方差是5,则一组新数据2a1,2a2,…,2a n的方差是__________.16. 某中学学生对本校学生的每周零花钱使用情况进行了调查,得到一组学生平均一周用出的零花钱的数据.图2是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中平均一周用出零花钱25元和30元的学生一共42人.则这组数据的众数是__________元,中位数是__________元.三、解答题(本大题共7小题,共52分)17. (6分)小明八年级下学期的数学成绩如下表所示:考试类别平时成绩期中成绩期末成绩成绩(分)85 86 88如果按平时成绩占20%、期中成绩占30%、期末成绩占50%计算,求出小明该学期的总评成绩.18. (6分)某校200名学生参加植树活动,要求每人植树3~6棵.活动结束后对20名学生每人的植树量(单位:棵)进行了调查,调查结果如下表所示:棵数 3 4 5 6人数 5 9 5 1(1)这20名学生每人植树量的众数为__________棵,中位数为__________棵;(2)求这20名学生中植树棵树不少于5棵的人数所占的百分比.19.(8分)学校组织了“我和我的祖国”演讲比赛,甲、乙两队各有10人参加本次比赛,成绩(10分制)如下表所示:甲10 8 7 9 8 10 10 9 10 9乙7 8 9 7 10 10 9 10 10 10(1)甲队成绩的众数是__________分,乙队成绩的平均数是__________分;(2)哪个队的成绩比较整齐?20.(10分)“新冠肺炎”疫情期间,某口罩生产车间有15位工人,为了解生产进度,车间主任统计了15位工人某天生产口罩的只数如下表:每人生产口罩只数540 450 300 240 210 120人数 1 1 2 6 3 2(1)求这15位工人该天生产口罩的中位数和众数;(2)假如车间主任把每位工人每天生产口罩数定为250只,你认为这个定额是否合理?若不合理,应定为多少较为合理?请说明理由.21.(10分)“绿水青山就是金山银山”,某市市民积极参与义务植树活动.小致同学为了解自己所在小区300户家庭在4月份义务植树的数量,进行了抽样调查,随机抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如图3的统计图,请补充完整;②这30户家庭4月份义务植树数量的平均数是棵,众数是棵;(2)“互联网+全民义务植树”是新时代全民义务植树组织形式和尽责方式的一大创新,小致同学所调查的这30户家庭中有8户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式植树的家庭有多少户?图322. (12分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩(单位:环)依次为:甲:8,8,7,8,9;乙:5,9,7,10,9.教练根据他们的成绩绘制了如图4所示的尚不完整的统计图表:图4 根据以上信息,解答下面的问题:(1)a=__________,b=__________,c=__________; (2)完成图6中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会__________.(填“变大”“变小”或“不变”)附加题(共20分,不计入总分)1.(6分)对于三个数a ,b ,c ,用M {a ,b ,c }表示这三个数的平均数,用min {a ,b ,c }表示这三个数中最小的数,例如:M {-1,2,3}=1233-++=43,min {-1,2,3}=-1.如果M {3,x -1,5x +1}=min {2,-x +3,5x },那么x = .2.(14分)在发生某公共卫生事件期间,某专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是:连续14天,每天新增疑似病例不超过7人.已知在过去的14天内,甲、乙两地新增疑似病例数据信息如下:甲地:总体平均数为2,方差为2; 乙地:中位数为3,众数为4和5.请你运用所学知识判断:甲、乙两地是否会发生大规模群体感染?请说明理由.(山东 于宗英)平均数 众数 中位数 方差 甲 8 a 8 c乙 8 9 b 3.2第六章数据的分析综合测评一、1. B 2. A 3. B 4. D 5. A 6. D 7. A 8. D 9. A 10. C二、11. 6 12. 0.8 13. 2.25 14. 6 15. 20 16. 25 25三、17. 解:小明该学期的总评成绩为:85×20%+86×30%+88×50%=86.6(分).18. 解:(1)4 4(2)这20名学生中植树棵数不少于5棵的人数所占的百分比为:5+120×100%=30%.19. 解:(1)10 9(2)甲队的平均数为:(7+8×2+9×3+10×4)÷10=9;甲队的方差为:110()()()()2222 7-928-939-9+410-9+⨯+⨯⨯⎡⎤⎣⎦=1;乙队的方差为:110×()()()()222227-98-929-9+510-9⨯++⨯⨯⎡⎤⎣⎦=1.4.因为1<1.4,所以甲队的成绩比较整齐.20. 解:(1)这15位工人该天生产口罩的中位数是240只,众数是240只.(2)不合理.因为表中数据显示,每月能完成250件的人数一共有4人,还有11人不能达到此定额,不利于调动多数员工的积极性.因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240只较为合理.21. 解:(1)①由已知数据可知种植3棵树的家庭有12户,种植4棵树的家庭有8户.补全统计图如图1:图1②3.4 3(2)300×830=80(户).所以估计该小区采用这种形式植树的家庭有80户.22. 解:(1)8 9 0.4(2)乙成绩变化情况的折线如图2所示:图2(3)因为两人的平均成绩相同,而甲的成绩的方差小,所以甲的成绩较稳定,故教练选择甲参加射击比赛.(4)变小附加题1.12或132.解:①甲地不会发生大规模群体感染.理由如下:由题意,得()()()2221214122...214x x x ⎡⎤-+-++-⎣⎦=2,即()()()222121422...2x x x ⎡⎤-+-++-⎣⎦=28. 若甲地14天中存在某一天新增疑似病例超过7人,则最少为8人.因为(8-2)2=36>28,所以没有一天新增疑似病例超过7人,故甲地不会发生大规模群体感染. ②乙地不会发生大规模群体感染.理由如下:因为一共有14个数据,所以中位数为第7,8个数的平均数.因为中位数是3,所以第7,8个数可能为2,4或3,3两种情况.若中间两个数是2和4,则前面六个数只能取0,1,2这三个数,所以前七个数中有一个数至少会出现3次.因为众数是4和5,所以后六个数中4和5至少各出现4次,不合题意;若中间两个数都是3,因为众数是4和5,则后六个数中4和5至少各出现3次,所以后六个数只能为4,4,4,5,5,5.所以前六个数只能取0,1,2,且每个数最多出现两次.所以,这14个数只能是:0,0,1,1,2,2,3,3,4,4,4,5,5,5. 所以乙地不会发生大规模群体感染.。

八年级数学上册第6章数据的分析单元综合测试题(含答案解析)

八年级数学上册第6章数据的分析单元综合测试题(含答案解析)

第6章数据的分析一、选择题1.若3,2,x,5的平均数是4,那么x等于( )A.8 B.6 C.4 D.22.已知一组数据10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是( ) A.40,40 B.40,60 C.50,45 D.45,403.有一组数据,按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数是22,则x等于( )A.23 B.22 C.20 D.214.某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了这25人某月的销售量如下表:该公司营销人员该月销售量的中位数是( )每人销售量(单位:件)600 500 400 350 300 200人数(单位:人) 1 4 4 6 7 3A.400件B.350件C.300件D.360件5.天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是( )A.服装型号的平均数 B.服装型号的众数C.服装型号的中位数 D.最小的服装型号6.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:命中环数(单位:环)7 8 9 10甲命中相应环数的次数 2 2 0 1乙命中相应环数的次数 1 3 1 0从射击成绩的平均数评价甲、乙两人的射击水平,则( )A.甲比乙高 B.甲、乙一样C.乙比甲高 D.不能确定7.当5个整数从小到大排列时,其中位数为4,如果这个数据组的唯一众数是6,则这5个整数可能的最大的和是( )A.21 B.22 C.23 D.248.为了让人们感受到丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内(一周按6天计算)丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31.如果该班有45名同学,那么根据提供的数据估计,本周全班同学的家庭总共丢弃塑料袋的数量约为( )A.900个B.1080个C.1260个D.1800个9.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为( ) A.4 B.8 C.12 D.2010.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的( )A.平均数B.加权平均数C.中位数D.众数二、填空题11.第一小组共6名学生,在一次“引体向上”的测试中,他们分别做了:8,10,8,7,6,9个.这6名学生平均每人做了__________(个).12.一射击运动员在一次射击练习中打出的成绩(单位:环)是:7,8,9,8,6,8,10,7,这组数据的众数是__________.13.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为__________件.14.下表是食品营养成份表的一部分(每100克食品中可食部分营养成份的含量)蔬菜种类绿豆芽白菜油菜卷心菜菠菜韭菜4 3 4 4 2 4碳水化合物(克)在表中提供的碳水化合物的克数所组成的数据中,中位数是__________,平均数是__________.15.如图,描述了一家鞋店在一段时间里销售女鞋的情况:则这组数据的众数为__________.三、解答题16.已知四个数的和为33,其中一个数为12,那么其余三个数的平均数是多少?17.利用计算器计算下列数据的平均数:(1)9.48,9.46,9.43,9.49,9.47,9.45,9.44,9.42,9.47,9.46(2)某工人在30天中加工一种零件的日产量为2天51件,3天52件,6天53件,8天54件,7天55件,3天56件,1天59件,求这个工人平均每天加工零件多少件?18.某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班学生的成绩统计如下表:成绩(分)71 74 78 80 82 83 85 86 88 90 91 92 94人数 1 2 3 5 4 5 3 7 8 4 3 3 2请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是__________;(2)该班学生考试成绩的中位数是__________;(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.19.某班组织一次数学测试,全班学生成绩的分布情况如下图:(1)全班学生数学成绩的众数是__________分,全班学生数学成绩为众数的有__________人.(2)全班学生数学成绩的中位数是__________分.(3)分别计算两个小组超过全班数学成绩中位数的人数占全班人数的百分比.20.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数;(3)如果你是顾客,宜选购哪家工厂的产品?为什么?北师大新版八年级上册《第6章数据的分析》2015年单元测试卷(辽宁省沈阳市培英中学)一、选择题1.若3,2,x,5的平均数是4,那么x等于( )A.8 B.6 C.4 D.2【考点】算术平均数.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:∵数据3,2,x,5的平均数是4,∴(3+2+x+5)÷4=4,∴10+x=16,∴x=6.故选B.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.2.已知一组数据10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是( ) A.40,40 B.40,60 C.50,45 D.45,40【考点】众数;中位数.【分析】把这组数据按照从小到大的顺序排列,第5、6个数的平均数是中位数,在这组数据中出现次数最多的是15,得到这组数据的众数.【解答】解:把这组数据按照从小到大的顺序排列为:10,20,30,40,40,40,50,50,80,90,第4、5个两个数的平均数是(40+40)÷2=40,所以中位数是40,在这组数据中出现次数最多的是40,即众数是40.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3.有一组数据,按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数是22,则x等于( )A.23 B.22 C.20 D.21【考点】中位数.【分析】将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.【解答】解:∵数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数是22∴(x+23)÷2=22∴x=21.故选D.【点评】本题考查中位数的意义.解题的关键是熟记中位数的概念.4.某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了这25人某月的销售量如下表:该公司营销人员该月销售量的中位数是( )每人销售量(单位:件)600 500 400 350 300 200人数(单位:人) 1 4 4 6 7 3A.400件B.350件C.300件D.360件【考点】中位数.【分析】根据中位数的概念求解.【解答】解:由题意得,该公司第13名营销人员的销售额为该月销售量的中位数,即中位数为:350.故选B.【点评】本题考查了中位数的概念,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是( )A.服装型号的平均数 B.服装型号的众数C.服装型号的中位数 D.最小的服装型号【考点】统计量的选择.【分析】天虹百货某服装销售商最感兴趣的是服装型号的销售量哪个最大.【解答】解:由于众数是数据中出现最多的数,销售商最感兴趣的是服装型号的销售量哪个最大,所以他最应该关注的是众数.故选B.【点评】本题考查学生对统计量的意义的理解与运用,要求学生对统计量进行合理的选择和恰当的运用.6.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:命中环数(单位:环)7 8 9 10甲命中相应环数的次数 2 2 0 1乙命中相应环数的次数 1 3 1 0从射击成绩的平均数评价甲、乙两人的射击水平,则( )A.甲比乙高 B.甲、乙一样C.乙比甲高 D.不能确定【考点】加权平均数.【专题】计算题;压轴题.【分析】运用求平均数公式:=(x1+x2+x3+…x n)分别求出甲、乙两名学生的平均数,再比较.【解答】解:由题意知,甲的平均数==8环,乙的平均数=8环,所以从平均数看两个一样.故选B.【点评】本题考查了平均数的概念.一组数据的平均数等于所有数据的和除以数据的个数,它反映这组数据的平均水平.7.当5个整数从小到大排列时,其中位数为4,如果这个数据组的唯一众数是6,则这5个整数可能的最大的和是( )A.21 B.22 C.23 D.24【考点】众数;中位数.【专题】压轴题.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:根据中位数的定义5个整数从小到大排列时,其中位数为4,前两个数不是众数,因而一定不是同一个数.则前两位最大是2,3,根据众数的定义可知后两位最大为6,6.这5个整数最大为:2,3,4,6,6∴这5个整数可能的最大的和是21.故选A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.8.为了让人们感受到丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内(一周按6天计算)丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31.如果该班有45名同学,那么根据提供的数据估计,本周全班同学的家庭总共丢弃塑料袋的数量约为( )A.900个B.1080个C.1260个D.1800个【考点】算术平均数;用样本估计总体.【专题】应用题.【分析】在本题中,可以先求出样本平均数,样本平均数约等于45名同学每天共丢弃塑料袋的数量的平均数,然后乘以总数即可解答.【解答】解:(33+25+28+26+25+31)÷6=28,28×45=1260.故选C.【点评】统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.9.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为( ) A.4 B.8 C.12 D.20【考点】算术平均数.【分析】只要运用求平均数公式:即可列出关于d的方程,解出d即可.【解答】解:∵a,b,c三数的平均数是4∴a+b+c=12又a+b+c+d=20故d=8.故选B.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.10.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的( )A.平均数B.加权平均数C.中位数D.众数【考点】统计量的选择.【分析】升旗部队要求新兵身高应该相当,然后结合各个统计量的意义确定答案即可.【解答】解:∵升旗部队要求新兵身高应该相当,∴部队最关心的是新兵身高数据的众数.故选D.【点评】本题考查了统计量的选择,解题的关键是了解平均数、中位数、加权平均数及众数的意义,难度不大.二、填空题11.第一小组共6名学生,在一次“引体向上”的测试中,他们分别做了:8,10,8,7,6,9个.这6名学生平均每人做了8(个).【考点】算术平均数.【专题】计算题;压轴题.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:平均数=(8+10+8+7+6+9)÷6=8(个).∴这6名学生平均每人做了8个.故答案为8.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.12.一射击运动员在一次射击练习中打出的成绩(单位:环)是:7,8,9,8,6,8,10,7,这组数据的众数是8.【考点】众数.【分析】根据众数的定义找到出现次数最多的数即为该组数据的众数.【解答】解:在这一组数据中8环是出现次数最多的,故众数是8(环).故填8.【点评】本题为统计题,考查众数的意义,解题时要细心.13.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为5.5件.【考点】中位数.【专题】应用题.【分析】根据中位数的定义解答.把数据按大小排列,第3、4个数的平均数为中位数.【解答】解:从小到大排列为:3,4,5,6,6,7.根据中位数的定义知其中位数为(5+6)÷2=5.5.∴这组数据的中位数为5.5(件).故答案为5.5.【点评】本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.14.下表是食品营养成份表的一部分(每100克食品中可食部分营养成份的含量)蔬菜种类绿豆芽白菜油菜卷心菜菠菜韭菜4 3 4 4 2 4碳水化合物(克)在表中提供的碳水化合物的克数所组成的数据中,中位数是4,平均数是4.【考点】算术平均数;中位数.【专题】图表型.【分析】要求这些数据的中位数,可先将它们进行从小到大的排列,找出最中间的一个数(或最中间的两个数的平均数)即可;要求平均数只要求出数据之和再除以总个数即可.【解答】解:将它们进行从小到大的排列为:2,3,4,4,4,4,7,处于中间位置的数是4,因此它们的中位数是4.这组数据的总和为:4+3+4+4+2+4+7=28,而这组数据一共有7个数,因此它们的平均数是28÷7=4.故填4;4.【点评】本题考查的是样本平均数和中位数的求法.15.如图,描述了一家鞋店在一段时间里销售女鞋的情况:则这组数据的众数为21(cm)和30(cm).【考点】众数;条形统计图.【专题】应用题.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:如图所示,21cm和31cm的女鞋出现的次数最多,是5次,所以这组数据的众数为21(cm)和30(cm).故填21(cm)和30(cm).【点评】本题主要考查众数的定义,是需要熟练掌握的概念.三、解答题16.已知四个数的和为33,其中一个数为12,那么其余三个数的平均数是多少?【考点】算术平均数.【分析】设其余三个数的平均数是x,先求出其它三个数的和,再加上12正好等于33,求出x的即可.【解答】解:设其余三个数的平均数是x,根据题意得:3x+12=33,解得:x=7.答:其余三个数的平均数是7.【点评】此题考查了平均数,掌握平均数等于所有数据的和除以数据的个数是本题的关键.17.利用计算器计算下列数据的平均数:(1)9.48,9.46,9.43,9.49,9.47,9.45,9.44,9.42,9.47,9.46(2)某工人在30天中加工一种零件的日产量为2天51件,3天52件,6天53件,8天54件,7天55件,3天56件,1天59件,求这个工人平均每天加工零件多少件?【考点】加权平均数;算术平均数.【分析】(1)求得所有数据的和,再除以数据的个数即可;(2)首先求得30天加工的零件总和,再除以天数30即可.【解答】解:(1)(9.48+9.46+9.43+9.49+9.47+9.45+9.44+9.42+9.47+9.46)÷10=94.57÷10=9.457.答:数据的平均数是9.457.(2)(51×2+52×3+53×6+54×8+55×7+56×3+59×1)÷30=(102+156+318+432+385+168+59)÷30=1620÷30=54(件).答:这个工人平均每天加工零件54件.【点评】本题考查的是加权平均数的求法,掌握求平均数的方法:数据总和÷数据总个数=平均数是解决问题的关键.18.某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班学生的成绩统计如下表:成绩(分)71 74 78 80 82 83 85 86 88 90 91 92 94 人数 1 2 3 5 4 5 3 7 8 4 3 3 2 请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是88;(2)该班学生考试成绩的中位数是86;(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.【考点】众数;中位数.【专题】图表型.【分析】(1)众数是指一组数据中出现次数最多的数据.88分的最多,所以88为众数;(2)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.此题共50名学生,排序后第25,26个数据的平均数是86,所以中位数是86;(3)成绩处于全班中游偏上水平,还是偏下水平,应该与中位数进行比较.该班张华同学在这次考试中的成绩是83分低于全班成绩的中位数,所以张华同学的成绩处于全班中游偏下水平.【解答】解:(1)88出现的次数最多,所以众数是88;(2)排序后第25,26个数据的平均数是86,所以中位数是86;(3)用样本来估计总体不能说张华的成绩处于中游偏上的水平.因为全班成绩的中位数是86,83分低于全班成绩的中位数,张华同学的成绩处于全班中游偏下水平.【点评】主要考查了众数,中位数的确定方法和用样本估计总体的能力.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.19.某班组织一次数学测试,全班学生成绩的分布情况如下图:(1)全班学生数学成绩的众数是95分,全班学生数学成绩为众数的有20人.(2)全班学生数学成绩的中位数是92.5分.(3)分别计算两个小组超过全班数学成绩中位数的人数占全班人数的百分比.【考点】条形统计图;中位数;众数.【专题】图表型.【分析】(1)学生数目最多的数为众数,一二两组人数相加即可;(2)学生共有:3+2+5+3+5+7+12+8+1+4=50人,那么中位数就是分数从高到低排列后,排列第25和第26的分数的平均数;(3)百分比=频数÷总数×100%.【解答】解:(1)全班学生数学成绩的众数是95(分),全班学生数学成绩为众数的有11+9=20人;(2)第25个数为90,第26个数为95,所以中位数为(95+90)÷2=92.5.(3)∵=24%,=26%,∴第一、二小组超过全班数学成绩的中位数的人数占全班人数的百分比分别为24%,26%.【点评】本题考查了从直方图中获取信息的能力;也考查了众数,中位数的定义,以及百分比的求法.需注意两组超过中位数的人数的确定.20.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数;(3)如果你是顾客,宜选购哪家工厂的产品?为什么?【考点】中位数;算术平均数;众数.【专题】应用题.【分析】(1)平均数就是把这组数据加起来的和除以这组数据的总数,众数就是一堆数中出现次数最多的数,中位数,就是一组数按从小到大的顺序排列,中间位置的那个数,如果有偶数个数,那就是中间的两个数的平均数;(2)一组数据的平均数、众数、中位数从不同角度表示这种数据集中趋势.由(1)的结果容易回答(2),甲厂、乙厂、丙厂,分别利用了平均数、众数、中位数进行广告推销,顾客在选购产品时,一般以平均数为依据.(3)根据平均数大的进行选择.【解答】解:(1)甲厂:平均数为(4+5+5+5+5+7+9+12+13+15)=8,众数为5,中位数为6;乙厂:平均数为(6+6+8+8+8+9+10+12+14+15)=9.6,众数为8,中位数为8.5;丙厂:平均数为(4+4+4+6+7+9+13+15+16+16)=9.4,众数为4,中位数为8;(2)甲厂用的是平均数,乙厂用的是众数,丙厂用的是中位数;(3)平均数:乙大于丙大于甲;众数:乙大于甲大于丙;中位数:乙大于丙大于甲,顾客在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,因此应选乙厂的产品.【点评】本题是平均数、众数、中位数在实际生活中的应用,选取以哪个数据为主要结合它们的定义来考虑.。

北师大版八年级数学上册第六章 数据的分析综合测评(Word版 含答案)

北师大版八年级数学上册第六章 数据的分析综合测评(Word版 含答案)

第六章 数据的分析综合测评(时间: 分钟 满分:100分)(班级: 姓名: 得分: )一、选择题(每小题4分,共32分)1. 数据-1,0,1,2,3的平均数是( ) A .-1 B .0 C .1 D .52. 在一次体操比赛中,六位评委对某位选手的打分分别为(单位:分):9.2,9.4,9.1,9.3,9.2,9.6,这组数据的众数为( )A .9.3B .9.2C .9.1D .9.63. 在《学习方法报》社举办的一次3D 打印“青少年创新大赛”中,有13名同学成绩优异,现取前6名进入决赛.小尚同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数4. 在一次训练中,甲、乙、丙三人各射击10次的成绩如图1所示,在这三人中,此次射击成绩最稳定的是( )A .甲B .乙C .丙D .无法判断图1 图25. 若x 个数的平均数为a ,y 个数的平均数为b ,则这(x+y )个数的平均数是( ) A .2a b + B .a y x b ++ C .xa yb x y ++ D .xa yba b++6. 甲、乙两地去年12月前5天的日平均气温如图2所示,下列描述错误的是( )A .甲地气温的中位数是6 ℃B .两地气温的平均数相同C .乙地气温的众数是8 ℃D .乙地气温相对比较稳定7. 甲、乙两班举行电脑汉字输入比赛,每班参赛学生成绩(每分钟输入汉字的个数)统计后结果如下表所示:参加人数 中位数 平均数 方 差甲 班 45 148 135 190 乙 班45151135110某同学根据表中数据分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀人数多于甲班优秀人数(规定每分钟输入汉字大于或等于150个为优秀);③乙班成绩比较稳定.其中结论正确的有( )A .0个B .1个C .2个D .3个 8. 某射击运动员练习射击,5次成绩分别为(单位:环):8,9,7,8,x .下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x=8 B .若这5次成绩的众数是8,则x=8 C .若这5次成绩的方差为8,则x=8D .若这5次成绩的平均成绩是8,则x=8 二、填空题(每小题5分,共30分)9. 某生产小组6名工人某天加工零件的个数分别是10,10,11,12,8,10,则这组数据的中位数是 .10. 若甲.乙两个街舞团的人数相同,平均身高相同,通过计算身高的方差发现身高更整齐的街舞团是甲,那么s甲2s乙2(填“>”或“<”).11.(2019年盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是.12. 学完方差的知识后,小明了解了他最要好的四个朋友的身高分别是(单位:cm):176,174,177,173,那么小明四个好朋友身高的方差是.13. 某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如下表所示(单位:分):教学能力科研能力组织能力甲81 85 86乙92 80 74如果根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2的比例计算两人的总成绩,得分高者被录用,那么将被录用.14. 若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是.三、解答题(共38分)15. (12分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 16 24 1每人月工资(元)21 000 8400 2025 2200 1800 1600 950 请你根据上述内容,解答下列问题:(1)所有员工月工资的中位数为元,众数为元;(2)所有员工的月平均工资为2500元,这样的工资能否反映该公司员工的月工资实际水平?若不合理,则选择哪个数据更合理?16. (12分)某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班各5名学生的成绩,它们分别为:九(1)班:96,92,94,97,96;九(2)班:90,98,97,98,92.通过数据分析,列表如下:(1)补全表格;(2)计算两个班所抽取的学生艺术成绩的方差,判断哪个班的艺术成绩比较稳定.17. (14分)某校拟派一名跳高运动员参加校际比赛,对甲、乙两名同学进行了8次跳高选拔比赛,他们的原始成绩(单位:cm)如下表:第1次第2次第3次第4次第5次第6次第7次第8次甲169 165 168 169 172 173 169 167乙161 174 172 162 163 172 172 176两名同学的8次跳高成绩数据分析如下表:平均数中位数众数方差甲 a b c 5.75乙169 172 172 31.25根据图表信息回答下列问题:(1)a=,b=,c=;(2)这两名同学中,的成绩更为稳定(填甲或乙);(3)若跳高165 cm就可能获得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,理由是:;(4)若跳高170 cm方可夺得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,班由是:.第六章数据的分析综合测评一、1. C 2. B 3. D 4. B 5. C 6. C 7. D 8. D二、9. 10 10. < 11. 2.05,2.10 12. 5213. 乙14. 16三、15. 解:(1)1700 1600(2)不能.因为将近一半的员工工资为1600元,所以平均工资不能反映该公司员工月工资的平均水平.选择中位数或众数更为合理.16. 解:(1)表格数据从上到下从左到右依次为96,95,98;(2)九(1)班的方差为15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2,九(2)班的方差为15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2,因为两班平均成绩相等,且3.2<11.2,所以九(1)班学生的艺术成绩比较稳定.17. 解:(1)a=18(169+165+168+169+172+173+169+167)=169;b=1691692=169;因为169出现了3次,出现次数最多,所以c的值为169.(2)因为甲、乙两名同学成绩的平均数相同,但甲的方差小于乙的方差,所以甲的成绩更稳定. (3)若跳高1.65米就获得冠军,那么成绩在1.65或1.65米以上的次数甲多,所以选择甲. (4)若跳高1.70米就获得冠军,那么成绩在1.70或1.70米以上的次数乙多,所以选择乙.。

北师版八年级数学上册 第六章 数据的分析(单元综合测试卷)

北师版八年级数学上册  第六章 数据的分析(单元综合测试卷)

第六章数据的分析(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.已知一组数据:4,1,2,3,4,这组数据的中位数和众数分别是()A .4,4B .3.5,4C .3,4D .2,42.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A .众数B .方差C .平均数D .中位数3.已知数据3,x ,7,1,10的平均数为5,则x 的值是()A .3B .4C .5D .64.甲、乙、丙、丁四人参加射击训练,经过三组练习,他们的平均成绩都是9.5环,方差分别是20.45s =甲,20.55s =乙,20.4s =丙,20.35s =丁,你认为谁的成绩更稳定()A .甲B .乙C .丙D .丁5.在“双减”政策下,某学校规定,学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为80分,90分,92分,则小颖本学期的学业成绩为()A .92分B .90分C .89分D .85分6.在第60届国际数学奥林匹克比赛中,中国队荣获团体总分第一名.我国参赛选手比赛成绩的方差计算公式为:()()()222212613838386s x x x ⎡⎤=-+-++-⎣⎦ ,下列说法错误的是().A .我国一共派出了6名选手B .我国参赛选手的平均成绩为38分C .我国选手比赛成绩的中位数为38D .我国选手比赛成绩的团体总分为228分7.我校开展了“好书伴我成长”读书活动,为了解5月份九年级学生的读书情况,随机调查了九年级50名学生读书的册数,统计数据如下表所示,下列说法正确的是()册数01234人数41216171A.众数是17B.中位数是2C.平均数是2D.方差是28.某聊天软件规定:若任意连续5天,好友双方的每日聊天记录的条数不低于100,则双方可以获得“星形”标识.甲、乙两位好友连续5天在该软件上聊天,下面是这5天日聊天记录条数的统计量,一定能判断甲、乙获得“星形”标识的是()A.中位数为110条,极差为20条B.中位数为110条,众数为112条C.中位数为106条,平均数为102条D.平均数为110条,方差为10条29.某商场招聘员工一名,现有甲、乙、丙三人竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示,若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,那么从成绩看,应该录取()应试者计算机语言商品知识甲607080乙807060丙708060A.甲B.乙C.丙D.任意一人都可10.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为188cm 的队员换下场上身高为194cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题(本大题共8小题,每小题3分,共24分)11.数据1,8,8,4,6,4的中位数为.12.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.13.已知一组数据3,a ,4,6,7,它们的平均数是5,则这组数据的方差是.14.新冠疫情期间,小李同学连续两周居家健康检测,如下图是小李记录的体温情况折线统计图,记第一周体温的方差为21s ,第二周体温的方差为22s ,试判断两者之间的大小关系21s 22s (用“>”、“=”、“<”填空).小李连续两周居家体温测量折线统计图15.开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温(℃)36.336.436.536.636.736.8天数(天)233411这14天中,小芸体温的中位数和众数分别是℃.16.宁城有机苹果园引进了甲、乙、丙、丁四个品种的苹果树.为了了解每种苹果树的产量情况,从每个品种中随机抽取10棵进行采摘,经统计每种苹果树10棵产量的平均数x 和方差2s 如下表:甲乙丙丁平均数()kg x 194194188188方差2s 9.28.68.99.7若从这四个品种中选出一种产量既高又稳定的苹果树进行种植,应选的品种为.17.将5个整数从大到小排列,中位数是4;如果这个样本中的唯一众数是6,则这5个整数可能的最大的和是.18.一组数据1x 、2x 、…、n x 的方差是0.8,则另一组数据11x +、21x +、…、1n x +的方差是.三、解答题(本大题共9小题,共66分)19.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩依次如下(单位:环):甲:9,6,7,6,7,7乙:4,5,8,7,8,10(1)计算两人打靶成绩的方差;(2)请推荐一人参加比赛,并说明理由.20.某公司要在甲、乙两人中招聘一名职员,对两人的学历、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用.图1是甲、乙两人测试成绩的条形统计图.(1)分别计算甲、乙两人三项成绩之和,则会被录用;(2)若将甲、乙两人的三项测试成绩,分别按照扇形统计图(图2)各项所占之比进行计算,甲成绩为分,乙成绩为分,则会被录用.21.某调查小组采用随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下不完整的统计图.(1)填空:本次调查的中位数为________小时;(2)通过计算补全条形统计图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.22.某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图,请根据相关信息,解答下列问题:(1)图①中的m值为________;此次抽样随机抽取了口罩_______枚;(2)求统计的这些数据的平均数、众数和中位数;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩约有多少枚?23.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:跳绳成绩(个)132133134135136137一班人数(人)120232二班人数(人)014122(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:众数中位数平均数方差一班136135.5135 2.8二班134a135b表中数据a=,b=;(2)请用所学的统计知识,从两个不同角度比较两个班跳绳比赛的成绩.24.为鼓励学生积极加入中国共青团组织,某学校团委在八、九年级各抽取50名学生开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示.平均数众数中位数方差八年级87b 1.88九年级8a8c请根据图表中的信息,解答下列问题:(1)填空:a =______,b =______,c =________;(2)现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?25.为了了解学生对党的二十大精神的学习领会情况,某校团委从七、八年级各随机抽取20名学生进行测试,获得了他们的测试成绩(百分制),并对数据(测试成绩)进行整理、描述和分析.下面给出了部分信息.a .八年级学生测试成绩的频数分布直方图如下,(数据分为4组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤).b .八年级学生测试成绩在8090x ≤<这一组的是:81838484848689c .七、八年级学生测试成绩的平均数、中位数、众数如下:年级平均数中位数众数七83.18889八83.5m根据以上信息,回答下列问题:(1)表中m 的值为______,八年级学生测试成绩在8090x ≤<这一组的众数是______;(2)七年级学生小亮和八年级学生小宇的成绩都是86分,这两名学生在本年级成绩排名更靠前的是______(填“小亮”或“小宇”);(3)成绩不低于80分的学生可获得优秀奖,假设该校八年级300名学生都参加测试,估计八年级获得优秀奖的学生人数.26.今年是五四运动100周年,也是中华人民共和国成立70周年,为缅怀五四先驱崇高的爱国情怀和革命精神,巴蜀中学开展了“青春心向党,建功新时代”为主题的系列纪念活动.历史教研组也组织了近代史知识竞赛,七、八年级各有300名学生参加竞赛.为了解这两个年级参加竞赛学生的成绩情况,从中各随机抽取20名学生的成绩,并对数据进行了整理和分析(成绩得分用x 表示,数据分为6组:7075A x ≤<;:7589B x <<;:8085C x ≤<;:8590D x ≤<;:9095E x ≤<;:95100F x ≤≤)绘制了如下统计图表:年级平均数中位数众数极差七年级85.8mn26八年级86.286.58718七年级测试成绩在C 、D 两组的是:8183838383868788888989根据以上信息,解答下列问题(1)上表中m =_______,n =_______.(2)记成绩90分及90分以上为优秀,则估计七年级参加此次知识竞赛成绩为优秀的学生有多少名?(3)此次竞赛中,七、八两个年级学生近代史知识掌握更好的是________(填“七”或“八“)年级,并说明理由?27.某市民用水拟实行阶梯水价,每人每月用水量中不超过w 吨的部分按4元/吨收费,超出w 吨的部分按10元/吨收费,该市随机调查居民,获得了他们3月份的每人用水量数据,绘制出如图不完整的两张统计图表:请根据以下图表提供的信息,解答下列问题:表1组别月用水量x 吨/人频数频率第一组0.51x <≤1000.1第二组1 1.5x <≤n第三组 1.52x <≤2000.2第四组2 2.5x <≤m 0.25第五组 2.53x <≤1500.15第六组3 3.5x <≤500.05第七组 3.54x <≤500.05第八组4 4.5x <≤500.05合计1(1)观察表1可知这次抽样调查的中位数落在第_______组,表1中m 的值为_________,n 的值为_______;表2扇形统计图中“用水量2.5 3.5x <≤”部分的的圆心角为___________.(2)如果w 为整数,那么根据此次调查,为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为多少吨?(3)利用(2)的结论和表1中的数据,假设表1中同组中的每个数据用该组区间的右端点值代替,估计该市居民3月份的人均水费.第六章数据的分析(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.已知一组数据:4,1,2,3,4,这组数据的中位数和众数分别是()A.4,4B.3.5,4C.3,4D.2,4【答案】C【分析】根据中位数和众数的定义分别进行解答即可.【解析】解:把这组数据从小到大排列:1,2,3,4,4,最中间的数是3,则这组数据的中位数是3;4出现了2次,出现的次数最多,则众数是4;故选:C.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.2.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数【答案】D【分析】此题主要考查统计中的中位数、理解中位数的定义是解题的关键.11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解析】解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.3.已知数据3,x,7,1,10的平均数为5,则x的值是()A.3B.4C.5D.6【答案】B【分析】本题考查算术平均数,解题的关键是根据平均数的计算方法列方程求解.【解析】解: 数据3,x ,7,1,10的平均数为5,3711055x ∴++++=⨯,解得4x =,故选:B .4.甲、乙、丙、丁四人参加射击训练,经过三组练习,他们的平均成绩都是9.5环,方差分别是20.45s =甲,20.55s =乙,20.4s =丙,20.35s =丁,你认为谁的成绩更稳定()A .甲B .乙C .丙D .丁【答案】D【分析】本题考查了根据方差判断稳定性,根据方差越小数据越稳定,即可解答.【解析】解:∵2222s s s s <<<丁丙甲乙,∴丁的成绩更稳定,故选:D .5.在“双减”政策下,某学校规定,学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为80分,90分,92分,则小颖本学期的学业成绩为()A .92分B .90分C .89分D .85分【答案】C【分析】本题主要考查加权平均数,根据加权平均数的计算方法计算即可.熟练掌握加权平均数的意义是解题的关键.【解析】解:小颖本学期的学业成绩为:20%8030%9050%9289⨯+⨯+⨯=(分).故选:C .6.在第60届国际数学奥林匹克比赛中,中国队荣获团体总分第一名.我国参赛选手比赛成绩的方差计算公式为:()()()222212613838386s x x x ⎡⎤=-+-++-⎣⎦ ,下列说法错误的是().A .我国一共派出了6名选手B .我国参赛选手的平均成绩为38分C .我国选手比赛成绩的中位数为38D .我国选手比赛成绩的团体总分为228分【答案】C7.我校开展了“好书伴我成长”读书活动,为了解5月份九年级学生的读书情况,随机调查了九年级50名学生读书的册数,统计数据如下表所示,下列说法正确的是()册数01234人数41216171A.众数是17B.中位数是2C.平均数是2D.方差是28.某聊天软件规定:若任意连续5天,好友双方的每日聊天记录的条数不低于100,则双方可以获得“星形”标识.甲、乙两位好友连续5天在该软件上聊天,下面是这5天日聊天记录条数的统计量,一定能判断甲、乙获得“星形”标识的是()A.中位数为110条,极差为20条B.中位数为110条,众数为112条C.中位数为106条,平均数为102条D.平均数为110条,方差为10条29.某商场招聘员工一名,现有甲、乙、丙三人竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示,若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,那么从成绩看,应该录取()应试者计算机语言商品知识甲607080乙807060丙708060A.甲B.乙C.丙D.任意一人都可10.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为188cm 的队员换下场上身高为194cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题(本大题共8小题,每小题3分,共24分)11.数据1,8,8,4,6,4的中位数为.12.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.【答案】 6.8 6.5 6.5【分析】根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;13.已知一组数据3,a,4,6,7,它们的平均数是5,则这组数据的方差是.14.新冠疫情期间,小李同学连续两周居家健康检测,如下图是小李记录的体温情况折线统计图,记第一周体温的方差为21s,第二周体温的方差为22s,试判断两者之间的大小关系21s22s(用“>”、“=”、“<”填空).小李连续两周居家体温测量折线统计图【答案】<【分析】方差反应是数据的波动程度,方差越大,波动性越大,结合折线图可得小丽第一周居家体温在36.6C ~36.8C ︒︒之间,第二周居家体温在36.4C ~37.2C ︒︒之间,从最大值与最小值的差可以得到答案.【解析】解:根据折线统计图很容易看出小丽第一周居家体温在36.6C ~36.8C ︒︒之间,第二周居家体温在36.4C ~37.2C ︒︒之间,小丽第一周居家体温数值波动小于其第二周居家体温数值波动,2212s s ∴<.故答案为:<.【点睛】本题考查的是折线统计图,数据的波动性即方差,理解方差的含义是解题的关键.15.开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温(℃)36.336.436.536.636.736.8天数(天)233411这14天中,小芸体温的中位数和众数分别是℃.【答案】36.5,36.6【分析】根据中位数的定义:一组数据从小到大(或从大到小)排列,若数据有奇数个,则最中间的数为中位数,若数据有偶数个,则最中间两数的平均数为中位数,根据众数的定义:一组数据出现次数最多的数,即可判断.【解析】 共有14个数据,其中第7、8个数据均为36.5,∴这组数据的中位数为36.5;其中36.6出现了4次,出现次数最多,∴众数为36.6.【点睛】本题考查了中位数和众数,理解中位数和众数的定义是解题的关键.16.宁城有机苹果园引进了甲、乙、丙、丁四个品种的苹果树.为了了解每种苹果树的产量情况,从每个品种中随机抽取10棵进行采摘,经统计每种苹果树10棵产量的平均数x 和方差2s 如下表:甲乙丙丁平均数()kg x 194194188188方差2s 9.28.68.99.7若从这四个品种中选出一种产量既高又稳定的苹果树进行种植,应选的品种为.【答案】乙【分析】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.先比较平均数得到甲组和乙组的产量较好,然后比较方差得到乙品种既高产又稳定.【解析】解:因为丙、丁的平均数比甲、乙的平均数小,而乙的方差比甲的小,所以乙的产量既高产又稳定,所以产量既高又稳定的苹果树进行种植,应选的品种是乙;故答案为:乙.17.将5个整数从大到小排列,中位数是4;如果这个样本中的唯一众数是6,则这5个整数可能的最大的和是.【答案】21【分析】根据中位数为4,可得第三个数是4,再由这组数据的唯一众数是6,可得6应该是4后面的两个数字,4前面两个数字最大的时候是3,2,即可求解.【解析】∵这组数据共5个,且中位数为4,∴第三个数是4;又∵这组数据的唯一众数是6,∴6应该是4后面的两个数字,且4前面两个数字都小于4,且都不相等,∴4前面两个数字最大的时候是3,2,∴其和为2346621++++=,∴这组数据可能的最大的和为21.故答案为21.【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.18.一组数据1x 、2x 、…、n x 的方差是0.8,则另一组数据11x +、21x +、…、1n x +的方差是.三、解答题(本大题共9小题,共66分)19.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩依次如下(单位:环):甲:9,6,7,6,7,7乙:4,5,8,7,8,10(1)计算两人打靶成绩的方差;(2)请推荐一人参加比赛,并说明理由.(或推荐乙.在甲、乙平均成绩相同的前提下,乙一直处于上升趋势,有潜力.【点睛】本题考查了方差的概念,利用方差做决策,结合生活实际理解数学概念是本题的亮点.20.某公司要在甲、乙两人中招聘一名职员,对两人的学历、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用.图1是甲、乙两人测试成绩的条形统计图.(1)分别计算甲、乙两人三项成绩之和,则会被录用;(2)若将甲、乙两人的三项测试成绩,分别按照扇形统计图(图2)各项所占之比进行计算,甲成绩为分,乙成绩为分,则会被录用.21.某调查小组采用随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下不完整的统计图.(1)填空:本次调查的中位数为________小时;(2)通过计算补全条形统计图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.【答案】(1)1(2)见解析(3)1.18小时.【分析】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.(1)利用0.5小时的人数为100人,所占比例为20%,即可求出样本容量;(2)先可求出1.5小时的人数,画图即可;(3)计算出该市中小学生一天中阳光体育运动的平均时间即可.【解析】(1)解:由题意可得:0.5小时的人数为:100人,所占比例为:20%,10020%500÷=,∴本次调查共抽样了500名学生;∴第250名学生的运动时间为1小时,第251名学生的运动时间为1小时,(3)根据题意得:1000.52001120100200120⨯+⨯+++即该市中小学生一天中阳光体育运动的平均时间约22.某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图,请根据相关信息,解答下列问题:(1)图①中的m值为________;此次抽样随机抽取了口罩_______枚;(2)求统计的这些数据的平均数、众数和中位数;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩约有多少枚?【答案】(1)28,50(2)1.52元,1.8元,1.5元(3)960枚23.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:跳绳成绩(个)132133134135136137一班人数(人)120232二班人数(人)014122(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:众数中位数平均数方差一班136135.5135 2.8二班134a135b表中数据a=,b=;(2)请用所学的统计知识,从两个不同角度比较两个班跳绳比赛的成绩.【答案】(1)134.5,1.8;(2)①两个班级的平均成绩相同,二班的方差比一班的方差小,所以二班成绩比)(2137+-24.为鼓励学生积极加入中国共青团组织,某学校团委在八、九年级各抽取50名学生开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示.平均数众数中位数方差八年级87b 1.88九年级8a 8c请根据图表中的信息,解答下列问题:(1)填空:a =______,b =______,c =________;(2)现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?25.为了了解学生对党的二十大精神的学习领会情况,某校团委从七、八年级各随机抽取20名学生进行测试,获得了他们的测试成绩(百分制),并对数据(测试成绩)进行整理、描述和分析.下面给出了部分信息.a .八年级学生测试成绩的频数分布直方图如下,(数据分为4组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤).b.八年级学生测试成绩在8090x≤<这一组的是:81838484848689c.七、八年级学生测试成绩的平均数、中位数、众数如下:年级平均数中位数众数七83.18889八83.5m根据以上信息,回答下列问题:(1)表中m的值为______,八年级学生测试成绩在8090x≤<这一组的众数是______;(2)七年级学生小亮和八年级学生小宇的成绩都是86分,这两名学生在本年级成绩排名更靠前的是______(填“小亮”或“小宇”);(3)成绩不低于80分的学生可获得优秀奖,假设该校八年级300名学生都参加测试,估计八年级获得优秀奖的学生人数.【答案】(1)83.5,84(2)小宇(3)180【分析】本题考查频数分布直方图,平均数,中位数,众数的意义和用样本估计总体,准确理解这些概念是的关键.(1)结合题意,根据中位数和众数的意义解答即可,(2)根据中位数的意义,比较七、八年级的中位数即可得出答案,(3)先算出样本中成绩不低于80分的百分比,再乘以300即可得到答案.【解析】(1)解:八年级一共有20名同学,中位数是成绩数据由小到大排列后第10,11个数据分别为83、84,26.今年是五四运动100周年,也是中华人民共和国成立70周年,为缅怀五四先驱崇高的爱国情怀和革命精神,巴蜀中学开展了“青春心向党,建功新时代”为主题的系列纪念活动.历史教研组也组织了近代史知识竞赛,七、八年级各有300名学生参加竞赛.为了解这两个年级参加竞赛学生的成绩情况,从中各随机抽取20名学生的成绩,并对数据进行了整理和分析(成绩得分用x 表示,数据分为6组:7075A x ≤<;:7589B x <<;:8085C x ≤<;:8590D x ≤<;:9095E x ≤<;:95100F x ≤≤)绘制了如下统计图表:年级平均数中位数众数极差七年级85.8m n 26八年级86.286.58718七年级测试成绩在C、D两组的是:8183838383868788888989根据以上信息,解答下列问题(1)上表中m=_______,n=_______.(2)记成绩90分及90分以上为优秀,则估计七年级参加此次知识竞赛成绩为优秀的学生有多少名?(3)此次竞赛中,七、八两个年级学生近代史知识掌握更好的是________(填“七”或“八“)年级,并说明理由?。

新北师大版八年级数学上册单元测试卷附答案第六章 数据的分析

新北师大版八年级数学上册单元测试卷附答案第六章 数据的分析
“垃圾分类知识及投放情况”问卷测试成绩统计表
依据以上统计信息,解答下列问题:
(1)求得 , ;
(2)这次测试成绩的中位数落在组;
(3)求本次全部测试成绩的平均数.
答案
第一部分
1. A【解析】“良”和“优”的人数所占的百分比: ,
在 人中成绩为“良”和“优”的总人数估计为 (人).
2. B
3. C
4. A【解析】通过观察条形统计图可得:套餐一一共出现了 人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;
那么,圆周率的小数点后 位数字的众数为.
20.某学生在一次期末考试中,六门功课的总分为 分,其中语文、数学两门功课的总分为 分,物理、化学、政治三门功课的平均分为 分,则该同学外语考了分.
21.将一个圆分割成三个扇形,它们的圆心角之比为 ,则这三个扇形的圆心角的度数分别为.
22.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个): , , , , , ,如果该班有 名学生,那么根据提供的数据估计该周全班同学各家总共丢弃塑料袋的数量约为个.
把这些数从小到大排列为: , , , , , , ,
处于中间位置的数是: ,
所以中位数是 .
(2)
【解析】根据图(乙)可知 ,

(3)设12月份全市共成交商品房 套,根据题意得:
(套),
则估计12月份在全市所有的 套可售商品房中已成交的并且每平方米价格低于 万元的商品房的成交套数为 套.
25.(1) ;
D组的百分比为 ,
补全图形如下:
(2)C
【解析】由于共有 个数据,其中位数是第 , 个数据的平均数,则其中位数位于C区间内.

北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案

北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案

北师大版八年级数学上册《第六章数据的分析》单元检测卷-带答案核心考点整合考点1 平均数1.下表是小红参加一次“阳光体育”活动比赛的得分情况:项目跑步花样跳绳跳绳得分90 80 70评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为分.2. 某新能源车销售网点2023 年7月至12月的销售数量如图所示,则这半年来平均每月的销售量为辆(结果保留整数).考点2 中位数3.2024 年4 月24 日是我国第九个“中国航天日”,某校开展了一次航天知识竞赛,共选拔5名选手参加总决赛,他们的决赛成绩(单位:分)分别是92,93,94,90,96.则这5名选手决赛成绩的中位数是.4.已知一组数据:7,6,8,x,3,它们的平均数是6,则这组数据的中位数是( )A.2B.6C.8D.7考点3 众数5.为了解某班学生参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位;分钟)分别为65,60,75,60,80.这组数据的众数为( )A.65B.60C.75D.80考点4 方差,由公式提供的信息判断:①样本容量为3;②样本中6.某组数据的方差计算公式为s2=2(2−x̅)2+3(3−x̅)2+2(5−x̅)2n位数为3;③样本众数为3;④样本平均数为10₃.其说法正确的( )3A.①②④B.②④C.②③D.③④考点5 极差7.在杭州亚运会的跳水比赛中,对某运动员的第一个动作,8位裁判的打分如下(单位:分):9,8.5,7.5,8.5,8.5, 7.5,7,8,这组数据的极差是.考点6 标准差8.对于一次函数y=3x+4,自变量分别取值x₁,x₂,…,xₙ,若这组数据的方差为5,则对应的函数值为y ₁,y₂,…, yn 这组数据的标准差为.考点7 平均数、众数、中位数的应用9.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20 份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)工作人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求工作人员抽取的问卷所评分数为几分? 与(1)相比,中位数是否发生变化?考点8 方差的应用10.超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为x,s²,i该顾客选购的鸡蛋的质量平均数和方差分别为x₁,s²,则下列结论一定成立的是( )A.x̅<x̅1B.x̅>x̅1C.s2>s12D.s2<s1211.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中投进球的个数统计如下表:(1)求甲、乙两名队员投进球个数的平均数;(2)如果从甲、乙两名队员中选出一人去参加定点投篮比赛,应选哪名队员? 请说明理由.思想方法整合思想1 整体思想12.已知一组数据a₁,a₂,a₃,a₄,a₅的平均数为8,则另一组数据a₁+10,a₂−10,a₃+10,a₄−10,a₅+10的平均数为( )A.6B.8C.10D.12思想2 方程思想13.8名学生在一次数学测试中的成绩(单位:分)为80,82,79,69,74,78,x,81,这组成绩的平均数是77 分,则x的值为( )A.76B.75C.74D.73参考答案1 832 470 3.93分4. B 5. B 6. C 7.28. √5【点拨】因为这组数据x₁,x₂,…,x₀的方差为5所以函数值y₁,y₁,…,yₙ这组数据的方差是:3²×5 =45,所以这组数据的标准差为√45=3√5,【解】(1)由统计图可知,第10个数据是3分,第11个数据是4分,所以中位数为3.5分,由统计图可得平均数为1×1+3×2+6×3+5×4+5×5=3.5(分),所以客户所评分数的平均数和中位数都不低于3.5分20所以该部门不需要整改.>3.55,解得x>4.55(2) 设工作人员抽取的问卷所评分数为x 分,则有 3.5×20+x20+1因为满意度从低到高为1分,2分,3分,4分,5分,共5档.所以工作人员抽取的问卷所评分数为5分所以加入这个数据,客户所评分数按从小到大排列后,第11 个数据是4 分,即加入这个数据后,中位数是4 分所以与(1)相比,中位数发生了变化,由3.5分变成4 分。

(典型题)初中数学八年级数学上册第六单元《数据的分析》测试(有答案解析)

(典型题)初中数学八年级数学上册第六单元《数据的分析》测试(有答案解析)

一、选择题1.抽样调查了某年级30名女生所穿鞋子的尺码,数据如下(单位:码)号码3334353637人数791211A.34,35 B.34.5,35 C.35,35 D.35,372.环保小组抽样调查了某社区10户家庭1周内使用环保方便袋的数量,结果为(单位:只):6,5,7,8,7,5,8,10,5,9.试估计该社区500户家庭1周内使用环保方便袋约为()A.2500只B.3000只C.3500只D.4000只3.在学校数学竞赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90B.中位数是85C.平均数是89D.极差是154.某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元5.在某次数学测验中,某小组8名同学的成绩如下:81,73,81,81,85,83,87,89,则这组数据的中位数、众数分别为().A.80,81 B.81,89 C.82,81 D.73,816.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:每天使用零花钱(单位:12356则这15名同学每天使用零花钱的众数和中位数分别是()元.A.3,3 B.2,2 C.2,3 D.3,57.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6 C.5,5,6 D.5,6,58.在一次期末考试中,某一小组的6名同学的数学成绩(单位:分)分别是114,115,100,108,110,120,则这组数据的中位数是()A.100 B.108 C.112 D.1209.为了解九年级()1班学生某天的体温情况,班长把所有同学当天上报的体温(单位:C)绘制成了如下统计表.这组体温数据的众数是()人数(人A.36.2C B.36.3C C.36.4C D.36.5C10.如表是某校合唱团成员的年龄分布统计,则这组数据(年龄)的中位数是()A.15 B.14 C.13 D.16x是龙岩市某企业普通职工的2019年的年收入,设11.已知数据1x、2x、3x、、100这100个数据的平均数为a,中位数为b,方差为c,如果再加上中国首富马化腾的年收x,则在这101个数据中,a一定增大,那么对b与c的判断正确的是()入101A .b 一定增大,c 可能增大B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变12.某班抽取6名同学参加体能测试,成绩如下:70,75,80,80,75,90.下列叙述中,正确的是( )A .中位数是75和80B .众数是80C .众数是75D .众数是75和80二、填空题13.设甲组数据:6,6,6,6,的方差为2,S 甲乙组数据:1,1,2的方差为2S 乙,则2S 甲与2S 乙的大小关系是________.14.某校八年级(1)班共有人数分别为4、5、5、5、5、4六个学习小组,某次数学测试,六个学习小组的平均成绩依次是70分、72分、70分、75分、70分、72分、那么以此计算此班这次数学测试的全班平均成绩的计算式子是__________________.15.一次考试中6名学生的成绩(单位:分)如下:24,72,68,45,86,92.这组数据的中位数是________分.16.一组数据2,3-,0,3,6,4的方差是_________.17.下面是某校八年级(1)班一组女生的体重(单位:kg )36 35 45 42 33 40 42,这组数据的平均数是____,众数是_____,中位数是_____.18.已知7,11,8,8,8,6,7,6,9,10.这10个数据的方差是________. 19.若一组数据12,,,n x x x 的平均数为5,方差为9,则数据123x +,223x +,…,23n x +的平均数为___________,方差为___________.20.某校拟招聘一名数学教师,现有甲、乙、丙三名教师人围,三名教师的笔试、面试成绩如下表所示:综合成绩按照笔试成绩占60%,面试成绩占40%进行计算,学校录取综合成绩得分最高者,则被录取的教师是__________.三、解答题21.某校为了培养学生的劳动观念和能力,鼓励学生积极承担家务劳动.政教处想了解七年级学生周末参与家务劳动的情况,在七年级随机抽取了18名男生和18名女生,对他们周末参与家务劳动的时间进行调查,并收集到以下数据(单位:分钟)男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105 女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72 整理数据,得到如下统计表:男生 2 a b 4 女生1593平均数 中位数 众数方差 男生 66.7 c 70617.3女生 69.770.569和88 547.2a =,b =________,c =_________; (2)根据以上信息,政教处老师认为:从时长来看,七年级女生周末参与家务劳动的情况比男生好.你是否同意老师的判断?请结合两种统计量分析并说明理由.22.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表 组别 成绩x (分)频数(人数) 第1组 6068x ≤< 4 第2组 6876x ≤<8 第3组 7684x ≤< 12 第4组 8492x ≤<a 第5组92100x ≤<10抽取学生比赛成绩频数分布直方图第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,请结合以上数据信息完成下列各题:(1)求a 的值,并将频数分布直方图补充完整. (2)求所抽取的40名学生比赛成绩的中位数.(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?23.20位同学暑假参加义工活动的天数的统计如下:天数(天)02356810人数1248221位同学暑期参加义工活动的天数的众数是天,极差是天;(2)中位数是天;(3)若小明同学把天数中的数据“8”看成了“7”,那么中位数、众数、方差,极差四个指标中受影响的是.24.每年的4月23日是“世界读书日”,今年4月,某校开展了以“风飘书香满校园”为主题的读书活动.活动结束后,校教导处对本校八年级学生4月份的读书量进行了随机抽样调查,并对所有随机抽取学生的读书量(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图,(2)本次抽取学生4月份“读书量”的众数为_____本,平均数为_____本,中位数为_____本.(3)已知该校八年级有700名学生,请你估计该校八年级学生中4月份“读书量”为4本的学生人数.25.某中学八年级四个班组织征文比赛,共收到参赛学生的文章100篇(参赛学生每人只交一篇),下面扇形统计图描述了各班参赛学生占总人数的百分比情况(尚不完整).比赛设一、二等奖若干,结果共有25人获奖,其中三班参赛学生的获奖率为20%,一、a.二、三、四班获奖人数的比为6:7::5(1)填空:①四班有_______人参赛,α=______︒.②a=______,各班获奖学生数的众数是______.(2)获一等奖、二等奖的学生每人分别得到价值100元、60元的学习用品,购买这批奖品共用去1900元,问一等奖、二等奖的学生人数分别是多少?26.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:.8085,A x < .8590,.9095,.95100B x C x D x <<).下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99;抽取的八年级10名学生的竞赛成绩没有低于80分的,且在C 组中的数据是:94,94,90. 根据以上信息,解答下列问题: (1)直接写出图表中,,a b c 的值;(2)计算d 的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由; (3)该学校七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(95x ≥)的学生人数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据众数与中位数的意义分别进行解答即可. 【详解】解:∵共有30双女生所穿的鞋子的尺码,∴中位数是第15、16个数的平均数,这组数据的第15、16个数都是34,∴这组数据的中位数是34;35出现了12次,出现的次数最多,则这组数据的众数是35;故选:A.【点睛】此题考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.2.C解析:C【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数500即可解答.【详解】解:110(6+5+7+8+7+5+8+10+5+9)×500=3500(只),故选:C.【点睛】本题考查的是通过样本去估计总体,求出样本平均数,再用样本平均数求总体是解题关键.3.B解析:B【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案.【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=15.故选:B.【点睛】此题主要考查折线统计图、众数、中位数、平均数、极差,正确读懂统计图的信息是解题关键.4.C解析:C【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【详解】这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.【点睛】本题考查了加权平均数的求法,是统计和概率部分的简单题型,根据各单价分别乘以所占百分比即可获得平均单价.5.C解析:C【解析】试题将这组数从小到大排列为73,81,81,81,83,85,87,89,观察数据可知,最中间的那两个数为81和83,则中位数为82,而81出现的次数最多,所以众数是81.故本题应选C.6.C解析:C【分析】由于小红随机调查了15名同学,根据表格数据可以知道中位数在第三组,再利用众数的定义可以确定众数在第二组.【详解】∵小红随机调查了15名同学,∴根据表格数据可以知道中位数在第三组,即中位数为3.∵2出现了5次,它的次数最多,∴众数为2.故选C.【点睛】本题考查了中位数、众数的求法:①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.7.A解析:A【分析】根据众数、中位数、平均数的概念以及求解方法逐一进行求解即可.【详解】在这一组数据中5是出现次数最多的,故众数是5;+÷=,那么由中位数的定义可知,这组数据的处于中间位置的两个数的平均数是(66)26中位数是6;平均数是:(353627282)106+⨯+⨯+⨯+⨯÷=,所以答案为:5、6、6,故选A.【点睛】本题考查了加权平均数、中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.8.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:将这组数据按从小到大的顺序排列为:100,108,110,114,115,120,由中位数的定义可知,这组数据的中位数是1101142+=112(分).故选:C.【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.C解析:C【分析】直接利用众数的概念求解可得.【详解】解:∵在这组数据中,36.4出现了10次,次数最多,∴学生体温数据的众数是36.4C,故选:C.【点睛】本题考查众数,解题关键是熟练掌握一组数据中出现次数最多的数据叫做众数.10.A解析:A【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:将这组数据按从小到大的顺序排列,处于中间位置的那个数是15岁,由中位数的定义可知,这组数据的中位数是15岁.故选:A.【点睛】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.11.B解析:B【分析】我们根据平均数的意义,中位数的定义,及方差的意义,分析由于加入x201后,数据的变化特征,易得到答案.【详解】解:∵数据x1,x2,x3,…,x200是龙岩市某企业普通职工的2019年的年收入,而x201为中国首富马云的年收入,则x201会远大于x1,x2,x3, (x200)故这201个数据中,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程度也受到x201比较大的影响,而更加离散,则方差变大故选:B.【点睛】本题考查的知识点是方差,平均数,中位数,正确理解平均数的意义,中位数的定义,及方差的意义,是解答本题的关键,另外,根据实际情况,分析出x201为中国首富马云的年收入,则x201会远大于x1,x2,x3,…,x200也是解答本题的关键.12.D解析:D【分析】根据中位数,众数的概念逐项分析.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是数据出现次数最多的数据.【详解】把数据70,75,80,80,75,90按大小顺序排列为70,75,75,80,80,90,最中间的两个数是75,80,故其中位数为(75+80)÷2=77.5;80和75出现次数最多,均为2次,故众数是75和80.故选:D.【点睛】本题考查了统计学中的中位数与众数的定义,解答这类题学生常常对中位数的计算方法掌握不好而错选.二、填空题13.【分析】根据方差的意义进行判断即可【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为:s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大 解析:22S S <乙甲【分析】根据方差的意义进行判断即可.【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动,所以s 甲2<s 乙2.故答案为:s 甲2<s 乙2.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 14.【分析】根据加权平均数的计算公式进行计算即可【详解】解:由题意知此班这次数学测试的全班平均成绩的计算式子是故答案为:【点睛】本题考查了加权平均数的计算方法关键是熟练把握加权平均数的定义 解析:704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++ 【分析】根据加权平均数的计算公式进行计算即可.【详解】 解:由题意知,此班这次数学测试的全班平均成绩的计算式子是704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++, 故答案为:704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++. 【点睛】本题考查了加权平均数的计算方法.关键是熟练把握加权平均数的定义. 15.70【分析】根据求中位数要把数据按从小到大的顺序排列位于最中间的一个数或两个数的平均数为中位数【详解】解:题目中数据共有6个故中位数是按从小到大排列后第3第4两个数的平均数作为中位数故这组数据的中位 解析:70【分析】根据求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:题目中数据共有6个,故中位数是按从小到大排列后第3,第4两个数的平均数作为中位数,故这组数据的中位数是12×(68+72)=70. 故答案为70.【点睛】 本题考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.16.【分析】先求得数据的平均数然后代入方差公式计算即可【详解】解:数据的平均数=(2-3+3+6+4)=2方差故答案为【点睛】本题考查方差的定义牢记方差公式是解答本题的关键 解析:253【分析】先求得数据的平均数,然后代入方差公式计算即可.【详解】解:数据的平均数=16(2-3+3+6+4)=2, 方差2222222125(22)(32)(02)(32)(62)(42)63s ⎡⎤=-+--+-+-+-+-=⎣⎦. 故答案为253. 【点睛】本题考查方差的定义,牢记方差公式是解答本题的关键.17.【分析】分别利用平均数众数及中位数的定义求解后即可得出答案【详解】解:将数据重新排列为33353640424245所以这组数据的平均数为众数为中位数为故答案为:【点睛】此题考查了平均数众数和中位数一解析:39kg 42kg 40kg【分析】分别利用平均数、众数及中位数的定义求解后即可得出答案.【详解】解:将数据重新排列为33、35、36、40、42、42、45, 所以这组数据的平均数为3335364042424539()7kg ++++++=, 众数为42kg 、中位数为40kg , 故答案为:39kg 、42kg 、40kg .【点睛】此题考查了平均数、众数和中位数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以总个数. 18.4【分析】先计算出平均数再根据方差的定义计算即可【详解】解:∵平均数∴方差故答案为:24【点睛】本题考查求方差掌握方差的定义是解题的关键 解析:4【分析】先计算出平均数,再根据方差的定义计算即可.【详解】解:∵平均数72118362910810x ⨯++⨯+⨯++==, ∴方差()()()()()()2222222178211888368298108 2.410s ⎡⎤=-⨯+-+-⨯+-⨯+-+-=⎣⎦, 故答案为:2.4.【点睛】本题考查求方差,掌握方差的定义是解题的关键.19.36【分析】根据平均数和方差的变化规律即可得出答案【详解】解:∵数据x1x2x3…xn 的平均数是5∴数2x1+32x2+32x3+3…2xn+3的平均数是25+3=13;∵数据x1x2x3…xn 的方解析:36【分析】根据平均数和方差的变化规律,即可得出答案.【详解】解:∵数据x 1,x 2,x 3,…x n 的平均数是5,∴数2x 1+3,2x 2+3,2x 3+3,…2 x n +3的平均数是2⨯5+3=13;∵数据x 1,x 2,x 3,…x n 的方差是9,∴数2x 1+3,2x 2+3,2x 3+3,…2 x n +3的方差是4⨯9=36;故答案为:13,36.【点睛】此题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.20.乙【分析】根据题意先算出甲乙丙三人的加权平均数再进行比较即可得出答案【详解】甲的综合成绩为80×60+76×40=784(分)乙的综合成绩为82×60+74×40=788(分)丙的综合成绩为78×6解析:乙【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.【详解】甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∵78<78.4<78.8,∴被录取的教师为乙,故答案为:乙【点睛】本题考查了加权平均数的计算公式,注意计算平均数时按60%和40%进行计算.三、解答题21.(1)5,7,68.5;(2)同意老师的判断,理由见解析.【分析】(1)利用唱票的方法得到a、b的值,然后把18个数据按从小到大排列,利用中位数的定义确定c的值;(2)可以通过比较平均数和方差的大小判断女生周末参与家务劳动的情况比男生好.【详解】解:(1)男生在30<x≤60范围内的时间有:32,39,46,57,58,所以a=5;男生在60<x≤90范围内的时间有:66,68,69,70,70,80,88,所以b=7;按从小到大排列为28,30,32,39,46,57,58,66,68,69,70,70,80,88,95,99,100,105,最中间的两个数为68,69,所以c=68692+=68.5;故答案为:5,7,68.5;(2)同意老师的判断.理由如下:比较统计量可知,女生的平均数较大,女生的中位数较大,女生的方差较小.以上分析说明,女生周末参与家务劳动的时间更多,且数据的稳定性更好.所以从时长来看,七年级女生周末参与家务劳动的情况比男生好.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.22.(1)a=6,统计图见详解;(2)79分;(3)240名【分析】(1)根据题意和频数分布表中的数据可以求得a的值,进而把频数分布直方图补充完整;(2)根据中位数的定义以及第3组12名学生的比赛成绩,即可得到答案;(3)根据频数分布表中的数据算出优秀学生的比例,再乘以600,即可求解.【详解】解:(1)a=40−4−8−12−10=6,补全的频数分布直方图如右图所示;抽取学生比赛成绩频数分布直方图(2)∵第一组有4名,第二组8名,第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,∴中位数是(78+80)÷2=79(分);(3)600×61040+=240(名),答:进入决赛的学生中有240名学生的比赛成绩为优秀.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)5,10;(2)5;(3)方差.【分析】(1)根据提供的数据直接判断或计算即可;(2)按照中位数的定义判断即可;(3)根据哪些量没变,说明哪个量受到影响即可.【详解】解:(1)由统计表可知,5天人数最多,故众数是5天;极差为:10-0=10(天);故答案为:5,10;(2)一共有20个数据,从小到大排列后,第10个数据是5天和第11个数据也是5天,它们的平均数就是中位数:5552+=(天);故答案为:5;(3)数据“8”看成了“7”,众数还是5天,中位数还是5天,极差还是10天,平均数会变小,随着方差也会变化;故答案为:方差.【点睛】本题考查了数据的分析,解题关键是理解众数、中位数、方差、极差的意义,准确进行计算.24.(1)见解析;(2)3,3,3;(3)140人【分析】(1)先求出总人数,再减去读1本,2本,3本,5本的人数,得到读4本的人数,再利用读3本的人数除以总人数即可.(2)根据众数,平均数,中位数的定义即可解答(3)用八年级读4本的学生所占的百分比乘以总人数700即可【详解】解:(1)总人数等于610%60÷=人则读4本的人数为6031821612----=人读3本的人数为21人2160100%35%∴÷⨯=补全统计图如下图:(2)四月份读书量为3本的人数为21人,人数最多所以众数:3本.四月份读书量的平均本数为31218321412563 31821126⨯+⨯+⨯+⨯+⨯=++++所以平均数:3本.按从小到大的顺序排列,可知本次抽取学生四月份读书量的中位数为3所以中位数:3本.(3)根据题意得:700⨯20%=140(人)所以4月份“读书量”为4本的学生人数为140人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,以及众数,平均数,中位数的定义,读懂统计图,从不同的统计图得到必要的信息是解题关键25.(1)25人,90°,7,7;(2)一、二等奖学生人数分别为10人,15人.【分析】(1)先求出四班参赛人数,再用所占比例乘以360就得到α的度数.再根据一、二、三、四班获奖人数为6:7:a:5,求出a的值;得到各班获奖学生数的众数;(2)设获一二等奖的学生人数分别为x人,y人,根据共有25人和共用去1900元,可以列方程组即可求得.【详解】解:(1)①九(四)班参赛人数有100×(1-20%-20%-35%)=25人;α=360×(1-20%-20%-35%)=90;②三班参赛人数有100×35%=35,获奖者有35×20%=7,因为一、二、三、四班获奖人数为6:7:a :5,所以a=7;即一、二、三、四班获奖人数分别为6,7,7,5.所以各班获奖学生数的众数是7;故答案为:①25人,90°②7,7;(2)设获一二等奖的学生人数分别为x 人,y 人,则25100601900x y x y +=⎧⎨+=⎩,解得:1015x y =⎧⎨=⎩, 即获一二等奖学生人数分别为10人,15人.【点睛】此题考查了学生的综合应用能力,解题的关键是掌握扇形图和方程组的应用以及众数的意义.26.无。

(必考题)初中数学八年级数学上册第六单元《数据的分析》测试(包含答案解析)

(必考题)初中数学八年级数学上册第六单元《数据的分析》测试(包含答案解析)

一、选择题1.某天7名学生在进入校门时测得体温(单位℃)分别为:36.5,36.7,36.4,36.3,36.4,36.2,36.3,对这组数据描述正确的是()A.众数是36.4B.中位数是36.3C.平均数是36.4D.方差是1.92.某班七个兴趣小组人数分别为4,4,5,x,6,6,6.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.43.已知:一组数据-1,2,-1,5,3,4,关于这组数据,下列说法错误的是()A.平均数是2 B.众数和中位数分别是-1和2.5C.方差是16 D4.已知一组数据为8,9,10,10,11,则这组数据的众数()A.8 B.9 C.10 D.115.已知一组数据x1,x2,x3,把每个数据都减去2,得到一组新数据x1-2,x2-2,x3-2,对比这两组数据的统计量不变的是()A.平均数B.方差C.中位数D.众数6.在某次数学测验中,某小组8名同学的成绩如下:81,73,81,81,85,83,87,89,则这组数据的中位数、众数分别为().A.80,81 B.81,89 C.82,81 D.73,817.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:则这15名同学每天使用零花钱的众数和中位数分别是()元.A.3,3 B.2,2 C.2,3 D.3,58.李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收获一批成熟的果子。

他选取了5棵果树,采摘后分别称重,每棵果树果子总质量(单位:kg)分别为:90,100,120,100,80.这五个数据的众数是()A.120 B.110 C.100 D.909.在一次期末考试中,某一小组的6名同学的数学成绩(单位:分)分别是114,115,100,108,110,120,则这组数据的中位数是()A.100 B.108 C.112 D.12010.小明在计算一组数据的方差时,列出的公式如下:2222221(7)(8)(8)(8)(9)s x x x x x n⎡⎤=⨯-+-+-+-+-⎣⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5 B .数据平均数是8 C .数据众数是8 D .数据方差是011.某文艺汇演中,10位评委对节目A 的评分为1210a a a 、、、,去掉其中一个最高分和一个最低分得到一组新数据128b b b 、、、,这两组数据一定相同的是( ) A .平均数 B .中位数 C .众数 D .方差 12.若一组数据2,2,x ,5,7,7的众数为7,则这组数据的x 为( )A .2B .5C .6D .7二、填空题13.某校七年级统计30名学生的身高情况(单位cm ),其中身高最大值为172,最小值为149,且组距为3,则组数为________组. 14.数据1,1,2,3,x -的平均数是2,_____x =.15.甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则跳远成绩最稳定的是____.16.若3,2,x ,5的平均数是4,则x= _______.17.若一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是_______.18.小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,根据图中的信息,成绩较稳定的是____.19.我县教师招聘考试分笔试和面试两种,其中笔试按40%,面试按60%计算加权平均数作为总成绩,周倩笔试成绩为86分,面试成绩为85分,那么周倩的总成绩为____________分.20.某招聘考试成绩由笔试和面试组成,笔试占成绩的60%,面试占成绩的40%.小明笔试成绩为95分,面试成绩为85分,那么小明的最终成绩是_____.三、解答题21.某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表: 综合评价得分统计表(单位:分) 周次 组别 一 二 三 四 五 六 甲组12 15 16 14 14 13乙组91410171618(1)请根据表中的数据完成下表(注:方差的计算结果精确到0.1)平均数中位数方差甲组14乙组1411.7评价.~号的5名学生进行定点投篮,规定每人投10次,每命中1次记1分,没有22.编号为15命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了10次,其命中率为70%.(1)第6号学生的积分为分(2)这6名学生积分的中位数为分,众数为分.(3)若又来了第7号学生,也按同样记分规定投了10次,这时加入7号学生的得分后,众数发生了改变,同时平均数变大了,求此时7名学生积分的众数.23.某学校倡导全校1200名学生进行经典诗词背诵活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之后,随机抽取部分学生调查“一周诗词背诵数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词背诵数量”,绘制成统计表:一周诗词背诵数量3首4首5首6首7首8首人数101015☆2520(1)求本次调查抽取的学生人数,并补全上面的条形统计图;(2)活动启动之初学生“一周诗词背诵数量”的中位数是__________首;(3)估计大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了多少人?24.为了加强安全教育,某校对学生进行“防溺水知识应知应答”测评.该校随机选取了八年级300名学生中的20名学生在10月份测评的成绩,数据如下:收集数据:,=,d=;(2)该校决定授予在10月份测评成绩优秀(96分及以上)的八年级的学生“防溺水小卫士”荣誉称号,请估计评选该荣誉称号的人数.(3)若被选取的20名学生在11月份测评的成绩的平均数、众数和中位数如表:10月份到11月份开展的“防溺水知识应知应答”测评活动的效果.25.某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):(2)老师计算了乙品牌冰箱销量的方差:S 乙2=16[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=163(台2). 请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?26.2020年11月24日,全国劳动模范和先进工作者表彰大会在北京人民大会堂隆重举行,某县举办了“弘扬工匠精神,争当文明员工”歌唱比赛,某企业要从甲、乙两参赛部门中择优推荐一部门参加县级决赛,他们预赛阶段的各项得分如下表:歌唱内容 歌唱技巧 仪表形象甲 95 90 85 乙 879393被推荐;(2)如果根据歌唱内容、歌唱技巧、仪表形象按5:4:1的比例确定成绩,请通过计算说明甲、乙两部门哪个部门会被推荐,并对另外一部门提出合理的建议.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】按照众数,中位数,平均数,方差的定义计算判断即可. 【详解】∵这组数据为36.5,36.7,36.4,36.3,36.4,36.2,36.3, ∴平均数0.10.300.100.20.136.47x ++-+--=+=36.4,∴选项C 正确;∵36.3,36.4都出现了2次,∴数据的众数为36.3和36.4, ∴选项A 错误;∵按从小到大进行排序为36.2,36.3,36.3,36.4,36.4,36.5,36.7, ∴数据的中位数为36.4, ∴选项B 错误;∵方差为2222220.10.300.100.10.247175S ++++++==, ∴选项D 错误; 故选:C . 【点睛】本题考查了数据的集中趋势特征量的计算和离散度特征量的计算,熟记定义和公式是解题的关键.2.C解析:C 【分析】本题可先算出x 的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数. 【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x ,6,6,7.已知这组数据的平均数是5, ∴x=5×7-4-4-5-6-6-7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7, ∴这组数据的中位数是:5. 故选:C . 【点睛】本题考查的是中位数,熟知中位数的定义是解答此题的关键.3.C解析:C 【分析】分别求出这组数据的平均数、众数、中位数、方差和标准差即可进行判断. 【详解】解:(-1+2+-1+5+3+4)÷6=2,所以平均数是2,故A 选项不符合要求; 众数是-1,中位数是(2+3)÷2=2.5,故B 选项不符合要求;()()()()()()2222222116=12221252324263S ⎡⎤⨯--+-+--+-+-+-=⎣⎦,故C 选项符合要求;S ,故D 选项不符合要求. 故选:C 【点睛】本题主要考查的是平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解题的关键.4.C解析:C 【分析】一组数据中出现次数最多的数据叫作这组数据的众数,据此解答即可得到答案. 【详解】解:这组数据中8、9、11各出现一次,10出现两次,因此这组数据的众数是10. 故选C. 【点睛】本题主要考查了众数的含义.5.B解析:B 【分析】根据平均数与方差的计算公式、中位数与众数的定义即可得. 【详解】由中位数与众数的定义得:中位数和众数均会变化 原来一组数据的平均数为1233x x x x ++= 新的一组数据的平均数为1231232222233x x x x x x x -+-+-++=-=-则这两组数据的平均数发生变化原来一组数据的方差为22221231()()()3S x x x x x x ⎡⎤=-+-+-⎣⎦新的一组数据的方差为2221231(22)(22)(22)3x x x x x x ⎡⎤--++--++--+⎣⎦2221231()()()3x x x x x x ⎡⎤=-+-+-⎣⎦ 2=S则这两组数据的方差不变 故选:B . 【点睛】本题考查了平均数与方差的计算公式、中位数与众数的定义,熟记掌握数据整理中的相关概念和公式是解题关键.6.C解析:C 【解析】 试题将这组数从小到大排列为73,81,81,81,83,85,87,89,观察数据可知,最中间的那两个数为81和83,则中位数为82,而81出现的次数最多,所以众数是81.故本题应选C.7.C解析:C【分析】由于小红随机调查了15名同学,根据表格数据可以知道中位数在第三组,再利用众数的定义可以确定众数在第二组.【详解】∵小红随机调查了15名同学,∴根据表格数据可以知道中位数在第三组,即中位数为3.∵2出现了5次,它的次数最多,∴众数为2.故选C.【点睛】本题考查了中位数、众数的求法:①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.8.C解析:C【分析】根据众数的定义即可得出答案.【详解】解:∵100出现了2次,出现的次数最多,∴这五个数据的众数是100;故选:C.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.9.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:将这组数据按从小到大的顺序排列为:100,108,110,114,115,120,由中位数的定义可知,这组数据的中位数是1101142=112(分).故选:C.【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.D解析:D 【分析】根据题目中的方差公式可以判断各个选项中的结论是否正确,从而可以解答本题. 【详解】解:∵2222221(7)(8)(8)(8)(9)s x x x x x n⎡⎤=⨯-+-+-+-+-⎣⎦, ∴数据个数是5,故选项A 正确,数据平均数是:788895++++=8,故选项B 正确,数据众数是8,故选项C 正确,数据方差是:s 2=15[(7−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2]=25,故选项D 错误,故选:D . 【点睛】本题考查了方差、样本容量、算术平均数、众数,解题的关键是明确题意,会求一组数据的方差、样本容量、算术平均数、众数.11.B解析:B 【分析】根据各数据指标的定义和计算方法去比较判断. 【详解】A 、去掉的两个数的平均分与剩下的8个数的平均分不一定相等,所以原来的平均分与剩下的8个数的平均分也不一定相等;B 、因为中位数是一组数据排序后排在最中间的那个数(或中间两个数的平均数),去掉一个最高分和一个最低分相当于从排好的数据中首尾各去掉一个数据,这样排在最中间的那个数(或中间两个数)没有什么变化,所以前后的中位数也没有变化;C 、如果原来的众数是最高分或最低分,那么去掉一个最高分和一个最低分后,最高分和最低分的出现次数都减小1,数组的众数就有可能发生改变;D 、由A 知,数组的平均数可能发生改变,那么反映数据偏离平均数程度的方差也有可能发生改变. 故选B . 【点睛】本题考查数据指标变化,熟练掌握数据指标的特征和计算方法是解题关键.12.D解析:D 【分析】根据众数的定义可得x 的值.【详解】解:∵数据2,3,x ,5,7的众数为7,∴x=7,故选:D .【点睛】本题考查众数的意义,掌握众数是数据中出现最多的一个数是解题的关键.二、填空题13.8【分析】根据题意可以求得极差然后根据组距即可求得组数【详解】解:极差为:172-149=2323÷3=7则组数为8组故答案为:8【点睛】本题考查频数分布表解答本题的关键是明确分组的方法解析:8【分析】根据题意可以求得极差,然后根据组距即可求得组数.【详解】解:极差为:172-149=23, 23÷3=723, 则组数为8组,故答案为:8.【点睛】本题考查频数分布表,解答本题的关键是明确分组的方法.14.5【分析】根据算术平均数的计算公式列出算式再进行计算即可得出答案【详解】解:∵数据1-123x 的平均数是2∴解得:x=5;故答案为:5【点睛】本题考查了算术平均数熟练掌握算术平均数的计算公式是解题的解析:5【分析】根据算术平均数的计算公式列出算式,再进行计算即可得出答案.【详解】解:∵数据1,-1,2,3,x 的平均数是2, ∴112325x -+++=, 解得:x=5;故答案为:5.【点睛】 本题考查了算术平均数,熟练掌握算术平均数的计算公式是解题的关键.15.丁【分析】根据方差的意义求解可得【详解】解:∵S 甲2=065S 乙2=055S丙2=050S丁2=045∴S丁2<S丙2<S乙2<S甲2∵他们的平均成绩相同∴跳远成绩最稳定的是丁故答案为:丁【点睛】本解析:丁.【分析】根据方差的意义求解可得.【详解】解:∵S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S乙2<S甲2,∵他们的平均成绩相同,∴跳远成绩最稳定的是丁.故答案为:丁.【点睛】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.16.6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x的值【详解】∵32x5的平均数是4∴故答案为:6【点睛】此题考查利用平均数求未知的数据正确掌握平均数的计算方法正确计算是解题的关键解析:6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x的值.【详解】∵3,2,x,5的平均数是4,x=⨯---=,∴443256故答案为:6.【点睛】此题考查利用平均数求未知的数据,正确掌握平均数的计算方法,正确计算是解题的关键. 17.3304【分析】根据平均数求出x=3再根据中位数众数方差的定义解答【详解】∵一组数据2433的平均数是3∴x=将数据由小到大重新排列为:23334∴这组数据的中位数是3众数是3方差为故答案为:330解析:3,3,0.4【分析】根据平均数求出x=3,再根据中位数、众数、方差的定义解答.【详解】∵一组数据2,x,4,3,3的平均数是3,⨯----=,∴x=3524333将数据由小到大重新排列为:2、3、3、3、4,∴这组数据的中位数是3,众数是3,方差为2221(23)3(33)(43)0.45⎡⎤-+⨯-+-=⎣⎦, 故答案为:3、3、0.4.【点睛】 此题考查数据的分析:利用平均数求某一个数,求一组数据的中位数、众数和方差,正确掌握计算平均数、中位数、众数及方差的方法是解题的关键.18.小明【分析】观察图象可得:小明的成绩较集中波动较小即方差较小故小明的成绩较为稳定【详解】解:根据图象可直接看出小明的成绩波动不大根据方差的意义知波动越小成绩越稳定故答案为:小明【点睛】此题主要考查了 解析:小明【分析】观察图象可得:小明的成绩较集中,波动较小,即方差较小,故小明的成绩较为稳定.【详解】解:根据图象可直接看出小明的成绩波动不大,根据方差的意义知,波动越小,成绩越稳定,故答案为:小明.【点睛】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.19.4【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩列出算式进行计算即可【详解】解:∵笔试按40面试按60∴总成绩是(86×40+85×60)=854分故答案为:854【点睛】本题考查了加权平解析:4【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【详解】解:∵笔试按40%、面试按60%,∴总成绩是(86×40%+85×60%)=85.4分,故答案为:85.4.【点睛】本题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.20.91【分析】根据加权平均数的计算公式列出算式再进行计算即可【详解】根据题意得:小明的最终成绩是95×60+85×40=91(分)故答案为91【点睛】本题考查的是加权平均数的求法本题易出现的错误是求9解析:91【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】根据题意得:小明的最终成绩是95×60%+85×40%=91(分).故答案为91.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是求95和85两个数的平均数,对平均数的理解不正确.三、解答题21.(1)14,1.7,15;(2)甲组成绩相对稳定,但进步不大,且略有下降趋势.乙组成绩不够稳定,但进步较快,呈上升趋势(答案不唯一)【分析】(1)根据平均数、中位数、方差的定义求出后填表即可解答.(2)根据折线统计图的特点描述即可,答案不唯一.【详解】解:(1)甲组平均数=(12+15+16+14+14+13)÷6=14,甲组方差=()()()()()222221121415141614141413146⎡⎤-+-+-+-+-⎣⎦≈1.7 乙组数据从小到大排列为:9;10;14;16;17;18∴中位数=(14+16)÷2=15,故答案为:稳定,但进步较快,呈上升趋势.【点睛】本题主要考查了平均数、中位数、众数的概念,方差是描述一组数据波动大小的量. 22.(1)7;(2)7.5,9;(3)7名学生积分的众数是8,9【分析】(1)由第6名学生命中的个数为10×70%=7可得答案;(2)由这6名学生中,将得分排列找出众数和中位数即可;(3)根据平均数得变大了找到关于第7名同学成绩的不等式,求出范围,再根据题意众数发生了改变,即可找到合适的值,进而求众数即可.【详解】解:(1)第6名学生命中的个数为10×70%=7,第6号学生的积分为7分.故答案为7.(2)这6名学生中,按照得分由低到高的顺序排列:4,5,7,8,9,9,则中位数7+8=7.5 2;命中次数为9,则众数是9;故答案为7.5,9.(3)由于前6名学生积分的平均数为:4+5+7+8+9+9=76.设第7名学生积分为x分.由题意得:4+5+7+8+9+9+x77解得:x>7又∵众数发生改变∴x9≠∴x=8∴此时7名学生积分的众数是8,9.【点睛】本题主要考查众数的定义和条形统计图、平均数及中位数的定义,熟练掌握中位数和众数的定义是解题的关键.23.(1)45,图见解析;(2)4.5首;(3)450人【分析】(1)根据5首的人数和在扇形统计图中所对圆心角的度数,可以求得本次抽取的学生人数,然后可以计算出4首的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以得到中位数;(3)根据统计图中的数据,可以计算出大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数.【详解】解:(1)20÷60360=120人,背诵4首的学生有:120×135360=45(人),补全的条形统计图如图所示;(2)活动启动之初学生“一周诗词背诵数量”的中位数是(4+5)÷2=4.5(3)☆=120-10-10-15-25-20=40人,1200×(402520161311120120++++-)=450(人) 所以,大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了450人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)3;2;91;90;(2)估计评选该荣誉称号的人数为105人;(3)11月份开展的“防溺水知识应知应答”测评活动的效果比较好.【分析】由题意直接写出a ,b 的值,再根据中位数和众数的定义即可求出c ,d 的值;(2)先求出测评成绩优秀的学生人数所占分率,再乘300即可得出结论.(3)从中位数出发,结合题意即可得出结论;【详解】解:(1)由题意得:91分的有2个,即a =3;98分的有2个,即b =2;出现次数最多的是90分,故众数是90分,即d =90;一共20个数据,第10个,第11个数据都是91,故中位数是91分,即c =91. 故答案为:3;2;91;90;(2)300×1+3+2+120=105(人). 答:估计评选该荣誉称号的人数为105人;(3)10月份的中位数是91,11月份的中位数是93,∵93>91,∴ 11月份开展的“防溺水知识应知应答”测评活动的效果比较好.【点睛】本题考查了众数、平均数、中位数、用样本估计总体等知识;熟练掌握众数、平均数、中位数的定义以及用样本估计总体是解题的关键.25.(1)10、10、10.5;(2)2=1S 甲,216=3乙S ,甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱,理由见解析【分析】(1)将两种品牌冰箱销售量重新排列,再根据平均数、众数和中位数的概念求解即可; (2)先计算出甲品牌冰箱销售数量的方差,再根据方差的意义求解即可.【详解】解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12,所以甲品牌销售数量的平均数为92103126⨯+⨯+=10(台),众数为10台, 乙品牌销售数量从小到大排列为7、7、10、11、12、13, 所以乙品牌销售数量的中位数为10112+=10.5(台), 补全表格如下:(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差2S 甲=16×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S 乙2=163, ∴2S 甲<S 乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱. 【点睛】本题考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,也考查平均数、众数和中位数的定义. 26.(1)乙;(2)甲;建议见解析(答案不唯一,只要合理都可).【分析】(1)代入求平均数公式即可求出甲、乙两人的平均成绩,比较得出结果;(2)根据加权平均数的计算方法,将甲、乙两人的总成绩按比例求出测试成绩,比较得出结果.【详解】解:(1)()1959085903x =⨯++=甲(分); ()1879393913x =⨯++=乙(分). ∵90<91,∴乙将被推荐参加校级决赛.(2)9559048592541x ⨯+⨯+==++甲(分); 8759349390541x ⨯+⨯+==++乙(分). ∵92>90,∴甲将被推荐参加校级决赛.建议:由于演讲内容的权较大,乙这项得成绩较低,应改进演讲内容,力争取得更好的成绩.(答案不唯一,只要合理都可).【点睛】本题考查了平均数的应用.熟练掌握算术平均数与加权平均数的计算方法是解题的关键.。

北师大版八年级上册数学第六章 数据的分析 单元测试卷(含答案解析)

北师大版八年级上册数学第六章 数据的分析 单元测试卷(含答案解析)

北师大版八年级上册数学第六章数据的分析单元测试卷一、单选题1.一组数据6,7,8,9,10,这组数据的平均数是()A.6B.7C.8D.92.“魅力凉都”六盘水某周连续7天的最高气温(单位℃)是18,22,22,23,24,25,26,则这组数据的中位数是()A.18B.22C.23D.243.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差B.众数C.中位数D.平均数4.一组数据1,2,3,5,3,4,10的极差、众数分别是()A.3,3B.9,3C.5,4D.6,10 5.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁6.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分7.一组数据的算术平均数是40,将这组数据中的每一个数据都减去5后,所得的新的一组数据的平均数是()A.40B.35C.25D.58.某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台9.某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是()A.19,19B.19,20C.19,20.5D.20,1910.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为().A.1B.6C.1或6D.5或611.如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量描述不正确的是()A.众数为30B.中位数为30C.平均数为24D.方差为84 12.某次期中考试,小明、小亮的语文、数学、英语三科的分数如下:如果将语文、数学、英语这三科的权重比由3:5:2变成5:3:2,那么分数变化情况是()A.小明增加的分数多B.小亮增加的分数多C .两人增加的分数一样多D .两人的分数都减少了13.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃14.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 515.A 、B 、C 、D 、E 五名射击运动员在一次比赛中的平均成绩是80环,而A 、B 、C 三人的平均成绩是78环,那么下列说法中一定正确的是( ) A .D 、E 的成绩比其他三人好 B .B 、E 两人的平均成绩是83环 C .最高分得主不是A 、B 、CD .D 、E 中至少有1人的成绩不少于83环。

(典型题)初中数学八年级数学上册第六单元《数据的分析》测试卷(有答案解析)

(典型题)初中数学八年级数学上册第六单元《数据的分析》测试卷(有答案解析)

一、选择题1.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个得分.若去掉一个最低分,平均分为x ;去掉一个最高分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y z x >> B .x z y >> C .y x z >> D .z y x >> 2.数据201,202,198,199,200的方差与极差分别是( )A .1,4B .2,2C .2,4D .4,23.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是( )A .26,26B .26,22C .31,22D .31,264.在学校数学竞赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是85C .平均数是89D .极差是155.在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数124332这些运动员跳高成绩的中位数和众数分别是( ) A .1.70,1.65B .1.70,1.70C .1.65,1.70D .3,46.甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表: 班级参赛人数平均数中位数方差某同学分析上表后得到如下结论: ①甲、乙两班学生的平均成绩相同;②乙班优秀的人数少于甲班优秀的人数(竞赛得分85≥分为优秀); ③甲班成绩的波动性比乙班小. 上述结论中正确的个数是( ) A .3个B .2个C .1个D .0个7.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2=0.54S 甲,20.62S =乙,20.56S =丙,2=0.45S 丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁8.学校举行演讲比赛,共有13名同学进入决赛,比赛将评出金奖1名,银奖2名,铜奖3名,某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的( ) A .平均数B .中位数C .众数D .方差9.小李大学毕业到一家公司应聘英文翻译,该公司对他进行了听、说、读、写的英语水平测试,他的各项成绩(百分制)分别为70、80、90、100.他这四项测试的平均成绩是( ) A .80B .85C .90D .9510.小明在计算一组数据的方差时,列出的公式如下:2222221(7)(8)(8)(8)(9)s x x x x x n⎡⎤=⨯-+-+-+-+-⎣⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5 B .数据平均数是8 C .数据众数是8 D .数据方差是011.已知数据1x 、2x 、3x 、、100x 是龙岩市某企业普通职工的2019年的年收入,设这100个数据的平均数为a ,中位数为b ,方差为c ,如果再加上中国首富马化腾的年收入101x ,则在这101个数据中,a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大 C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变12.已知123,,x x x 的方差是1,数据12323,23,23x x x +++的方差是( ) A .1B .2C .4D .8二、填空题13.小明用222212101(3)(3)(3)10s x x x ⎡⎤=-+-+⋅⋅⋅+-⎣⎦计算一组数据的方差,那么12310x x x x ++++=____.14.一组数据:9、12、10、9、11、9、10,则它的方差是_____.15.已知一组数据123,,,,n x x x x 的方差是2S ,那么另一组数据1233,3,3,,3n x x x x ----的方差是______.16.小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,根据图中的信息,成绩较稳定的是____.17.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.18.在实验操作中,某兴趣小组的得分情况是:有5人得10分,有8人得9分,有4人得8分,有3人得7分,则这个兴趣小组实验操作得分的平均分是________. 19.一组数据1、6、4、6、3,它的平均数是_______,众数是_______,中位数是_______.20.下表是某学习小组一次数学测验的成绩统计表: 分数 70 80 90 100 人数13x1三、解答题21.某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周 第2周 第3周 第4周 第5周 第6周 甲 9 10 10 9 12 10 乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数 中位数 众数 甲 10 乙107(2)老师计算了乙品牌冰箱销量的方差: S 乙2=16[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=163(台2). 请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?22.聪聪利用暑假到工厂进行社会实践活动,他跟在张师傅后学加工某种机器零件,共加工9天,每天加工的机器零件个数如下:1,2,3,4,5,6,7,8,9. (1)求聪聪这9天加工零件数的平均数;(2)聪聪问张师傅加工的零件数,张师傅说;我每天加工的零件数是两位数,并且每天加工零件数的个位上数字都与你相同,这9天加工零件数的平均数比你多30但方差和你一样,听完张师傅的话,聪聪笑着说,张师傅我知道了,根据上面的信息,请你直接写出张师傅每天加工的零件数.23.为了解学生参加体育活动的情况,某地对九年级学生每天参加体育活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生总数和每天体育活动时间为1.5小时的学生数; (2)每天体育活动时间的中位数;(3)该校共有3500名学生,请估计该地九年级每天体育活动时间超过1小时的学生有多少人?24.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测试,两个人在相同条件下各射靶5次,甲命中的环数分别是:10、6、10、6、8,乙命中的环数分别是:7、9、7、8、9.经过计算,甲命中的平均数为8x =甲,方差为23.2S =甲.(1)求乙命中的平均数x 乙和方差2S 乙;(2)现从甲、乙两名队员中选出一人去参加射击比赛,你认为应该选哪名队员去?为什么?25.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤(1)请将条形统计图补充完整;(2)在扇形统计图中,计算出D :90100x ≤≤这一组对应的圆心角是_______度; (3)所抽取学生成绩的中位数在哪个组内,并说明理由;(4)若该学校有1500名学生,估计这次竞赛成绩在A :6070x ≤<组的学生有多少人?26.在一次广场舞比赛中,甲、乙两个队参加表演的女演员的身高(单位:cm )分别是甲队:163 165 165 164 168 乙队:162 164 164 167 168(1)求甲队女演员身高的平均数、中位数﹑众数;(2)计算两队女演员身高的方差,并判断哪个队女演员的身高更整齐?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题. 【详解】解:由题意可得,去掉一个最低分,平均分为x ,此时x 的值最大;若去掉一个最高分,平均分为y ,则此时的y 一定小于同时去掉一个最高分和一个最低分后的平均分为z , 故x z y >>, 故选:B . 【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.2.C解析:C 【分析】极差=数据最大值-数据最小值,求出数据的平均数,后套用方差公式计算即可. 【详解】∵最大数据为202,最小数据为198, ∴极差=202-198=4; ∵1200(12210)5x =++--+=200, ∴2222221[(201200)(202200)(198200)(199200)(200200)]5S =-+-+-+-+- =2, 故选C. 【点睛】本题考查了方差和极差的计算,熟记方差的公式,极差的定义是解题的关键.3.B解析:B 【分析】根据中位数,众数的定义进行解答即可. 【详解】七个整点时数据为:22,22,23,26,28,30,31. 所以中位数为26,众数为22, 故选:B . 【点睛】本题考查了折线统计图,中位数,众数等知识,关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.4.B解析:B 【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案. 【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90; ∵平均数是(80×1+85×2+90×5+95×2)÷10=89; 极差是:95﹣80=15. 故选:B . 【点睛】此题主要考查折线统计图、众数、中位数、平均数、极差,正确读懂统计图的信息是解题关键.5.A解析:A【分析】根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.【详解】将数据从小到大排列为:1.50,1.60,1.60,1.65,1.65,1.65,1.65.1.70,1.70,1.70,1.75,1.75,1.75,1.80,1.80,众数为:1.65;中位数为:1.70.故选:A.【点睛】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列.6.A解析:A【分析】根据平均数、中位数、方差的定义即可判断.【详解】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数少于甲班优秀的人数;根据方差可知,甲班成绩的波动性比乙班小.故①②③正确,故选:A.【点睛】本题考查了平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D解析:D【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵S甲2=0.54,S乙2=0.62,S丙2=0.56,S丁2=0.45∴S丁2<S甲2<S丙2<S乙2,∴成绩最稳定的是丁.故选:D . 【点睛】本题考查方差,正确理解方差的意义是解题关键.8.B解析:B 【分析】根据进入决赛的13名学生所得分数互不相同,所以这13名学生所得分数的中位数即是获奖的学生中的最低分,所以某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,据此解答即可. 【详解】解:∵进入决赛的13名学生所得分数互不相同,共有1+2+3=6个奖项, ∴这13名学生所得分数的中位数即是获奖的学生中的最低分,∴某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,如果这名学生的分数大于或等于中位数,则他能获奖,如果这名学生的分数小于中位数,则他不能获奖. 故选:B . 【点睛】本题考查了统计量的选择,要熟练掌握,解答此题的关键是要明确:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量.9.B解析:B 【分析】利用平均数公式计算即可. 【详解】他这四项测试的平均成绩是708090100854+++=,故选:B. 【点睛】此题考查平均数的计算公式,正确掌握公式是解题的关键.10.D解析:D 【分析】根据题目中的方差公式可以判断各个选项中的结论是否正确,从而可以解答本题. 【详解】解:∵2222221(7)(8)(8)(8)(9)s x x x x x n⎡⎤=⨯-+-+-+-+-⎣⎦, ∴数据个数是5,故选项A 正确,数据平均数是:788895++++=8,故选项B 正确,数据众数是8,故选项C 正确, 数据方差是:s 2=15[(7−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2]=25,故选项D 错误,故选:D . 【点睛】本题考查了方差、样本容量、算术平均数、众数,解题的关键是明确题意,会求一组数据的方差、样本容量、算术平均数、众数.11.B解析:B 【分析】我们根据平均数的意义,中位数的定义,及方差的意义,分析由于加入x 201后,数据的变化特征,易得到答案. 【详解】解:∵数据x 1,x 2,x 3,…,x 200是龙岩市某企业普通职工的2019年的年收入, 而x 201为中国首富马云的年收入,则x 201会远大于x 1,x 2,x 3,…,x 200, 故这201个数据中,年收入平均数大大增大, 但中位数可能不变,也可能稍微变大,但由于数据的集中程度也受到x 201比较大的影响,而更加离散,则方差变大 故选:B . 【点睛】本题考查的知识点是方差,平均数,中位数,正确理解平均数的意义,中位数的定义,及方差的意义,是解答本题的关键,另外,根据实际情况,分析出x 201为中国首富马云的年收入,则x 201会远大于x 1,x 2,x 3,…,x 200也是解答本题的关键.12.C解析:C 【分析】根据平均数与方差的概念,求出数据2x 1+3,2x 2+3,2x 3+3的平均数与方差即可. 【详解】设数据1x ,2x ,3x 的平均数是x ,方差是2s , ∴()12313x x x x =++, ()()()2222123113s x x x x x x ⎡⎤=-+-+-=⎣⎦,∴数据21x +3,22x +3,23x +3的平均数为:()()()()12312311232323232333x x x x x x x x ⎡⎤=+++++=⨯+++=+⎣⎦', 方差为()()()222212312323232323233s x x x x x x ⎡⎤=+--++--++--⎣'⎦()()()222123143x x x x x x ⎡⎤=⨯-+-+-⎣⎦414=⨯=.故选:C . 【点睛】本题考查了求数据的平均数与方差的应用问题,灵活运算是解题的关键.二、填空题13.30【分析】由方差的计算可得这组数据的平均数然后利用平均数的计算方法求解【详解】解:由题意可得这组数据共10个数且它们的平均数是3∴=10×3=30故答案为:30【点睛】此题主要考查了方差与平均数的解析:30 【分析】由方差的计算可得这组数据的平均数,然后利用平均数的计算方法求解. 【详解】解:由题意可得,这组数据共10个数,且它们的平均数是3 ∴12310x x x x ++++=10×3=30故答案为:30. 【点睛】此题主要考查了方差与平均数的计算,关键是正确掌握方差的计算公式.一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=22221231()()()...()n x x x x x x x x n ⎡⎤-+-+-+-⎣⎦.14.【分析】先由平均数的公式计算出这组数据的平均数再根据方差的公式计算即可【详解】解:这组数据的平均数是:(9+12+10+9+11+9+10)=10则它的方差是:3×(9﹣10)2+2×(10﹣10)解析:87【分析】先由平均数的公式计算出这组数据的平均数,再根据方差的公式计算即可. 【详解】解:这组数据的平均数是:17(9+12+10+9+11+9+10)=10, 则它的方差是:17 [3×(9﹣10)2+2×(10﹣10)2+(12﹣10)2+(11﹣10)2]=87; 故答案为:87. 【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.【分析】设原数据的平均数为另一组数据是原数据都减去3则另一组数据的平均数为然后根据方差的计算公式化简即可得出答案【详解】解:设原数据的平均数为因为另一组数据的每一个数是原数据减去了3则平均数变为则原 解析:2S【分析】 设原数据的平均数为x ,另一组数据是原数据都减去3,则另一组数据的平均数为3x -,然后根据方差的计算公式化简即可得出答案.【详解】 解:设原数据的平均数为x ,因为另一组数据的每一个数是原数据减去了3, 则平均数变为3x -, 则原数据的方差为:2222121[()()()]n x x x x x x S n -+-++-=,另一组数据的方差为:222121[(33)(33)(33)]n x x x x x x n --++--+++--+222121[()()()]n x x x x x x n=-+-++-2=S .故答案为:2S .【点睛】 本题考查了方差的定义和性质,方差是用来衡量一组数据波动大小的量,每个数都加上或减去一个数,波动不会变,方差不变.16.小明【分析】观察图象可得:小明的成绩较集中波动较小即方差较小故小明的成绩较为稳定【详解】解:根据图象可直接看出小明的成绩波动不大根据方差的意义知波动越小成绩越稳定故答案为:小明【点睛】此题主要考查了 解析:小明【分析】观察图象可得:小明的成绩较集中,波动较小,即方差较小,故小明的成绩较为稳定.【详解】解:根据图象可直接看出小明的成绩波动不大,根据方差的意义知,波动越小,成绩越稳定,故答案为:小明.【点睛】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(1)858;(2)两队的平均分相同但乙组的方差小于甲组方差所以乙组成绩更稳定【分析】(1)根据方差平均数的计算公式求出甲组方差和乙组平均数根据中位数的定义取出甲组中位数;(2)根据(1)中表格数据解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.18.5【分析】根据平均分=总分数÷总人数求解即可【详解】这个兴趣小组实验操作得分的平均分=(分)故答案为:875分【点睛】本题考查了加权平均数的求法熟记公式:是解决本题的关键解析:5【分析】根据“平均分=总分数÷总人数”求解即可.【详解】这个兴趣小组实验操作得分的平均分=105+98+84+73175==87.55+8+4+320⨯⨯⨯⨯(分). 故答案为:87.5分.【点睛】 本题考查了加权平均数的求法.熟记公式:11221212 ( 0)n n n n x f x f x f x f f f f f f ++⋯++++≠+++=是解决本题的关键.19.64【分析】根据平均数的计算公式众数和中位数的定义即可得【详解】平均数为因为这组数据中6出现的次数最多所以它的众数是6将这组数据按从小到大进行排序为则它的中位数是4故答案为:464【点睛】本题考查了 解析:6 4【分析】根据平均数的计算公式、众数和中位数的定义即可得.【详解】平均数为1646345++++=, 因为这组数据中,6出现的次数最多,所以它的众数是6,将这组数据按从小到大进行排序为1,3,4,6,6,则它的中位数是4,故答案为:4,6,4.【点睛】本题考查了平均数、众数、中位数,熟记公式和定义是解题关键.20.3【分析】利用加权平均数的计算公式列出方程求解即可【详解】解:由题意得70+80×3+90x+100=85×(1+3+x+1)解得x =3故答案为3【点睛】本题考查了加权平均数的计算和列方程解决问题的解析:3【分析】利用加权平均数的计算公式列出方程求解即可.【详解】解:由题意,得70+80×3+90x +100=85×(1+3+x+1),解得x =3.故答案为3.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.三、解答题21.(1)10、10、10.5;(2)2=1S 甲,216=3乙S ,甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱,理由见解析【分析】(1)将两种品牌冰箱销售量重新排列,再根据平均数、众数和中位数的概念求解即可; (2)先计算出甲品牌冰箱销售数量的方差,再根据方差的意义求解即可.【详解】解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12, 所以甲品牌销售数量的平均数为92103126⨯+⨯+=10(台),众数为10台, 乙品牌销售数量从小到大排列为7、7、10、11、12、13, 所以乙品牌销售数量的中位数为10112+=10.5(台), 补全表格如下:(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差2S 甲=16×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S 乙2=163, ∴2S 甲<S 乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.【点睛】本题考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,也考查平均数、众数和中位数的定义. 22.(1)5件;(2)31,32,33,34,35,36,37,38,39【分析】(1)利用平均数的定义即可求解;(2)根据“平均数比你多30但方差一样”可得张师傅每天加工的零件数都比聪聪多30,即可求解.【详解】解:(1)这9天加工零件数的平均数为:12345678959++++++++=(件); (2)∵每天加工零件数的个位上数字都与聪聪的相同,这9天加工零件数的平均数比聪聪多30,且方差一样,∴张师傅每天加工的零件数为:31,32,33,34,35,36,37,38,39.【点睛】本题考查平均数和方差,掌握平均数和方差的定义是解题的关键.23.(1)500人,120人;(2)1小时;(3)1400人【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数; (2)根据条形统计图可以得到这组数据的中位数;(3)用样本中超过1小时的比例乘以总人数3500,即可得该校九年级每天体育活动时间超过1小时的学生有多少人.【详解】解:(1)由条形统计图和扇形统计图可得,0.5小时的有100人占被调查总人数的20%, 故被调查的人数有:100÷20%=500(人),1.5小时的人数有:500×24%=120(人);(2)由(1)可知被调查学生500人,∴中位数是第250和251对应的数的平均数,由条形统计图可得,中位数是1小时;(3)∵12080500+×3500= 1400(人), ∴该地九年级每天体育活动时间超过1小时的学生约为1400人.【点睛】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.24.(1)8x =乙;20.8S =乙;(2)乙,见解析【分析】(1)利用平均数以及方差的定义得出即可;(2)利用方差的意义,分析得出答案即可.【详解】解:(1)()7978958x =++++÷=乙(个),()()()()()222222178987888980.85S ⎡⎤=-+-+-+-+-=⎣⎦乙; (2)应选乙去,理由:∵x x =甲乙∵2 3.2 S=甲,20.8 S=乙,∴22S S>甲乙,∴乙的波动小,成绩更稳定∴应选乙去参加射击比赛.【点睛】此题主要考查了平均数以及方差,正确记忆相关定义是解题关键.25.(1)见解析;(2)108 ;(3)C组;见解析;(4)150人【分析】(1)根据B组人数和所占的百分比,可以求得本次调查的人数,再根据条形统计图中的数据,可得到C组的人数,即可补全条形统计图;(2)用360°乘以D组对应的百分比可得其对应圆心角度数;(3)根据条形统计图中的数据,可以得到所抽取学生成绩的中位数落在哪个组内;(4)根据条形统计图中的数据,可以计算出这次竞赛成绩在A:60≤x<70组的学生有多少人.【详解】解:(1)∵被调查的总人数为12÷20%=60(人),∴C组人数为60-(6+12+18)=24(人),补全图形如下:(2)D组对应圆心角度数为:360°18108 60⨯=︒,故答案为:108;(3)中位数是第30、31个数据的平均数,而第30、31个数据均落在C组,所以中位数落在C组;(4)1500615060⨯=(人),答:这次竞赛成绩在A:60≤x<70组的学生有150人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.26.(1)甲队女演员身高的平均数是165cm,中位数是165cm,众数是165cm;(2)甲队数据方差为2.8;乙队数据方差为4.8;甲队女演员的身高更整齐【分析】(1)根据平均数、众数、中位数的定义分别进行解答即可;(2)先求出乙队女演员的平均数身高,再根据方差公式求出甲队和乙队的方差,然后根据方差的意义即可得出答案.【详解】解:(1)()()1163164165165168165cm 5⨯++++=,∴甲队女演员身高的平均数是165cm ,把这些数从小到大排列,则中位数是165cm ,165cm 出现了2次,出现的次数最多,则众数是165cm ;(2)乙队女演员身高的平均数()()1162164164167168165cm 5=⨯++++=, 甲队数据方差 ()()()()()2222221163165164165165165165165168165 2.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦甲,乙队数据方差()()()()()2222221162165164165164165167165168165 4.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦乙,∵22s s <甲乙,∴甲队女演员的身高更整齐.【点睛】本题考查了平均数、众数、中位数和方差,平均数表示一组数据的平均程度.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.。

(好题)初中数学八年级数学上册第六单元《数据的分析》测试卷(包含答案解析)

(好题)初中数学八年级数学上册第六单元《数据的分析》测试卷(包含答案解析)

一、选择题1.某同学对数据31,36,36,47,5•,52进行统计分析发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.众数2.一组数据由5个整数组成,已知中位数是10,唯一众数是12,则这组数据和的最大值可能是()A.50 B.51 C.52 D.533.已知一组数据:6,2,4,x,5,它们的平均数是4,则x的值为()A.4 B.3 C.2 D.14.某班七个兴趣小组人数分别为4,4,5,5,x,6,7.已知这组数据的平均数是5?,则这组数据的众数和中位数分别是()A.4,4B.4,5C.5,4D.5,55.在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65 B.1.70,1.70 C.1.65,1.70 D.3,46.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()A.中位数B.众数C.平均数D.不能确定7.学习勾股定理时,数学兴趣小组设计并组织了“勾股定理的证明”的比赛,全班同学的比赛得分统计如表:则得分的中位数和众数分别为()A.75,70 B.75,80 C.80,70 D.80,808.在一次期末考试中,某一小组的6名同学的数学成绩(单位:分)分别是114,115,100,108,110,120,则这组数据的中位数是()A.100 B.108 C.112 D.1209.为了解九年级()1班学生某天的体温情况,班长把所有同学当天上报的体温(单位:C )绘制成了如下统计表.这组体温数据的众数是( ) 人数(人A .36.2CB .36.3CC .36.4CD .36.5C10.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( ) A .平均数 B .中位数C .众数D .以上都不对11.已知:x 1,x 2,x 3...x 10的平均数是a ,x 11,x 12,x 13...x 50的平均数是b ,则x 1,x 2,x 3...x 50的平均数是( )A .a +bB .2a b+ C .105060a b+ D .104050a b+ 12.下表记录了甲、乙、丙、丁四名立定跳远运动员选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好发挥稳定的运动员参加比赛,应该选择( ) A .甲B .乙C .丙D .丁二、填空题13.一组数据:1、2、4、3、2、4、2、5、6、1,它们的中位数为_____.14.2020年新冠疫情来势汹汹,我国采取了有力的防疫措施,控制住了疫情的蔓延.甲,乙两个学校各有400名学生,在复学前期,为了解学生对疫情防控知识的掌握情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两校各随机抽取20名学生进行了相关知识的网上测试,测试成绩如下: 甲98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58 乙99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55 (2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图: (3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数 众数 中位数 方差 甲校 84.7 92 m 88.91 乙校83.7n88.5184.01(说明:成绩80分及以上为优良,60﹣79分为合格,60分以下为不合格) (4)得出结论a .估计甲学校掌握疫情防控知识优良的学生人数约为 ;b .可以推断出 学校的学生掌握疫情防控知识的水平较高,理由为 . 15.下面是某校八年级(1)班一组女生的体重(单位:kg )36 35 45 42 33 40 42,这组数据的平均数是____,众数是_____,中位数是_____.16.已知:一组数据a ,b ,c ,d ,e 的平均数是22,方差是13,那么另一组数据32a -,32b -,32c -,32d -,32e -的方差是__________.17.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表: 完成引体向上的个数 7 8 9 10 人数123418.甲、乙两地9月份连续五天的日平均气温统计如下表(单位:C︒)甲地气温2224282523乙地气温2425252424则甲、乙两地这5天日平均气温的方差大小关系为:s甲_____________s乙.(填“>”“<”或“=”)19.某班7个兴趣小组的人数如下:5,6,6,x,7,8,9,已知这组数据的平均数为7,则这组数据的中位数是______________.20.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是1,则数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是______.三、解答题21.某学校倡导全校1200名学生进行经典诗词背诵活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之后,随机抽取部分学生调查“一周诗词背诵数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词背诵数量”,绘制成统计表:一周诗词背诵数量3首4首5首6首7首8首人数101015☆2520(1)求本次调查抽取的学生人数,并补全上面的条形统计图;(2)活动启动之初学生“一周诗词背诵数量”的中位数是__________首;(3)估计大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了多少人?22.某区举办中学生科普知识竞赛,各学校分别派出一支代表队参赛.知识竞赛满分为100分,规定85分及以上为“合格”,95分及以上为“优秀”现将A,B两个代表队的竞赛成绩分布图及统计表展示如下:组别平均分中位数方差合格率优秀率A队88906170%30%B队a b7175%25%(2)小明的成绩虽然在本队排名属中游,但是竞赛成绩低于本队的平均分,那么小明应属于哪个队?(3)从平均分、合格率、优秀率、队内成绩的整齐性等方面进行综合评价,你认为集体奖应该颁给哪一队?23.珍爱生命,增强安全意识.新学期开始,某校开展“开学安全第一课”知识竞赛,并从五年级、八年级年级各随机抽取10名学生的竞赛成绩进行统计.整理如下:八年级抽取的学生竞赛成绩:80,60,80,90,80,90,90,50,100,90.五年级抽取的学生竞赛成绩条形统计图:五年级、八年级抽取的学生竞赛成绩统计表:年级平均数众数中位数五年级817080八年级81a b(1)a=______,b=______;(2)该校五年级的2000名学生和八年级的1000名学生参加了此次竞赛活动,请估计这两个年级竞赛成绩达到90分及以上的学生共有多少名?(3)根据以上数据分析,两个年级“开学安全第一课”知识竞赛的学生成绩谁更优秀?请选取一个方面进行解释评价.24.为帮助学生了解“预防新型冠状病毒”的有关知识,学校组织了一次线上知识培训,培训结束后进行测试.试题的满分为20分.为了解学生的成绩情况,从七、八年级学生中各随机抽取了20名学生的成绩进行了整理、描述和分析.下面给出了部分信息: 抽取的20名七年级学生成绩是:20,20,20,20,19,19,19,19,18,18,18,18,18,18,18,17,16,16,15,14. 抽取的40名学生成绩统计表 性别 七年级 八年级 平均分 18 18 众数 a b 中位数 18 c 方差2.72.7根据以上信息,解答下列问题:(1)直接写出表中a ,b ,c 的值:a = ,b = ,c = .(2)在这次测试中,你认为是七年级学生成绩好,还是八年级学生成绩好?请说明理由. (3)若九年级随机抽取20名学生的成绩的方差为2.5,则 年级成绩更稳定(填“七”或“八”或“九”).25.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测试,两个人在相同条件下各射靶5次,甲命中的环数分别是:10、6、10、6、8,乙命中的环数分别是:7、9、7、8、9.经过计算,甲命中的平均数为8x =甲,方差为23.2S =甲.(1)求乙命中的平均数x 乙和方差2S 乙;(2)现从甲、乙两名队员中选出一人去参加射击比赛,你认为应该选哪名队员去?为什么?26.在一次广场舞比赛中,甲、乙两个队参加表演的女演员的身高(单位:cm)分别是甲队:163 165 165 164 168乙队:162 164 164 167 168(1)求甲队女演员身高的平均数、中位数﹑众数;(2)计算两队女演员身高的方差,并判断哪个队女演员的身高更整齐?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断即可.【详解】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为36与46的平均数,与被涂污数字无关.故选:B.【点睛】本题考查了方差:方差描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.2.B解析:B【分析】利用中位数和众数的定义可判定后面三个数为10,12,12,所以前面两个数为8和9时,这组数据和最大.【详解】解:∵中位数是10,唯一众数是12,∴这5个数按由小到大排列时,后面三个数为10,12,12,当前面两个数为8和9时,这组数据和最大,最大值为51.故选:B.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.3.B解析:B【分析】根据算术平均数的计算公式列方程解答即可.【详解】 解:由题意得:642545x +++=+,解得:x=3. 故选:B . 【点睛】本题考查了算术平均数的计算方法,掌握计算公式是解决问题的前提.4.B解析:B 【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解. 【详解】解:∵这组数据的平均数是5,∴4455677x ++++++=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7, 则众数为:4, 中位数为:5. 故选:B . 【点睛】本题考查了众数、算术平均数、中位数的知识:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.A解析:A 【分析】根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案. 【详解】将数据从小到大排列为:1.50,1.60,1.60,1.65,1.65,1.65,1.65.1.70,1.70,1.70,1.75,1.75,1.75,1.80,1.80, 众数为:1.65; 中位数为:1.70. 故选:A . 【点睛】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列.6.A解析:A【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.故选:A.【点睛】本题考查了统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.A解析:A【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】全班共有40人,40人分数,按大小顺序排列最中间的两个数据是第20,21个,故得分的中位数是7080752+=(分),得70分的人数最多,有12人,故众数为70(分),故选A.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:将这组数据按从小到大的顺序排列为:100,108,110,114,115,120,由中位数的定义可知,这组数据的中位数是1101142+=112(分).故选:C . 【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.C解析:C 【分析】直接利用众数的概念求解可得. 【详解】解:∵在这组数据中,36.4出现了10次,次数最多, ∴学生体温数据的众数是36.4C , 故选:C . 【点睛】本题考查众数,解题关键是熟练掌握一组数据中出现次数最多的数据叫做众数.10.B解析:B 【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名. 【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数, 所以选手知道自己的成绩和中位数就可知道自己是否进入前8名. 故选B . 【点睛】理解平均数,中位数,众数的意义.11.D解析:D 【分析】根据平均数及加权平均数的定义解答即可. 【详解】∵x 1,x 2,x 3...x 10的平均数是a ,x 11,x 12,x 13...x 50的平均数是b , ∴x 1,x 2,x 3...x 50的平均数是:10401040104050a b a b++=+. 故选D. 【点睛】本题考查了平均数及加权平均数的求法,熟练运用平均数及加权平均数的定义求解是解决问题的关键.12.A解析:A【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵==x x x x甲乙丁丙>,∴从甲和丙中选择一人参加比赛,∵22S S甲丙<,∴选择甲参赛,故选:A.【点睛】本题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题13.5【分析】将数据重新排列再根据中位数的定义求解可得【详解】解:将这组数据重新排列为1122234456所以这组数据的中位数为=25故答案为:25【点睛】本题主要考查中位数将一组数据按照从小到大(或从解析:5【分析】将数据重新排列,再根据中位数的定义求解可得.【详解】解:将这组数据重新排列为1、1、2、2、2、3、4、4、5、6,所以这组数据的中位数为232=2.5,故答案为:2.5.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.(3)m=845n=96;(4)a280人;b乙乙校的中位数大于甲校的中位数【分析】(3)根据(1)中的数据可以得到中位数m和众数n的值;(4)a根据(1)中的数据和(3)中的说明由样本估算总体可以解析:(3)m=84.5,n=96;(4)a.280人;b.乙,乙校的中位数大于甲校的中位数.【分析】(3)根据(1)中的数据,可以得到中位数m和众数n的值;(4)a.根据(1)中的数据和(3)中的说明,由样本估算总体,可以得到甲学校掌握疫情防控知识优良的学生人数;b.根据(3)中表格中的数据,由中位数可以得到哪所学校的学生掌握疫情防控知识的水平较高,理由见详解.【详解】解:(3)甲校的中位数m=(85+84)÷2=84.5,乙校的众数是n=96;故答案为:84.5,96(4)a.成绩80分及以上为优良,根据样本数据计算甲学校掌握疫情防控知识优良的学生人数约为:400×1420=280(人),故答案为:280;b.可以推断出乙学校的学生掌握疫情防控知识的水平较高,理由为乙校的中位数大于甲校的中位数,故答案为:乙,乙校的中位数大于甲校的中位数.【点睛】此题考查中位数、众数、由样本估算总体等相关知识,熟练掌握中位数、众数的定义及运用由样本估算总体等是解题关键.15.【分析】分别利用平均数众数及中位数的定义求解后即可得出答案【详解】解:将数据重新排列为33353640424245所以这组数据的平均数为众数为中位数为故答案为:【点睛】此题考查了平均数众数和中位数一解析:39kg42kg40kg【分析】分别利用平均数、众数及中位数的定义求解后即可得出答案.【详解】解:将数据重新排列为33、35、36、40、42、42、45,所以这组数据的平均数为3335364042424539()7kg ++++++=,众数为42kg、中位数为40kg,故答案为:39kg、42kg、40kg.【点睛】此题考查了平均数、众数和中位数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以总个数.16.【分析】根据平均数方差的公式进行计算【详解】解:依题意得==22∴=110∴3a-23b-23c-23d-23e-2的平均数为==×(3×110-2×5)=64∵数据abcde的方差13S2=(a-解析:【分析】根据平均数,方差的公式进行计算.【详解】 解:依题意,得X =1()5a b c d e ++++=22,∴a b c d e ++++=110,∴3a-2,3b-2,3c-2,3d-2,3e-2的平均数为 'X =32323232321[]5a b c d e -+-+-+-+-()()()()()=15×(3×110-2×5)=64, ∵数据a ,b ,c ,d ,e 的方差13,S 2=15[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]=13, ∴数据3a-2,3b-2,3c-2,3d-2,3e-2方差 S′2=15[(3a-2-64)2+(3b-2-64)2+(3c-2-64)2+(3d-2-64)2+(3e-2-64)2] =15[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]×9 =13×9=117.故答案为:117.【点睛】本题考查了平均数、方差的计算.关键是熟悉计算公式,会将所求式子变形,再整体代入.17.9【分析】将数据由小排到大再找到中间的数值即可求得中位数奇数个数中位数是中间一个数偶数个数中位数是中间两个数的平均数【详解】解:将10个数据由小到大排序:78899910101010处于这组数据中间解析:9【分析】将数据由小排到大,再找到中间的数值,即可求得中位数,奇数个数中位数是中间一个数,偶数个数中位数是中间两个数的平均数。

(好题)初中数学八年级数学上册第六单元《数据的分析》测试(包含答案解析)

(好题)初中数学八年级数学上册第六单元《数据的分析》测试(包含答案解析)

一、选择题1.小明在计算一组数据的方差时,列出的公式如下222221(7)(8)(8)(8)s x x x x n⎡=-+-+-+-+⎣2(9)x ⎤-⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5B .数据平均数是8C .数据众数是8D .数据方差是152.某手表厂抽查了10只手表的日走时误差,数据如下表所示:则这10只手表的平均日走时误差(单位:秒)是( ) 日走时误差(秒) 0 1 2 3 只数(只)3421A .0B .0.6C .0.8D .1.13.某班七个兴趣小组人数分别为4,4,5,x ,6,6,6.已知这组数据的平均数是5,则这组数据的中位数是( ) A .7B .6C .5D .44.在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数124332这些运动员跳高成绩的中位数和众数分别是( ) A .1.70,1.65B .1.70,1.70C .1.65,1.70D .3,45.双十一期间,某超市以优惠价销售,,,,A B C D E 坚果五种礼盒,它们的单价分别为90元、80元,70元,60元,50元,当天销售情况如图所示,则当天销售坚果礼盒的平均售价为( )A .75元B .70元C .66.5元D .65元6.在一次数学竞赛后,学校随机抽取了八年级某班5名学生的成绩如下:92,79,99,86,99.关于这组数据说法错误的是()A.中位数是92B.方差是20C.平均数是91D.众数是997.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.5 C.87.6 D.888.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和 20 B.30和25 C.30和22.5 D.30和17.59.在某校举行的“我的中国梦”演讲比赛中,10名参赛学生的成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中正确的是()A.平均数是80分B.众数是5C.中位数是80分D.方差是11010.在实验一中举行新冠肺炎疫情防控知识竞赛中,八年级(1)班全体学生成绩统计如下表:成绩/分45495254555860人数2566876根据上表中信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次竞赛成绩的众数是55分C.该班学生这次竞赛成绩的中位数是55分D.该班学生这次竞赛成绩的平均数是55分11.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下图所示:则该班学生一周读书时间的中位数和众数分别是( ) A .9,8B .9, 9C .9.5, 9D .9.5,812.甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x 甲,x 乙,射击成绩的方差依次记为s 甲2,s 乙2,则下列关系中完全正确的是( )A .x 甲=x 乙,s 甲2>s 乙2B .x 甲=x 乙,s 甲2<s 乙2C .x 甲>x 乙,s 甲2>s 乙2D .x 甲<x 乙,s 甲2<s 乙2二、填空题13.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示. 时间(时) 5 6 7 8 人数1015205估计该中学500名学生这一周在校体育锻炼时间一共约为_______________________小时.14.设甲组数据:6,6,6,6,的方差为2,S 甲乙组数据:1,1,2的方差为2S 乙,则2S 甲与2S 乙的大小关系是________.15.若3,2,x ,5的平均数是4,则x= _______. 16.一组数据2,4,2,3,4的方差s 2=_____.17.甲、乙两地9月份连续五天的日平均气温统计如下表(单位:C ︒) 甲地气温 22242825 23乙地气温24252524 24则甲、乙两地这5天日平均气温的方差大小关系为:s 甲_____________s 乙.(填“>”“<”或“=”)18.小天想要计算一组数据92,90,94,86,99,85的方差S 02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S 12,则S 12__S 02(填“>”,“=”或”<”)x y的平均数为9,方差为2,则xy的值为__________.19.已知一组数据,,8,9,1020.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如表(单位:分),则学期总评成绩优秀的是________.纸笔测试实践能力成长记录甲908395乙889095丙908890三、解答题21.为了解学生掌握垃圾分类知识的情况,某学校举行了一次“垃圾分类”的知小测试,现随机抽取20名学生的测试成绩(满分10分,学生成绩均为整数)进行整理,绘制成统计图.根据以上信息,解答下列问题:(1)请直接写出该组数据的中位数分,众数分,并计算这组数据的平均数;(2)你认为(1)中的三个统计量,更能反映学生测试成绩的“平均水平”;(3)该校共2000名学生参加了本次测试,试估计参加此次测试成绩不低于“平均水平”的学生人数约有多少人?22.聪聪利用暑假到工厂进行社会实践活动,他跟在张师傅后学加工某种机器零件,共加工9天,每天加工的机器零件个数如下:1,2,3,4,5,6,7,8,9.(1)求聪聪这9天加工零件数的平均数;(2)聪聪问张师傅加工的零件数,张师傅说;我每天加工的零件数是两位数,并且每天加工零件数的个位上数字都与你相同,这9天加工零件数的平均数比你多30但方差和你一样,听完张师傅的话,聪聪笑着说,张师傅我知道了,根据上面的信息,请你直接写出张师傅每天加工的零件数.23.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A859595B958595若按如图的比例计算选手的综合成绩(百分制),请说明哪位选手成绩更优秀.24.甲、乙、丙三个电子产品厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下面问题:(1)填空:平均数众数中位数甲厂————6乙厂9.6——8.5丙厂9.44——(3)如果你是顾客,你买三家中哪一家的电子产品?为什么?25.2020年11月24日,全国劳动模范和先进工作者表彰大会在北京人民大会堂隆重举行,某县举办了“弘扬工匠精神,争当文明员工”歌唱比赛,某企业要从甲、乙两参赛部门中择优推荐一部门参加县级决赛,他们预赛阶段的各项得分如下表:歌唱内容歌唱技巧仪表形象甲959085乙879393被推荐;(2)如果根据歌唱内容、歌唱技巧、仪表形象按5:4:1的比例确定成绩,请通过计算说明甲、乙两部门哪个部门会被推荐,并对另外一部门提出合理的建议.26.在一次广场舞比赛中,甲、乙两个队参加表演的女演员的身高(单位:cm )分别是甲队:163 165 165 164 168 乙队:162 164 164 167 168(1)求甲队女演员身高的平均数、中位数﹑众数;(2)计算两队女演员身高的方差,并判断哪个队女演员的身高更整齐?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题目中的方差公式,众数的定义以及平均数的求法即可进行判断; 【详解】根据方差的公式可知样本容量为5,故A 正确;样本的平均数为:78889=85++++ ,故B 正确;样本的众数为8,故C 正确;样本的方差为:()()()()()22222212788888898558=s ⎡⎤=-+-+-+-+-⎣⎦,故D 错误; 故选:D . 【点睛】本题考查了方差、样本容量、平均数、众数,解答本题的关键是明确题意,会求一组数据的方差、样本容量、平均数以及众数.2.D解析:D 【分析】利用加权平均数公式计算解答. 【详解】这10只手表的平均日走时误差是031422311.110⨯+⨯+⨯+⨯=,故选:D . 【点睛】此题考查加权平均数计算公式,熟记公式及正确理解表格的含义是解题的关键.3.C解析:C【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7-4-4-5-6-6-7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:C.【点睛】本题考查的是中位数,熟知中位数的定义是解答此题的关键.4.A解析:A【分析】根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.【详解】将数据从小到大排列为:1.50,1.60,1.60,1.65,1.65,1.65,1.65.1.70,1.70,1.70,1.75,1.75,1.75,1.80,1.80,众数为:1.65;中位数为:1.70.故选:A.【点睛】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列.5.C解析:C【分析】根据题目中的数据和加权平均数的计算方法,可以得到当天销售坚果礼盒的平均售价.【详解】90×10%+80×20%+70×25%+60×15%+50×30%=9+16+17.5+9+15=66.5(元)即当天销售坚果礼盒的平均售价为66.5元,故选:C.【点睛】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法,会求一组数据的加权平均数.6.B解析:B 【分析】根据各数据特征指标的意义求出其值,即可对各选项的正误作出判断. 【详解】解:把5名学生的成绩从小到大排序可得:79、86、92、99、99,所以中位数是92,A 正确;众数是99,D 正确;由7986929999915++++=知平均数是91,C 正确;由()()()()222279918691929129991559.6⎡⎤-+-+-+⨯-÷=⎣⎦得方差是59.6,B 错误 . 故选B . 【点睛】本题考查数据特征指标,根据各数据特征指标的意义求出其值是解题关键.7.C解析:C 【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分. 【详解】小王的最后得分为:90×3352+++88×5352+++83×2352++=27+44+16.6=87.6(分),故选C . 【点睛】本题考查了加权平均数,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.8.C解析:C 【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得. 【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30, 所以该组数据的众数为30、中位数为20252+=22.5, 故选C . 【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.C解析:C【分析】根据折线统计图得出这10个数据为60、70、80、80、80、80、80、90、90、100,再利用平均数、众数、中位数及方差的定义求解可得.【详解】解:由折线统计图知,这10个数据为60、70、80、80、80、80、80、90、90、100,所以这组数据的平均数是607080590210010++⨯+⨯+=81(分),众数是80分,中位数是80+802=80(分),方差为15×[(60-81)2+(70-81)2+(80-81)2×5+(100-81)2]=639.2,故选:C.【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.10.D解析:D【分析】根据众数、中位数、平均数的定义解答.【详解】该班共有2+5+6+6+8+7+6=40(人),故A选项正确;成绩55分的有8人,人数最多,众数为55,故B选项正确;该班学生这次考试成绩的中位数是第20名和第21名的成绩都是55分,所以其平均数为55分,故C选项正确;该班学生这次考试成绩的平均数是:140x=(45×2+49×5+52×6+54×6+55×8+58×7+60×6)=54.425(分),故D选项错误;故选:D.【点睛】本题考查了众数、中位数、平均数的定义,熟悉定义并能分析表格是解题的关键.11.A解析:A【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【详解】解:由表格可得,读书时间为8小时最多,故一周读书时间的众数为8,该班学生一周读书时间的第20个数9和第21个数是9, 故该班学生一周读书时间的中位数为9+9=92, 故选:A . 【点睛】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.12.A解析:A 【分析】分别计算平均数和方差后比较即可得到答案. 【详解】 解:(1)10=1x 甲(8×4+9×2+10×4)=9; x 乙=110(8×3+9×4+10×3)=9; s 甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8; s 乙2=110[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7; ∴=x x 甲乙,s 甲2>s 乙2, 故选:A . 【点睛】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题13.3200【分析】先求出50名学生的平均数然后乘以500即可得到答案【详解】解:根据题意则;故答案为:3200【点睛】此题考查了加权平均数用到的知识点是加权平均数的计算公式根据加权平均数的计算公式列出解析:3200 【分析】先求出50名学生的平均数,然后乘以500,即可得到答案. 【详解】 解:根据题意,则10515620758500320050⨯+⨯+⨯+⨯⨯=;故答案为:3200.【点睛】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.14.【分析】根据方差的意义进行判断即可【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为:s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大 解析:22S S <乙甲【分析】根据方差的意义进行判断即可.【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动,所以s 甲2<s 乙2.故答案为:s 甲2<s 乙2.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 15.6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x 的值【详解】∵32x5的平均数是4∴故答案为:6【点睛】此题考查利用平均数求未知的数据正确掌握平均数的计算方法正确计算是解题的关键解析:6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x 的值.【详解】∵3,2,x ,5的平均数是4,∴443256x =⨯---=,故答案为:6.【点睛】此题考查利用平均数求未知的数据,正确掌握平均数的计算方法,正确计算是解题的关键. 16.8【分析】根据方差公式计算即可方差S2=【详解】解:=(2+4+2+3+4)÷5=3故S2=(2﹣3)2+(4﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2÷5=08故填08【点睛】本题考查了方解析:8【分析】根据方差公式计算即可.方差S 2=()()()22212n 1x x x x ...x x n ⎡⎤-+-++-⎣⎦ 【详解】 解:x =(2+4+2+3+4)÷5=3,故S 2=[(2﹣3)2+(4﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2]÷5=0.8.故填0.8.【点睛】本题考查了方差的计算,熟知方差公式是解决问题的关键.17.【分析】先求出甲乙地的平均气温再根据方差公式求出甲和乙的方差然后进行比较即可得出答案【详解】解:甲地的平均气温:;乙地的平均气温:;∵甲地的方差是:;乙地的方差是:;∴S 甲2>S 乙2;故答案为:>【 解析:>【分析】先求出甲、乙地的平均气温,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案.【详解】 解:甲地的平均气温:1(2224282523)24.45C ︒++++=; 乙地的平均气温:1(2425252424)24.45C ︒++++=;∵甲地的方差是:222221(2224.4)(2424.4)(2824.4)(2524.4)(2324.4) 4.245⎡⎤-+-+-+-+-=⎣⎦; 乙地的方差是:222221(2424.4)(2524.4)(2524.4)(2424.4)(2424.4)0.245⎡⎤-+-+-+-+-=⎣⎦; ∴S 甲2>S 乙2;故答案为:>.【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差2222121()()()n S x x x x x x n⎡⎤=-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 18.=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数那么这组数据的波动情况不变即方差不变即可得出答案【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后它的平均数都加上(或都减去 解析:=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则S 12=S 02.故答案为:=.【点睛】本题考查方差的意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.19.【分析】根据平均数和方差的计算公式得到关于xy 的等式再经过一定的变形可以得到解答【详解】解:由题意所以又由题意所以所以故答案为77【点睛】本题考查平均数和方差的综合应用灵活运用平均数和方差的计算公式 解析:77【分析】根据平均数和方差的计算公式得到关于x 、y 的等式,再经过一定的变形可以得到解答.【详解】 解:由题意,891095x y ++++=,所以 2745x y ++=,18x y += 又由题意,()()()()()2222299899910925x y -+-+-+-+-=,()2218154x y x y +-+=-所以,221818154x y +-⨯=-, 22170x y +=所以,()()2222181707722x y x y xy +-+-===. 故答案为77.【点睛】本题考查平均数和方差的综合应用,灵活运用平均数和方差的计算公式是解题关键. 20.甲乙【分析】根据加权平均数的定义分别计算三人的加权平均数然后与90比较大小即可得出答案【详解】解:根据题意得:甲的总评成绩是:90×50+83×20+95×30=901乙的总评成绩是:88×50+9解析:甲、乙【分析】根据加权平均数的定义分别计算三人的加权平均数,然后与90比较大小即可得出答案.【详解】解:根据题意得:甲的总评成绩是:90×50%+83×20%+95×30%=90.1,乙的总评成绩是:88×50%+90×20%+95×30%=90.5,丙的总评成绩是:90×50%+88×20%+90×30%=89.6,则学期总评成绩优秀的有甲、乙二人;故答案为:甲、乙.【点睛】本题考查了加权平均数,根据加权成绩等于各项成绩乘以不同的权重的和是解题的关键.三、解答题21.(1)7.5;8;7.5;(2)平均数(或中位数);(3)1000人【分析】(1)由中位数,众数,平均数的定义可求解;(2)平均数(或中位数)更能反映学生测试成绩的“平均水平”;(3)由总的学生数×样本中测试成绩不低于“平均水平”的学生的百分比,即可求解.【详解】解:(1)由题意可得:20名学生的测试成绩为:5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,9,9,10,10,10,∴中位数为782+=7.5, 众数为8, 平均数=5566667777888889910101020+++++++++++++++++++=7.5; 故答案为:7.5,8;(2)平均数(或中位数)更能反映学生测试成绩的“平均水平”,故答案为平均数(或中位数); (3)2000×52320++=1000(人), 答:估计参加此次测试成绩不低于“平均水平”的学生人数约有1000人.【点睛】本题考查了中位数,众数,平均数的定义,掌握中位数,众数,平均数的定义是本题的关键.22.(1)5件;(2)31,32,33,34,35,36,37,38,39【分析】(1)利用平均数的定义即可求解;(2)根据“平均数比你多30但方差一样”可得张师傅每天加工的零件数都比聪聪多30,即可求解.【详解】解:(1)这9天加工零件数的平均数为:12345678959++++++++=(件); (2)∵每天加工零件数的个位上数字都与聪聪的相同,这9天加工零件数的平均数比聪聪多30,且方差一样,∴张师傅每天加工的零件数为:31,32,33,34,35,36,37,38,39.【点睛】本题考查平均数和方差,掌握平均数和方差的定义是解题的关键.23.选手B【分析】利用加权平均数的定义计算出A 、B 选手的综合成绩,从而得出答案.【详解】解:A 选手的综合成绩为85595495190541⨯+⨯+⨯=++(分), B 选手的综合成绩为95585495191541⨯+⨯+⨯=++(分), ∴选手B 的成绩更优秀.【点睛】 本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.24.(1)甲厂:平均数为8,众数为5;乙厂:众数为8;丙厂:中位数为8;(2)甲厂家的销售广告利用了平均数8表示集中趋势的特征数,乙厂家的销售广告利用了众数8表示集中趋势的特征数,丙厂家的销售广告利用了中位数8表示集中趋势的特征数;(3)选乙厂家的产品,理由见解析.【分析】(1)平均数就是把这组数据加起来的和除以这组数据的总数,众数就是一堆数中出现次数最多的数,中位数,就是一组数按从小到大的顺序排列,中间位置的那个数,如果有偶数个数,那就是中间的两个数的平均数;(2)一组数据的平均数、众数、中位数从不同角度表示这种数据集中趋势.由(1)的结果容易回答(2),甲厂、乙厂、丙厂,分别利用了平均数、众数、中位数进行广告推销,顾客在选购产品时,一般以平均数为依据.(3)根据平均数大的进行选择.【详解】解:(1)甲厂:平均数为()45555791213181510+++++++++=, 众数为5;乙厂:众数为8;丙厂:中位数为8.故答案为:众数8表示集中趋势的特征数,丙厂家的销售广告利用了中位数8表示集中趋势的特征数;(3)平均数:乙大于丙大于甲;众数:乙大于甲大于丙;中位数:乙大于丙大于甲,综合考虑因此我选乙厂家的产品.【点睛】本题是平均数、众数、中位数在实际生活中的应用,选取以哪个数据为主要结合它们的定义来考虑.25.(1)乙;(2)甲;建议见解析(答案不唯一,只要合理都可).【分析】(1)代入求平均数公式即可求出甲、乙两人的平均成绩,比较得出结果;(2)根据加权平均数的计算方法,将甲、乙两人的总成绩按比例求出测试成绩,比较得出结果.【详解】解:(1)()1959085903x =⨯++=甲(分); ()1879393913x =⨯++=乙(分). ∵90<91,∴乙将被推荐参加校级决赛.(2)9559048592541x ⨯+⨯+==++甲(分); 8759349390541x ⨯+⨯+==++乙(分). ∵92>90,∴甲将被推荐参加校级决赛. 建议:由于演讲内容的权较大,乙这项得成绩较低,应改进演讲内容,力争取得更好的成绩.(答案不唯一,只要合理都可).【点睛】本题考查了平均数的应用.熟练掌握算术平均数与加权平均数的计算方法是解题的关键. 26.(1)甲队女演员身高的平均数是165cm ,中位数是165cm ,众数是165cm ;(2)甲队数据方差为2.8;乙队数据方差为4.8;甲队女演员的身高更整齐【分析】(1)根据平均数、众数、中位数的定义分别进行解答即可;(2)先求出乙队女演员的平均数身高,再根据方差公式求出甲队和乙队的方差,然后根据方差的意义即可得出答案.【详解】解:(1)()()1163164165165168165cm 5⨯++++=,∴甲队女演员身高的平均数是165cm ,把这些数从小到大排列,则中位数是165cm ,165cm 出现了2次,出现的次数最多,则众数是165cm ;(2)乙队女演员身高的平均数()()1162164164167168165cm 5=⨯++++=, 甲队数据方差 ()()()()()2222221163165164165165165165165168165 2.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦甲,乙队数据方差()()()()()2222221162165164165164165167165168165 4.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦乙,∵22s s <甲乙,∴甲队女演员的身高更整齐.【点睛】本题考查了平均数、众数、中位数和方差,平均数表示一组数据的平均程度.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.。

第6章《数据的分析》(完整版)单元检测题试卷及答案(1)

第6章《数据的分析》(完整版)单元检测题试卷及答案(1)

精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最||新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最||正确选择 .2021新版北师大版八年级||数学上册第6章<数据的分析>单元测试试卷及答案 (1 )(本检测题总分值:100分,时间:90分钟)一、选择题(共10小题,每题3分,共30分)1. (2021·潍坊中|考)在某校"我的中|国梦〞演讲比赛中,有9名学生参加决赛,他们决赛的最||终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )2. (2021·莱芜中|考)一组数据:10,5,15,5,20,那么这组数据的平均数和中位数分别是( )A.10,10B.10, C D.11,103.对于数据3 ,3 ,2 ,3 ,6 ,3 ,10 ,3 ,6 ,3 ,2. (1 )这组数据的众数是3; (2 )这组数据的众数与中位数的数值不相等; (3 )这组数据的中位数与平均数的数值相等; (4 )这组数据的平均数与众数的数值相等.其中正确结论的个数为( )A.1B.24. (2021·临沂中|考)在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是( )A.94,94 ,95 C.94,95 D.95,945.某公司员工的月工资如下表:员工经理副经理职员职员职员职员职员职员职员月工资/元 4 800 3 500 2 000 1 900 1 800 1 600 1 600 1 600 1 000 那么这组数据的平均数众数中位数分别为()A. B.C. D.6.以下说法中正确的有()①描述一组数据的平均数只有一个;②描述一组数据的中位数只有一个;③描述一组数据的众数只有一个;④描述一组数据的平均数、中位数和众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数.A.1个B.2个C.3个D.4个7.某同学在本学期的前四次数学测验中得分依次是95,82,76,88 ,马上要进行第五次测验了,他希望五次成绩的平均分为85分,那么这次测验他应得( )分.A.84B.75C.828. (2021·陕西中|考)我省某市五月份第二周连续七天的空气质量指数分别为111 ,96 ,47 ,68 ,70 ,77 ,105.那么这七天空气质量指数的平均数是( )B.77C.829. (2021·重庆中|考)某特警部队为了选拔"神枪手〞,举行了1 000米射击比赛,最||后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28 ,乙的方差是0.21 ,那么以下说法中,正确的选项是( )C.甲、乙两人成绩的稳定性相同10.某赛季甲、乙两名篮球运发动12场比赛得分情况用图表示如下:对这两名运发动的成绩进行比较,以下四个结论中,不正确的选项是.......( )二、填空题(每题3分,共24分)11.某校八年级|| (1 )班一次数学考试的成绩为:分的3人,分的人,分的17人,分的人,分的人,分的人,全班数学考试的平均成绩为_______分.12. (2021•十堰中|考)某射击小组有20人,教练根据他们某次射击的数据绘制成如下列图的统计图,那么这组数据的众数是.13.(2021•咸宁中|考)某校为了解学生喜爱的体育活开工程,随机抽查了100名学生,让每人选一项自已喜欢的工程,并制成如下列图的扇形统计图.如果该校有1 200名学生,那么喜爱跳绳的学生约有人.14.有个数由小到大依次排列,其平均数是,如果这组数的前个数的平均数是,后个数的平均数是,那么这个数的中位数是_______.15.假设数据的平均数为,那么数据的平均数(用含的表达式表示)为_______.16.某超市招聘收银员一名,对三名应聘者进行了三项素质测试.下面是三名应聘者的素质测试成绩:测试成绩素质测试小李小张小赵计算机70 90 65商品知识50 75 55语言80 35 80公司根据实际需要, 对计算机、商品知识、语言三项测试成绩分别赋予权重4、3、2 ,那么这三人中将被录用.17.数据1 ,2 ,3 ,4 ,5的方差为2 ,那么11 ,12 ,13 ,14 ,15的方差为_____________ ,标准差为__________.18.某校八年级||甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:班级|| 参加人数平均字数中位数方差甲55 135 149 191乙55 135 151 110 有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的选项是___________ (填序号).三、解答题(共46分)19. (6分) 某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数如下:加工零件数540 450 300 240 210 120人数 1 1 2 6 3 2(1 )写出这15人该月加工零件数的平均数、中位数和众数.(2 )假设生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,为什么?20. (6分)为调查八年级||某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:)分别为:60 ,55 ,75 ,55 ,55 ,43 ,65 ,40.(1 )求这组数据的众数、中位数.(2 )求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?21. (6分)||王大伯几年前承包了甲、乙两片荒山 ,各栽100棵杨梅树 ,成活98%.现已结果 ,经济效益初步显现 ,为了分析收成情况 ,他分别从两山上随意各采摘了4棵树上的杨梅 ,每棵的产量如折线统计图所示.分别计算甲、乙两山样本的平均数 ,并估算出甲、乙两山杨梅的产量总和.22. (7分)某校在一次数学检测中,八年级||甲、乙两班学生的数学成绩统计如下表:分数50 60 70 80 90 100人数甲班 1 6 12 11 15 5 乙班 3 5 15 3 13 11请根据表中提供的信息答复以下问题:第21题图(1 )甲班的众数是多少分,乙班的众数是多少分,从众数看成绩较好的是哪个班?(2 )甲班的中位数是多少分,乙班的中位数是多少分,甲班成绩在中位数以上(包括中位数)的学生所占的百分比是多少;乙班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,从中位数看成绩较好的是哪个班?(3 )甲班的平均成绩是多少分,乙班的平均成绩是多少分,从平均成绩看成绩较好的班是哪个班?23. (7分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(分)测试工程甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如下列图,每得一票记作1分.(1 )请算出三人的民主评议得分.(2 )如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到) ?(3 )根据实际需要,单位将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么谁将被录用?24. (7分)一次期中|考试中,A、B、C、D、E五位同学的数学、英语成绩有如下信息:A B C D E 平均分标准差数学71 72 69 68 70 2英语88 82 94 85 76 85(1 )求这5位同学在本次考试中数学成绩的平均分和英语成绩的标准差.(2 )为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?25.(7分)某校八年级||学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100 )为优秀.下表是成绩最||好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考. 请你答复以下问题:(1 )计算两班的优秀率.(2 )求两班比赛成绩的中位数.(3 )两班比赛数据的方差哪一个小?(4 )根据以上三条信息,你认为应该把冠|军奖状发给哪一个班级|| ?简述你的理由.参考答案一、选择题1. D 解析:此题考查了平均数、众数、中位数及方差等几个统计量,众数是出现次数最||多的数,方差表示数据的波动程度,平均数表示一组数据的平均水平,中位数是一个位置代表值,把一组数据按由小到大(或由大到小)的顺序排列后,它处于这组数据的中间位置,大于或等于中位数的数据至||少有一半.2. D 解析:平均数为==11,把这组数据按照从小到大的顺序排列为5,5,10,15,20,故其中位数为10.,由此可知(1 )正确, (2 )、(3 )、(4 )均错误,应选A.4. D 解析:众数是指在一组数据中,出现次数最||多的数据.在这组数据中,出现次数最||多的是95 ,故这组数据的众数为95.中位数是指一组数据按从小到大(或从大到小)的顺序重新排列后,如果有奇数个数据,中位数就是最||中间的那个数;如果有偶数个数据,中位数就是最||中间两个数的平均数.因此,这7个数据的中位数是第4个数据:94.5. C 解析:元出现了次,出现的次数最||多,所以这组数据的众数为元;将这组数据按从大到小的顺序排列,中间的(第5个)数是元,即其中位数为元;,即平均数为2 200元,应选C.6. B 解析:一组数据的中位数和平均数只有一个,但出现次数最||多的数即为众数,可以有多个,所以①②对,③错;由于一组数据的平均数是取各数的平均值,中位数是将原数据按由小到大(或由大到小)顺序排列后,进行计算得来的,所以平均数与中位数不一定是原数据里的数,故④错;一组数据中的一个数大小发生了变化,它的平均数一定发生变化,众数、中位数可能发生改变,也可能不发生改变,所以⑤错.7.A 解析:利用求平均数的公式.设第五次测验得分,那么588768295x++++, 解得.8. C 解析: ==82.9. B 解析:此题考查了方差的意义,方差越小,数据越稳定.在甲、乙两名战士的总成绩相同的条件下,∵>,∴乙的成绩比甲的成绩稳定.二、填空题 11.78.8 解析:.8.783212171333502601270178013903100(分)=+++++⨯+⨯+⨯+⨯+⨯+⨯12.7 解析:观察条形统计图可知 ,环数7出现了7次 ,次数最||多 ,即这组数据的众数为7.故答案为7.13.360 解析:由扇形统计图可知 ,喜爱跳绳的学生所占的百分比 =1 -15% -45% -10% =30%.∵ 该校有1 200名学生 ,∴ 喜爱跳绳的学生约有1 200×30% =360 (人 ). 14.解析:设中间的一个数即中位数为 ,那么,所以中位数为.15.解析:设的平均数为 ,那么31)(21)(21)(2321+++++x x x 13233)2(321321+++⨯=+++=xx x x x x .又因为3321x x x ++ =x ,于是y.16.小张 解析:∵ 小李的成绩是9565234280350470=++⨯+⨯+⨯ ,小张的成绩是9772234235375490=++⨯+⨯+⨯ ,小赵的成绩是65234280355465=++⨯+⨯+⨯ ,∴ 小张将被录用. 17.2 ,2 解析:根据方差和标准差的定义进行求解.18. ①②③ 解析:由于乙班学生每分钟输入汉字的平均数为135 ,中位数为151 ,说明有一半以上的学生都到达每分钟150个以上 ,而甲班学生的中位数为149 ,说明不到一半的学生到达150个以上 ,说明乙班优秀人数比甲班优秀人数多 ,故②正确;由平均数和方差的意义可知①③也正确. 三、解答题 19.解: (1 )平均数:(件);260152120321062402300450540=⨯+⨯+⨯+⨯++中位数:240件 ,众数:240件.(2 )不合理 ,因为表中数据显示 ,每月能完成件以上的一共是4人 ,还有11人不能到达此定额 ,尽管是平均数 ,但不利于调动多数员工的积极性.因为既是中位数 ,又是众数 ,是大多数人能到达的定额 ,故定额为件较为合理.20.解: (1 )在这8个数据中 ,55出现了3次 ,出现的次数最||多 ,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40 ,43 ,55 ,55 ,55 ,60 ,65 ,75 ,其中最||中间的两个数据都是55 ,即这组数据的中位数是55. (2 )这8个数据的平均数是,所以这8名学生完成家庭作业的平均时间为.因为,所以估计该班学生每天完成家庭作业的平均时间符合学校的要求.21. 分析:根据平均数的求法求出平均数 ,再用样本估计总体的方法求出产量总和即可解答. 解: 40434403650=+++=甲x (千克 ) ,40436484036=+++=乙x (千克 ) ,甲、乙两山杨梅的产量总和为40×100×98%×2 =7 840 (千克 ). 22.解: (1 )甲班中分出现的次数最||多 ,故甲班的众数是分;乙班中分出现的次数最||多 ,故乙班的众数是分.从众数看 ,甲班成绩好. (2 )两个班都是人 ,甲班中的第人的分数都是分 ,故甲班的中位数是分;乙班中的第人的分数都是分 ,故乙班的中位数是分.甲班成绩在中位数以上 (包括中位数 )的学生所占的百分比为;乙班成绩在中位数以上 (包括中位数 )的学生所占的百分比为.从中位数看成绩较好的是甲班. (3 )甲班的平均成绩为;乙班的平均成绩为.从平均成绩看成绩较好的是乙班.23.分析:通过阅读表格获取信息 ,再根据题目要求进行平均数与加权平均数的计算. 解: (1 )甲、乙、丙的民主评议得分分别为50分、80分、70分. (2 )甲的平均成绩为75935021872.6733++=≈ (分 ) ,乙的平均成绩为80708023076.6733++=≈ (分 ) ,丙的平均成绩为90687022876.0033++== (分 ).由于76.67>76.00>72.67 ,所以乙将被录用. (3 )如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩 ,那么甲的个人成绩为472.9433⨯75+3⨯93+3⨯50=++ (分 ) ,乙的个人成绩为477433⨯80+3⨯70+3⨯80=++ (分 ) , 丙的个人成绩为477.4433⨯90+3⨯68+3⨯70=++ (分 ) ,由于丙的个人成绩最||高 ,所以丙将被录用. 24.解: (1 )数学成绩的平均分为7057068697271=++++ (分 ) ,英语成绩的方差为51 ,故标准差为6.(2 )A 同学数学成绩的标准分是;英语成绩的标准分是.可以看出数学成绩的标准分高于英语成绩的标准分 ,所以A 同学的数学成绩要比英语成绩考得好.25.解: (1 )甲班的优秀率:52 ,乙班的优秀率:53.(2 )甲班5名学生比赛成绩的中位数是97个; 乙班5名学生比赛成绩的中位数是100个. (3 )甲班的平均数 =100597+118+96+100+89= (个 ) ,甲班的方差;乙班的平均数 =1005104+91+110+95+100= (个 ) ,乙班的方差.∴.∴乙班比赛数据的方差小.(4 )冠|军奖状应发给乙班.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较高.以下为赠送内容别想一下造出大海,必须先由小河川开始 .成功不是只有将来才有,而是从决定做的那一刻起,持续积累而成!人假设软弱就是自己最||大的敌人,人假设勇敢就是自己最||好的朋友 .成功就是每天进步一点点!如果要挖井,就要挖到水出为止 .即使爬到最||高的山上,一次也只能脚踏实地地迈一步 .今天拼搏努力,他日谁与争锋 .在你不害怕的时候去斗牛,这不算什么;在你害怕的时候不去斗牛,这没什么了不起;只有在你害怕的时候还去斗牛才是真正的了不起 .行动不一定带来快乐,但无行动决无快乐 .只有一条路不能选择- -那就是放弃之路;只有一条路不能拒绝|| - -那就是成长之路 .坚韧是成功的一大要素,只要在门上敲得够久够大声,终会把人唤醒的 .只要我努力过,尽力过,哪怕我失败了,我也能拍着胸膛说:"我问心无愧 ."用今天的泪播种,收获明天的微笑 .人生重要的不是所站的位置,而是所朝的方向 .弱者只有千难万难,而勇者那么能披荆斩棘;愚者只有声声哀叹,智者却有千路万路 .坚持不懈,直到成功!最||淡的墨水也胜过最||强的记忆 .凑合凑合,自己负责 .有志者自有千计万计,无志者只感千难万难 .我中|考,我自信!我尽力我无悔!听从命运安排的是凡人;主宰自己命运的才是强者;没有主见的是盲从,三思而行的是智者 .相信自己能突破重围 .努力造就实力,态度决定高度 .把自己当傻瓜,不懂就问,你会学的更多 .人的活动如果没有理想的鼓舞,就会变得空虚而渺小 .安乐给人予舒适,却又给人予早逝;劳作给人予磨砺,却能给人予长久 .眉毛上的汗水和眉毛下的泪水,你必须选择一样!假设不给自己设限,那么人生中就没有限制你发挥的藩篱 .相信自己我能行!任何业绩的质变都来自于量变的积累 .明天的希望,让我们忘了今天的痛苦 .世|界上最||重要的事情,不在于我们身在何处,而在于我们朝着什么方向走 .爱拼才会赢努力拼搏,青春无悔!。

八年级数学上册第6章数据的分析单元综合测试题(含解析)

八年级数学上册第6章数据的分析单元综合测试题(含解析)

第6章数据的分析·一、选择题:(每小题3分,共30分,每小题只有一个答案,请你把正确的选择填在表格中);;1.若3,2,x,5的平均数是4,那么x等于( )A.8 B.6 C.4 D.22.一组数据4,3,6,9,6,5的中位数和众数分别是( )A.5和5.5 B.5.5和6 C.5和6 D.6和63.数据﹣3,﹣2,1,3,6,x的中位数是1,那么这组数据的众数是( )A.2 B.1 C.1.5 D.﹣24.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是( );;A.15,15 B.15,15.5 C.15,16 D.16,15;5.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A.中位数B.众数 C.平均数D.极差6.天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是( )A.服装型号的平均数 B.服装型号的众数C.服装型号的中位数 D.最小的服装型号7.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33 25 28 26 25 31如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为( )A.900个B.1080个C.1260个D.1800个8.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是( ) A.2 B.4 C.8 D.169.已知样本甲的平均数=60,方差=0.05,样本乙的平均数=60,方差=0.1,那么这两组数据的波动情况为( )A.甲、乙两样本波动一样大B.甲样本的波动比乙样本大C.乙样本的波动比甲样本大D.无法比较两样本波动的大小10.甲、乙两人3次都同时到某个体米店买米,甲每次买m(m为正整数)千克米,乙每次买米用去2m元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元、2.2元、2元,那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是( )A.甲比乙便宜B.乙比甲便宜C.甲与乙相同D.由m的值确定二、填空题:(每小题3分,共24分)11.据统计,某学校教师中年龄最大的为54岁,年龄最小的为21岁.那么学校教师年龄的极差是__________.12.若一组数据的方差为16,那么这组数据的标准差为__________.13.黎老师给出4个连续奇数组成一组数据,中位数是8,请你写出这4个数据:__________.14.第一小组共6名学生,在一次“引体向上”的测试中,他们分别做了:8,10,8,7,6,9个.这6名学生平均每人做了__________(个).15.现有一组数据9,11,11,7,10,8,12是中位数是m,众数是n,则关于x,y的方程组的解是:__________.16.某中学为了了解全校的耗电情况抽查了10中全校每天的耗电量,数据如下表:度数90 93 102 113 114 120天数 1 1 2 3 1 2则表中数据的中位数是__________度;众数是__________度.17.对甲、乙两个小麦品种各100株小麦的株高x(单位:m)进行测量,算出平均数和方差为:=0.95,s甲2=1.01,=0.95,s乙2=1.35,于是可估计株高较整齐的小麦品种是__________.18.某次射击训练中,一小组的成绩如下表所示.若该小组的平均成绩为7.7环,则成绩为8环的人数是__________.环数 6 7 8 9人数 1 3 2三、解答题:(共46分)19.为积极响应骨架“节能减排”的号召,某小区开展节约用水活动,根据对该小区200户家庭用水情况统计分析,2010年6月份比5月份节约用水情况如表所示:节水量/m3 1 1.5 2 2.5户数20 80 40 60则6月份这200户家庭节水量的平均数是多少?20.一次数学测试结束后,学校要了解八年级(共四个班)学生的平均成绩,得知一班48名学生的平均分为85分,二班52名学生的平均分为80分,三班50名学生的平均分为86分,四班50名学生的平均分为82分.小明这样计算该校八年级数学测试的平均成绩:==83.25,小明的算法正确吗?为什么?若不正确,请写出正确的计算过程.21.济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:节水量(米3) 1 1.5 2.5 3户数50 80 100 70(1)300户居民5月份节水量的众数,中位数分别是多少米3?(2)扇形统计图中2.5米3对应扇形的圆心角为__________度;(3)该小区300户居民5月份平均每户节约用水多少米3?22.如图是某校八年级(1)班全体同学为山区中学捐赠图书的情况统计图,请根据统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八年级(1)班全体同学所捐赠图书的中位数和众数分别是多少?23.张明、李成两位同学初二学年10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:利用图中提供的信息,解答下列问题.(1)完成下表:姓名平均成绩中位数众数方差张明80 80李成260(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是__________;(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.北师大新版八年级上册《第6章数据的分析》2015年单元测试卷(广东省佛山市南庄中学)一、选择题:(每小题3分,共30分,每小题只有一个答案,请你把正确的选择填在表格中)1.若3,2,x,5的平均数是4,那么x等于( )A.8 B.6 C.4 D.2【考点】算术平均数.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:∵数据3,2,x,5的平均数是4,∴(3+2+x+5)÷4=4,∴10+x=16,∴x=6.故选B.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.2.一组数据4,3,6,9,6,5的中位数和众数分别是( )A.5和5.5 B.5.5和6 C.5和6 D.6和6【考点】众数;中位数.【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.【解答】解:在这一组数据中6是出现次数最多的,故众数是6;将这组数据已从小到大的顺序排列,处于中间位置的两个数是5、6,那么由中位数的定义可知,这组数据的中位数是(5+6)÷2=5.5;故选B.【点评】本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.数据﹣3,﹣2,1,3,6,x的中位数是1,那么这组数据的众数是( )A.2 B.1 C.1.5 D.﹣2【考点】众数;中位数.【分析】根据中位数和众数的概念求解.【解答】解:∵数据﹣3,﹣2,1,3,6,x的中位数是1,∴x=1,则该组数据的众数为1.故选B.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是( )A.15,15 B.15,15.5 C.15,16 D.16,15【考点】众数;中位数.【专题】常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:根据图表数据,同一年龄人数最多的是15岁,共6人,所以众数是15,18名队员中,按照年龄从大到小排列,第9名队员的年龄是15岁,第10名队员的年龄是16岁,所以,中位数是=15.5.故选B.【点评】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.5.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A.中位数B.众数 C.平均数D.极差【考点】统计量的选择.【专题】应用题.【分析】由于有13名同学参加百米竞赛,要取前6名参加决赛,故应考虑中位数的大小.【解答】解:共有13名学生参加竞赛,取前6名,所以小梅需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小梅知道这组数据的中位数,才能知道自己是否进入决赛.故选:A.【点评】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是( )A.服装型号的平均数 B.服装型号的众数C.服装型号的中位数 D.最小的服装型号【考点】统计量的选择.【分析】天虹百货某服装销售商最感兴趣的是服装型号的销售量哪个最大.【解答】解:由于众数是数据中出现最多的数,销售商最感兴趣的是服装型号的销售量哪个最大,所以他最应该关注的是众数.故选B.【点评】本题考查学生对统计量的意义的理解与运用,要求学生对统计量进行合理的选择和恰当的运用.7.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33 25 28 26 25 31如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为( )A.900个B.1080个C.1260个D.1800个【考点】算术平均数;用样本估计总体.【专题】应用题.【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【解答】解:估计本周全班同学各家总共丢弃塑料袋的数量为×45=1260(个).故选C.【点评】生产中遇到的估算产量问题,通常采用样本估计总体的方法.8.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是( ) A.2 B.4 C.8 D.16【考点】方差.【专题】计算题.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2=[(a1﹣)2+(a2﹣)2+…+(a n﹣)2],∴S′2=[(2a1﹣2)2+(2a2﹣2)2+…+(2a n﹣2)2]=[4(a1﹣)2+4(a2﹣)2+…+4(a n﹣)2]=4S2=4×2=8.故选C.【点评】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据a1,a2,…,a n的方差是s2,那么另一组数据ka1,ka2,…,ka n的方差是k2s2.9.已知样本甲的平均数=60,方差=0.05,样本乙的平均数=60,方差=0.1,那么这两组数据的波动情况为( )A.甲、乙两样本波动一样大B.甲样本的波动比乙样本大C.乙样本的波动比甲样本大D.无法比较两样本波动的大小【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵=60,=60,=0.05,=0.1,∴<,∴乙样本的波动比甲样本大;故选C.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.甲、乙两人3次都同时到某个体米店买米,甲每次买m(m为正整数)千克米,乙每次买米用去2m元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元、2.2元、2元,那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是( )A.甲比乙便宜B.乙比甲便宜C.甲与乙相同D.由m的值确定【考点】分式的加减法.【专题】应用题;压轴题.【分析】通过已知条件,求出甲、乙的平均单价,然后进行比较.【解答】解:由题意可知:甲三次共买了3m千克的米,花费为1.8×m+2.2×m+2×m=6m元,则甲的平均单价为6m÷3m=2;乙共花费3×2m÷(2m÷1.8+2m÷2.2+2m÷2)=1.99<2;∴乙比甲便宜.故选B.【点评】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.二、填空题:(每小题3分,共24分)11.据统计,某学校教师中年龄最大的为54岁,年龄最小的为21岁.那么学校教师年龄的极差是33.【考点】极差.【分析】根据极差的定义即可求得.【解答】解:∵最大的为54岁,年龄最小的为21岁,∴学校教师年龄的极差是54﹣21=33岁.故答案为:33.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.12.若一组数据的方差为16,那么这组数据的标准差为4.【考点】标准差;方差.【分析】根据标准差即方差的算术平方根即可得出答案.【解答】解:∵一组数据的方差为16,∴这组数据的标准差为=4.故答案为:4.【点评】此题考查了标准差,掌握标准差即方差的算术平方根是本题的关键.13.黎老师给出4个连续奇数组成一组数据,中位数是8,请你写出这4个数据:5,7,9,11.【考点】中位数.【分析】设这4个连续奇数为2x﹣3,2x﹣1,2x+1,2x+3,然后根据中位数的概念求解.【解答】解:设这4个连续奇数为2x﹣3,2x﹣1,2x+1,2x+3,则=8,解得:x=4,则这4个奇数为:5,7,9,11.故答案为:5,7,9,11.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.第一小组共6名学生,在一次“引体向上”的测试中,他们分别做了:8,10,8,7,6,9个.这6名学生平均每人做了8(个).【考点】算术平均数.【专题】计算题;压轴题.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:平均数=(8+10+8+7+6+9)÷6=8(个).∴这6名学生平均每人做了8个.故答案为8.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.15.现有一组数据9,11,11,7,10,8,12是中位数是m,众数是n,则关于x,y的方程组的解是:.【考点】解二元一次方程组;中位数;众数.【专题】计算题;一次方程(组)及应用.【分析】找出数据的中位数与众数,确定出m与n的值,代入方程组求出解即可.【解答】解:数据9,11,11,7,10,8,12按照从小到大顺序排列为:7,8,9,10,11,11,12,∴中位数是m=10,众数是n=11,代入方程组得:,解得:,故答案为:.【点评】此题考查了解二元一次方程组,中位数,以及众数,熟练掌握运算法则是解本题的关键.16.某中学为了了解全校的耗电情况抽查了10中全校每天的耗电量,数据如下表:度数90 93 102 113 114 120天数 1 1 2 3 1 2则表中数据的中位数是113度;众数是113度.【考点】众数;中位数.【分析】找出出现次数最多的数即为众数,排序后中间两天的用电量的平均数即为中位数.【解答】解:∵共10天,排序后位于第5和第6两天的度数均为113和113,∴中位数为113度,∵用电量为113度的天数最多,∴众数为113度.故答案为:113,113.【点评】本题考查了中位数、众数的定义,解题的关键是能够了解二者的定义,利用定义求解,难度不大.17.对甲、乙两个小麦品种各100株小麦的株高x(单位:m)进行测量,算出平均数和方差为:=0.95,s甲2=1.01,=0.95,s乙2=1.35,于是可估计株高较整齐的小麦品种是甲.【考点】方差;算术平均数.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵=0.95,=0.95,s甲2=1.01,s乙2=1.35,∴s甲2<s乙2,∴估计株高较整齐的小麦品种是甲.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.某次射击训练中,一小组的成绩如下表所示.若该小组的平均成绩为7.7环,则成绩为8环的人数是4.环数 6 7 8 9人数 1 3 2【考点】加权平均数.【专题】计算题;压轴题.【分析】设成绩为8环的人数为x,则根据平均数的计算公式即可求得x的值.【解答】解:设成绩为8环的人数为x,则有6+7×3+8x+9×2=7.7×(1+3+x+2),解得x=4.故填4.【点评】此题考查一组数据平均数的求法.熟记公式是解决本题的关键.三、解答题:(共46分)19.为积极响应骨架“节能减排”的号召,某小区开展节约用水活动,根据对该小区200户家庭用水情况统计分析,2010年6月份比5月份节约用水情况如表所示:节水量/m3 1 1.5 2 2.5户数20 80 40 60则6月份这200户家庭节水量的平均数是多少?【考点】加权平均数.【分析】根据加权平均数的计算公式即可求出答案.【解答】解:(1×20+1.5×80+2×40+2.5×60)÷200=÷200=370÷200=1.85(m3).答:6月份这200户家庭节水量的平均数是1.85m3.【点评】本题考查了加权平均数的计算方法.平均数是指在一组数据中所有数据之和再除以数据的个数即可.20.一次数学测试结束后,学校要了解八年级(共四个班)学生的平均成绩,得知一班48名学生的平均分为85分,二班52名学生的平均分为80分,三班50名学生的平均分为86分,四班50名学生的平均分为82分.小明这样计算该校八年级数学测试的平均成绩:==83.25,小明的算法正确吗?为什么?若不正确,请写出正确的计算过程.【考点】加权平均数.【分析】利用加权平均数的计算方法:求出所有数据的和,然后除以数据的总个数即可.【解答】解:小明的算法不正确;该校八年级数学测试的平均成绩:=83.2.【点评】本题考查的是加权平均数的求法,掌握求平均数的方法:数据总和÷数据总个数=平均数是解决问题的关键.21.济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:节水量(米3) 1 1.5 2.5 3户数50 80 100 70(1)300户居民5月份节水量的众数,中位数分别是多少米3?(2)扇形统计图中2.5米3对应扇形的圆心角为120度;(3)该小区300户居民5月份平均每户节约用水多少米3?【考点】扇形统计图;统计表;加权平均数;中位数;众数.【分析】(1)众数是一组数据中出现次数最多的数据;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,根据定义可求解;(2)首先计算出节水量2.5米3对应的居名民数所占百分比,再用360°×百分比即可;(3)根据加权平均数公式:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则=,进行计算即可;【解答】解:(1)数据2.5出现了100次,次数最多,所以节水量的众数是2.5(米3);位置处于中间的数是第150个和第151个,都是2.5,故中位数是2.5米3.(2)×100%×360°=120°;(3)(50×1+80×1.5+2.5×100+3×70)÷300=2.1(米3).答:该小区300户居民5月份平均每户节约用水2.1米3.【点评】此题主要考查了统计表,扇形统计图,平均数,中位数与众数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.22.如图是某校八年级(1)班全体同学为山区中学捐赠图书的情况统计图,请根据统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八年级(1)班全体同学所捐赠图书的中位数和众数分别是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】计算题.【分析】(1)由捐2册的人数除以所占的百分比,即可确定出该班的学生数;(2)由该班的学生数减去其他的人数求出捐4册的学生数,补全条形统计图即可;(3)将捐书数按照从小到大顺序排列,找出中位数,找出捐书最多的数目确定出众数即可.【解答】解:(1)根据题意得:15÷30%=50(人),则该班学生有50人;(2)捐书4册的人数为50﹣(10+15+8+5)=12(人),补全统计图,如图所示:;(3)将捐书数按照从小到大顺序排列为:1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,其中第25,26个数为2,4,中位数为3册;2出现次数最多,即众数为2册.【点评】此题考查了条形统计图,扇形统计图,以及中位数、众数,弄清题意是解本题的关键.23.张明、李成两位同学初二学年10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:利用图中提供的信息,解答下列问题.(1)完成下表:姓名平均成绩中位数众数方差张明80 80李成260(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是李成;(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.【考点】算术平均数;中位数;众数;方差.【专题】计算题;图表型.【分析】(1)根据平均数、中位数、众数和方差的定义求解;(2)直接看图得到;(3)分析(1)的统计数据即可.【解答】解:(1)姓名平均成绩中位数众数方差张明80 80 80 60李成80 85 90 260(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是李成;(3)李成的学习要持之以恒,保持稳定;张明的学习还需加把劲,提高优秀率.【点评】本题考查的是平均数、众数、中位数和方差的概念.要学会从统计数据中得出正确的结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 6 章数据的分析一、选择题1.若 3, 2, x, 5 的平均数是4,那么 x 等于 ( )A. 8 B. 6 C. 4 D. 22.已知一组数据 10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是 ( ) A. 40, 40 B. 40, 60 C. 50, 45 D. 45, 403.有一组数据,按从小到大的顺序排列为13, 14,19, x, 23,27, 28,31,其中位数是22,则 x 等于 ( )A. 23 B. 22 C. 20 D. 214.某公司销售部有营销人员25 人,销售部为了制定某种商品的销售定额,统计了这25 人某月的销售量如下表:该公司营销人员该月销售量的中位数是( )每人销售量(单位:件)600 500 400 350 300 200人数(单位:人) 1 4 4 6 7 3A. 400 件B. 350 件C. 300 件D. 360 件5.天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是( )A.服装型号的平均数 B .服装型号的众数C.服装型号的中位数 D .最小的服装型号6.甲、乙两名学生进行射击练习,两人在相同条件下各射靶 5 次,射击成绩统计如下:命中环数(单位:环)7 8 9 10甲命中相应环数的次数 2 2 0 1乙命中相应环数的次数 1 3 1 0从射击成绩的平均数评价甲、乙两人的射击水平,则( )A.甲比乙高 B .甲、乙一样C.乙比甲高 D.不能确定7.当 5 个整数从小到大排列时,其中位数为4,如果这个数据组的唯一众数是6,则这 5 个整数可能的最大的和是( )A. 21 B. 22 C. 23 D. 248.为了让人们感受到丢弃塑料袋对环境造成的影响,某班环保小组的 6 名同学记录了自己家中一周内(一周按 6 天计算)丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26, 25, 31.如果该班有45 名同学,那么根据提供的数据估计,本周全班同学的家庭总共丢弃塑料袋的数量约为 ( )A. 900 个B. 1080 个C. 1260 个D. 1800 个9.已知 a,b,c 三数的平均数是 4,且 a,b,c,d 四个数的平均数是5,则 d 的值为 ( ) A. 4 B. 8 C. 12 D. 2010.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的 ( )A.平均数B.加权平均数C.中位数D.众数二、填空题11.第一小组共 6 名学生,在一次“引体向上”的测试中,9 个.这 6 名学生平均每人做了__________ (个).他们分别做了:8,10,8,7,6,12.一射击运动员在一次射击练习中打出的成绩(单位:环)是:7,8, 9,8, 6, 8, 10,7,这组数据的众数是__________ .13.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为__________ 件.14.下表是食品营养成份表的一部分(每100 克食品中可食部分营养成份的含量)蔬菜种类绿豆芽白菜油菜卷心菜菠菜碳水化合物4344 2 (克)在表中提供的碳水化合物的克数所组成的数据中,中位数是__________ ,平均数是__________.韭菜415.如图,描述了一家鞋店在一段时间里销售女鞋的情况:则这组数据的众数为__________.三、解答题16.已知四个数的和为33,其中一个数为12,那么其余三个数的平均数是多少?17.利用计算器计算下列数据的平均数:(1) 9.48 , 9.46 , 9.43 , 9.49 , 9.47 , 9.45 ,9.44 , 9.42 , 9.47 ,9.46(2)某工人在 30 天中加工一种零件的日产量为2天 51 件,3天 52 件,6天 53 件,8 天 54 件, 7 天 55 件, 3 天 56 件, 1 天 59 件,求这个工人平均每天加工零件多少件?18.某校八年级( 1)班 50 名学生参加2007 年贵阳市数学质量监控考试,全班学生的成绩统计如下表:成绩(分)71 74 78 80 82 83 85 86 88 90 91 92 94 人数 1 2 3 5 4 5 3 7 8 4 3 3 2 请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是 __________ ;(2)该班学生考试成绩的中位数是__________;(3)该班张华同学在这次考试中的成绩是83 分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.19.某班组织一次数学测试,全班学生成绩的分布情况如下图:__________ (1)全班学生数学成绩的众数是__________分,全班学生数学成绩为众数的有人.(2)全班学生数学成绩的中位数是__________分.(3)分别计算两个小组超过全班数学成绩中位数的人数占全班人数的百分比.20.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是 8 年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂: 4, 5, 5, 5,5, 7, 9, 12, 13, 15乙厂: 6, 6, 8, 8,8, 9, 10,12, 14,15丙厂: 4, 4, 4, 6,7, 9, 13,15, 16,16请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数;(3)如果你是顾客,宜选购哪家工厂的产品?为什么?北师大新版八年级上册《第6章数据的分析》2015年单元测试卷(辽宁省沈阳市培英中学)一、选择题1.若 3, 2, x, 5 的平均数是 4,那么 x 等于 ( )A.8B. 6 C.4D.2【考点】算术平均数.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:∵数据3, 2, x, 5 的平均数是4,∴( 3+2+x+5)÷ 4=4,∴10+x=16,∴x=6.故选 B.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.2.已知一组数据10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是() A. 40, 40 B. 40, 60 C. 50, 45 D. 45, 40【考点】众数;中位数.【分析】把这组数据按照从小到大的顺序排列,第5、 6 个数的平均数是中位数,在这组数据中出现次数最多的是15,得到这组数据的众数.【解答】解:把这组数据按照从小到大的顺序排列为:10,20, 30,40, 40, 40, 50, 50,80, 90,第 4、 5 个两个数的平均数是( 40+40)÷ 2=40,所以中位数是 40,在这组数据中出现次数最多的是40,即众数是 40.故选 A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3.有一组数据,按从小到大的顺序排列为13, 14,19, x, 23,27, 28,31,其中位数是22,则 x 等于 ( )A. 23 B. 22 C. 20 D. 21【考点】中位数.【分析】将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.【解答】解:∵数据按从小到大的顺序排列为13,14,19, x,23,27, 28,31,其中位数是 22∴( x+23)÷ 2=22∴x=21.故选 D.【点评】本题考查中位数的意义.解题的关键是熟记中位数的概念.4.某公司销售部有营销人员25 人,销售部为了制定某种商品的销售定额,统计了这25 人某月的销售量如下表:该公司营销人员该月销售量的中位数是( )每人销售量(单位:件)600 500 400 350 300 200人数(单位:人) 1 4 4 6 7 3A. 400 件B. 350 件C. 300 件D. 360 件【考点】中位数.【分析】根据中位数的概念求解.【解答】解:由题意得,该公司第13 名营销人员的销售额为该月销售量的中位数,即中位数为: 350.故选 B.【点评】本题考查了中位数的概念,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是( )A.服装型号的平均数 B .服装型号的众数C.服装型号的中位数 D .最小的服装型号【考点】统计量的选择.【分析】天虹百货某服装销售商最感兴趣的是服装型号的销售量哪个最大.【解答】解:由于众数是数据中出现最多的数,销售商最感兴趣的是服装型号的销售量哪个最大,所以他最应该关注的是众数.故选 B.【点评】本题考查学生对统计量的意义的理解与运用,要求学生对统计量进行合理的选择和恰当的运用.6.甲、乙两名学生进行射击练习,两人在相同条件下各射靶 5 次,射击成绩统计如下:命中环数(单位:环)7 8 9 10甲命中相应环数的次数 2 2 0 1乙命中相应环数的次数 1 3 1 0从射击成绩的平均数评价甲、乙两人的射击水平,则( )A.甲比乙高 B .甲、乙一样C.乙比甲高 D.不能确定【考点】加权平均数.【专题】计算题;压轴题.【分析】运用求平均数公式: = ( x1+x 2+x3+,x n)分别求出甲、乙两名学生的平均数,再比较.【解答】解:由题意知,甲的平均数= =8 环,乙的平均数 =8 环,所以从平均数看两个一样.故选 B.【点评】本题考查了平均数的概念.一组数据的平均数等于所有数据的和除以数据的个数,它反映这组数据的平均水平.7.当 5 个整数从小到大排列时,其中位数为4,如果这个数据组的唯一众数是6,则这 5 个整数可能的最大的和是 ( )A. 21 B. 22 C. 23 D. 24【考点】众数;中位数.【专题】压轴题.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:根据中位数的定义 5 个整数从小到大排列时,其中位数为4,前两个数不是众数,因而一定不是同一个数.则前两位最大是2,3,根据众数的定义可知后两位最大为6,6.这 5 个整数最大为:2, 3,4,6,6∴这 5 个整数可能的最大的和是21.故选 A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.8.为了让人们感受到丢弃塑料袋对环境造成的影响,某班环保小组的 6 名同学记录了自己家中一周内(一周按 6 天计算)丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26, 25, 31.如果该班有45 名同学,那么根据提供的数据估计,本周全班同学的家庭总共丢弃塑料袋的数量约为 ( )A. 900 个B. 1080 个C. 1260 个D. 1800 个【考点】算术平均数;用样本估计总体.【专题】应用题.【分析】在本题中,可以先求出样本平均数,样本平均数约等于45 名同学每天共丢弃塑料袋的数量的平均数,然后乘以总数即可解答.【解答】解:( 33+25+28+26+25+31)÷ 6=28,28×45=1260.故选 C.【点评】统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.9.已知 a,b,c 三数的平均数是 4,且 a,b,c,d 四个数的平均数是 5,则 d 的值为 ( ) A.4B. 8 C. 12 D. 20【考点】算术平均数.【分析】只要运用求平均数公式:即可列出关于 d 的方程,解出 d 即可.【解答】解:∵ a, b, c 三数的平均数是 4∴a+b+c=12又 a+b+c+d=20故 d=8.故选 B.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.10.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的 ( )A.平均数B.加权平均数C.中位数D.众数【考点】统计量的选择.【分析】升旗部队要求新兵身高应该相当,然后结合各个统计量的意义确定答案即可.【解答】解:∵升旗部队要求新兵身高应该相当,∴部队最关心的是新兵身高数据的众数.故选 D.【点评】本题考查了统计量的选择,解题的关键是了解平均数、中位数、加权平均数及众数的意义,难度不大.二、填空题11.第一小组共 6 名学生,在一次“引体向上”的测试中,他们分别做了:8,10,8,7,6,9 个.这 6 名学生平均每人做了8(个).【考点】算术平均数.【专题】计算题;压轴题.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:平均数 =( 8+10+8+7+6+9)÷ 6=8(个).∴这 6 名学生平均每人做了8 个.故答案为8.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.12.一射击运动员在一次射击练习中打出的成绩(单位:环)是:7,8, 9,8, 6, 8, 10,7,这组数据的众数是8.【考点】众数.【分析】根据众数的定义找到出现次数最多的数即为该组数据的众数.【解答】解:在这一组数据中8 环是出现次数最多的,故众数是8(环).故填 8.【点评】本题为统计题,考查众数的意义,解题时要细心.13.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为 5.5 件.【考点】中位数.【专题】应用题.【分析】根据中位数的定义解答.把数据按大小排列,第3、4 个数的平均数为中位数.【解答】解:从小到大排列为:3, 4, 5, 6, 6, 7.根据中位数的定义知其中位数为(5+6)÷ 2=5.5 .∴这组数据的中位数为 5.5 (件).故答案为 5.5 .【点评】本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.14.下表是食品营养成份表的一部分(每蔬菜种类绿豆芽白菜碳水化合物4 3 (克)100 克食品中可食部分营养成份的含量)油菜卷心菜4 4菠菜2韭菜4在表中提供的碳水化合物的克数所组成的数据中,中位数是4,平均数是4.【考点】算术平均数;中位数.【专题】图表型.【分析】要求这些数据的中位数,可先将它们进行从小到大的排列,找出最中间的一个数(或最中间的两个数的平均数)即可;要求平均数只要求出数据之和再除以总个数即可.【解答】解:将它们进行从小到大的排列为: 2, 3, 4, 4,4, 4, 7,处于中间位置的数是 4,因此它们的中位数是4.这组数据的总和为:4+3+4+4+2+4+7=28,而这组数据一共有7 个数,因此它们的平均数是28÷7=4.故填 4; 4.【点评】本题考查的是样本平均数和中位数的求法.15.如图,描述了一家鞋店在一段时间里销售女鞋的情况:则这组数据的众数为21( cm)和 30( cm).【考点】众数;条形统计图.【专题】应用题.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:如图所示,21cm和 31cm的女鞋出现的次数最多,是 5 次,所以这组数据的众数为 21( cm)和 30( cm).故填 21( cm)和 30( cm).【点评】本题主要考查众数的定义,是需要熟练掌握的概念.三、解答题16.已知四个数的和为33,其中一个数为12,那么其余三个数的平均数是多少?【考点】算术平均数.【分析】设其余三个数的平均数是 x,先求出其它三个数的和,再加上 12 正好等于 33,求出 x 的即可.【解答】解:设其余三个数的平均数是x,根据题意得:3x+12=33,解得: x=7.答:其余三个数的平均数是7.【点评】此题考查了平均数,掌握平均数等于所有数据的和除以数据的个数是本题的关键.17.利用计算器计算下列数据的平均数:(1) 9.48 , 9.46 , 9.43 , 9.49 , 9.47 , 9.45 ,9.44 , 9.42 , 9.47 ,9.46(2)某工人在30 天中加工一种零件的日产量为 2 天 51 件, 3 天 52 件, 6 天 53 件, 8 天 54 件, 7 天 55 件, 3 天 56 件, 1 天 59 件,求这个工人平均每天加工零件多少件?【考点】加权平均数;算术平均数.【分析】( 1)求得所有数据的和,再除以数据的个数即可;(2)首先求得 30 天加工的零件总和,再除以天数30 即可.【解答】解:( 1)( 9.48+9.46+9.43+9.49+9.47+9.45+9.44+9.42+9.47+9.46 )÷ 10=94.57 ÷10=9.457 .答:数据的平均数是 9.457 .(2)(51×2+52×3+53×6+54×8+55×7+56×3+59×1)÷30 =( 102+156+318+432+385+168+59)÷ 30 =1620÷30=54(件).答:这个工人平均每天加工零件54 件.= 【点评】本题考查的是加权平均数的求法,掌握求平均数的方法:数据总和÷数据总个数平均数是解决问题的关键.18.某校八年级(1)班 50 名学生参加2007 年贵阳市数学质量监控考试,全班学生的成绩统计如下表:成绩(分)71 74 78 80 82 83 85 86 88 90 91 92 94 人数 1 2 3 5 4 5 3 7 8 4 3 3 2 请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是88;(2)该班学生考试成绩的中位数是86;(3)该班张华同学在这次考试中的成绩是 83 分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.【考点】众数;中位数.【专题】图表型.【分析】( 1)众数是指一组数据中出现次数最多的数据.88 分的最多,所以88 为众数;(2)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.此题共50 名学生,排序后第25, 26 个数据的平均数是86,所以中位数是86;(3)成绩处于全班中游偏上水平,还是偏下水平,应该与中位数进行比较.该班张华同学在这次考试中的成绩是 83 分低于全班成绩的中位数,所以张华同学的成绩处于全班中游偏下水平.【解答】解:( 1) 88 出现的次数最多,所以众数是88;(2)排序后第 25,26 个数据的平均数是 86,所以中位数是 86;(3)用样本来估计总体不能说张华的成绩处于中游偏上的水平.因为全班成绩的中位数是86, 83 分低于全班成绩的中位数,张华同学的成绩处于全班中游偏下水平.【点评】主要考查了众数,中位数的确定方法和用样本估计总体的能力.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.19.某班组织一次数学测试,全班学生成绩的分布情况如下图:(1)全班学生数学成绩的众数是95 分,全班学生数学成绩为众数的有20 人.(2)全班学生数学成绩的中位数是92.5 分.(3)分别计算两个小组超过全班数学成绩中位数的人数占全班人数的百分比.【考点】条形统计图;中位数;众数.【专题】图表型.【分析】( 1)学生数目最多的数为众数,一二两组人数相加即可;(2)学生共有: 3+2+5+3+5+7+12+8+1+4=50 人,那么中位数就是分数从高到低排列后,排列第 25 和第 26 的分数的平均数;(3)百分比 =频数÷总数× 100%.【解答】解:( 1)全班学生数学成绩的众数是95(分),全班学生数学成绩为众数的有11+9=20 人;(2)第 25 个数为 90,第 26 个数为 95,所以中位数为( 95+90)÷ 2=92.5 .(3)∵ =24%, =26%,∴第一、二小组超过全班数学成绩的中位数的人数占全班人数的百分比分别为24%,26%.【点评】本题考查了从直方图中获取信息的能力;也考查了众数,中位数的定义,以及百分比的求法.需注意两组超过中位数的人数的确定.20.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是 8 年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂: 4, 5, 5, 5,5, 7, 9, 12, 13, 15乙厂: 6, 6, 8, 8,8, 9, 10,12, 14,15丙厂: 4, 4, 4, 6,7, 9, 13,15, 16,16请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数;(3)如果你是顾客,宜选购哪家工厂的产品?为什么?【考点】中位数;算术平均数;众数.【专题】应用题.【分析】( 1)平均数就是把这组数据加起来的和除以这组数据的总数,众数就是一堆数中出现次数最多的数,中位数,就是一组数按从小到大的顺序排列,中间位置的那个数,如果有偶数个数,那就是中间的两个数的平均数;(2)一组数据的平均数、众数、中位数从不同角度表示这种数据集中趋势.由( 1)的结果容易回答( 2),甲厂、乙厂、丙厂,分别利用了平均数、众数、中位数进行广告推销,顾客在选购产品时,一般以平均数为依据.(3)根据平均数大的进行选择.【解答】解:( 1)甲厂:平均数为( 4+5+5+5+5+7+9+12+13+15)=8,众数为 5,中位数为6;乙厂:平均数为( 6+6+8+8+8+9+10+12+14+15) =9.6 ,众数为 8,中位数为8.5 ;丙厂:平均数为( 4+4+4+6+7+9+13+15+16+16) =9.4 ,众数为 4,中位数为8;(2)甲厂用的是平均数,乙厂用的是众数,丙厂用的是中位数;(3)平均数:乙大于丙大于甲;众数:乙大于甲大于丙;中位数:乙大于丙大于甲,顾客在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,因此应选乙厂的产品.【点评】本题是平均数、众数、中位数在实际生活中的应用,选取以哪个数据为主要结合它们的定义来考虑.。

相关文档
最新文档