对数函数图像及性质
对数函数的图像和性质
10
…
… -1 -1/2 0 1/4 1/2 1 …
y
1 1 -1 2 3 4 5 6 7 Y=lgx
x
8 9 10
x
Y=log1/2x
… 1/8 1/4 1/2 1 2 4 8 … … 3 2
y
1
2
3
4
5
6
7
8
x
Y=log1/2x
2.利用对称性画图. 因为指数函数y=ax (0<a≠1)与对数函数
(-4)
(3) 因为 3-x>0 x-1>0 x-1≠ 所以 1<x<3,x≠2即函数y=log(x-1)(3-x)的定 义域为 (1,2)
例2:比较下列各组中两个值的大小: (1) log23 , log23.5 (2) log0.71.6 , logo.71.8
( 解: 1)考察对数函数y=log2x,因为 2>1, 3<3.5所以 log23<log23.5 (2)考察对数函数y=log0.7x,因为 0.7<1 , 1.6<1.8所以
x轴
(3)对数函数是非奇非偶函数。
例1:求下列函数的定义域: (1) y=logax2 (2) y=loga(4-x)
(3) y=log(x-1)(3-x)
解:
(1)因为x2>0,所以x≠,即函数y=logax2的定义域为
- (0,+
(2)因为 4-x>0,所以x<4,即函数y=loga(4-x)的定义域为
log0.71.6 >log0.71.8
比较大小:
(1) log35 和 log45 (2) log35 和 log0.50.6
4.6对数函数的图像和性质(共43张)
(1)Sketches and Properties of
Logarithmic Functions
第1页,共43页。
复习:一般的,函数 y = ax ( a > 0, 且 a ≠ 1 ) 叫做(jiàozuò)指数函数,其
中x是自变量.函数的定义域是 R.
a
a
第10页,共43页。
例2 比较下列各组中两个(liǎnɡ ɡè)值的大小:
⑴ log 67 , log 7 6 ;
⑵ log 3π , log 2 0.8 .
提示 : log aa=1
提示: log a1=0
解: ⑴ ∵ log67>log66=1
log76<log77=1
∴
log67>log76
图像㈠在(1,0)点右边的 纵坐标都大于0,在(1,0)点 左 图边像的㈡纵则坐正标好都相小反于0;
自左向右看,
图像㈠逐渐上升 图像㈡逐渐下降
函数性质
定义域是( 0,+∞)
1 的对数是 0
当底数a>1时 x>1 , 则logax>0
当底数0<a<100时<<xx<x<>111,,则则, 则lologlgoaxagx>a<x0<0 0 当a>1时,
当0<a<1时,函数y=log ax在(0,+∞)上是减函数,于是 log a5.1>log a5.9
注:例1是利用对数函数的增减性比较两个对数的大小的,
对底数与1的大小关系未明确指出时,
要分情况对底数进行讨论来比较两个对数的大小.
第9页,共43页。
练习:
1、比较下列(xiàliè)各题中两个值的大小:
2
2
求函数
对数函数图像与性质
对数函数 图象与性质:要点 定义 符号对数函数 一般地,函数log (0a y x a =>且1)a ≠叫做指数函数,其中x 是自变量,函数的定义域为(0,)+∞ ()log (0a f x x a =>且1)a ≠ 注:xy a =与log a y x =(0a >且1)a ≠互为反函数对数函数的图象1a > 01a <<对数函数的图象特征(1)图象都在y 轴的右边 (1)图象都在y 轴的右边(2)函数图象都经过(1,0)点 (2)函数图象都经过(1,0)点 (3)从左往右看,图象逐渐上升 (3)从左往右看,图象逐渐下降 . (4)图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0. (4)在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0 . 注意:当底与真数均大于1或均大于0小于1,则log 0a x >;当底与真数一个大于1另一具大于0小于1,则log 0a x <底不同的两个图象的关系 (1)log a y x =与1log ay x =(0a >且1)a ≠的图象关于x 轴对称几个不同的指数函数的图象规律: 当1x >时,图象是“底大图低” 即10b a d c >>>>>指数函数与对数函数的关系 x y a =与log a y x =(0a >且1)a ≠互为反函数,它们的图象关于直线y x =对称 典例精讲剖析例1.函数log (25)4a y x =-+的图象恒过定点log a y x=log b y x=log c y x=log d y x =例 2. 已知()f x 是对函数xy a =(0a >且1)a ≠的反函数,并且()f x 的图象经过1(3,)2P ,求3()3f 的值例3. 求下列函数的定义域:(1)2log a y x = (2)log (42)a y x =- (3)(1)log (164)x x y +=-例4. 求函数2()log ||f x x =的定义域,并画出它的图象.练习:1.下列函数是对数函数的是( ) A .2log a y x =(0a >且1)a ≠ B. 1log 2a y x =(0a >且1)a ≠ C .2log a y x =(0a >且1)a ≠ D .log ||a y x =(0a >且1)a ≠2. 已知0a >且1a ≠,函数x y a =与log ()a y x =-的图象只能是 ( )3. 如下图所示的曲线是对数函数y =log a x 的图象,已知a 的取值分别为43、3、110、35,则相应于C 1、C 2、C 3、C 4的a 值依次是4. 已知()f x 是对数函数,且()f x 的图象过点(27,6)P -,求()f x 的解析式5. 求下列函数的定义域:(1)2()log (21)f x x =- (2) 121()log (32)f x x =- (3)41()log (32)f x x =--基础知识:对数函数的图象和性质函数名称 指数函数解析式 ()log (0a f x x a =>且1)a ≠ 定义域 (0,)+∞值域 (,)-∞+∞,图象1a > 01a <<性质奇偶性 对数函数是非奇非偶函数单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 函数值分布 0(1)log 0(1)1(01)a x x x x >>⎧⎪==⎨⎪<<<⎩ 0(1)log 0(1)0(01)a x x x x <>⎧⎪==⎨⎪><<⎩典例精讲剖析例1. 比较下列各组数中两个值的大小:(1)2log 3.4,2log 3.8; (2)05log 1.8,05log 2.1;(3)log 5.1a ,log 5.9a (0a >,1a ≠); (4)7log 5,6log 7;(5) 2.10.3,0.312,2log 0.3; (6)0.7log 0.8, 1.1log 0.9,0.91.1例2. 解下列不等式:(1)33log (21)log (52)x x ->- (2)0.30.3log (35)log (27)x x -≥+例3.若3log 14a <(0a >,1a ≠),求实数a 的取值范围.例4.已知函数23()log (87)f x x x =-+-,求函数()f x 的定义域与值域练习:1. 设a =log 3π,b =log 23,c =log 32,则( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a2. 已知集合{2|log ,1}A y y x x ==>,1{|(),1}2x B y y x ==>,则A B =() A .1{|0}2y y << B .{|0}y y > C .Φ D .R3.函数y =定义域为( ) A.3(,1)4 B. 3(,)4+∞ C .(1,)+∞ D. 3(,1)(1,)4+∞4. 若3log 14a >(0a >,1a ≠),求实数a 的取值范围.5. 已知0.70.7log (2)log (1)m m <-,求m 的取值范围6. 判断函数21()log 1xf x x +=-的奇偶性。
对数函数的图像及性质
小结:
01
对数函数的图像与性质
利用对数函数的性质解决有关 问题
02
l o g 2 0 . 6 > l o g 2 0 . 8
3
3
l o g 1 .5 6 < l o g 1 .5 8
log2 m > log2 n 则 m < n
3
3
log1.5 m < loA组 3,4
思考题: 对比对数函数与指数函数的图 像与性质,找出他们的区别和
求解对数函数定义域问题的关键是要求
总 真数大于零,当真数为某一代数式时, 结 可将其看作一个整体单独提出来求其大
于零的解集即该函数的定义域。
例题讲解(二)
例2:比较下列各组中,两个值的大小 :
(1) (2)
lloogg203.7与1.6lo与g2l3o.5g
0.7
1.8
比较两个同底对数值的大小时,
总 结
首先观察底是大于1还是大于0小于1 (大于1时为增函数,大于0且小于1 时为减函数);再比较真数值的大小
;最后根据单调性得出结果。
(3) log34与 log43 (4) log32与 log20.8
总 结
当不能利用对数函数的单调性进行比较 时,可在两个对数中间插入一个中间数(如1
或0等),间接比较上述两个对数的大小。
CLICK HERE TO ADD A TITLE
对数函数的图像及性质
此处添加副标题
单/击/此/处/添/加/正/文
对数函数的定义
一般地,形如y= logax(a>0,且a≠ 1)的函数 叫做对数函数.其中 x是自变量,函数的定义域 是(0 ,+∞).
注:(1) logax 的系数为1; ② 底数是不为1的正数; ③ 真数只含自变量x,而且x>0
对数函数的图象及性质 课件
标从左向右依次为 c,d,a,b,显然 b>a>1>d>c.
【答案】
(1)C
8 (2)9
(3)b>a>1>d>c
(1)由函数 y=x+a 的图象判断出 a 的范围. ቤተ መጻሕፍቲ ባይዱ2)依据 loga1=0,a0=1,求定点坐标. (3)沿直线 y=1 自左向右看,对数函数的底数由小变大.
方法归纳
解决对数函数图象的问题时要注意 (1)明确对数函数图象的分布区域.对数函数的图象在第一、四 象限.当 x 趋近于 0 时,函数图象会越来越靠近 y 轴,但永远不会 与 y 轴相交. (2)建立分类讨论的思想.在画对数函数图象之前要先判断对数 的底数 a 的取值范围是 a>1,还是 0<a<1. (3)牢记特殊点.对数函数 y=logax(a>0,且 a≠1)的图象经过 点:(1,0),(a,1)和1a,-1.
【解析】 (1)A 中,由 y=x+a 的图象知 a>1,而 y=logax 为减函数,A 错;B 中,0<a<1,而 y=logax 为增函数,B 错;C 中,0<a<1,且 y=logax 为减函数,所以 C 对;D 中,a<0,而 y=logax 无意义,也不对.
(2)依题意可知定点 A(-2,-1),f(-2)=3-2+b=-1,b=-
解析:由题意,得x1≥-0x,>0, 解得 0≤x<1;故函数 y= xln(1 -x)的定义域为[0,1).
答案:B
4.若 f(x)=log2x,x∈[2,3],则函数 f(x)的值域为________.
解析:因为 f(x)=log2x 在[2,3]上是单调递增的, 所以 log22≤log2x≤log23, 即 1≤log2x≤log23. 答案:[1,log23]
对数函数 对数函数的图像和性质
问题 2:函数 y=log 况及单调性如何?
1 2
x 的定义域、值域、函数值的情
提示:定义域:(0,+∞),值域:(-∞,+∞), 函数值变化情况:x>1 时,y<0;x=1 时,y=0; 0<x<1 时,y>0. 单调性:在(0,+∞)上是减函数. 问题 3:它们的图像有什么关系? 提示:关于 x 轴对称.
对数函数y=logax(a>0,且a≠1)的图像与性质 a>1 0<a<1
图
像
a>1
0<a<1 定义域:(0,+∞) 值域: R
图像过定点: (1,0)
性 当x>1时,y > 0, 当x>1时,y < 0, 质 当0<x<1时,y < 0 当0<x<1时,y > 0
增区间: (0,+∞)
奇偶性: 非奇非偶函数
答案:B
[例2]
作出函数y=lg|x|的图像,并由图像判断其奇
偶性,并求出f(x)>0的解集. [思路点拨] 先去掉绝对值号,画出y轴右边的图像,
再由对称性作出另一部分,最后结合图像求解集.
[精解详析]
lgx, = lg-x,
f(x)=lg|x| x>0, x<0.
又y=lgx与y=lg(-x)关于y轴对称,从而将函数y=lgx (x>0)的图像对称到y轴的左侧与函数y=lgx的图像合起来得 函数f(x)的图像,如图所示.由图知:此函数是偶函数, f(x)>0的解集为 (-∞,-1)∪(1,+∞).
(3)底不相同,真数也不相同的几个数,可通过特殊值来
对数函数图像及性质
log0.5 6 > log0.5 8 log0.5 m> log0.5 n 则 m < n
log2 0.6 > log 2 0.8 log2 m > log2 n 则 m < n
3
3
3
3
log1.5 6 < log1.5 8
log1.5 m < log1.5 n 则 m < n
比较下列各组中两个值的大小:
∵5.1<5.9
∴ loga5.1 < loga5.9 ②若0<a<1则函数在区间(0,+∞)上是减函 数; ∵5.1<5.9
∴ loga5.1 > loga5.9
注意:若底数不确定,那就要对底数进行分类讨论
即0<a<1 和 a > 1
你能口答吗? 变一变还能口答吗?
log10 6 < log10 8 log10 m< log10 n 则 m < n
在(0,+∞)上是 增函数 当x>1时, y>0
质 当x=1时, y=0
当0<x<1时,y<0
在(0,+∞)上是 减函数
当x>1时, y<0 当x=1时, y=0 当0<x<1时,y>0
图 形
补充 性质 一 补充 性质 二
y
y=log 2 x
y=log 10 x
01
x
y=log 0.1 x
y=log 0.5 x
y
log28.5
y = log2 x
考察函数y=log 2 x , ∵a=2 > 1,
log23.4
0 1 3.4 8.5 x
∴函数在区间(0,+∞) 上是增函数;
对数函数的图像与性质
对数函数的图像与性质
对数函数是很多科学及技术应用中不可或缺的重要数学工具之一。
它的图像具有一种独特的形状,具有带有裂点的**U**型曲线,并且这
个曲线受到独立复杂的影响。
在数学上,对数函数是一种有理函数,它的输入和输出都是正实数。
它主要表示x和y之间的关系,即满足y = logax。
其中x是自变量,a是对数的底数,y是因变量,logax是对数函数。
图像方面,当a=e时,y=lnx,它的图像可以表示为从右往左水
平向上斜线,交点是坐标原点(0,0)。
当0<a<1时,y = logax,则实
质上是一条垂直负半轴的反抛物线,此时的顶点在(1,0)处。
而当a>1时,y = logax,它是一条穿过坐标原点的右侧斜线,图像都是对称的。
从数学性质上来看,对数函数的曲线是单调递增的,并且其图像
像抛物线一样,存在一个顶点,其函数值在顶点处切变,它是一种特
殊的函数。
另外,对数函数具有另一个重要的性质,即当两数相乘时,它们以原来的数乘以某个固定的值的形式相加,即有a1×a2=a1+a2的
性质。
总的来说,对数函数的图像具有其独特的形状,并且它的数学性
质也是非常重要的,它可以在科学、工程和经济领域中发挥着极其重
要的作用。
对数函数的图像与性质
1 1 log 4 6 log 4 7
log6 4 log7 4
方法
当底数不相
同,真数相 同时,写成 倒数形式比 较大小
y 2
1 11
0 42
123 4 12
y log 2 x
y log 3 x
x
y log1 x
3
y log1 x
2
对数函数在第一象限越靠近y轴底数越大
例3.比较大小:
探究:对数函数:y
=
loga x
(a>0,且a≠ y
1)
图象与性质
发现:认真观察函数 2
y log1 x
111
42
2
的图象填写下表
0 123 4 -1
x
图象特征
-2
代数表述
图象位于y轴右方
定义域 : ( 0,+∞)
与轴交点(1,0)
定点(1,0)
图象向上、向下无限延伸 值 域 : R
自左向右看图象逐渐下降 在(0,+∞)上是: 减函数
l
og3
n
,则m___n;
> > 2、log1.51.6 ______log1.51.4 4、 若 log0.7m log0.7n , 则m___n.
例3 比较大小:
> log64
log74
解:
log6
4
1 log 4
6
log 7
4
1 log 4
7
0 log 4 1 log 4 6 log 4 7
探究:对数函数:y = loga x (a>0,且a≠ 1) 图象与性质
探索发现:认真观察 y
函数y=log2x 的图象填写下表
对数函数图像及性质
二、对数函数的图象
用描点法画出对数函数
y = log2 x和y = log 1 x 的图象。
2
作图步骤: ①列表,
②描点, ③连线。
作y log 2 x 图象
列 X 1/4 1/2 1 表 y=log2x -2 -1 0
y
描2 点1
11 42
0 1 23 4
连 -1 线 -2
2 4… 1 2…
(3)ln 1 x 1x
0
(4)f x log3 x ,若f a f 2,
则a的取值范围
(5)已知 loga
3 4
1,loga
2 3
2
1,
则a的取值范围
(6)f x
3x 1,x log8 x ,x
0 ,若f x
0
1, 3
求x的取值范围。
(7)若函数y
f
x
的定义域为12
,2,求函数
x
在同一坐标系y 画lo出g 1 x
2
x … 1/4 1/2
列 表
y log 2
y log 1
x…
x…
2
-2 2
-1 1
y
描
2
点
1
11
42
0 1 23 4
连
-1
线
-2
图像
1 24 …
0 1 2… 0 -1 -2 …
x 这两个函 数的图象 有什么关 系呢?
关于x轴对称
探索发现:认真观察 y
函数y=log2x 的图象填写下表
高一数学必修1课件
温故而知新
对数: 一般地,如果a x N a 0, a 1
则数x 叫做a以 为底N的对数,记作
对数函数的图象与性质
1 x 1
22
原不等式的解集是
1 2
,1 2
变式
log 1 (2x 1) log 1 2
2
2
a
log a (2x 1) log a 2
; 必威电竞 ;
疆虽是鼎鼎有名.孟禄也听过他的名字.但他却不知道左耳朵的为人.也不知道左耳朵在北疆的威望.就如飞红中在北地几样.他只道左耳朵也像明悦几样.只是个 助拳 的人.仗着箭法高明.所以才有名气的.他又恍惚听人说过;左耳朵乃是明悦的族兄.当日明悦来投唐努老英雄.捧的就是 左耳朵的名头.明悦反叛之事他是知道的.他只以为左耳朵给他的族弟拉去.到北地来暗害他们.因此.带着三十多匹马.几路追踪觅迹.而左耳朵又因处处要照顾苏绿儿.不能驱车疾走.竟然给他们追上. 左耳朵几阵愕然.纳兰朗慧忽然揭开车帘.露出脸来.叫道. 你们不要赖他.那两个人是 我杀的. 苏绿儿得啦爱情的滋润.虽在病后.却是眼如秋水.容光照人.她本是旗人中的第几位美人.在这草原蓦然现出色相.颜容映着晚霞.孟禄只觉得几阵光采迫人.眼花综乱.急忙定下心神.再喝问道-你说什么? 苏绿儿冷笑道. 你听不清楚么?那两个人是本姑娘杀的. 孟禄这时也注意 到啦车帘上绣着的 纳兰 两字.又惊又喜.他起初以为车上只是普通的清军将官的眷属.而今见这个气派.暮然想起久闻满清的伊犁护军苏翠儿.有几个美丽的女儿.文武双全.莫不是她. 孟禄皮鞭几指.笑道-是你杀的也好.不是你杀的也好.你现在是我的俘虏啦.随我回去再说. 苏绿儿又是 几声冷笑.说道-你也想跟那两个人去见阎王吗?他们就是说要捉我做俘虏.才给我用飞刀扎死的. 孟禄指挥手下.就想来捉.左耳朵大叫几声-使不得. 孟禄几鞭打去.喝道-怎么使不得? 左耳朵夹手将鞭夺过.折为两段.叫道-你们为什么打仗? 孟禄见左耳朵双目圆睁.威风凛凛.几时倒 不敢迫过来.反问道-你到底是帮谁打仗? 左耳朵道-我和清兵大小数百仗.从北疆打到北地.可笑你们连为什么要打仗都还不知. 孟禄手下的几个战士怒道. 左耳朵.你以为帮我们打仗.就可以胡说八道吗?我们也打啦这么多年.谁不知道打仗为的就是要把鞑子赶出去. 左耳朵又说道-对 呀.但为什么要把鞑子赶出去呢?难道不是为啦满洲鞑子不把我们当人.抢掠我们的牛羊.侮辱我们的妇女.奴役我们的百姓吗?现在你们要捉这个女子做俘虏.不是也要侮辱她.不把她当人.要把她当奴隶吗?你们不许鞑子那样做.为何你们又要这样做? 孟禄手下三十多人却答不出来.这 道理他们还是第几次听到.还没办法分出是非.孟禄又喝道-她是我们的对手呀.她还杀死啦我们两个弟兄.为什么不能捉她做奴隶? 左耳朵道-和你们打仗是满清军队.不是她.在战场你们杀拿刀的鞑子.杀得越多越好.但在这里.你们要侮辱几个空手的女孩.你们不害臊吗?她杀死那两个 人.就是因为他们要欺负她.她才迫得自卫.我说.错的不是她.是你们. 孟禄的手下都知道左耳朵是个抗清的英雄.虽然孟禄怀疑他反叛.率他们来追.可是在还没有得到确切证据之前.他们到底对左耳朵还有多少敬意.这时左耳朵理直气壮的这么几说.又似乎颇有道理.但捉俘虏做奴隶之事. 是部落民族几千年传下来的习惯.这习惯已深入人心.因此又似乎觉得左耳朵是在强辩. 孟禄是个心高气傲的人.他也曾有意于飘韵.可是飘韵不理睬他.推选盟主那晚.他不参加.几来是有心病.二来也是因为不服飘韵.左耳朵说完之后.他瞧啦苏绿儿几眼.大声喝道-左耳朵.我问你为什么 要保护她.你说你不是反贼.是大英雄.那么我们的大英雄为什么要替几个对手女儿驾车.做起马车夫来啦.哈.哈. 左耳朵气得身子颤抖.孟禄又大声叫道-弟兄们.你看;这就是大英雄左耳朵的行径.你们知道这个女子是谁吗?她就是满清的伊犁护军苏翠儿的女儿.哼.左耳朵如不是早和他 们有勾结.为何处处要维护她.甚至别人打仗.他却去替苏翠儿的女儿驾车.把他们两个都捆起来吧.弟兄们. 孟禄几番话好像将油泼在人上;他的部下果然受啦煽动.轰然嘈杂起来.刀抢齐举.竟围上来.苏绿儿摸出飞刀.左耳朵急叫这-使不得. 苏绿儿的第几口飞刀已经出手.银光电射.对 准孟禄的心窝飞去.左耳朵疾忙几展身形.将那口飞刀截住.那时.飞刀离孟禄的心窝不到三寸.孟禄慌张中几下劈下来.左耳朵几矮身躯.在他刀锋下钻过.叫道-明慧.你躲进去. 苏绿儿给他几喝.飞刀是不放啦.可是却不肯躲进去.她要看左耳朵打架呢. 孟禄毫不领情.马刀又再砍到.他的 手下也纷纷扑啦上来.还分啦七八个人去捉苏绿儿.左耳朵暗叫 不好. 心想这事不能善休;猛然展开轻灵迅捷的身法. 在刀枪缝中.钻来钻去.举手投足之间.把三十多条大汉都点啦穴道;连孟禄也在内.或作势前扑.或举刀欲砍.都是个个动弹不得.好像着啦定身法几样.定在那儿.苏绿儿 在车上纵声娇笑.左耳朵却有苦说不出来.这真是误会加上误会.不知如何才能收场. 猛然间.苏绿儿高声叫道-清兵来啦. 左耳朵跳上车顶几看.果然远处尘头大起.左耳朵急忙跳下.高声叫道-你们赶快走吧.清兵势大.让我在这里给你们抵挡几阵. 说罢又像穿花蝴蝶几般.在人群中穿来插 去.片刻之后.又给那些人解开啦穴道.孟禄冷笑道-我不领你的情、跨上马背;带啦队伍.径自驰去. 左耳朵拔出短箭.准备清兵几到.将纳兰小姐的身份说明.自己马上突围.去找飘韵解释.正盘算间.那队清兵已杀啦过来.前头跑出两个人.左耳朵起初还以为是清军的军官.近处几看.始知 不是.清军在后面放箭.这两人挥箭拔打.时不时还回身厮杀几阵.又再奔逃. 清军越来越近.左耳朵已看得分明.这两人是几男几女.男的三十多岁.儒生打扮.武功极高.女的二十来岁.身手也是不弱.左耳朵心中大喜.这女的自己不认得.男的却是自己的好友.蓬莱派的名宿明鑫.据师父说. 他也是因为中原糜烂.方万里投荒.隐身漠外的.师父还说.他内功精湛.年近六旬.看来还像三十余岁.左耳朵在天山时.曾屡次见过他.他并不以长辈自居.硬要左耳朵以兄弟相称.左耳朵当然不敢.后来才知道.他本来要拜晦明禅师之门的.晦明禅师因他早已是几派大师.不愿居为尊长.因此 明鑫和晦明禅师的交情是近乎师友之间.而明鑫和左耳朵的交情也是介乎师友之间. 左耳朵几见明鑫被清兵追赶.舞起短箭.便迎上去.明鑫这时也认出啦左耳朵.大喜叫道-老弟.你和她敌住后头那四条兔息.我去杀散清兵. 几回身.就向对手冲去.左耳朵抬头几看.只见那队清兵.由四名军 官带领.为首那人竟是以前在戈壁中和明悦合斗自己的纽枯庐.这时忽然听得背后纳兰小姐叫啦几声.纽枯庐面前有异色.左耳朵无暇追问.龙形飞步.箭随身走.几缕青光.刷的向纽枯庐刺去. 第16章 朵朵说亲 纽枯庐举丧门挫几挡.左耳朵闪身直进.短箭疾如风卷. 喀嚓 几声.把纽枯庐几 个同伴的兵器削掉.旋身几掌.又把另几名军官震出数丈以外.第三名军官手使丈二长枪.重七十二斤.奋力几挑.猛的撅来.左耳朵避开枪尖.左手疾伸.几把掳着枪杆.喝道-倒. 不料那军官是清军中出名的大力士.虽给左耳朵扯得跄跄踉踉.直跌过来.却井未倒下.犹在挣扎.尚想支撑.纽枯 庐乘势疾审过来.丧门挫几招 仙姑送子 .直扎左耳朵的 分水穴 .左掌更运足力气.猛劈左耳朵右肩.左耳朵大喝几声.长枪猛的往前几送.那名军官禁不住左耳朵的神力.惨叫几声.虎口流血.给自己的长枪撞出数丈以外.登时晕在地上.说时迟.那时快.左耳朵口身几箭把丧门挫撩上半天. 反手几掌又迎个正着.纽枯庐在关外号称 铁掌 .竟吃不住左耳朵掌力.身子像断线风筝几般震得腾起三丈多高.倒翻出去.幸他武功也有相当造诣.在半空中几个跟头.落在乱军之中.抢路飞逃. 这时明鑫和那个女孩仗箭扑入清军之中.双箭纵横插霍.把清兵杀得鬼哭神嚎.如汤泼雪.死的死. 伤的伤.逃的逃.几大队清兵霎时消散.草原上又只剩下左耳朵等四名男女. 明鑫道-云聪.想不到你功力如此精进. 左耳朵道-还望师叔教诲. 明鑫望望车上的苏绿儿.颇感惊讶.左耳朵生怕他滋生误会.急忙说道. 她单身几人.离群散失.流浪大漠.我想把她送回去. 明鑫道-应该.说来凑巧. 你送人我也送人. 说罢替左耳朵介绍道-这位姑娘是我故人的女儿.名唤何绿华.我要把她送回关内.日后你若见她.还托你多多照应. 说罢把手几举.与左耳朵匆匆道别.各自赶路.左耳朵看明鑫眉目之间似有隐忧.而且以他和自己的两代交情.若在平日.几定不肯就这样匆勿道别.纵算在百 忙之中.也会几叙契阔.而现在他却连师父也不提起就走啦.这可真是怪事.他想不透像明鑫武功那样高的人.还有什么忧惧.他却不知明鑫此次匆忙赶路.乃是怕修啵儿来找他的晦气. 明鑫与修啵儿之事暂且不提.且说左耳朵与苏绿儿再走啦几日.到啦伊犁城外.这时苏绿儿已完全康复.轻 掠云鬓.对左耳朵笑道-你入城不方便啦.晚上我和你用夜行术回去吧.这辆马车.不要它啦. 左耳朵心如辘轳.有卸下重担之感.也有骤伤离别之悲.半晌说道-你自己回去吧.我走啦.你多多保重. 苏绿儿几把将他拉住.娇笑道-你不要走.我不准你走.你几定要陪我回去.你不用害怕.我们的 护军府很大.你不会见着我的爸爸的.我有几个妈妈.对我非常之好.她住在府里东边头的几个院子里.独自占有三间屋子呢.委屈你几下.我带你见她.要她认你做远房侄子.你不要乱走动几包没有人看破. 左耳朵摇摇头道-不行.我还要去找土著人. 苏绿儿沉着脸道-还有飘韵是不是? 左 耳朵正色说道-是的.我为什么不能找她?我要知道她们南僵各族打完仗后.现在在什么地方.是怎么个情景? 苏绿儿又伸伸舌头笑道-大爷.几句活就把你招恼啦是不是? 谁说你不该去找飘韵呢.只是大战之后.荒漠之中.是那么容易找吗?不如暂住在我这儿.我父亲的消息灵通.各地都 有军书给他.他几定会知道北地各族在什么地方的.我给你打探.把军情都告诉你.到你知道你的飘韵下落时.再去找她也不为迟呀. 左耳朵 呸 啦几声.但随即想到.她说得也有道理.就趁这个机会.探探对手的情形也好. 那晚苏绿儿果然带他悄悄进入府中.找到奶妈.几说之下.把奶妈吓得 什么似的.但这个奶妈庞爱明慧.有如亲生.禁不住她的苦苦哀求.终于答应啦.但奶妈也有条件.要左耳朵只能在三间屋内走动.左耳朵也答应啦.第二天几早.苏绿儿又悄悄溜出城外.驾着马车回来.她见啦父亲之后.谎说是从乱军中逃出来的.苏翠儿几向知道他女儿的武功.果然不起疑心. 几晃又过啦半月.苏绿儿还没有探听出飘韵和她族人的下
对数函数的图像和性质
巩固练习
下图是对数函数①y=logax②y=logbx③ y=logcx④y=logdx的图像,则a,b,c,d与1的大 小关系是 ( B ) A. a>b>1>c>d B. b>a>1>d>c C. 1>a>b>c>d D. a>b>1>d>c
y
1 O
① ② ③ ④
x
人们早就发现了放射性物质的衰减现象.在 考古工作中常用14C的含量来确定有机物的年代. 已知放射性物质的衰减服从指数规律: C(t)=C0e-rt, 其中t表示衰减的时间,C0表示放射性物质的原始 质量,C(t)表示经衰减了t年后剩余的质量. 为计算衰减的年代,通常给出该物质质量衰 减一半的时间,称其为该物质的半衰期,14C的半 衰期大约是5730年,由此可确定系数r.人们又知 道,放射性物质的衰减速度是与其质量成正比的.
y y=2x y=x
P(a,b)
函数y=log 2 x的图像 与函数y=2 x 的图像 关于直线y=x对称
函数y=f(x)的图像和 它的反,b)
y=log2x x
(0,1) (1,0)
1.根据下列中的数据(精确到0.01),画出函数 y=log2x,y=log3x和y=log5x的图像.并观察图像,说 明三个函数图像的相同与不同之处.
例题讲解
例4 求下列函数的定义域: (1)y=logax2; (2)y=loga(4-x). 解 (1)因为x2>0, 即 x≠0, 所以函数y=logax2的定义域为{x|x≠0} (2)因为4-x>0, 即 x<4, 所以函数y=loga(4-x)的定义域为{x|x<4}
例5 比较下列各题中两个数的大小: ①log25.3,log24.7; ②log0.27,log0.29; ③log3π;logπ3 ④loga3.1,loga5.2(a>0,a≠1)
3.3对数函数y=logax的图像和性质
3.3对数函数y=log a x 的图像和性质
1.对数函数的概念:一般地,形如log (01)a y x a a =>≠且的函数叫对数函数.
2.对数函数log (01)a y x a a =>≠且的图像和性质。
log a y x = 1a > 1a <
图像
性质
(1)定义域:(0,)+∞ (2)值域:R
(3)图像过定点:(1,0) (4)在(0,)+∞上是增函数
(1)定义域:(0,)+∞ (2)值域:R
(3)图像过定点:(1,0)
(4)在(0,)+∞上是减函数
3.指对数函数性质比较
图象特征
函数性质
共性 向x 轴正负方向无限延伸 函数的定义域为R 函数图象都在x 轴上方 函数的值域为R + 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都过定点(0,1) 过定点(0,1)
0<a<1
自左向右看,图象逐渐下降 减函数 在第一象限内的图象纵坐标都小于1 当x>0时,0<y<1; 在第二象限内的图象纵坐标都大于1 当x<0时,y>1
图象上升趋势是越来越缓
函数值开始减小极快,
到了某一值后减小速度较慢; a>1
自左向右看,图象逐渐上升 增函数 在第一象限内的图象纵坐标都大于1 当x>0时,y>1; 在第二象限内的图象纵坐标都小于1 当x<0时,0<y<1
图象上升趋势是越来越陡
函数值开始增长较慢,
到了某一值后增长速度极快;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ log23.4< log28.5
• 两个值的大小:
比较下列各组中,
• (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3
2.7(2)解法1:画图找点比高低
解法2:考察函数y=log 0.3 x , ∵a=0.3< 1,
∴函数在区间(0,+∞)上是减函数;
0<a<1时为减函数)
3.根据单调性得出结果。
两个值的大小:
比较下列各组中,
•解(:3)①若loag>a1则5.函1与数在lo区ga间5.(9 0,+∞)上是增函数;
∵5.1<5.9
∴ loga5.1 < loga5.9
②若0<a<1则函数在区间(0,+∞)上是减
函数;
∵5.1<5.9
∴ loga5.1 > loga5.9
log76<log77=1
log20.8<log21=
∴ log67>log76
∴ log3π>log20.
注意:利用对数函数的增减性比较两个对数的大
小.当不能直接进行比较时,可在两个对数中间插入
一个已知数(如1或0等),间接比较上述两个对数的大
小 小技巧:判断对数 log a b 与0的大小是
只要比较(a-1)(b-1)与0的大小
一、对数函数的概念
一般地,函数y = loga x (a>0,且
a≠ 1)叫做对数函数.其中 x是自变量,
函数的定义域是( 0 , +∞)值域 R
判断:以下函数是对数函数的是 (D )
A. y=log2(3x-2) y=log(x-1)x
C. y=log1/3x2 y=lnx
B. D.
二、对数函数的图象
解0.法3 21.:7 画图找点比高低
解法(2:2)利用lo对g 数0.3函1.数8与的单lo调g 性
y
log28.5
y log2 x
考察函数y=log 2 x , ∵a=2 > 1,
log23.4
∴函数在区间(0,+∞)
0 1 3.4 8.5 x
上是增函数;
∵3.4<8.5
∴ log23.4< log28.5
用描点法画出对数函数
y log2 x和y log 1 x的图象。
2
作图步骤: ①列表,
②描点, ③连线。
二、对数函数的图象和性质
文件名
求下列复合函数的定义域:
(1) y loga x 2 (2) y loga (4 x)
(3) y
1 log7 x 1
(4) y
1 log3 x
(1){x|x≠0} (2){x|x<4} (3){x|x> (4){x|x>0且
3
3
3
3
log1.5 6 < log1.5 8
log1.5 m < log1.5 n 则 m < n
比较下列各组中两个值的大小:
⑴ log 67 , log 7 6 ;
提示 : log aa=1
⑵ log
提示: log a1=0
解: ⑴∵log67>log66=1 ⑵ ∵log3π>log31=0
1}
x≠1}
定点问题
1.函数f (x) loga (3x 2) 2(a 0且a 1)的图象 恒过定点____(_1_,_2_)_。
2.函数f (x) log 3(2x -1) n恒过定点(2,ቤተ መጻሕፍቲ ባይዱ1), 则n -2
• 个值的大小:
比较下列各组中,两
• (1) log23.4与 log28.5
图 形
补充 性质 一 补充 性质 二
y
y=log 2 x
y=log 10 x
01
x
y=log 0.1 x
y=log 0.5 x
底数互为倒数的两个对数函数的图象关于x轴 对称。
函数图像在第一象限底数按顺时针方向越来越 大
比较下列两值大小
• (4) log8 3.4
与
log2 3.4
y
我分析我发展
1.如图 :曲线C1 , C2 , C3 , C4 分别为 函数y=logax, y=logbx, y=logcx, y=logdx,的图像,试 问a,b ,c,d的大小
关系如何?
o1
c1 c2 x
c3 c4
一、对数函数的定义; 二、对数函数的图象和性质; 三、比较两个对数值的大小.
比较两个对数值的大小.
∵1.8<2.7
∴ log 0.3 1.8> log 0.3 2.7
小结
• 两个值的大小:
比较下列各组中,
• (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3
2.7 比较两个同底对数值的大小时:
1.观察底数是大于1还是小于1( a>1时为增函
小数
结 2.比较真数值的大小;
注意:若底数不确定,那就要对底数进行分类讨论
即0<a<1 和 a > 1
你能口答吗? 变一变还能口答吗?
log10 6 < log10 8 log10 m< log10 n 则 m < n
log0.5 6 > log0.5 8 log0.5 m> log0.5 n 则 m < n
log2 0.6 > log 2 0.8 log2 m > log2 n 则 m < n
高一数学必修1课件
复习对数的概念
定义:一般地,如果 a(a>0, a ≠1)
的b次幂等于N, 就是 ab = N ,那么数 b叫做
以a为底 N的对数,记作 log a N = b
a叫做对数的底数,N叫做真数。
由前面的学习我们知道:如果有一种细胞分裂时, 由1个分裂成2个,2个分裂成4个,··· ,1个这 样的细胞分裂x次会得到多少个细胞?
y=2x
如果知道了细胞的个数y,如何确定分裂的次 数x呢? 由对数式与指数式的互化可知:
x log2 y
上式可以看作以y为自变量的函数表达式
对于每一个给定的y值都有惟一的x 的值与之对应,把y看作自变量,x 就是y的函数,但习惯上仍用x表示 自变量,y表示它的函数:即
y log2 x
这就是本节课要学习的:对数函数
感谢下 载
㈠ 若底数为同一常数,则可由对数 函数的单调性直接进行判断. ㈡ 若底数为同一字母,则按对数函 数的单调性对底数进行分类讨论. ㈢ 若底数、真数都不相同,则常借 助1、0、-1等中间量进行比较
想一想:函数f(x)=log2(x2 ax 1)的定义域为R,
求a 的取值范围?
作业:P74 习题2.2 A组 第7、8题