二重积分的对称性定理

合集下载

二重积分积分区域的对称性

二重积分积分区域的对称性

情形一:积分区域关于坐标轴对称定理4设二元函数在平面区域连续,且关于轴对称,则1)当(即就是关于得奇函数)时,有、2)当(即就是关于得偶函数)时,有、其中就是由轴分割所得到得一半区域.例5 计算,其中为由与围成得区域。

解:如图所示,积分区域关于轴对称,且即就是关于得奇函数,由定理1有、类似地,有:定理5设二元函数在平面区域连续,且关于轴对称,则其中就是由轴分割所得到得一半区域。

例6 计算其中为由所围。

解:如图所示,关于轴对称,并且,即被积分函数就是关于轴得偶函数,由对称性定理结论有:、定理6设二元函数在平面区域连续,且关于轴与轴都对称,则(1)当或时,有、(2)当时,有其中为由轴与轴分割所得到得1/4区域。

9例7 计算二重积分,其中: 、解:如图所示,关于轴与轴均对称,且被积分函数关于与就是偶函数,即有,由定理2,得其中就是得第一象限部分,由对称性知,,故、情形二、积分区域关于原点对称定理7 设平面区域,且关于原点对称,则当上连续函数满足1)时,有2)时,有、例8 计算二重积分,为与所围区域、解:如图所示,区域关于原点对称,对于被积函数,有,有定理7,得、情形三、积分区域关于直线对称定理8 设二元函数在平面区域连续,且,关于直线对称,则1);、2)当时,有、3)当时,有、例9 求,为所围、解:积分区域关于直线对称,由定理8,得,故、类似地,可得:定理9设二元函数在平面区域连续,且,关于直线对称,则(1)当,则有;(2)当,则有、例10 计算,其中为区域:, 、解:如图所示,积分区域关于直线对称,且满足,由以上性质,得:、注:在进行二重积分计算时,善于观察被积函数得积分区域得特点,注意兼顾被积函数得奇偶性与积分区域得对称性,恰当地利用对称方法解题,可以避免繁琐计算,使二重积分得解答大大简化。

积分区域关于原点对称二重积分

积分区域关于原点对称二重积分

积分区域关于原点对称二重积分积分区域关于原点对称二重积分是一类重要的积分问题,在数学分析和应用数学中有着广泛的应用。

在这篇文章中,我们将介绍积分区域关于原点对称二重积分的概念、性质以及计算方法,并提供一些应用举例。

我们来回顾一下二重积分的定义。

二重积分是对平面上的一块区域内的函数进行积分的操作。

对于一个定义在平面上的函数f(x,y),如果存在一个有限的积分区域D,可以用矩形D[i][j]来逼近这个积分区域,并且该区域上的函数f(x,y)在D[i][j]上是近似连续的,那么二重积分可以表示为:∬D f(x,y) dA = lim ∑(f(ξi,ηj)ΔAij)其中,ξi和ηj是D[i][j]上的某个点,ΔAij是D[i][j]的面积。

在二重积分中积分区域关于原点对称意味着满足对任意(x,y)∈D,都有(-x,-y)∈D。

这样的积分区域可以具有各种形状,如圆形、椭圆形、矩形等。

接下来,我们将介绍积分区域关于原点对称二重积分的性质。

首先,根据对称性,如果积分区域D关于原点对称,那么积分区域D内的函数f(x,y)满足f(x,y)=f(-x,-y)。

其次,如果积分区域D关于原点对称,那么计算二重积分时可以通过变量替换来简化计算。

可以选择新的坐标系(u,v),使得(u,v)在原点处对称,然后利用变量替换公式将积分区域D变换为新的坐标系下的积分区域D'。

这样,可以简化计算,并且往往能够将积分区域D'变为关于u或v的对称区域。

然后,我们将介绍积分区域关于原点对称二重积分的计算方法。

对于关于原点对称的积分区域D,可以根据具体的形状和函数的性质进行分析和计算。

以圆形积分区域为例,可以选择极坐标系进行计算。

在极坐标系下,积分区域可以表示为r∈[0,R],θ∈[0,2π]。

利用极坐标系的变换公式,可以将二重积分变为极坐标下的一重积分。

然后,根据函数的对称性和积分区域的性质,可以进一步简化计算。

其他形状的积分区域可以使用类似的方法进行计算,选择合适的坐标系进行变换,并利用对称性和性质进行简化。

积分的对称性问题

积分的对称性问题

例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4

积分对称性定理

积分对称性定理

关于积分对称性定理1、定积分:设 f ( x) 在 a,a 上连续,则2、 二重积分:若函数f(x,y)在平面闭区域D 上连续,则(1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分0,f x,y 为y 的奇函数f x, y dxdy2 f x, y dxdy, f x,y 为y 的偶函数DD 1其中:D i 为D 满足y 0上半平面区域。

(2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分0, f x, y 为x 的奇函数,fx,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数.DD 2其中:D 2为D 满足x 0的右半平面区域。

(3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函a -ax dx0,a2 f x dx,0 x 为X 的奇函数, X 为X 的偶数,即卩f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分0, f x,y为x,y的奇函数f x,ydx:y2 f xydxy,f x,y 为Xy的偶函数DD2其中:D1为D在y 0上半平面的部分区域。

(4)如果积分区域D关于直线y x对称,则二重积分f x, ydxdy f y,x dxdy .(二重积分的轮换对称性)D D(5)如果积分区域D关于直线y x对称,则有0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时D D利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特性。

3、三重积分:(1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩有0, f x, y, z为z的奇函数f儿y,zcXdydz 2 f x,y,zdxdydz, f x,y,z 为z的偶函数1注:f (x, y,z)是z的奇函数:f(x, y z) f (x,y,z)f (x, y,z)是z的偶函数:f(x,y z) f(x, y,z)同样,对于空间闭区域关于xoz, yoz坐标面对称也有类似的性质。

二重积分的对称性-二重积分对称性

二重积分的对称性-二重积分对称性

偶函数的定义
偶函数是满足条件f(x) = f(-x)的函数。偶函数具有关于y轴对称的特点,图形 在y轴上是对称的。
偶函数的性质
偶函数具有一些特殊的性质,比如在定义域内关于y轴对称、在定义域内积分结果为偶数等。
奇函数的定义
奇函数是满足条件f(x) = -f(-x)的函数。奇函数具有关于坐标原点对称的特点, 图形在原点对称。
图形的面积计算
图形的面积计算是一个重要的数学问题。通过利用对称性,我们可以简化面 积计算,并减少计算错误的可能性。
区域的对称性
区域的对称性主要体现在区域的形状和面积上。通过利用区域的对称性,我 们可以计算出相等大小的对称区域的面积。
矩形区域的对称性
矩形区域是最基本的平面图形之一。矩形具有上下对称、左右对称和中心对称的特点,面积相等。
三角形区域的对称性
三角形是常见的平面图形之一。三角形具有一些特殊的对称性,比如高线对 称、中位线对称等。
大小相等的对称区域的面积相等
如果两个对称区域的大小相等,则它们的面积也相等。这是对称积分的一个重要性质。
对称积分的定义
对称积分是指在具有对称性的图形上进行的积分计算。通过利用对称性,我 们可以简化对称函数的积分计算。
对称积分的计算方法
对称积分的计算方法包括变量代换、分部积分和对称性的性质等。这些方法可以帮助我们简化计算过程,提高 效率。
对称函数的性质
对称函数具有一些特殊的性质,比如偶函数和奇函数。这些性质对于理解对 称积分和解析图形具有重要的作用。
矩形对称性的例子
1 上下对称
矩形图形关于x轴对称, 面积相等。
2 左右对称
矩形图形关于y轴对称, 面积相等。
,面积相等。
线性对称性的例子

积分对称性定理

积分对称性定理

关于积分对称性定理1、 定积分:设)(x f 在[],a a -上连续,则()()()()-00,d 2d ,a aaf x x f x x f x x f x x ⎧⎪=⎨⎪⎩⎰⎰为的奇函数,为的偶函数.2、 二重积分:若函数),(y x f 在平面闭区域D 上连续,则(1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分()()()()10,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。

(2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分()()()()20,,,d d 2,d d ,,DD f x y x f x y x y f x y x y f x y x ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:2D 为D 满足0x ≥的右半平面区域。

(3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分()()()()20,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:1D 为D 在0≥y 上半平面的部分区域。

(4)如果积分区域D 关于直线x y =对称,则二重积分()()y x x y f y x y x f DDd d ,d d ,⎰⎰⎰⎰=.(二重积分的轮换对称性)(5)如果积分区域D 关于直线y x =-对称,则有10,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰当时当时利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特性。

1对称性在二重积分中的应用

1对称性在二重积分中的应用
为奇(偶)函数.
定义 2:若二元函数 f (x, y)的定义域 D 关于 x
轴对称,且满足 f (x, y) f (x, y)
(或 f (x, y) f (x, y)),则称 f (x, y) 关于y
为奇(偶)函数.
定义 3:若二元函数 f (x, y) 的定义域 D 关于
直线 y 对x称,且满足 f (x, y) f ( y,, x)
解:由 e ydxdy etdudt exdydx
x2 y2 R2
u2 t2 R2
y2 x2 R2
exdxdy x2 y2 R2
计算
(ex e y )dxdy
x2 y2 R2
解: 由 e ydxdy exdxdy
x2 y2 R2
x2 y2 R2
故 (ex e y )dxdy exdxdy e ydxdy
片的质量M.
解:根据二重积分的物理意义,M e|x||y|dxdy. D
由于积分区域 D 关于x 轴,y 轴都对称,且
数关于 x, y 都是偶函数,根据推论1.1得
被积函
y
1
D
y 1 x
M e|x||y| dx d y 4 exy dx d y
D1DD1源自1 1x1 O1x
4 d x exy d y 4.
y
定理 1’
D1 D
若有界闭区域 D 关于 x 轴对称,f (x, y) O
x
在区域 D 上连续, 则
f
(x,
y)
dx
d
y
0
当 f (x, y) 关于y 为奇函数时
D
2 f (x, y)dxdy
D1 当 f (x, y) 关于 y 为偶函数时

二重积分计算中对称性的应用

二重积分计算中对称性的应用
Ke r s o b e i tg a ;o d—f n t n v n—f n t n;s mmerc i tra ;smmer o i y wo d  ̄d u l e r l d n u ci ;e e o u ci o y t ev l y i n t c d man i
在定积分计算 中, 以根据被积 函数和积分区 可 间的特点用对称性定理计算 , 二重积分是积 分学 中
当, , 为 ( y 关于y 奇函 ) 的 数
二元 函数 , 且它在区域 D上有连续的偏导数, 1 若 () 区域D关于坐标轴 轴对称 , 对于 V( , ,)∈D, , 如果
均有 , , ,) 称 = 一, )= ,, ,
收稿 日期 :0 8— 2—1 20 0 3
( )若区域D为关于原点对称, 中D 为 D中 3 其 ,
理进行推广 , 并归纳 出利用平 面区域对称性计算二
重积分 , 引导学生积极思考 , 激发学生的学习兴趣 ,
数, 可类似于( )定义 ;3 若区域 D关于坐标原点 1 ()
对称, 对于 V( , ,)∈D, , 如果均有 一 一, = , , )

同时利用这些知识可简化二重 积分 的计算 , 化繁 为
N . (u o2 ) o 2 S mN . 8
J .08 un 2 0
二重积分计算中对称性的应用
徐年 方
( 淮安市广播 电视大学信息工程系, 江苏 淮安 230 ) 20 1 摘 要: 本文将定积分计算中的对称性定理进行推广, 并归纳出利用平面区域对称性计算二重积分. 关 键词 : 二重积 分 ; 函数 ; 函数 ; 称 区间 ; 奇 偶 对 对称 区域 中图分类号.6 2 C 4 , 文献标识码 : A 文章编号 : 7 — 94 20 )2 09 — 3 1 1 37 (0 8 0 — 00 0 6

二重积分的对称性

二重积分的对称性

f ( x , y ) f ( x , y ).

f ( x , y ) d
D
2 f ( x , y ) d .
D1
( 2) 若被积函数 f ( x , y ) 关于 y 是奇函数,即 是奇函数
f ( x , y ) f ( x , y ).

f ( x , y ) d
64 . 15
157 页 2(3)
y
y 1 x
( 3)

x y e d , D : x y 1. D
1
y 1 x
e
D
x y
d
×
2 e
D1
x y
d
1
y x 1
o D1 1
1
x
y x 1
157 页 2(3)
y
y 1 x
( 3)
利用对称性化简二重积分计算
使用对称性时应注意: 1、积分区域关于坐标轴的对称性;
2、被积函数在积分区域上的关于坐标轴的 奇偶性.
二重积分的对称性:
1、积分区域 D 关于 x 轴对称,D1 是 D 中对应于 y ≥0 的部分,则:
(1) 若被积函数 f ( x , y ) 关于 y y 是偶函数 是偶函数,即
0 2 x 1 1 1
0
x 1
x y
1
x 1 x y e e dy x 1
e )dx 0 (e e 2 x 1 )dx
e e 1 .
ቤተ መጻሕፍቲ ባይዱ
二重积分的对称性的5种情形:
1、当积分区域关于X轴对称,被积函数关于Y为偶函数, 则二倍关系。被积函数关于Y为奇函数,则为零。

积分区域关于原点对称二重积分

积分区域关于原点对称二重积分

积分区域关于原点对称二重积分摘要:一、积分区域关于原点对称的概念1.定义及性质2.常见例子二、二重积分与积分区域关于原点对称的关系1.二重积分的概念2.积分区域关于原点对称对二重积分的影响3.计算方法及技巧三、实际应用与拓展1.实际问题中的应用2.与其他数学概念的联系3.研究现状与发展趋势正文:一、积分区域关于原点对称的概念积分区域关于原点对称是指,对于一个二重积分,其积分区域在关于原点对称的情况下,二重积分的值不变。

这一性质可以通过代数运算和几何直观进行证明。

1.定义及性质(1)定义:设函数f(x,y)在平面直角坐标系中定义,若对任意一点(x,y)在积分区域D上,都有(-x,-y)也在D上,则称积分区域D关于原点对称。

(2)性质:若积分区域D关于原点对称,则二重积分∫∫_D f(x,y)dxdy = ∫∫_D f(-x,-y)dxdy。

2.常见例子(1)正方形区域:若正方形区域边长为a,则关于原点对称,且二重积分为πa^2。

(2)圆形区域:若圆形区域半径为r,则关于原点对称,且二重积分为πr^2。

二、二重积分与积分区域关于原点对称的关系二重积分是指在平面直角坐标系中,对一个关于原点对称的积分区域D上的函数f(x,y)进行积分。

1.二重积分的概念(1)定义:设函数f(x,y)在平面直角坐标系中定义,若积分区域D关于原点对称,则二重积分表示为∫∫_D f(x,y)dxdy。

2.积分区域关于原点对称对二重积分的影响(1)性质:若积分区域D关于原点对称,则二重积分∫∫_D f(x,y)dxdy = ∫∫_D f(-x,-y)dxdy。

3.计算方法及技巧(1)直接计算法:根据积分的定义,直接对积分区域内的函数进行积分。

(2)变量替换法:通过变量替换,将二重积分转化为单一积分进行计算。

(3)极坐标法:将直角坐标系中的积分区域转化为极坐标系,简化计算过程。

三、实际应用与拓展积分区域关于原点对称在物理学、工程学等领域中有着广泛的应用,如求解质点沿曲线路径的位移、速度、加速度等。

二重积分的对称性计算

二重积分的对称性计算

二重积分的对称性计算1.关于x轴对称:如果函数f(x,y)在以x轴为对称轴的区域D上连续,则有:∬D f(x, y) dxdy = ∬D f(x, -y) dxdy通过对称轴的改变,积分结果不会改变。

2.关于y轴对称:如果函数f(x,y)在以y轴为对称轴的区域D上连续,则有:∬D f(x, y) dxdy = ∬D f(-x, y) dxdy同样地,通过对称轴的改变,积分结果不会改变。

3.极坐标对称:如果函数f(r,θ)在以极轴(θ=0或θ=π)为对称轴的极坐标区域D上连续,则有:∬D f(r, θ) rdrdθ = ∬D f(r, -θ) rdrdθ通过极坐标的对称性,可以简化求解一些区域的积分。

4.直角坐标轴对称:如果函数f(x,y)在以直角坐标轴为对称轴的区域D上连续,则有:∬D f(x, y) dxdy = ∬D f(-x, y) dxdy = ∬D f(x, -y) dxdy = ∬D f(-x, -y) dxdy通过直角坐标轴的对称性,可以简化计算积分。

5.奇偶函数对称:如果函数f(x,y)在区域D上连续,且满足:f(-x,y)=-f(x,y),称之为关于x轴的奇函数;f(x,-y)=-f(x,y),称之为关于y轴的奇函数;f(-x,-y)=f(x,y),称之为关于原点的偶函数。

对于奇函数∬D f(x, y) dxdy = 0对于偶函数,有:∬D f(x, y) dxdy = 2∬R f(x, y) dxdy其中,R是D在第一象限的对称区域。

通过奇偶函数对称性,可以将积分范围缩小到对称区域,从而简化计算。

除了以上的对称性,还有一些特殊的积分对称性,例如平移对称、旋转对称等。

这些对称性的应用能够大大简化二重积分的计算过程,提高计算效率。

总结起来,二重积分的对称性计算是通过改变积分区域或者改变函数本身的形式,使得积分结果保持不变。

在具体计算的过程中,可以利用对称性将积分范围缩小,从而简化计算。

二重积分的对称性

二重积分的对称性

jj f (x,y)d“ = I 2JJ/(x,y)db,如果/(x,y)在D上关于x为偶函数.
D
[ Di
弋HEFEI insiVhJtSITY OF TEC HNOLCMiY
/高等数学
例 1 设区域D : x + y < 1,求JJ(x3y2 + y3 sin2 x) do.
解如图,
D
H
且 由于区域D关于yJ轴J对x3称y2,do = x3y2关于x为奇函数,故 1 D
| F3j
言笙劫当
二、二重积分的轮换对称性
二重积分的轮换对称性可视为从f bf (x)dx = fb f (t)dt引伸过来.
a
a

ff f ( x, y ) dxdy = ff f (u, v) dudv.
Dxy
Duv
ff f ( y,x) =dxdy
D
D dydx)
与 。 仍 其中
为区域
D
关于直线/ = x的对称区域.
冬比.
久*
HEFEI inMIVBRSITY OF TFC HNCMXMiY
二重积分的对称性
/高等数学
冬比.
/高等数学
久二重积分的对称性包括奇偶对称性和抡换对称性. 一*、二重积分的奇偶对称性
HEFEI inMIVBRSITY OF TFC HNCMXXiY
二重积分的奇偶对称性可视为从定积分的奇偶对称性引伸过来的.
/高等数学
冬比.
设 。 定理(二重积分的轮换对称性) f(X,7)在有界闭区域 上连
久*
为 关 』 续, D HEFEIinMIVBRSITY OF TFC HNCMXXiY
D
于直线

二重积分的对称性计算

二重积分的对称性计算

f ( x, y)d 0.
D
(5)若D对称于原点,且f ( x, y) f ( x, y)则
f ( x, y)d 2 f ( x, y)d .
D
D1
其中D1是D位于y轴右侧(或左侧)的部分。
(6)若D对称于原点,且f ( x, y) f ( x, y)则
f ( x, y)d 0.
D
(7)若D对称于直线y x,则 f ( x, y)d f ( y, x)d .
D1
D2
(或 f ( x, y)d f ( y, x)d ). 对称于直线y x
D
D
的两部分区域记为D1和D2.
这种情况常称为积分区域D具有关于积分变量的对称性 或称为二重积分的轮换对称性(即若积分区域或被积函 数的表达式中,将其变量x, y互换,其表达式不变)。利用对称 Nhomakorabea简化计算
在利用对称性计算重积分时,不仅积分区域 对称,而且被积函数也要对称(即对x(或y)是 奇或偶函数),两者缺一都不能使用。
(1)若D对称于x轴,且f ( x, y) f ( x, y)则
f ( x, y)d 2 f ( x, y)d .
D
D1
其中D1是D位于x轴上方的部分。
(2)若D对称于x轴,且f ( x, y) f ( x, y)则
f ( x, y)d 0.
D
(3)若D对称于y轴,且f ( x, y) f ( x, y)则
f ( x, y)d 2 f ( x, y)d .
D
D1
其中D1是D位于y轴右侧的部分。
(4)若D对称于y轴,且f ( x, y) f ( x, y)则

对称性在积分计算中的应用精编

对称性在积分计算中的应用精编

对称性在积分计算中的应用引言积分在数学分析中是相当重要的一项内容,而在计算积分的过程中,我们经常会碰到积分区域或者被积函数具有某种对称性的题型.那么,如果我们在解题中发掘或注意到问题的对称性,并巧妙地把它们应用到积分的计算过程中去,往往可以简化计算过程,达到事倍功半的效果,我们甚至可以不用计算就可以直接判断出其结果.在积分计算中利用对称性来解题这种方法,是一种探索性的发现方法,它与其他方法的不同之处主要体现在其创造性功能. 因此,掌握和充分利用对称性求积分这一方法,对于活跃和开拓我们学生的创造性思维,提高判断解题能力,探讨解题方法是十分有益的.下面从定积分、积分、线面积分三方面来介绍一下对称性在积分计算中的应用.一、相关的定义设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x - ),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)。

二、对称性在定积分中的应用(一) 定积分的概念 1. 概念设函数)(x f 在],[b a 上有界,(1) 在],[b a 内插入若干个分点,......210b x x x x a n =<<<<=把区间[,]a b 分成n 个小区间01121[,],[,],......[,],n n x x x x x x -各个小区间长度依次为110221,,x x x x x x ∆=-∆=-1.......n n n x x x -∆=-(2) 在每个小区间上任取一点1(),()i i i i i x x f ξξξ-≤≤作函数与小区间长度i x ∆的乘积()(1,2,......,),i i f x i n ξ∆=,并作出和 1().ni i i S f x ξ==∆∑(3) 记12max{,,......,},n x x x λ=∆∆∆如果不论对[,]a b 怎样划分,也不论在小区间1[,]i i x x -上点i ξ怎样选取,只要当0λ→时,和S 总趋于确定的极限I ,那么这个极限称为函数的()f x 在区间],[b a 上的定积分,记为⎰ba dx x f )(即记为1()()nbi i ai f x dx I f x ξ===∆∑⎰其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],[b a 叫做积分区间. 2. 几何意义几何上,⎰<ba b a dx x f )()(表示曲线()y f x x =与轴,,x a x b ==所围曲边梯形面积的代数和.(二) 对称性在定积分中的性质性质 1 若()x f [,]a b k 在上可积,为常数,则()x kf 在],[b a 上也可积,则⎰b adx x kf )(⎰=badx x f k )(性质 2 ()()上也可积,且在则上可积都在若],[)()(,],[,b a x g x f b a x g x f ±.)()()]()([dx x g dx x f dx x g x f bab aba⎰⎰⎰±=±性质 3 ()()()()上也可积在上可积,则在都在若],[],[,b a x g x f b a x g x f ⋅ 性质 4 ()()上与在任给上可积的充要条件是:在],[],[),,(],[b c c a x f b a c b a x f ∈.都可积.)()()(⎰⎰⎰+=bcc ab adx x f dx x f dx x f 此时又有等式规定 1 0)(⎰==badx x f b a 时,令当.规定 2 .)()(⎰⎰-=>abb adx x f dx x f b a 时,令当 .性质 5 ()⎰≥∈≥badx x f b a x x f b a x f .0)(],,[,0)(.],[则若上的可积函数为设推论(积分不等式性)()()],,[),()(],[b a x x g x f b a x g x f ∈≤上的两个可积函数,且为与若性质 6()().)()(],[],[dx x f dx x f b a x f b a x f baba⎰⎰≤上也可积,且在上可积,则在若(三) 对称性在定积分中的定理定理1 若)(x f 在a][-a,(a>0)上连续且为偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(.证明 因为 ⎰⎰⎰+=--aaaadx x f dx x f dx x f 0)()()(对积分作代换-t x =,则得⎰⎰⎰⎰-=-=--=-aaaa dx x f dt t f dt t f dx x f 0)()()()(所以 ⎰⎰⎰⎰-+=+=--aa aaadx x f x f dx x f dx x f dx x f 00)]()([)()()((1) 若)(x f 为偶函数,则)(2)()(),()(x f x f x f x f x f =+-=-即 所以⎰⎰=-aaadx x f dx x f 0)(2)((2) 若)(x f 为奇函数,则0)()(),()(=+--=-x f x f x f x f 即 所以0)(=⎰-aa dx x f .注 定理1可简化计算偶函数,奇函数在对称于原点的区间上的定积分为0.(四) 对称性在定积分中的应用举例 例 1 dx x x 23111)1(-+⎰-解 =⎰⎰---+-112311211dxx x dx x因为积分区间关于原点对称,而2-1x 是偶函数,231x x -是奇函数,故,011123=-⎰-dx x x设 x =y sin 2cos 1222112πππ⎰⎰--==-dy y dx x原式=2π 例 2 计算()2x 2ln 1e x dx -+⎰因为积分区间关于原点对称,但()x e 1ln +既不是奇函数也不是偶函数,我们可()().b ba af x dxg x dx ≤⎰⎰则有利用()()()()()22x f x f x f x f x f --+-+=.其中()()2x f x f -+为偶函数,()()2x f x f --为奇函数,把它分解为一个偶函数和一个奇函数之和.解 令()()x x f e 1ln +=,则()()()x x x f x f -++=-+e e 2ln 212,()()x x f x f 212=--,()()2222x x -x 222220118ln 1+e ln 2e e d 223x dx x x dx x x x dx ---⎡⎤=+++===⎣⎦⎰⎰⎰⎰所以有例3 计算 ⎰-+22223sin )cos (ππxdx x x分析 由于x x 23sin 是一个奇函数, x x 22sin cos 是一个偶函数,并且积分区域]2,2[ππ-关于原点对称,因此可用定理1来计算. 解 由定理1得 原式⎰⎰--+=22222223sin cos sin ππππxdx x xdx x⎰-+=2222sin cos 0ππxdx x=)sin sin (2204202⎰⎰-ππxdx xdx 其中220sin xdx π⎰=22222220sin cos (sin cos cos )sin xd x x xx dx dx x dx πππππ-=--=-⎰⎰⎰⎰2220sin xdx π⎰=2π ,220sin xdx π⎰=221π⋅ 同理得:22143)sin 204ππ⋅⋅=⎰xdx原式 )22143221(2ππ⋅⋅-⋅=8π=.利用函数关于直线对称以及区间关于直线对称,应用定理得出积分为0,使上述复杂积分简单化,易得出结论.三、对称性在二重积分中的应用(一)二重积分的概念 1 概念设(,)f x y 是有界闭区域D 上的有界函数,(1) 将闭区域D 任意分成n 个小闭域12,,......,,n σσσ∆∆∆其中i σ∆表示第i 个小闭区域,也表示它的面积.(2) 在每个i σ∆上任取一点(,),i i εη 作乘积(,)i i i f εησ∆ (1,2,......,),i n =并作和1(,),niiii f εησ=∆∑(3) 如果当个小闭区域的直S 径的最大值0λ→时,这和的极限总存在,则称此极限为函数(,)f x y 在闭区域D 上的二重积分,记作 01(,)lim (,)ni i i i Df x y d f λσεησ→==∆∑⎰⎰其中(,)f x y 叫做被积函数,(,)f x y d σ叫做被积表达式,d σ叫做面积元素,x y 与叫做积分变量,D 叫做积分区域,1(,)ni i i i f εησ=∆∑叫做积分和.2 几何意义当(,)f x y 为闭区域D 上的连续函数,且(,)0,f x y ≥则二重积分(,)Df x y d σ⎰⎰表示以曲面(,)z f x y =为顶,侧面以D 的边界曲面为准线,母线平行于z 轴的曲顶柱体的体积.一般地,(,)Df x y d σ⎰⎰表示曲顶柱体体积的代数和.(三) 二重积分的性质性质 7 上也可积,且在为常数,则上可积,在区域若D y x kf k y x f ),(D ),(⎰⎰⎰⎰=DDd y x f k d y x kf .),(),(σσ性质 8 上也可积,且在上都可积,则在若D y)g(x,y)f(x,D ),(),,(±y x g y x f⎰⎰⎰⎰⎰⎰±=±DDDd y x g d y x f d y x g y x f .),(),(]),(),([σσσ性质 9 若 ),(y x f 在1D 和2D 上都可积,且1D 与2D 无公共内点,则),(y x f 在1D ⋃2D 上可积,且.),(),(),(2121σσσd y x f d y x f d y x f D D D D ⎰⎰⎰⎰⎰⎰+=⋃性质 10 则上可积,且在与若,),(),,(),(),(),(D y x y x g y x f D y x g y x f ∈≤⎰⎰⎰⎰≤DDd y x g d y x f .),(),(σσ性质 11 ⎰⎰Dd y x f D y x f D y x f σ),(),(),(上也可积,且在上可积,则在若σd y x f D⎰⎰≤),(性质 12 σd y x f mS D y x M y x f m D y x f DD ),(,),(,),(),(⎰⎰≤∈≤≤则上可积,在若.,的面积是积分区域这里D S MS D D ≤(三) 对称性在二重积分中的定理定理2 设有界闭区域12D D D = ,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则⎰⎰Dd y x f σ),(0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)iD f x y d σ⎰⎰(1,2)i =注 设函数),(y x f 在有界闭区域D 上连续(i)若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y y x f d y x f 2),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中2D 是D 的上半部分 2D =}0|),{(≥∈y D y xy)(x y ϕ=1Da 0b x2D)(-x y ϕ= 图1 证明12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰ (1)若区域D 对称于x 轴(图1),对任意(,)P x y ∈1D ,其对称点(,)P x y '-∈2D1D ={}0(),y x a x b ϕ≤≤≤≤,2D ={}()0,x y a x b ϕ-≤≤≤≤,令x xy t=⎧⎨=-⎩, 则2D 变换为xot 坐标面上的{}10()D t x a x b ϕ=≤≤≤≤,,且雅可比行列式(,)(,)x y x t ∂∂10101==--. 故2(,)D f x y dxdy ⎰⎰=1(,)1D f x t dxdt -∙-⎰⎰=1(,)D f x y dxdy -⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdy f x y f x y f x y dxdy f x y f x y ⎧-=⎪⎪⎨--=-⎪⎪⎩⎰⎰⎰⎰,于是,代入(1)式得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y =--⎧⎪=⎨=-⎪⎩⎰⎰⎰⎰ 0 , ,(ii) 若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f x y x f d y x f 1),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y xy)(y x ϕ-= d )(y x ϕ=2D 1D 0 xc图2证明 若区域D 对称于y 轴(图2),对任意(,)P x y ∈1D ,对称点(,)P x y '-∈2D ,类似 (i) 的证明可得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y -=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰ 0 , ,定理 3 设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续 (1)若),(y x f 关x 和y 均为偶函数,则1(,)4(,),DD f x y d f x y d σσ=⎰⎰⎰⎰其中1D 是D的第一象限的部分1{(,)|0,0}D x y D x y =∈≥≥(,)f x y (2)若关x 和y 均为奇函数,则(,)0Df x y d σ=⎰⎰定理 4 设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y xy2D 1D )(x y ϕ= 0 x a b)(x y ψ=图3证明 若区域D 对称于原点(图3),对任意(,)P x y ∈1D ,对称点P '(,)x y --∈2D ,{}1()()D x y x a x b ψϕ=≤≤≤≤,, {}2()()D x y x b x a ϕψ=--≤≤---≤≤-,,令x uy v =-⎧⎨=-⎩, 则区域2D 变换为uov 坐标平面内区域{}1()()D x y x a x b ψϕ=≤≤≤≤,,雅可比行列式(,)(,)x y u v ∂∂10101-==-,所以2(,)D f x y dxdy ⎰⎰=1(,)D f u v dudv --⎰⎰=1(,)D f x y dxdy --⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdyf x y f x y f x y dxdy f x y f x y ⎧---=-⎪⎪⎨--=⎪⎪⎩⎰⎰⎰⎰,代入12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰,得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰ 0 ,若 ,若定理 5 设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰(四) 对称性在二重积分中的应用举例例 4 计算二重积分25sin Sx ydxdy ⎰⎰,其中S 是由1x y +=,0x =,1x y -=所围成的区域.解 积分区域S 关于x 轴对称(见图),且ydxdy x S52sin ⎰⎰为关于y 的奇函数,故由定理225sin 0Sx ydxdy =⎰⎰例 5 设 :sin ,,12D y x x y π==±= 围成求 (1)Dxy dxdy-⎰⎰x 2π-= y x 2π=y=1x图5x11-10 图4y解 12DDD D DI xydxdy dxdy xydxdy xydxdy dxdy =-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰因为12D D 和关于y 轴对称,所以由定理2知120D D xydxdy xydxdy +=⎰⎰⎰⎰所以 原式 =Ddxdy π=⎰⎰例 6 计算二重积分 222(373),: 1.DI x x y d D x y σ=++++≤⎰⎰其中解 见下图 D 关于x y 轴轴都对称,而37x y 和分别关于变量x 和变量y 为奇数 所以由定理330,Dxd σ=⎰⎰70Dyd σ=⎰⎰设 θσθr d r d d r x ==,c o s ,=⎰⎰σd x D2rdr r d ⎰⎰πθθ2012)cos ( 所以 原式πθθπ3)cos (2012+=⎰⎰rdr r d π411=yDx图6例 7 计算 (),DI x y d x d y =+⎰⎰ 其中: 1.D x y +≤解 D x y 关于轴,轴对称,且被积函数关于x 和y 是偶函数,即有(,)f x y -=(,)(,)f x y f x y -=由定理3,有1()()DD I x y dxdy x y dxdy =+=+⎰⎰⎰⎰,其中1D D 是的第一象限部分,由对称性知11D D x dxdy y dxdy =⎰⎰⎰⎰22(3)3DDDI x d x d d σσσ=+=+⎰⎰⎰⎰⎰⎰故 11144()4()8.3D D D I x y d x d y xx d x d y x d x d y =+=+==⎰⎰⎰⎰⎰⎰例 8 计算2()Dxy x y dxdy +⎰⎰其中D 是由,1,1y x y y ===-0x =以及所围城的闭区域图7解 如图, 12D D D =+,1D 、2D 关于原点对称,但被积函数不满足(,)(.)f x y f x y =--,也不满足(,)(.)f x y f x y =---,故不能直接用定理来计算, 所以令1(,)f x y xy = , 22(,)f x y x y =对1(,)f x y 和2(,)f x y 分别应用定理4,则11(,)2DD f x y dxdy xydxdy =⎰⎰⎰⎰,2(,)0Df x y dxdy =⎰⎰,故 2()DI xy x y dxdy =+⎰⎰41221001==⎰⎰⎰⎰xD xydydx xydxdy 例 9 设()f x 为恒正的连续函数,计算积分222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 解 由于积分区域222x y r +≤关于y x =对称,所以由定理5 ,可得222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=222()()()()x y r af y bf x dxdy f y f x +≤++⎰⎰, 于是222()()2()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 222222()()()()()()()()x y r x y r af x bf y af y bf x dxdy dxdy f x f y f y f x +≤+≤++=+++⎰⎰⎰⎰ 222()x y r a b dxdy +≤=+⎰⎰=2()a b r π+.故222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=2()2a b r π+.四、对称性在三重积分中的应用根据被积函数的奇偶性及积分区域的对称性可以简化三重积分的计算,三重积分的计算中也有相应的对称性定理. (一) 对称性在三重积分中的定理定理6 设Ω由0),,(≤z y x ϕ表示,若将x 和y 的位置交换后,0),,(≤z x y ϕ仍然表示Ω,则⎰⎰⎰Ωdv z y x f ),,(=⎰⎰⎰Ωdv z x y f ),,(,这种位置的对称,也称变量可轮换性.定理7 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于xoy 面对称,函数),,(z y x f 在Ω上可积,则⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上是关于在当的偶函数上是关于在当z f z f dxdydvz y x f dv z y x f ,0,),,,(2),,,(1定理8 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于z 轴对称,函数),,(z y x f 在Ω上可积,则:⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上为关于在当的偶函数上为关于在当y x f y x f dxdydzz y x f dxdydz z y x f ,,0,,),,,(2),,,(1(二) 对称性在三重积分中的应用举例例10 计算⎰⎰⎰++ωdu z y x )(,其中Ω:≤++222z y x R 2,(0,00,≥≥≥z y x ).解 本题具有变量位置的对称,因此有⎰⎰⎰ωxdu =⎰⎰⎰ωydu =⎰⎰⎰ωzdu 设D z :)0,0(2222≥≥=++y x R z y x ,则原式为 3⎰⎰⎰ωzdu =3⎰⎰⎰RD zdxdy zdz 0=43⎰Rdz z R z 022)-(π=1634R π 可见,类似的题目都只需计算其中任意一元数值,及对应系数,即可求得结果.例11 计算⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222,其中ω:≤++222z y x 1. 分析 很显然,ω关于xoy 面对称,可以直接运用定理7.解 因为ω关于xoy 面对称,且被积函数1)1ln(),,(222222++++++=z y x z y x z z y x f 在ω上连续并为关于z 的奇函数,故 ⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222 =0. 例12 计算⎰⎰⎰Ω+dV yx xyz 22,其中Ω为xy a 22222)z y (x =++与0=z 两曲面所围区域.解 显然,积分区域Ω关于z 轴对称,且22),,(y x xyzz y x f +=为关于x 、y 的偶函数,又因为≥++2222)(z y x 0,所以xy 同号.因而Ω分布在一、四象限内,从而由定理8得到⎰⎰⎰Ω+dV y x xyz 22=⎰⎰⎰Ω+1222y x xyzdxdydz =⎰⎰⎰θθϕππθθϕϕϕθcos sin sin 03202cos sin cos sin 2a dr r d d= ⎰⎰=202045334144cos sin cos sin 2ππϕϕϕθθθad d a .小结 用对称性定理来简化二重积分和三重积分的计算,有时候可以起到事半功倍的效果.对于一般的对称性定理,若加以适当拓广,还可以用来巧妙地求解一些重积分的计算和证明问题.五、对称性在曲线积分中的应用(一) 对称性在曲线积分中的定理 设函数),(y x f 定义在二维光滑曲线上1.若),(y x f 满足关系式),(y x f -=),(y x f 或),(y x f -=),(y x f ,则称),(y x f 为偶函数.2.若),(y x f 满足关系式),(y x f -=),(y x f -或),(y x f -=),(y x f -,则称),(y x f 为奇函数.定理9 设分段光滑的平面曲线L 关于x 轴对称,记L 在上半平面的部分为1L ,下半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L Ly y x f ds y x f y y x f ds y x f 的偶函数为关于的奇函数为关于 定理10 设分段光滑的平面曲线L 关于y 轴对称,记L 在右半平面的部分为1L ,左半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L L x y x f ds y x f x y x f ds y x f 的偶函数为关于的奇函数为关于 推论1 设分段光滑的平面曲线L 关于原点对称,则⎪⎩⎪⎨⎧I =⎰⎰11),(,),(4),(, 0),(L L L L x y y x f ds y x f x y y x f ds y x f 象限中的部分)位于第是的偶函数(其中或为关于的奇函数或为关于定理11 设分段光滑的平面曲线L 关于x 轴对称,则(1)⎰L dx y x P ),(=⎰--L dx y x P ),(=21⎰--Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰-L dy y x P ),(=21⎰-+L dy y x P y x P )],(),([定理12 设分段光滑的平面曲线L 关于y 轴对称,则 (1)⎰Ldx y x P ),(=⎰-Ldx y x P ),(=21⎰-+Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰--L dy y x P ),(=21⎰--L dy y x P y x P )],(),([ 推论2 设分段光滑的有向平面曲线L 关于x 轴对称,(L 在上半平面部分记为1L ,在下半平面部分记为2L ),1L 与2L 方向相反,则(1) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于y y x P dy y x P y y x P dy y x P(2) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于y y x Q dy y x Q y y x Q dy y x Q推论3 设分段光滑的有向平面曲线L 关于y 轴对称,(L 在右半平面部分记为1L ,在左半平面部分记为2L ),1L 与2L 方向相反,则(1)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于x y x P dy y x P x y x P dy y x P(2)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于x y x Q dy y x Q x y x Q dy y x Q(二) 对称性在曲线积分中的应用举例 例13 计算⎰=++1||||||||y x ds y x x解 因为积分曲线关于原点对称,被积函数||||),(y x xy x f +=为关于x 的奇函数,由推论1,得⎰=++1||||||||y x ds y x x=0 例14 计算⎰+Lxydy e x1,其中L 关于x 轴对称,取逆时针方向, L 所围成的闭区域D 的面积为σ.分析 显然,题目已知L 关于x 轴对称,又是分段曲线积分,可直接运用定理求得结果解 由定理11,有⎰+Lxydy e x 1=21dy e xe x Lxy xy ⎰-+++)11(=21⎰++Lxy xy dy e xe x 1=21⎰Lxdy =21⎰⎰Dd σ=21σ. 例15 计算⎰++L xy dydx 1||,其中1:=+y x L ,取逆时针方向.解 因为⎰++L xy dy dx 1||=⎰+L xy dx 1||+⎰+L xy dy 1||而L 关于x 轴、y 轴对称且对称两部分方向相反,函数),(y x f =1||1+xy 既为关于x 的偶函数,又为关于y 的偶函数,由推论2、推论3,原式=0.六、对称性在曲面积分的对称性(一) 对称性在曲面积分中的定理 设函数),,(z y x f 定义在三维光滑曲面上1.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f )或=-),,(z y x f ),,(z y x f ,则称),,(z y x f 为偶函数.2.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f -或=-),,(z y x f ),,(z y x f -,则称),,(z y x f 为奇函数.定理13 设分段光滑的空间曲线Γ关于xoy (或yoz 或zox )坐标面对称,记1Γ为位于对称坐标面一侧的部分, 则⎪⎩⎪⎨⎧=⎰⎰1)(y)f(x,,),,(2)(),(,0),,(τ的偶函数或或为关于的奇函数或或为关于y x z ds z y x f y x z y x f ds z y x f z定理14 设曲面S 是由关于P (或平面α)对称的1S 和2S 组成,设1M ∈1S 的对称点为22S M ∈,则:⎰⎰⎰⎰⎪⎩⎪⎨⎧-===S12S 12)(M )(M ,0)(M )(M ,(M)2(M)1f f f f ds f ds f 若若 证明 以曲面S 关于平面α对称为例,不妨设曲面S 是关于xoy 对称的曲面1S 和2S 组成,设1M ∈1S 的坐标为),,(z y x ,则其对称点22S M ∈的坐标为),,(z y x -,设1S 、2S 在xoy 平面上的射影区域为xy σ,则⎰⎰⎰⎰⎰⎰+=21),,(),,(),,(S S Sds z y x f ds z y x f ds z y x f =⎰⎰++-+dxdy z zy x z y x f y x z y x f y x 221)]},(,,[)],(,,[{(1)当=-),(z y x f ),,(z y x f 时,⎰⎰Sds z y x f ),,(=⎰⎰1),,(2S ds z y x f(2)当=-),(z y x f -),,(z y x f 时,⎰⎰Sds z y x f ),,(=0.(二) 对称性在曲面积分中的应用举例例16 计算⎰⎰++εds zx yz xy )(,其中∑为锥面z =22y x +被曲面ax y x 222=+所截下的部分.分析 由于曲面∑关于zox 面对称,而被积函数中xy 与yz 都是y 的奇函数 解 根据定理,知⎰⎰++εds zx yz xy )(=⎰⎰εzxds =⎰⎰+++xyD y x dxdy z z y x x22221=⎰⎰+xyD dxdy y x x 222=2⎰⎰-22cos 203cos ππθθθa dr r d =42⎰-225cos ππθθd =156424a .例17 计算曲面积分⎰⎰=Sds xyz I ||,其中S 为曲面22y x z +=介于平面0=z 和1=z 之间的部分.解 因曲面S 关于平面xoz 和yoz 对称,而||),,(xyz z y x f =,由定理知⎰⎰=14S xyzds I ,其中1S 是S 在第一象限的部分22y x z +=,'x z x 2=,y z y 2'=,dxdy y x ds 22441++=.故I=dxdy y x y x xy xyD 2222441)(4+++⎰⎰=⎰⎰122cos sin 4θθθπr d ·2r ·241r +·rdr=4201-5125.由此可见,上述关于积分(定积分,重积分,线面积分)对称性的定理性质对于在特殊情况下简化积分的计算是非常有效的,它可以避免很多干扰,所以在解题中注意积分区间是否具有某种对称性是简化题目的关键,若对称性不明显则可以通过一定的方法,根据题目的特点构造对称性,可以减少一些繁琐的计算,提高解题效率.参考文献1 华东师范大学数学系, 数学分析(上册,下册),高等教育出版社2 同济大学,高等数学(上册,下册),高等教育出版社3 王莉,海天2013年考研数学基础班高数辅导讲义4 薛春荣,王芳,对称性在定积分及二重积分计算中的应用[J],科学技术与工程,2010,(1)5 赵达夫.高等数学的辅导讲义[M].新华出版社.6 孙钦福.二重积分的对称性定理及其应用.曲阜师范大学学报,2008.7 张仁华.二重积分计算中的若干技巧.湖南冶金职业技术学院学报,2008.8 温田丁.考研数学中二重积分的计算技巧.高等数学研究, 2008.后记本论文在选题及研究过程中得到指导老师的悉心指导。

二重积分的轮换对称性

二重积分的轮换对称性

二重积分的轮换对称性
据了解,双重积分的轮换对称性是指在一个双重积分的系统中,通过对其中一个值进行轮
换而使另一个值的积分值保持不变的特性。

双重积分的轮换对称性在数学理论中有着很重要的作用。

举个例子,如果我们有一个具有
双重积分的函数f(x,y),当我们轮换x和y时,积分f(x,y)dy dx = f(x,y)dx dy。

这表
明在对参数进行轮换时,积分值是不变的。

双重积分的轮换对称性在物理的应用中也很重要,比如在等离子体物理研究中,我们可以
将电场和磁场轮换,这时候就可以发现,由于熵的双重积分,这两者产生了储能效应。

双重积分的轮换对称性也在化学领域有着重要作用。

例如,对于一些特定的复杂分子,可
以分解出两个活化子,通过对这两个题者轮换,可以维持系统内全部体系的总熵保持不变。

总之,双重积分的轮换对称性可以帮助我们在不同的领域建立有用的数学模型来分析一些
复杂的问题,也可以帮助我们更好地理解物理实验中的特性。

二重积分积分区域的对称性

二重积分积分区域的对称性

.f (x, y)dxdyD2 f (x, y)dxdy ,当 f (-x, y)二D20,当 f ( — x, y) f (x, y).二 f (x, y).情形一:积分区域D 关于坐标轴对称定理4设二元函数f(x,y)在平面区域D 连续,且D 关于x 轴对称,则 1)当f (x, _y)二一 f(x, y)(即f (x, y)是关于y 的奇函数)时,有i i f (x, y)dxdy = 0 -D2)当f (x,—y) =f (x, y)(即f (x, y)是关于y 的偶函数)时,有f (x, y )dxdy =2 f (x, y) dxdyDD i其中D i 是由x 轴分割D 所得到的一半区域。

例5 计算|二 (xy - y 3)dxdy ,其中D 为由y 2=2x 与x = 2围成的区域。

D其中D 2是由y 轴分割D 所得到的一半区域。

解:如图所示,积分区域D 关于x 轴对称,且y 」x= 23f (x, —y) = -(xy + y ) = _f (x, y)2 7即f(x,y)是关于y 的奇函数,由定理1有 02F仃 f ( xy + y 3) dxdy = 0 .D类似地,有: 定理5设二元函数f (x, y)在平面区域D 连续,且 D 关于y 轴对称,则解:如图所示,2所®。

于y轴对称,并且y = -2x+2f ( _x, y) = x2y 二 f (x, y),即被积分函数是关于x轴的偶函数,由对称性定理结论有:2 2I =打x ydxdy =2x ydxdy = 2 ° dxD D i i _2 x 亠2 x2ydxdyi5D i9例7 计算二重积分| = . . ( x y|)dxdy ,其中D :解:如图所示,D关于x轴和y轴均对称,且被积分函数关于x和y是偶函数,即有f (x, - y )二f ( -x, y ) =f (x, y),由定理2,得其中D!是x dxdyy )dxdyD的第H y dxdyD iy )dxdy分,由对称性知,緒・DiDiD i+ |y )dxdyD ix )dxdy 8 | x dxdyD i定理6设二元函数f(x, y)在平面区域D连续,且D关于x轴和y轴都对称,则(1 )当f (―x, y)二-f (x, y)或f (x, - y)二-f (x, y)时,有f ( x , y ) dxdy = 0D(2)当f (_x, y)二f (x, -y)二f (x, y)时,有! ! f ( x, y ) dxdy = 4 1 1 f ( x, y ) dxdyD其中D!为由x轴和y轴分割D所的到的1/4区域。

积分对称性定理

积分对称性定理

曲面 1取前侧,在 yoz后半空间的部分曲面 2 取后侧,则
P x, y, z dxdy
0,
P x, y, z 关于x是偶函数,
2 P x, y, z dydz, P x, y, z 关于x是奇函数.
1
(3)设分片光滑的曲面 关于 xoz 坐标面对称,且 在 xoz 右半空间的部分 曲面 1取右侧,在 xoz 左半空间的部分曲面 2 取左侧,则
f x, y ds
L
0,
f x, y 为x的奇函数,
2 f x, y ds, f x, y 为x的偶函数. L1
(2)若分段光滑平面曲线 L 关于 x 轴对称,且 f x, y 在 L 上为连续函
数, L1 为 L 位于 x 轴上侧的弧段,则
欢迎下载
3

f x, y ds
L
0,
f x, y 为y的奇函数,
4

位于 xoy上侧 z 0的部分曲面,则
f x, y, z dS
0,
f x, y, z 为z的奇函数,
2 f x, y, z dS, f x, y, z 为z的偶函数.
1
曲面关于 yoz, xoz坐标平面对称也有类似的性质。
7、第二类曲面积分的对称性
设函数 P( x, y, z) , Q (x, y, z) , R( x, y, z) 在分片光滑的曲面 上连续,

f x, y dxdy
D
0,
f x, y 为x的奇函数 ,
2 f x, y dxdy, f x, y 为x的偶函数 .
D2
其中: D2 为 D 满足 x 0 的右半平面区域。 (3) 如果积分区域 D 关于原点对称, f ( x, y) 为 x, y 的奇(或偶)函

二重积分积分区域的对称性

二重积分积分区域的对称性

二重积分积分区域的对称性Company number:【0089WT-8898YT-W8CCB-BUUT-202108】情形一:积分区域D 关于坐标轴对称定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有(,)0Df x y dxdy =⎰⎰ .2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有1(,)2(,)D D f x y dxdy f x y dxdy =⎰⎰⎰⎰ . 其中1D 是由x 轴分割D 所得到的一半区域。

例5 计算3()DI xy y dxdy =+⎰⎰,其中D 为由22y x =与2x =围成的区域。

解:如图所示,积分区域D 关于x 轴对称,且3(,)()(,)f x y xy y f x y -=-+=- 即(,)f x y 是关于y 的奇函数,由定理1有3()0D f xy y dxdy +=⎰⎰.类似地,有:定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则其中2D 是由y 轴分割D 所得到的一半区域。

例6 计算2,DI x ydxdy =⎰⎰其中D 为由22;-220y x y x y =+=+=及所围。

解:如图所示,D 关于y 轴对称,并且2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴的偶函数,由对称性定理结论有:11222220022215x D D I x ydxdy x ydxdy dx x ydxdy -+====⎰⎰⎰⎰⎰⎰. 定理6 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴和y 轴都对称,则(1)当(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-时,有(,)0D f x y dxdy =⎰⎰ .(2)当(,)(,)(,)f x y f x y f x y -=-=时,有其中1D 为由x 轴和y 轴分割D 所的到的1/4区域。

二重积分积分区域的对称性

二重积分积分区域的对称性

情况一:积分地区 D 对于坐标轴对称定理 4 设二元函数 f ( x, y) 在平面地区 D 连续,且 D 对于 x 轴对称,则1) 当f (x,y) f ( x, y) (即 f (x, y)是对于 y 的奇函数)时,有f( x , y ) dxdy0.D2) 当f ( x,y) f ( x, y) (即 f ( x, y) 是对于 y 的偶函数)时,有f ( x , y ) dxdy2 f ( x , y ) dxdy.D D1此中 D1是由 x 轴切割D所获得的一半地区。

例5 计算I( xy y 3 )dxdy,此中 D 为由y22x 与x 2 围成的地区。

D解:如下图,积分地区 D 对于 x 轴对称,且 f ( x, y)( xy y3 )f ( x, y )即 f (x, y) 是对于y的奇函数,由定理1有 f ( xy y 3 ) dxdy0 .D近似地,有:定理 5设二元函数 f ( x, y) 在平面地区 D 连续,且 D 对于 y 轴对称,则2 f ( x , y ) dxdy, 当 f ( x, y ) f ( x , y ).f ( x , y ) dxdy D 2D0,当 f ( x, y ) f ( x , y ).此中 D2是由y轴切割D所获得的一半地区。

例6计算I x 2 ydxdy , 此中 D 为由 y 2 x 2; y -2 x 2 及 y0 所围。

D解:如下图, D 对于 y 轴对称,而且 f ( x, y ) x 2 y f ( x , y ) ,即被积分函数是关于 x 轴的偶函数,由对称性定理结论有:I x 2 ydxdy 2 x 21 2 x 22 ydxdy 2 .ydxdy2 dx x0015D D 1定理 6设二元函数 f ( x, y) 在平面地区 D 连续,且D 对于 x 轴和 y 轴都对称,则(1)当 f ( x , y) f ( x , y ) 或 f ( x , y ) f ( x , y ) 时,有f ( x , y ) dxdy0 .D(2)当f ( x , y ) f ( x ,y ) f ( x , y ) 时,有f ( x , y ) dxdy4 f ( x ,y ) dxdyD D 1此中 D1为由 x 轴和y轴切割D所的到的1/4地区。

二重积分的奇偶对称性

二重积分的奇偶对称性

二重积分的奇偶对称性
二重积分的奇偶对称性是被积函数与积分区域两个因素。

对称性计算二重积分时要看被积函数或被积函数的一部分是否关於某个座标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。

二重积分的奇偶对称性特点。

奇偶性计算二重积分时要看被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性,二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限,本质是求曲顶柱体体积。

重积分有着广泛的应用,可以用来计算曲面的面积平面薄片重心等,平面区域的二重积分可以推广为在高维空间中的有向曲面上进行积分称为曲面积分,同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心平面薄片转动惯量,平面薄片对质点的引力等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能用此性质。

的奇偶性两者兼得时才的对称性与被积函数注意:仅当积分域对称,则关于直线如果轴的上半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积同时为关于原点对称,如果积分域轴的右半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积为轴对称,关于如果积分域轴的上半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积为轴对称,关于如果积分域二重积分的对称性定理
),(),(),(.4),(),(,),(2),(),(,0),(,),(.3),(),(),(2),(),(0),(),(.2),(),(),(2),(),(0),(),(.1112211y x f D d x y f d y x f x y D x D D y x f y x f y x f d y x f y x f y x f y x f d y x f y x y x f D y D D y x f y x f x f d y x f y x f y x f x f d y x f x y x f y D x D D y x f y x f y f d y x f y x f y x f y f d y x f y y x f x D D D
D D D D D D ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰===--⎪⎩
⎪⎨⎧-=--==-⎪⎩
⎪⎨⎧-=-==-⎪⎩
⎪⎨⎧-=-=***σ
σσσσσσσ。

相关文档
最新文档