2018年最新浙教版九年级数学下册第1章解直角三角形试题及答案
浙教版2017-2018学年初三数学下册第1章解直角三角形试卷及答案
)
1
2
3
3
A.2 B. 2 C. 2 D. 3
4.如图 ,在坡度为 1∶ 2 的山坡上种树 ,要求相邻两棵树的水平距离是 6 m,
则斜坡上相邻两棵树的坡面距离是 (
)
A.3 m B. 3 5 m C. 12 m D. 6 m
5.下列式子:① sin60°>cos30°;② 0<tanα<1(α为锐角 );③ 2cos30°=
2017-2018 学年九年级数学下册第 1 章解直角三角形测试卷
(时间: 120 分钟 满分: 120 分)
一、选择题 (每小题 3 分 ,共 30 分)
2
1.如图 ,在 Rt △ ABC 中,∠C= 90°,AB= 6,cosB=3,则 BC 的长为 (
)
A.4
B.2 5
18 13 C. 13
12 13 D. 13
18. (8 分 )如图 , 在△ ABC 中 , BD⊥ AC,AB= 6,AC=5 3, ∠A=30°. (1)求 BD 和 AD 的长; (2)求 tanC 的值.
19. (8 分)如图① ,某超市从一楼到二楼的电梯 AB 的长为 16.50 米 , 坡角 ∠ BAC 为 32°.
(1)求一楼与二楼之间的高度 BC;(精确到 0.01 米) (2)电梯每级的水平级宽均是 0.25 米,如图② .小明跨上电梯时 ,该电梯以每 秒上升 2 级的高度运行 , 10 秒后他上升了多少米? (精确到 0.01 米 )(备用数据: sin32°≈ 0.5299, cos32°≈ 0.8480,tan32°≈ 0.6249)
cos60°;④ sin30°= cos60°,其中正确的个数有 (
)
(精练)浙教版九年级下册数学第一章 解直角三角形含答案
浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα2、如图,在笔直的海岸线l上有A,B两个观测站,AB=2 km,从A处测得船C在北偏东45°的方向,从B处测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4 kmB. kmC.2 kmD. km3、如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60米到达C点,测得点B在点C的北偏东60°方向,则这段河的宽度为()A.60(+1)米B.30(+1)米C.(90-30 )米D.30(-1)米4、在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C的度数为()A.30°B.45°C.60°D.75°5、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD=,④S△ODC =S四边形BEOF中,正确的有()A.1个B.2个C.3个D.4个6、在正方形网格中,∠α的位置如图所示,则tanα的值是()A. B. C. D.27、已知:△ABC中,∠C=90°,cosB=, AB=15,则BC的长是()A.3B.3C.6D.8、如图,一座厂房屋顶人字架的跨度AC=12m,上弦AB=BC,∠BAC=25°.若用科学计算器求上弦AB的长,则下列按键顺序正确的是()A. B. C.D.9、我国的“蛟龙号”创造了世界同类潜水器最大下潜深度纪录7062米.如图,在某次任务中,“蛟龙号”在点A处测得正前方海底沉船C的俯角为45°,然后在同一深度向正前方直线航行600米到点B,此时测得海底沉船C 的俯角为60°,那么“蛟龙号”在点B下潜到沉船C处,下潜的垂直深度是()米.A.600﹣600B.600+600C.900﹣300D.900+30010、如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.11、的值等于()A. B. C.1 D.12、如图,正方形ABCD中,对角线AC,BD交于点O,点M,N分别为OB,OC 的中点,则cos∠OMN的值为( )A. B. C. D.113、如图,在边长为1的小正方形组成的网格中,点A、B、O为格点,则tan∠AOB=()A. B. C. D.14、如图,是河堤横断面的迎水坡,堤高,水平距离,则斜坡的坡度为()A. B. C. D.15、△ABC 在网格中的位置如图所示(每个小正方形的边长均为 1), AD ^ BC 于 D .下列选项中,错误的是()A.sina=cosaB.tanC=2C.tana =1D.sin =cos二、填空题(共10题,共计30分)16、若cosα= ,α为锐角,则sinα=________.17、若a为锐角,且sin a= ,则cos a=________.18、如图,在矩形ABCD中,把∠A沿DF折叠,点A恰好落在矩形的对称中心E 处,则tan∠ADF=________19、已知△ABC中,AB=10,AC=2 ,∠B=30°,则△ABC的面积等于________.20、计算(﹣)﹣1+(2 ﹣1)0﹣|tan45°﹣2 |=________.21、如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________22、计算:________.23、如图,小颖利用有一个锐角是的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为即小颖的眼睛距地面的距离,那么这棵树高是________24、若sinα= ,α是锐角,则α=________度.25、点A是反比例函数y=(x>0)图象上的一点,点B在x轴上,点C是坐标平面上的一点,O为坐标原点,若以点A,B,C,O为顶点的四边形是有一个角为60°的菱形,则点C的坐标是________.三、解答题(共5题,共计25分)26、计算:.27、如图,地面上小山的两侧有A、B两地,为了测量A、B两地的距离,让一热气球从小山两侧A地出发沿与AB成30°角的方向,以每分钟50m的速度直线飞行,8分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(取1.7,sin20°取0.3,cos20°取0.9,tan20°取0.4,sin70°取0.9,cos70°取0.3,tan70°取2.7.)28、为积极宣传国家相关政策,某村在一山坡的顶端的平地上竖立一块宣传牌.小明为测得宣传牌的高度,他站在山脚C处测得宣传牌的顶端的仰角为,已知山坡的坡度,山坡的长度为米,山坡顶端与宣传牌底端的水平距离为2米,求宣传牌的高度(精确到1米)(参考数据:,,,)29、观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图),则sinB=, sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即=.同理有:=,=,所以==即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC中,∠B=450,∠C=750, BC=60,则∠A=;AC= ;(2)如图,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A的距离AB.30、如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2 ,无人机的飞行高度AH为500 米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、C6、D7、C8、B9、D10、B11、A12、B13、A14、A15、D二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、30、。
浙教版九年级下册数学第一章 解直角三角形 含答案
浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则tan∠ECF=()A. B. C. D.2、在中,,如果,那么的值是 )A. B. C. D.33、在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a =4b,则cosB的值是()A. B. C. D.4、如果α是锐角,且sinα= ,那么cos(90°﹣α)的值为()A. B. C. D.5、在Rt△ABC中,若各边长都扩大3倍,则锐角A的正弦值()A.不变B.扩大3倍C.缩小到原来的D.不能确定6、如图,嘉淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,且C地恰好位于A地正东方向上,则下列说法正确的是()A.B地在C地的北偏西40°方向上B.A地在B地的南偏西30°方向上C.D.∠ACB=50°7、如图,AB是⊙O的弦,CD是⊙O的直径,CD=15,CD⊥AB于M,如果sin∠ACB=,则AB=()A.24B.12C.9D.68、如图,某同学用圆规BOA画一个半径为4cm的圆,测得此时∠O=90°,为了画一个半径更大的同心圆,固定A端不动,将B端向左移至B’处,此时测得∠O’=120°,则BB’的长为()A.2 -4B. -2C.2 -2D.2-9、已知锐角A,且sinA= ,则∠A等于()A.60°B.45°C.30°D.15°10、如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A.(,2)B.(,1)C.(,2)D.(,1)11、如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=20米,则树的高AB(单位:米)为()A. B.20tan37° C. D.20sin37°12、在Rt△ABC,∠C=90°,AC=3,BC=4,则∠A的余切值等于()A. B. C. D.13、在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A. B. C. D.14、比萨斜塔是意大利的著名建筑,其示意图如图所示.设塔顶中心点为点B,塔身中心线与垂直中心线的夹角为,过点B向垂直中心线引垂线,垂足为点D.通过测量可得、、的长度,利用测量所得的数据计算的三角函数值,进而可求的大小.下列关系式正确的是()A. B. C. D.15、某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12 米,CD=8米,∠D=36°,(其中点A,B,C,D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1米,参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.5.6B.6.9C.11.4D.13.9二、填空题(共10题,共计30分)16、如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是________.17、如图,△ABC的顶点都在正方形网格的格点上,则sin∠BAC的值为________.18、如图,在正方形中,,将绕点顺时针旋转得到,此时与交于点,则的长度为________.19、如图,已知在中,,点G是的重心,,,那么________.20、如图,在平面直角坐标系xOy中,点A的坐标为A(3,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C 在第一象限,将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为________.21、在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是________.22、如图,在△ABC中,sinB= ,tanC= ,AB=3,则AC的长为________ .23、如图,在中,.点D为边上一点,将沿翻折得到交于点E.已知平分,则________.24、已知sin46°=cosα,则α=________度.25、已知tanα= ,那么sinα=________.(其中α为锐角)三、解答题(共5题,共计25分)26、计算:(﹣)﹣2+(2019﹣π)0﹣tan60°﹣|﹣3|.27、如图,水库大坝的横截面是梯形,坝顶宽5米,坝高20米,斜坡AB的坡比为1:2.5,斜坡CD的坡比为1:2,求大坝的截面面积.28、随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)29、如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m, CD=20m。
浙教版九年级下册数学第一章 解直角三角形 含答案
浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC中,CD⊥AB,BE⊥AC,= ,则sinA的值为()A. B. C. D.2、sin30°的相反数()A. B.﹣ C. D.3、如图,在A、B 两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长12千米,另一条公路BC长是5千米,且BC的走向是北偏西42°,则A地到公路BC的距离是()A.5千米B.12千米C.13千米D.17千米4、如图:B处有一船,向东航行,上午9时在灯塔A的西南58.4千米的B处,上午11时到达灯塔的南C处,那么这船航行的速度是()千米/时.A.19.65B.20.65C.21.65D.22.655、如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A.1B.C.D.26、如图是一个的方阵,其中每行,每列的两数和相等,则a可以是()A. B. C.0 D.7、如图,P是∠α的边OA上一点,且点P的坐标为(3,4),则sinα的值是()A. B. C. D.无法确定8、如图,在△ABC中,∠C=90°,AB=5 ,BC=3,则tanB的值是()A. B. C. D.9、如图,在等腰Rt△ABC中,∠C=90°,AC=3,D是AC上一点.若tan∠DBA=,则AD的长为()A.2B.C.D.110、如图,在平地上种植树木时,要求株距(相邻两棵树之间的水平距离)为.若在坡比为的山坡树,也要求株距为,那么相邻两棵树间的坡面距离()A. B. C. D.11、如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A. B. C. D.12、如图,圆O是△ABC的外接圆,AC=BC,AD平分∠BAC交圆⊙于点D,连接BD,若sin∠CBD= ,BD=5,则AD的长为()A.10B.11C.4D.513、在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是()A. B. C. D.14、如图,已知△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC的长为()A. B.6 C. D.15、如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,边长为1的小正方形网格中,点均在格点上,半径为2的与交于点F,则________.17、在Rt△ABC中,∠C=90°,若cosA=,则tanB=________18、如图,为了测量某建筑物AB的高度,在地面上的C处测得建筑物顶端A的仰角为30°,沿CB方向前进30m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于________ m.19、如图,商业大厦与电视台大厦的大楼顶部各有一个射灯,两条光柱的仰角(即光柱与水平面的夹角)∠2、∠3分别是60°、40°,则光柱相交时(在同一个平面内)的夹角∠1=________.20、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AB=8,AC=6,则cos∠DCB=________.21、如图,已知是一个锐角,以点O为圆心,任意长为半径画弧,分别交、于点A、B,再分别以点A、B为圆心,大于长为半径画弧,两弧交于点C,画射线.过点作,交射线于点D,过点D作,交于点E.设,,则________.22、如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═________23、如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA =1,将菱形OABC绕原点顺时针旋转105°至OA'B′C'的位置,则点B'的坐标为________.24、如图,矩形OABC的边AB与x轴交于点D,与反比例函数y= (k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积的值是________。
浙教版九年级下册数学第一章 解直角三角形 含答案
浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、已知在Rt△ABC中,∠C=90°,AC=6,BC=8,那么cosA的值为()A. B. C. D.2、已知∠A是锐角,且sinA=,那么∠A等于()A.30°B.45°C.60°D.75°3、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°, ②OC=OE,③tan∠OCD = ,④中,正确的有()A.1个B.2个C.3个D.4个4、如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm,则此光盘的直径是()cm.A.7B.7C.18D.125、若二次函数y=ax2+bx+c的图象与x轴有两个交点A和B,顶点为C,且b2﹣4ac=4,则∠ACB的度数为( )A.30°B.45°C.60°D.90°6、如果三角形满足一个角是另一个角的4倍,那么我们称这个三角形为“实验三角形”,下列各组数据中,能作为一个“实验三角形”三边长的一组是()A.1,1,B.1,1,C.1,2,D.1,2,37、如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )A. B.2 C.3 D.8、某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为()A.300米B.150 米C.900米D.(300 +300)米9、在中,,则的值为()A. B. C. D.10、如图,在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树的坡面上的距离AB为()米。
(典型题)浙教版九年级下册数学第一章 解直角三角形含答案
浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、比较tan46°,cos29°,sin59°的大小关系是()A.tan46°<cos29°<sin59°B.tan46°<sin59°<cos29° C.sin59°<tan46°<cos29° D.sin59°<cos29°<tan46°2、某班的同学想测量一教楼AB的高度.如图,大楼前有一段斜坡BC,已知BC 的长为16米,它的坡度.在离C点45米的D处,测得一教楼顶端的仰角为,则一教楼AB的高度约()米(结果精确到0.1米)(参考数据:,,,)A.44.1B.39.8C.36.1D.25.93、sin45°的值等于()A. B. C. D.14、如图,Rt△ABC中,∠C=90°,AB=7,∠B=35°,则AC的长为()A.7cos35°B.7tan35°C.7sin35°D.7sin55°5、在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACBB.∠OAB+∠OAC=90°C.AC=2D.BC=46、如图,在△ABC中,∠A=90°,AB=6,AC=8,以点B为圆心,小于AB的长为半径画弧,分别交AB,BC于D,E两点,再分别以点D和点E为圆心,大于DE的长为半径画弧,两弧交于点F,射线BF交AC于点G,则tan∠CBG=()A. B. C. D.7、如图,已知l1∥l2∥l3∥l4,相邻两条平行直线间的距离相等.若等腰直角的三个顶点分别在三条平行直线上,则∠α的正弦值是()A. B. C. D.8、是()A. B. C. D.9、在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的正弦值()A.扩大2倍B.缩小C.不变D.无法确定10、α是锐角,且sinα>,则α()A.小于30°B.大于30°C.小于60°D.大于60°11、如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A. B. C. D.12、数学实践探究课中,老师布置同学们测量学校旗杆的高度.如图所示,小明所在的学习小组在距离旗杆底部10米的地方,用测角仪测得旗杆顶端的仰角为60°,则旗杆的高度是()米.A. 10B.20C.D.1013、如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.14、如图,在菱形ABCD中,DE⊥AB,cosA=,则tan∠DBE()A. B.2 C. D.15、如图,在菱形ABCD中,DE⊥AB,cosA= ,AE=6,则tan∠BDE的值是( )A. B. C. D.二、填空题(共10题,共计30分)16、若为一锐角,且,则=________ .17、若等腰三角形一腰上的高与腰长之比为1∶2,则该等腰三角形顶角的度数为________.18、如图,在5×5的正方形网格中,每个小正方形的边长均为1,点A、B、C 都在格点上,则cos∠BAC的值为________.19、如图,在四边形中,,交于F,使得且.若在线段上取一点G,满足:平分且,则的值为________.20、如图,为测量一座大厦AB的高度,当小明在C处时测得楼顶A的仰角为60°,接着沿BC方向行走30m至D处时测得楼顶A的仰角为30°,则大厦AB 的高度是________.21、若α是锐角,且sinα=1﹣3m,则m的取值范围是________ ;将cos21°,cos37°,sin41°,cos46°的值,按由小到大的顺序排列是________ .22、如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为________.23、活动楼梯如图所示,∠B=90°,斜坡AC的坡度为1:1,斜坡AC的坡面长度为8m,则走这个活动楼梯从A点到C点上升的高度BC为________.24、若sinA= ,则cos(90°﹣A)=________.25、如图,点P在正方形ABCD的BC边上,连接AP,作AP的垂直平分线,交AD延长线于点E,连接PE,交CD于点F.若点F是CD的中点,则tan∠BAP=________.三、解答题(共5题,共计25分)26、计算:27、图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地面l,活动杆CD固定在支撑杆上的点E处.若∠AED=48°,BE=110cm,DE=80cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)28、底我市新湖一路贯通工程圆满竣工,若要在宽为40米的道路AD两边安装路灯,灯柱AB高10米,路灯的灯臂BC与灯柱AB成130°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路的中心线时照明效果最好,此时路灯的灯臂BC应为多少米?(结果精确到0.01)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).29、已知不等臂跷跷板AB长为4米,如图1,当AB的一端A碰到地面时,AB 与地面的夹角为α,如图2,当AB的另一端B碰到地面时,AB与地面的夹角为β,已知α=30°,β=37°,求跷跷板AB的支撑点O到地面的高度OH (sin37°=0.6,cos37°=0.8,tan37°=0.75).30、如图,内接于⊙ .若⊙ 的半径为6,,求的长.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、C5、D7、A8、A9、C10、D11、C12、D13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
2018年浙教版数学九年级下册《第一章解直角三角形》单元测试题含答案
第一章解直角三角形一、选择题1.在Rt△ABC中,∠C=90∘,若sin A=513,则cos A的值为( )A. 813B. 512C. 23D. 12132.△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于点D,若BC=a,则CD等于( )A. 12a B. 32a C. 32a D. 3a3.已知tan A=23,则锐角A满足( )A. 0∘<A<30∘B. 30∘<A<45∘C. 45∘<A<60∘D. 60∘<A<90∘4.坡度等于1:3的斜坡的坡角等于( )A. 30∘B. 40∘C. 50∘D. 60∘5.一个斜坡的坡角为30O,则这个斜坡的坡度为()A. 1:2B. 3:2C. 1:3D. 3:16.因为cos30∘=32,cos210∘=−32,所以cos210∘=cos(180∘+30∘)=−cos30∘=−32,我们发现:一般地,当α为锐角时,有cos(180∘+α)=−cosα,由此可知cos240∘的值是()A. −12B. −22C. −32D. −37.在Rt△ABC中,∠C=90∘,下列式子中不一定成立的是( )A. tan A=sin Acos AB. sin2A+sin2B=1C. sin2A+cos2A=1D. sin A=sin B8.在Rt△ABC中,如果各边长度都扩大2倍,则锐角A的正弦值( )A. 不变B. 扩大2倍C. 缩小2倍D. 不能确定9.如果∠A为锐角,且cos A=0.31,那么∠A的范围是A. 0∘<∠A≤30∘B. 60∘<∠A<90∘C. 45∘<∠A<60∘D. 30∘<∠A<45∘10.某水库堤坝的横断面如图所示,背水坡AD的坡度为1:1.5,迎水坡BC的坡度为1:3,坝顶宽CD=3m,坝高CF,DE均为10m,则坝底宽AB约为()A. 32.2mB. 29.8mC. 20.3mD. 35.3m二、填空题11.在△ABC中,若∠C=90∘,sin A=1,AB=2,则△ABC的周长为______ .212.关于三角函数还有如下的公式:sinα±β=sinαcosβ±cosαsinβ,(如:sin75∘=sin(30∘+45∘)=sin30∘cos45∘+cos30∘sin45∘)利用这个公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值。
浙教版九年级数学下《第一章解直角三角形》单元测试题含答案
第一章 解直角三角形本检测题满分:120分,时间:120分钟一、选择题(每小题3分,共30分)1.tan 60︒ 的值等于( )A.1B.2C.3D.2 2.计算6tan 452cos 60︒-︒ 的结果是( ) A.43 B.4C.53D.53.如图,在ABC △中,90,5,3,∠C AB BC =︒== 则sin A 的值是( ) A.34B.34C.35D.454.在ABC △中,90C =︒∠,如果2,1AB BC ==,那么sin A 的值是( ) A.21 B.55C.33D.23 5.在ABC △中,90C =︒∠,5,3,AB BC ==则sin B = ( ) A. 34 B. 53 C.43 D. 456.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A.43 B.45C.54D.347.如图,一个小球由地面沿着坡度12∶i =的坡面向上前进了10 m ,此时小球距离地面的高度为( )A.5 mB.25 mC.45 mD.310 m 8.已知直角三角形两直角边长之和为7,面积为6,则斜边长为( ) A. 5 B.C. 7D.9.如图,已知:45°<∠A <90°,则下列各式成立的是( ) A.sin cos A A = B.sin cos A>A C.sin tan A>A D.sin cos A<A第7题图AC第9题图第3题图ACB10.如图,在菱形ABCD 中,⊥DE AB ,3cos 5A =, 2BE =,则tan ∠DBE 的值是( ) A .12B .2C .52 D .55二、填空题(每小题3分,共24分)11.在Rt △ABC 中,90,3,4=︒==ABC AB BC ∠,则sin A =______.12.比较大小:8cos 31︒ 35.(填“>”“=”或“<”) 13.如图,小兰想测量南塔的高度,她在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m 至B 处,测得仰角为60°,那么塔高约为 _________ m.(小兰身高忽略不计,31732.≈) 14.已知等腰三角形的腰长为2,腰上的高为1,则它的底角等于________.15.大坝的横断面是梯形,坝内斜坡的坡度,坝外斜坡的坡度,则两个坡角的和为 .16.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_ .17.如图,在四边形ABCD 中,609069=︒==︒==A B D BC ,CD ∠,∠∠,,则AB =__________.18.如图,在△ABC 中,已知324530,∠,∠AB B C ==︒=︒,则AC =________. 三、解答题(共66分) 19.(8分)计算下列各题: (1)()42460sin 45cos 22+- ;(2)2330tan 3)2(0-+--.20.(8分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°;A CB 第18题图(2)在点A 和大树之间选择一点B (A,B,D 在同一条直线上),测得由点B 看大树顶端C 的仰角恰好为45°;(3)量出A,B 两点间的距离为45 m ..请你根据以上数据求出大树CD 的高度.(结果保留3个有效数字)21.(8分)每年的5月15日是“世界助残日”.某商场门前的台阶共高出地面1.2米,为帮助残疾人便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过9︒,已知此商场门前的人行道距商场门的水平距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡? (参考数据:)22.(8分)如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100 m ,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5 m ,请你计算出该建筑物的高度.(取3≈ 1.732,结果精确到1 m ) 23.(8分)如图,在梯形ABCD 中,∥AD BC ,AB CD AD ==,⊥BD CD .(1)求sin ∠DBC 的值;(2)若BC 的长度为4cm ,求梯形ABCD 的面积. 24.(8分)如图,在ABC Rt △中,290,10,sin 5C AB A =︒==∠ ,求BC 的长和tan B 的值.25.(9分)如图,小明家住在32 m 高的A 楼里,小丽家住在B 楼里,B 楼坐落在A 楼的正北面,已知当地冬至12时太阳光线与水平面的夹角为30︒.(1)如果,A B 两楼相距203 m ,那么A 楼落在B 楼上的影子有多长?CA B第24题图(2)如果A 楼的影子刚好不落在B 楼上,那么两楼的距离应是多少?(结果保留根号)26.(9分)在△ABC 中,BC a,AC b,AB c ===.若90C ∠=︒,如图①,根据勾股定理,则222a b c +=.若△ABC 不是直角三角形,如图②和图③,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.ABCABABC①②③第26题图第一章 解直角三角形检测题参考答案1.C2.D 解析:16tan 452cos 6061252︒-︒=⨯-⨯= .3.C 解析:3sin 5BC A AB == . 4.A 解析:5.D 解析:由勾股定理知,所以所以sin.54=AB AC 6.A 解析:如图,设则由勾股定理知,所以tan B7.B 解析:设小球距离地面的高度为则小球水平移动的距离为所以解得8.A 解析:设直角三角形的两直角边长分别为则所以斜边长9.B 解析:在锐角三角函数中仅当∠45°时,,所以选项错误;因为45°<∠A <90°,所以∠B <45°,即∠A >∠B ,所以BC >AC , 所以AB BC >AB AC,即sin cos A>A ,所以选项正确,选项错误; tan A = ACBC>1,<1,所以选项错误. 10.B 解析:设又因为在菱形中,所以所以所以由勾股定理知所以211.45解析:在ABC Rt △中,90ABC =︒∠,由勾股定理,得222AC AB BC =+, ABC第6题答图所以2222345AC AB BC =+=+=,所以4sin 5==BC A AC . 12.> 解析:因为8cos 31 6.86,35 5.92︒≈≈ ,所以∠8cos 3135︒> . 13.43.3 解析:因为,所以所以所以()3502532517324332=⨯=≈⨯=DC ..m . 14.15°或75° 解析:如图,.在图①中,,所以∠∠;在图②中,,所以∠∠.15. 解析:设两个坡角分别为,,则tan ,tan ,所以,所以两个坡角的和为.16.55解析:利用网格,过点向所在直线作垂线,设网格中小正方形的边长为1,则利用勾股定理得,所以sin A =55. 17. 解析:如图,延长,交于点.∵ ∠,∴ .∵,∴,则.∵ ,∴.第14题答图18.6 解析:如图,过点作于点.∵ ,∠,∴.∴.19.解:(1)()24232622cos 45sin 60224224 ⎛⎫-+=⨯-+ ⎪ ⎪⎝⎭366622222222.⎛⎫=-+=-+= ⎪ ⎪⎝⎭(2)()023tan 30321323323 --+-=-+-=-. 20.解:∵ ∠90°, ∠45°,∴∵,∴设高CD 为m x ,则 m ,()45m AD x .=+.∵ ∠35°,∴ tan ∠tan 35°5.4+x x. 整理,得 4.5tan 351tan 35⨯=-x ≈10.5.故大树的高度约为10.521.解:因为所以斜坡的坡角小于,故此商场能把台阶换成斜坡.22.解:设,则由题意可知,m .在Rt △AEC 中,tan ∠CAE =AE CE,即tan 30°=100+x x , ∴33100=+x x ,即3x 3(x +100),解得x 50+503.经检验50+503是原方程的解.∴故该建筑物的高度约为23.解:(1)∵ ,∴ ∠∠. ∵∥,∴ ∠∠∠. 在梯形中,∵,∴ ∠∠∠∠∵ ,∴ 3∠ ,∴ ∠30° ,∴(2)如图,过点作于点. 在Rt △中,•∠,• ∠,∴在Rt △中,,∴ 梯形ABCD 的面积为24.解:∵ 2sin ,10,5===BC A AB AB ∴ 4=BC . 又∵ 22221,=-=AC AB BC ∴ 21tan 2==AC B BC . 25.解:(1)如图,过点作于点,∵,,∴ .故.∴ 楼落在楼上的影子有12 m 长. (2)若楼的影子刚好不落在楼上,,∴ 两楼的距离应是m.26.解:如图①,若△是锐角三角形,则222a b c +>.证明如下:过点作,垂足为,设为x ,则a x -.根据勾股定理,得22222()b x AD c a x -==--, 即222222b x c a ax x -=-+-.∴ 2222a b c ax +=+. ∵ 0,0a x >>,∴ 20ax >,∴ 222a b c +>.如图②,若△是钝角三角形,C ∠为钝角,则222a b c +<.证明如下: 过点作,交的延长线于点.设=x ,则222BD a x =-.根据勾股定理,得2222()b x a x c ++-=.即2222a b bx c ++=.∵ 0,0b x >>,∴ 20bx >,∴ 222a b c +<.。
浙教版九年级下册数学第一章 解直角三角形含答案(必考题)
浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆的高度与拉绳的长度相等,小明先将拉到的位置,测得为水平线),测角仪的高度为米,则旗杆的高度为()A. 米B. 米C. 米D. 米2、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为()A. +1B. ﹣1C.D.3、如图,在直径为4的⊙O中,弦AC=,则劣弧AC所对的圆周角∠ABC的余弦值是:()A. B. C. D.4、如图,AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P 在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为()A. B. C. D.15、如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35°C.D.6、如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A. B. C. D.7、已知∠A是锐角,且sinA=,那么∠A等于()A.30°B.45°C.60°D.75°8、小明沿着坡度为1:2的山坡向上走了1000m,则他升高了( )A.200 mB.500mC.500 mD.1000m9、如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西30°C.OC的方向是南偏西60°D.OD的方向是南偏东30°10、李红同学遇到了这样一道题:tan(α+20°)=1,你猜想锐角α的度数应是()A.40°B.30°C.20°D.10°11、在Rt△ABC中,,AC=3,BC=4,则sinA的值为()A. B. C. D.12、如图,在中,,,为边上的一个动点(不与、重合),连接,则的最小值是()A. B. C. D.213、2sin60°的值等于()A. B.2 C.1 D.14、如图,点P(x,y)(x>0,y>0)在半径为1的圆上,则cosα=()A.xB.yC.D.15、在Rt△ABC中,∠C=90°,AB=10,sin∠B=,则BC=()A.15B.6C.9D.8二、填空题(共10题,共计30分)16、计算:=________.17、如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是________.18、如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x(x≥0),则x的取值范围是________.19、计算“2sin30°-(π- )0+| -1|+()-1”的结果是 ________.20、若cosA=0.6753,则锐角A=________ (用度、分、秒表示).21、如图,建筑物BC的屋顶有一根旗杆AB,从地面上点D处观测旗杆顶点A的仰角为50°,观测旗杆底部点B的仰角为45°。
浙教版九年级下册数学第一章 解直角三角形 含答案
浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、若规定sin(α﹣β)=sinαcosβ﹣cosαsinβ,则sin15°=()A. B. C. D.2、如果B在A的北偏西40°方向,那么A在B的()A.东偏南50°方向B.南偏东40°方向C.南偏东50°方向D.东偏南40°方向3、用计算器求tan26°,cos27°,sin28°的值,它们的大小关系是()A. tan26°<cos27°<sin28°B. tan26°<sin28°<cos27° C. sin28°<tan26°<cos27° D. cos27°<sin28°<tan16°4、如图,马航370失联后,“海巡31”船匀速在印度洋搜救,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B,海巡船继续向北航行4小时后到达C处,发现灯塔B在它的北偏东60°方向.若海巡船继续向北航行,那么要再过多少时间海巡船离灯塔B最近?()A.1小时B.2小时C. 小时D.2 小时5、若关于x的方程x2﹣+cosα=0有两个相等的实数根,则锐角α为()A.30°B.45°C.60°D.75°6、在中,,AB=15,sinA=,则BC等于()A.45B.5C.D.7、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为()A. +1B. ﹣1C.D.8、在Rt△ABC中,∠C=90°,若BC=1,AC=2,则cosA的值为( )A. B. C. D.29、如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角α为30°,看这栋楼底部C处的俯角β为60°,热气球与楼的水平距离AD为90米,则这栋楼的高度BC为()A. 米B.90 米C.120 米D.225米10、如图,在△ABC中,D为AB边上一点,E为CD中点,AC= ,∠ABC=30°,∠A=∠BED=45°,则BD的长为()A. B. +1﹣ C. ﹣ D. ﹣111、如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A. B. C. D.12、在Rt△ABC中,∠C=90°,∠A=α,BC=m,则AB的长为()A.m sinαB.C.m cosαD.13、如图,在楼顶点A处观察旗杆CD测得旗杆顶部C的仰角为30°,旗杆底部D的俯角为45°.已知楼高AB=9m,则旗杆CD的高度为()A. mB. mC.9 mD.12 m14、如图在Rt△ABC中,∠C=90°,AB=15,sinA=,则BC等于()A.45B.5C.D.15、规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.据此判断下步列等式成立的共有()①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinxcosx;④sin(x﹣y)=sinx﹣cosy﹣cosx﹣siny.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、在Rt△ABC中,∠C=90°,BC= ,AC= ,则cosA的值是________.17、如图,某海防响所O发现在它的西北方向,距离哨所400米的A处有一般船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这般船与哨所的距离OB约为________米。
浙教版九年级下册数学第一章 解直角三角形 含答案
浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、在①0<cosα<1(α为锐角)②sin62°<cos62°③tan45°<sin89°④sin35°=cos55°;其中正确的是()A.①③B.②④C.①④D.③④2、为测量被荷花池相隔的两树、的距离,数学活动小组设计了如图所示的测量方案:在的垂线上取两点、,再定出的垂线,使、、在一条直线上.其中三位同学分别测量出了三组数据:(1) 、;(2) 、;(3)、、.能根据所测数据,求得、两树距离的是()A.(1)B.(1),(2)C.(2),(3)D.(1),(3)3、如图,在平面直角坐标系中,点A坐标为(8,6),那么cos 的值是()A. B. C. D.4、在Rt△ABC中,∠C=90°,如果BC=2,tan B=2,那么AC=()A.1B.4C.D.25、如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A. B. C. D.6、某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米7、如图,平行四边形AOBC中,∠AOB=60°,AO=8,AC=15,反比例函数y =(x>0)图象经过点A,与BC交于点D,则的值为()A. B. C. D.8、如图,已知AB是⊙O的直径,C是⊙O上的点,,则⊙O的半径等于()A.4B.3C.2D.9、《九章算术》是我国古代数学成就的杰出代表,其中《方田》章给出计算弧田面积所用公式为:弧田面积=(弦×矢+矢2),弧田(如图)是由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长AB,“矢”等于半径长与圆心O到弦的距离之差.在如图所示的弧田中,“弦”为8,“矢”为3,则cos∠OAB=()A. B. C. D.10、如图,Rt△ABC中,∠C=90°,AC=4,BC=3,则tanA的值为()A. B. C. D.11、某数学社团开展实践性研究,在大明湖南门测得历下亭在北偏东37°方向,继续向北走105m后到达游船码头,测得历下亭在游船码头的北编东53°方向.请计算一下南门与历下亭之间的距离约为()(参考数据:,)A.225B.275C.300D.31512、如图,AB是⊙O的直径,AB=4,AC是弦,AC=,∠AOC=()A.120°B.130°C.140°D.150°13、在正方形网格中,△ABC的位置如图所示,则tan∠A的值为()A. B. C. D.14、如图,击打台球时小球反弹前后的运动路线遵循对称原理,即小球反弹前后的运动路线与台球案边缘的夹角相等(α=β),在一次击打台球时,把位于点P处的小球沿所示方向击出,小球经过5次反弹后正好回到点P,若台球案的边AD的长度为4,则小球从P点被击出到回到点P,运动的总路程为()A.16B.16C.20D.2015、在Rt△ABC中,∠C=90°,AB=5,AC=3,则cosB的值为()A. B. C. D.二、填空题(共10题,共计30分)16、在正方形网格中,△ABC的位置如图所示,则cosB的值为 ________ .17、如果α是锐角,且tanα=cot20°,那么α=________度.18、如图,某地修建高速公路,要从A地向B地修一条隧道(点 A、B在同- -水平面上)为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为a,则AB两地之间的距离为________米.19、如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为________ .20、如图,Rt△ABC中,若∠C=90°,BC=4,tanA= ,则AB=________.21、如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,则tanα=________.22、如图,点BEC在一直线上,△ BEA,△CED在直线BC同侧,BE=BA=4,CE=CD=6,∠B=∠C=a,当tan 时,△ADE外接圆的半径为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年九年级数学下册第1章解直角三角形测试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,在Rt △ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长为( ) A .4 B .2 5 C.181313 D.121313,第1题图) ,第2题图) ,第3题图) ,第4题图)2.如图①是一张Rt △ABC 纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形,如图②,那么在Rt △ABC 中,sin B 的值是( )A.12B.32 C .1 D.323.如图,点A ,B ,C 在⊙O 上,∠ACB =30°,则sin ∠AOB 的值是( ) A.12 B.22 C.32 D.334.如图,在坡度为1∶2的山坡上种树,要求相邻两棵树的水平距离是6 m ,则斜坡上相邻两棵树的坡面距离是( )A .3 mB .3 5 mC .12 mD .6 m5.下列式子:①sin60°>cos30°;②0<tan α<1(α为锐角);③2cos30°=cos60°;④sin30°=cos60°,其中正确的个数有( )A .1个B .2个C .3个D .4个6.已知等腰△ABC 内接于⊙O ,⊙O 的半径为5,如果底边BC 的长为6,则底角的正切值为( )A .3 B.13 C.83 D .3或137.如图,在▱ABCD 中,对角线AC ,BD 相交成的锐角为α,若AC =a ,BD =b ,则▱ABCD 的面积是( )A.12ab sin α B .ab sin α C .ab cos α D.12ab cos α,第7题图) ,第8题图),第9题图)8.如图,AC ⊥BC ,AD =a ,BD =b ,∠A =α,∠B =β,则AC 等于( )A .a sin α+b cos βB .a cos α+b sin βC .a sin α+b sin βD .a cos α+b cos β9.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,已知AC =5,BC =2,那么sin ∠ACD =( ) A.53 B.23 C.255 D.5210.如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕.当D ′F ⊥CD 时,CF FD 的值为( ) A.3-12 B.36C.23-16D.3+18二、填空题(每小题4分,共24分)11.已知锐角α的顶点在原点,始边为x 轴的正半轴,终边经过(1,2).如图,则sin α=__ _,cos α=__ _,tan α=__ __.,第11题图) ,第13题图)12.在△ABC 中,若|sin A -32|+|cos B -22|=0,则∠C =__ __. 13.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40 cm ,EF =20 cm ,测得边DF 离地面的高度AC =1.5 m ,CD =8 m ,则树高AB =__ _m.14.孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为__ __米.(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475)15.规定:sin(-x )=-sin x ,cos(-x )=cos x ,sin(x +y )=sin x ·cos y +cos x ·sin y .据此判断下列等式成立的是__ __.(写出所有正确的序号)①cos(-60°)=-12;②sin75°=6+24;③sin2x =2sin x ·cos x ;④sin(x -y )=sin x ·cos y -cos x ·sin y .16.在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC =6.若点P 在直线AC 上(不与点A ,C 重合),且∠ABP =30°,则CP 的长为__ __.三、解答题(共66分)17.(8分)计算:(1)(-2)2+|-3|+2sin60°-12; (2)6tan 230°-3sin60°-2sin45°.18.(8分)如图,在△ABC中,BD⊥AC,AB=6,AC=53,∠A=30°.(1)求BD和AD的长;(2)求tan C的值.19.(8分)如图①,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.(1)求一楼与二楼之间的高度BC;(精确到0.01米)(2)电梯每级的水平级宽均是0.25米,如图②.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米?(精确到0.01米)(备用数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249)20.(8分)如图,已知AB是⊙O的直径,弦CD⊥AB于点E,AC=22,BC=1.求:(1)sin∠ABD;(2)CE的长.21.(8分)某地要加固长90 m,高5 m,坝顶宽为4 m的大坝,迎水坡和背水坡的坡度都是1∶1,横断面是梯形的防洪大坝.要将大坝加高1 m,背水坡改为1∶1.5,已知坝顶宽不变,求需要多少土方?22.(8分)如图,为测量江两岸码头B,D之间的距离,从山坡上高度为50米的点A处测得码头B的俯角∠EAB为15°,码头D的俯角∠EAD为45°.点C在线段BD的延长线上,AC⊥BC,垂足为点C.求码头B,D之间的距离.(结果保留整数)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)23.(8分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100 km的点B处,再航行至位于点B的北偏东75°且与点B相距200 km的点C处.(1)求点C与点A的距离(精确到1 km);(2)确定点C相对于点A的方向.(参考数据:2≈1.414,3≈1.732)24.(10分)如图,某海域有两个海拔均为200米的海岛A 和海岛B ,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C 处时测得正前方一海岛顶端A 的俯角为45°,然后沿平行于AB 的方向水平飞行1.99×104米到达点D 处,在D 处测得正前方另一海岛顶端B 的俯角是60°,求两海岛间的距离AB .九(下)第1章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,在Rt △ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长为( A ) A .4 B .2 5 C.181313 D.121313,第1题图) ,第2题图) ,第3题图) ,第4题图)2.如图①是一张Rt △ABC 纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形,如图②,那么在Rt △ABC 中,sin B 的值是( B )A.12B.32 C .1 D.323.如图,点A ,B ,C 在⊙O 上,∠ACB =30°,则sin ∠AOB 的值是( C )22234.如图,在坡度为1∶2的山坡上种树,要求相邻两棵树的水平距离是6 m ,则斜坡上相邻两棵树的坡面距离是( B )A .3 mB .3 5 mC .12 mD .6 m5.下列式子:①sin60°>cos30°;②0<tan α<1(α为锐角);③2cos30°=cos60°;④sin30°=cos60°,其中正确的个数有( A )A .1个B .2个C .3个D .4个6.已知等腰△ABC 内接于⊙O ,⊙O 的半径为5,如果底边BC 的长为6,则底角的正切值为( D )A .3 B.13 C.83 D .3或137.如图,在▱ABCD 中,对角线AC ,BD 相交成的锐角为α,若AC =a ,BD =b ,则▱ABCD 的面积是( A ) A.12ab sin α B .ab sin α C .ab cos α D.12ab cos α,第7题图) ,第8题图),第9题图)8.如图,AC ⊥BC ,AD =a ,BD =b ,∠A =α,∠B =β,则AC 等于( B )A .a sin α+b cos βB .a cos α+b sin βC .a sin α+b sin βD .a cos α+b cos β9.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,已知AC =5,BC =2,那么sin ∠ACD =( A )335210.如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕.当D ′F ⊥CD 时,CF FD 的值为( A ) A.3-12 B.36C.23-16D.3+18二、填空题(每小题4分,共24分)11.已知锐角α的顶点在原点,始边为x 轴的正半轴,终边经过(1,2).如图,则sin α=5,cos α=5,tan α=__2__.,第11题图) ,第13题图)12.在△ABC 中,若|sin A -32|+|cos B -22|=0,则∠C =__75°__. 13.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40 cm ,EF =20 cm ,测得边DF 离地面的高度AC =1.5 m ,CD =8 m ,则树高AB =__5.5__m.14.孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为__182__米.(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475)15.规定:sin(-x )=-sin x ,cos(-x )=cos x ,sin(x +y )=sin x ·cos y +cos x ·sin y .据此判断下列等式成立的是__②③④__.(写出所有正确的序号)①cos(-60°)=-12;②sin75°=6+24;③sin2x =2sin x ·cos x ;④sin(x -y )=sin x ·cos y -cos x ·sin y .16.在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC =6.若点P 在直线AC 上(不与点A ,C 重合),且∠ABP =30°,则CP 的长为__.三、解答题(共66分) 17.(8分)计算:(1)(-2)2+|-3|+2sin60°-12; (2)6tan 230°-3sin60°-2sin45°.解:4 12-218.(8分)如图,在△ABC 中,BD ⊥AC ,AB =6,AC =53,∠A =30°.(1)求BD 和AD 的长;(2)求tan C 的值.解:(1)∵BD ⊥AC ,∴∠ADB =∠BDC =90°,在Rt △ADB 中,AB =6,∠A =30°,∴BD =12AB =3,∴AD =3BD =33 (2)CD =AC -AD =53-33=23,在Rt △BDC 中,tanC =BD CD =323=32 19.(8分)如图①,某超市从一楼到二楼的电梯AB 的长为16.50米,坡角∠BAC 为32°.(1)求一楼与二楼之间的高度BC ;(精确到0.01米)(2)电梯每级的水平级宽均是0.25米,如图②.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米?(精确到0.01米)(备用数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249)解:(1)∵sin ∠BAC =BC AB ,∴BC =AB·sin32°=16.50×0.5299≈8.74(米)(2)∵tan32°=级高级宽,∴级高=级宽×tan32°≈0.25×0.6249=0.156225,∵10秒钟电梯上升了20级,∴小明上升的高度为20×0.156225≈3.12米20.(8分)如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于点E ,AC =22,BC =1.求:(1)sin ∠ABD ;(2)CE 的长.解:(1)∵AB 是⊙O 的直径,∴AC ⊥BC ,在Rt △ABC 中,AB =(22)2+12=3,又∵CD ⊥AB ,∴sin ∠ABD =sin ∠ABC =AC AB =223(2)CE BC =sin ∠ABC ,∴CE =BC·sin ∠ABC =1×223=22321.(8分)某地要加固长90 m ,高5 m ,坝顶宽为4 m 的大坝,迎水坡和背水坡的坡度都是1∶1,横断面是梯形的防洪大坝.要将大坝加高1 m ,背水坡改为1∶1.5,已知坝顶宽不变,求需要多少土方?解:过点C ,F 分别作CC′⊥BM 于点C′.FF′⊥BM 于点F′,则有BC′=CC′=5 m .∴BM =5+5+4=14(m ).∴S 梯形BCDM =12(CD +BM )×CC′=12×(4+14)×5=45(m 2),FF′AF′=11.5,∴AF ′=1.5×6=9(m ),则在梯形AMEF 中,EF=4(m ),AM =9+4+6=19(m ),高度为 6 m ,∵S梯形AMEF =12×(4+19)×6=69(m 2).∴所需土方为90×(69-45)=2160 m 322.(8分)如图,为测量江两岸码头B ,D 之间的距离,从山坡上高度为50米的点A 处测得码头B 的俯角∠EAB 为15°,码头D 的俯角∠EAD 为45°.点C 在线段BD 的延长线上,AC ⊥BC ,垂足为点C .求码头B ,D 之间的距离.(结果保留整数)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)解:∵∠ADC =∠EAD =45°,∴CD =AC =50(米),∠ABC =∠EAB =15°,∵tan ∠ABC =AC BC ,∴BC =AC tan15°≈185.2,∴BD =185.2-50≈135(米)23.(8分)如图,轮船从点A 处出发,先航行至位于点A 的南偏西15°且与点A 相距100 km 的点B 处,再航行至位于点B 的北偏东75°且与点B 相距200 km 的点C 处.(1)求点C 与点A 的距离(精确到1 km);(2)确定点C 相对于点A 的方向.(参考数据:2≈1.414,3≈1.732)解:(1)过点A 作AD ⊥BC 于点D.由图得,∠ABC =75°-15°=60°.在Rt △ABD 中,∵∠ABC =60°,AB =100.∴BD =50,AD =50 3.∴CD =BC -BD =200-50=150.在Rt △ACD 中,由勾股定理得:AC =AD 2+CD 2=1003≈173(km ).即点C 与点A 的距离约为173 km (2)在△ABC 中,∵AB 2+AC 2=1002+(1003)2=40000,BC 2=2002=40000,∴AB 2+AC 2=BC 2.∴∠BAC =90°,∴∠CAF =∠BAC -∠BAF =90°-15°=75°.答:点C 位于点A 的南偏东75°方向24.(10分)如图,某海域有两个海拔均为200米的海岛A 和海岛B ,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C 处时测得正前方一海岛顶端A 的俯角为45°,然后沿平行于AB 的方向水平飞行1.99×104米到达点D 处,在D 处测得正前方另一海岛顶端B 的俯角是60°,求两海岛间的距离AB .解:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD ,交CD 的延长线于点F ,则四边形ABFE 为矩形,所以AB =EF ,AE =BF .由题意可知AE =BF =1100-200=900,CD =19900.∴在Rt △AEC 中,∠C =45°,AE =900,∴CE =AE tan ∠C=900tan45°=900,在Rt△BFD中,∠BDF=60°,BF=900,∴DF=BF tan∠BDF=900tan60°=3003,∴AB=EF=CD+DF-CE=19900+3003-900=19000+300 3.答:两海岛之间的距离AB是(19000+3003)米。