最新近世代数复习提纲

合集下载

近世代数复习

近世代数复习

近世代数复习(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章集合A 的一个分类决定A的元间的一个等价关系;集合A元间的一个等价关系~决定A的一个分类。

第二章群的定义a.设G是一个非空集合,“▫”是其上一个二元运算,若满足1.“▫”满足结合律;2.{G,▫}中有单位元;3.{G,▫}每个元都与逆元则称{G,▫}是一个群,简称G是一个群。

b. 若G是一个有乘法的有限非空集合,且满足消去律。

群的性质1.单位元唯一;2.逆元唯一;3.若G是群,则对G中的任意元a、b,方程ax = b和xa = b都有唯一的解4.若G是群,则对任意G中的两个元素a、b, 有(ab)-1=b-1a-1注:可以推广到无限:111211m1m1m21ma...aaa)...aa(aG,a..,------=⇒∈∀,.a,a215.单位元是群中唯一的等幂元素(满足x2 = x的元叫等幂元)证:令x是等幂元,∴x=ex=(x-1x)x=x-1(xx)=x-1x=e。

6.群满足左右消去律。

推论:若G是有限群,则其运算表中的每一行(列)都是G中元的一个排列,而且不同行(列)的排列不同。

7.若群G的元a的阶是n(有限),则a k。

8.群中的任意元素a和他的逆元a-1具有相同的阶。

9.在有限群G中,每一元素具有一有限阶,且阶数至多为|G|。

交换群:若一个群中的任意两个元a、b,都满足ab = ba,则这个群为交换群。

元素的阶:G的一个元素a,能够使a m = e 的最小正整数m叫做a的阶,记为o(a)。

若是这样的m不存在,则称a是无限阶的。

有限群:若一个群的元的个数是一个有限整数,则称这个群为有限群,否则为无限群。

一个有限群的元的个数叫做这个群的阶。

定理:一个有乘法的有限集合G若是满足封闭性、结合律、消去律,那么,对于G的任意两个元a,b来说,方程ax = b 和 ya = b§5变换群定理1:假定G是集合A的若干个变换所作成的集合,并且G包含恒等变换ε。

近世代数知识点教学文稿

近世代数知识点教学文稿

近世代数知识点近世代数知识点第一章基本概念1.1集合●A的全体子集所组成的集合称为A的幂集,记作2A.1.2映射●证明映射:●单射:元不同,像不同;或者像相同,元相同。

●满射:像集合中每个元素都有原像。

Remark:映射满足结合律!1.3卡氏积与代数运算●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般A*B不等于B*A.●集合到自身的代数运算称为此集合上的代数运算。

1.4等价关系与集合的分类★等价关系:1 自反性:∀a∈A,a a;2 对称性:∀a,b∈R, a b=>b a∈R;3 传递性:∀a,b,c∈R,a b,b c =>a c∈R.Remark:对称+传递≠自反★一个等价关系决定一个分类,反之,一个分类决定一个等价关系★不同的等价类互不相交,一般等价类用[a]表示。

第二章群2.1 半群1.半群=代数运算+结合律,记作(S,)Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。

ii.若半群中的元素可交换,即a b=b a,则称为交换半群。

2.单位元i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不存在;若都存在,则左单位元=右单位元=单位元。

ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。

iii.在有单位元的半群中,规定a0=e.3.逆元i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。

ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。

iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。

4.子半群i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个子半群ii.T是S的子半群a,b T,有ab T2.2 群1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark:i. 若代数运算满足交换律,则称为交换群或Abel群.ii. 加群=代数运算为加法+交换群iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合SL(n,p).2. 群=代数运算+结合律+左(右)单位元+左(右)逆元=代数运算+结合律+单位元+逆元=代数运算+结合律+∀a,b G,ax=b,ya=b有解3. 群的性质i. 群满足左右消去律ii.设G是群,则∀a,b G,ax=b,ya=b在G中有唯一解iii.e是G单位元⇔ e2=eiv.若G是有限半群,满足左右消去律,则G是一个群4. 群的阶群G的阶,即群G中的元素个数,用表示。

(完整版)近世代数复习知识点

(完整版)近世代数复习知识点

一、二、(45分)
单项选择题和填空题的知识点:
1.
任何有限群G 的子群H 的阶数是G 阶数的因子 2.
任何素数阶数的群是循环群,而循环群是交换群 3.
群的定义是什么?给出一些集合和集合上的运算,能判断集合关于运算是不是群。

4.
什么是一个群G 的生成元,给出一个子集合会判断该子集是不是子群。

5. 什么叫做结合律?给出一个集合和集合上的运算,会判断该运算是不是可结合的。

6. 已知群G 的元素a 的阶是n, 那么m a 的阶是(,)
n n m 。

7. 环、整环、除环、域的定义。

8. 什么是单位元,什么是一个元的逆元素,单位元和一个元素的逆元素唯一吗?
9. 什么叫做一个群的左、右陪集, 有限群的左、右陪集的个数是什么关系?
10. 环无零因子是什么意思?
11. 无零因子的特征是什么意思?
12. 有限群G 的任何元素的阶数都是G 阶数的因子。

13. 集合的直积是怎么定义的。

14. 循环群的子群是循环群吗?
15. 一个集合可以和其真子集建立一一对应吗?
三、问答题知识点(25分)
1. 正规子群,举例说明
2. 循环群, 举例说明
3. 有限域,举例说明
5 . 群的左、右陪集,举例说明
6. 原根,举例说明
7. 等价关系,举例说明
8. 系统同态,举例说明
9. 检错和纠错
10.理想和商环
四、证明题知识点(30分)
1. lagrange 定理。

P .69
2. 例1. P .94
3. 定理1 p.72
4. 定理 p.88。

近世代数 复习整理

近世代数 复习整理

【lagrange 定理及推论】定理5 (Lagrange 定理) 设G H ≤ ,如果n H N G ==,,且[]H G :j =,那么 .nj N = 证明: []H G :j =,这表明H 在G 中的右陪集只有j 个,从而有G 的右陪集分解: j Ha Ha Ha Ha G 321= (其中H Ha =1) 由引理知,n Ha Ha Ha j==== 21所以 nj N j Ha G =⇒=1.由上等式“nj N =”知子群H 的阶n 是G 的N 阶的因子,于是可得到下面 推论:设是G 有限群,G a ∈∀,若m a =,那么m 必是G 的因子。

证明:由元素a 生成G 的一个循环子群 ()a H =.由Lagrange 定理知G H ,但 .m H =G m ∴.推论2:设G =N ,则G ∈∀H ,有H 的阶数只能是N 的因式例:{},,,对G10a a 0Z G ==其所有子群阶数只能是1,2,5,10证:书p70|3:假定a 和b 是一个群G 的两个元,并且ab=ba ,又假定a 的阶是m ,b 的阶是n ,并且(m ,n )=1,证明:ab 的阶是mn 。

证明:【群同态】例1:设}0|||)({)(≠∈=A R M A R GL n n .}1|||)({)(=∈=A R M A R SL n n .},{⋅=∙R G ——非零实数的乘法群。

首先有,G R GLn →)(:ϕ,其中||)(A A =ϕ,可知ϕ是群同态满射(证明略),即∙R R GLn ~)(,因为1=e , 故知)()(R SL Ker n =ϕ,由定理2∙≅⇒R R SL R GLn n )()(.定理3—4. 设G G →:ϕ是群同态满射,于是有下列结果(1) 若 G H ≤,那么 ()G H ≤ϕ. (2) 若 G H ,那么 ()G H ϕ.(3) 若 ()G H G H ≤⇒≤-1ϕ,并ker ()()H 1-≤ϕϕ (4) 若 ()G H G H 1-⇒ϕ且 ker ()()H 1-≤ϕϕ.证明: (1) ()()g g H g G g H =∈∃∈=ϕϕ使 表示H 在ϕ下的象.于是 ()H y x H y x ∈∃⇒∈∀,,ϕ 使 ()()y y x x ϕϕ==, ,进而 , ()()()xy y x y x ϕϕϕ==,因为 H xy G H ∈⇒≤ ()H x ϕ=∴-1.由上知 ()G H ≤ϕ.(2) G H ≤, 由(1)()G H ≤⇒ϕ,另外, ()G g H x ∈∀∈∀,ϕ, ()()g g x x G g H x ϕϕ==∈∃∈∃∴,使 和 于是 ()()()()111---==gxgg x g g x g ϕϕϕϕ,因为 H gxgG H∈⇒-1()()()H gx g H gxgϕϕϕ∈⇒∈∴--11 即 ()G H ϕ.注意4. 在(1)的证明中,没有用到ϕ是满射的条件,但在(2)中用到了.(3) ()H y x 1,-∈∀ϕ,那么 ()().,H y y H x x ∈=∈=ϕϕ于是 ()()()H y x y x xy ∈==ϕϕϕ ()()H xy G H 1-∈⇒≤ϕ另外,()()H xx x ∈==---111ϕϕ ()G H ()H x11--∈∴ϕ由上知 ()G H ≤-1ϕ,且 ()()()()()H H He a a 11ker ker --≤⇒⇒∈=⇒∈∀ϕϕϕϕϕ(4) ,G H ≤ 由 (3)()G H ≤⇒-1ϕ()H x 1-∈∀ϕ,G g ∈∀. 则 ϕ()()()()()()111---==g x g g x g gxg ϕϕϕϕϕH gx g ∈=-1,()()H gxgG H 11--∈⇒ϕ, ()G H 1-∴ϕ.注意5. (3)和(4)的证明都没有用到ϕ是满射的条件.【子群的判定】 例1设G 为任意一个群,那么由G 的单位元组成子集}{e ,自然有G e ≤}{,另外G 本身也有G G ≤,所以G 一般有两个子群,统称它们为的G 平凡子群。

近世代数考试复习

近世代数考试复习

V近世代数复习题>一、定义描述(8'1、群:设G是一个非空集合,是它的一个代数运算。

如果满足以下条件:(1)结合律成立,即对G中任意元素a, b, c都有(a b)c = a (be).(2)G中有元素e.叫做G的左单位元,它对G中每个元素a都有e a = a .(3)对G中每个元素a,在G中都有元素a-1,叫做a的左逆元,使a-1 a = e . 则称G对代数运算做成一个群。

12、正规子群:设N是群G的一个子群,如果对G中每个元素a都有aN=Na,即aNa =N,则称N是群G的一个正规子群(或不变子群)。

3、环:设非空集合R有两个代数运算,一个叫做加法并用加号+表示,另一个叫做乘法用乘号表示,如果:(1)R对加法作成一个加群;(2)R对乘法满足结合律:(ab)e = a(be);(3)乘法对加法满足左右分配率:a(b+e)= ab + ae,(b+e)a = ba + ea .其中a,b,e为R中任意元素,则称R对这两个代数运算作成一个环。

4、极大理想:设N是环R的一个理想,且N M R如果除R和N夕卜,R中没有包含N的其它理想,则称N为环R的一个极大理想。

5、惟一分解整环:设K是有单位元的整环。

如果K中每个既不是零又不是单位的元素都能惟一分解,则称K为惟一分解整环。

整数环Z及域F上多项式环F[ x ]都是惟一分解整环。

6、欧氏环:设K是一个有单位元的整环,如果(1 )有一个从K的非零元集K -{ 0}到非负整数集的映射“存在;(2)这个2对K中任意元素a及b M 0,在K中有元素q, r使a=bq + r, r=0 或“ (r)< 2 (b),则称R关于”作成一个欧氏环。

-------------------------------7、素理想:设R是一个交换环,P ? R •如果ab€ P => a€ P或b€ P,其中a, b € R,则称P是R的一个素理想。

显然,环R本身是R的一个素理想;又零理想{ 0}是R的素理想当且仅当R无零因子,亦即R是一个整环。

近世代数教学大纲

近世代数教学大纲

混凝土加气块标准
1、砌块砌筑时,应上下错缝,搭接长度不宜小于砌块长度的1/3。

2、砌块内外墙墙体应同时咬槎砌筑,临时间断时可留成斜槎,不得留“马牙槎”。

灰缝应横平竖直,水平缝砂浆饱满度不应小于90%。

垂直缝砂浆饱满度不应小于80%。

如砌块表面太干,砌筑前可适量浇水。

3、地震区砌块应采用专用砂浆砌筑,其水平缝和垂直缝的厚度均不宜大于15mm。

非地震区如采用普通砂浆砌筑,应采取有效措施,使砌块之间粘结良好,灰缝饱满。

当采用精确砌块和专用砂浆薄层砌筑方法时,其灰缝不宜大于3mm。

4、后砌填充砌块墙,当砌筑到梁(板)底面位置时,应留出缝隙,并应等待7d后,方可对该缝隙做柔性处理。

5、切锯砌块应采用专用工具,不得用斧子或瓦刀任意砍劈。

洞口两侧,应选用规格整齐的砌块砌筑。

6、砌筑外墙时,不得在墙上留脚手眼,可采用里脚手或双排外脚手。

7、砌体结构尺寸和位置允许偏差。

近世代数复习

近世代数复习

(四) 关于求高斯整环的理想的显然形式及其商环的一般解法: 1. 高斯整环的显然形式分两种情况: (a) 理想形如 I a i 首先, N (a i) (a i)(a i) I ,所以对任意的 z Z , N (a i) z I . 对于 i 前系数为 1 的情况, x yi 以 y 优先凑 y 的表达式 x yi ( x ay) (a i) y . 因为 (a i) I ,所以只要 x ay I ,则 x yi I . 则可以得到其显然表达式为 a i {x yi | x ay mod( N (a i))} . 若x ay mod( N (a i)) ,则 x yi I ,若不然, 1 I ,则有 I Z[i] ,矛盾. (b) 理想形如 I 1 bi 同样, N (1 bi) (1 bi)(1 bi) I ,所以对任意的 z Z , N (1 bi) z I . 对于 i 前系数为 b 的情况, x yi 以 x 优先凑 x 的表达式 x yi (1 bi) x ( y bx)i . 因为 (1 bi) I ,所以只要 y bx I ,则 x yi I . 则可以得到其显然表达式为 1 bi {x yi | y bx mod( N (1 bi))} . 若y bx mod( N (1 bi)) ,则 x yi I ,若不然, 1 I ,则有 I Z[i] ,矛盾. 2. 高斯整环的商环 当理想的生成元的范围为素数时,即若 N (a bi) 为素数, Z[i]/ a bi Z N ( a bi) . (a) 理想形如 I a i 的显然表达式为 a i {x yi | x ay mod( N (a i))} . 当 x ay mod( N (a i)) 时, x yi <a i> , x yi 0 ; 当 x ay mod( N (a i)) 时, x yi m a i ,其中 m Z N ( a i) ,则 x yi 1, 2, 由此得 Z[i]/ a i {0,1, 2, 是一个素理想. (b) 理想形如 I 1 bi 的显然表达式为 1 bi {x yi | y bx mod( N (1 bi))} . 当 y bx mod( N (1 bi)) 时, x yi 1 bi , x yi 0 ; 当 y bx mod( N (1 bi)) 时, x yi m 1 bi ,其中 m Z N (1bi) ,则 x yi 1, 2, 由此得 Z[i]/ 1 bi {0,1, 2, 也是一个素理想.

近世代数考试大纲

近世代数考试大纲

近世代数考试大纲教材:《近世代数基础》,张禾瑞编,人民教育出版社,1978年修订本总要求考生应理解《近世代数》中群,循环群,n阶对称群,变换群,陪集,不变子群的定义及其性质,了解环,域,理想,唯一分解环的定义,能够计算群的元素阶,环中可逆元,零因子,素元,掌握群,环同态和同构基本定理,掌握判别唯一分解环的方法。

应注意各部分知识结构及知识间的内在联系,应有抽象思维、逻辑推理、准确运算等能力。

内容一、基本概念(一)知识范围1、基本概念(1)集合映射一一映射代数运算结合律交换律分配律(2)同态同构自同构(3)等价关系和分类(二)要求1、理解集合,映射等概念2、掌握代数运算与映射的关系3、掌握同态映射,同构映射和自同构的概念,理解两个具有同构关系的集合之间的关系4、理解关系和等价关系的概念,掌握等价关系和分类之间的转换定理二、群(一)知识范围1、群的定义,单位元,逆元,消去律2、群的同态,循环群,变换群,置换群`3、子群,子群的陪集,不变子群,商群(二)要求1、掌握群,有限群,无限群,群的阶和变换群的概念2、理解群同态,同构的定义,掌握循环群的定义和由生成元决定循环群的性质与特点3、理解置换与置换群的定义性质,有限群与置换群的同构关系4、掌握陪集,不变子群的定义,了解子群与陪集之间的映射关系5、理解商群的定义,掌握两个具有同态关系的群之间子群或不变子群的象的性质三、环与域(一)知识范围1、加群,环的定义,交换律,单位元,零因子,整环,除环,域2、无零因子环的特征,子环,环的同态,多项式环3、理想,剩余类环,商域(二)要求1、掌握加群的定义,熟悉环的定义,环中的计算规则2、理解交换环,子环,子除环的定义3、了解多项式环,理解理想子环的构成4、了解什么是最大理想,了解商域的构成四、整环里的因子分解(一)知识范围1、素元,唯一分解环,主理想环2,多项式环的因子分解,因子分解与多项式的根(二)要求1、掌握唯一分解的定义,了解整环中的元是否都有唯一解2、理解判别唯一分解环的方法3、理解主理想环的概念,本原多项式的性质和本原多项式的唯一分解性试卷结构试卷总分 100分考试时间 120分钟试卷题型比例填空题约30% 选择题约15% 判断题约10% 计算题约15% 证明题约30% 试卷难易比例容易题约30% 中等难度题约50% 较难题约20%。

《近世代数》期末复习纲要

《近世代数》期末复习纲要

《近世代数》期末复习纲要
佚名
【期刊名称】《内蒙古电大学刊》
【年(卷),期】1991(000)006
【摘要】《近世代数》是我校八九级普专班数学专业开设的选修课,期末将由校部统一命题考试.现对考试范围、对各章的具体要求和考试题型等作如下说明:一、考
试范围和各章复习要求该课程期末试题仅包括教材前三章的内容,第四章(整环里的因子分解)在期末复习时不作要求。

对于前三章的内容,在期末复习时应当突出基本概念和基本证题思路,并要熟记一些较重要的名词定义。

具有要求如下:第一章基本
概念1.能在论证中准确地运用空集、子集、真子集、集合相等和集合的交,并、积
等概念;
【总页数】2页(P57-58)
【正文语种】中文
【中图分类】G728
【相关文献】
1.基于前测:提高期末复习的针对性——以浙教版教材二年级上册期末“应用问题”复习为例 [J], 吴恢銮;陈敏
2.中国革命史期末总复习纲要 [J], 牛文军
3.《自然科学概述》期末复习纲要 [J], 王石丞
4.联系拓展,构建“前后一致”的期末复习课——以北师大版数学七年级上册“从
线段的中点谈起”期末复习课为例 [J], 杜晓亮
5.明标定向,精准施策,上好期末复习课--基于期末复习阶段小学数学课堂教学微调研的思考 [J], 费岭峰
因版权原因,仅展示原文概要,查看原文内容请购买。

近世代数主要知识点共29页文档

近世代数主要知识点共29页文档
近世代数主要知识点
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
Байду номын сангаас
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

近世代数主要知识点

近世代数主要知识点
3 2
[5] x [3] x [2] x [6] x [5] x x [2] x [4] x [5]
5 4 3 3 2 2
[5] x [3] x ([2] [6]) x ([5] [2]) x ([4] 1) x [5]
5 4 3 2
等价关系与等价类
集合的等价关系 假如~满足以下规律Ⅰ反射律;a~a, 不管a是A的哪个元。Ⅱ, 对称律:a~b=>b~a Ⅲ,推移律:a~b,b~c=>a~ c 同余关系

群的定义
群的第一定义 一个不空集合G对于乘法的代数运 算来说做成一个群,假如 ⅰG对于这个乘法来说是闭的 ⅱ结合律成立:a(bc)=(ab)c 对于G的任意的三个元a,b,c 都对; ⅲ对于G的任意两个元a,b来说, 方程ax=b 和ya=b都在G里有 解

子集


若集合b的每一个元 素都属于集合a,我们说,b是a 的子集 交集 集合a和集合b的所有共 同元所组成的集合就叫做a和b 的交集 并集 由至少属于集合a和b之一 的一切元素组成的集合就叫做a 和b的并集
映射 映射的定义 假如通过一个法则Ф ,对于任何一个

A1×A2×· · ×An的元都能得到一个唯一的D的元d, ·· ·· 那么这个法则叫做集合A1×A2×· · ×An到集合D的 ·· ·· 一个映射 像 逆象, 映射的相同 效果相同就行

代数运算


定义一个A×B到D的映射叫做一个A×B到D的代数运算 代数运算是一种特殊的映射 描写它的符号,也可以特殊一点,一个 代数运算我们用。来表示

二元运算 假如。是一个A×A到A的代数运算,我们说集合A是闭 的 二元运算

近世代数知识点

近世代数知识点

近世代数知识点第一章基本概念1.1集合●A的全体子集所组成的集合称为A的幂集,记作2A、1.2映射●证明映射:●单射:元不同,像不同;或者像相同,元相同。

●满射:像集合中每个元素都有原像。

Remark: 映射满足结合律!1.3卡氏积与代数运算●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般A*B不等于B*A、●集合到自身的代数运算称为此集合上的代数运算。

1.4等价关系与集合的分类★等价关系:1 自反性:∀a∈A,a a;2 对称性:∀a,b∈R, a b=>b a∈R;3 传递性:∀a,b,c∈R,a b,b c =>a c∈R、Remark:对称+传递≠自反★一个等价关系决定一个分类,反之,一个分类决定一个等价关系★不同的等价类互不相交,一般等价类用[a]表示。

第二章群2、1 半群1.半群=代数运算+结合律,记作(S,)Remark: i、证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果就是否还在定义的集合中。

ii、若半群中的元素可交换,即a b=b a,则称为交换半群。

2.单位元i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不存在;若都存在,则左单位元=右单位元=单位元。

ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。

iii.在有单位元的半群中,规定a0=e、3.逆元i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。

ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。

iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。

4.子半群i.设S就是半群,≠T S,若T对S的运算做成半群,则T为S的一个子半群ii.T就是S的子半群a,b T,有ab T2、2 群1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark:i、若代数运算满足交换律,则称为交换群或Abel群、ii、加群=代数运算为加法+交换群iii、单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合SL(n,p)、2、群=代数运算+结合律+左(右)单位元+左(右)逆元=代数运算+结合律+单位元+逆元=代数运算+结合律+∀a,b G,ax=b,ya=b有解3、群的性质i、群满足左右消去律ii、设G就是群,则∀a,b G,ax=b,ya=b在G中有唯一解iii、e就是G单位元⇔ e2=eiv、若G就是有限半群,满足左右消去律,则G就是一个群4、群的阶群G的阶,即群G中的元素个数,用表示。

近世代数知识点

近世代数知识点

近世代数知识点第一章基本概念1.1集合●A的全体子集所组成的集合称为A的幂集,记作2A.1.2映射●证明映射:●单射:元不同,像不同;或者像相同,元相同。

●满射:像集合中每个元素都有原像。

Remark:映射满足结合律!1.3卡氏积与代数运算●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般A*B不等于B*A.●集合到自身的代数运算称为此集合上的代数运算。

1.4等价关系与集合的分类★等价关系:1 自反性:∀a∈A,a a;2 对称性:∀a,b∈R, a b=>b a∈R;3 传递性:∀a,b,c∈R,a b,b c =>a c∈R.Remark:对称+传递≠自反★一个等价关系决定一个分类,反之,一个分类决定一个等价关系★不同的等价类互不相交,一般等价类用[a]表示。

第二章群2.1 半群1.半群=代数运算+结合律,记作(S,)Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。

ii.若半群中的元素可交换,即a b=b a,则称为交换半群。

2.单位元i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不存在;若都存在,则左单位元=右单位元=单位元。

ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。

iii.在有单位元的半群中,规定a0=e.3.逆元i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。

ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。

iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。

4.子半群i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个子半群ii.T是S的子半群∀a,b T,有ab T2.2 群1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark:i. 若代数运算满足交换律,则称为交换群或Abel群.ii. 加群=代数运算为加法+交换群iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合SL(n,p).2. 群=代数运算+结合律+左(右)单位元+左(右)逆元=代数运算+结合律+单位元+逆元=代数运算+结合律+∀a,b G,ax=b,ya=b有解3. 群的性质i. 群满足左右消去律ii.设G是群,则∀a,b G,ax=b,ya=b在G中有唯一解iii.e是G单位元 e2=eiv.若G是有限半群,满足左右消去律,则G是一个群4. 群的阶群G的阶,即群G中的元素个数,用表示。

近世代数的 知识点复习

近世代数的 知识点复习

近世代数知识点3.1 集合、映射、二元运算和整数3.1.1 集合常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ;正整数(自然数)集合{} ,3,2,1=+Z ; 有理数集合Q ,实数集合R ,复数集合C 等。

一个集合A 的元素个数用A 表示。

当A 中有有限个元素时,称为有限集,否则称为无限集。

用∞=A 表示A 是无限集,∞<A 表示A 是有限集。

3.1.2 映射映射是函数概念的推广,它描述了两个集合的元素之间的关系。

定义1 设A ,B 为两个非空集合,若存在一个A 到B 的对应关系f ,使得对A 中的每一个元素x ,都有B 中唯一确定的一个元素y 与之对应,则称f 是A 到B 的一个映射,记作y=f(x)。

y 称为x 的像,x 称为y 的原像,A 称为f 的定义域,B 称为f 的定值域。

定义2 设f 是A 到B 的一个映射(1) 若A x x ∈∀21,和21x x ≠均有)()(21x f x f ≠,则称f 是一个单射。

(2) 若B y ∈∀均有A x ∈使y x f =)(,则称f 是满射。

(3) 若f 既是单射又是满射,则称f 是双射。

3.1.3 二元运算3.1.3.1 集合的笛卡儿积由两个集合可以用如下方法构造一个新的集合。

定义3 设A ,B 是两个非空集合,由A 的一个元素a 和B 的一个元素b 可构成一个有序的元素对(a,b ),所有这样的元素对构成的集合,称为A 与B 的笛卡儿积,记作B A ⨯,即{}B b A a b a B A ∈∈=⨯,),(。

用笛卡儿积还可定义一个集合中的运算。

定义4 设S 是一个非空集合,若有一个对应规则f ,对S 中每一对元素a 和b 都规定了一个唯一的元素S c ∈与之对应,即f 是S S S →⨯的一个映射,则此对应规则就称为S 中的一个二元运算,并表示为c b a =•,其中“•”表示运算符,若运算“•”是通常的加法或乘法,b a •就分别记作b a +或ab 。

近世代数(复习duo)

近世代数(复习duo)

(3)传递性: ∀x, y, z ∈ A , (xRy ∧ yRz) ⇒ xRz 。
则称 R 是一个定义在某个集合上的等价关系。
〖例子〗
设 A = {1, 2,,8} ,定义域上的关系如下: xRy ⇔ ∀x, y ∈ A, x ≡ y(mod 3) 。
7、系统同态,举例说明。
【定义】一个 A 到 A 的映射φ ,叫做一个对于代数运算 和 来说的, A 到 A 的同态映射,假如,在φ 之
单位元和一个元素的逆元素是唯一的。
9、什么叫做一个群的左、右陪集,有限群的左、右陪集的个数是什么关系?
由等价关系 所决定的类叫做子群 H 的右陪集。包含元 a 的右陪集用符号 Ha 来表示。 a b, b−1a ∈ H ,


Ha 为右陪集。
由等价关系 ′ 所决定的类叫做子群 H 的左陪集。包含元 a 的左陪集用符号 aH 来表示。a b, ab−1 ∈ H ,
下,不管 a 和 b 是 A 的哪两个元,只要 a → a,b → b 就有 a b → a b 。


〖例子〗
φ :a →1。
8、检错和纠错 【定义】信息位上增加一部分位数来进行检错和纠错。检错:能够检查出有错,但不知道错在哪里。纠错: 能够检查出错误并准确定位,同时纠正错误。 9、理想和商环
【定义】环 R 的一个非空子集ℵ 叫做一个理想子环,简称理想。
【定义】一个环 R 叫做一个除环,假如: (1) R 至少包含一个不等于零的元; (2) R 有一个单位元; (3) R 的每一个不等于零的元有一个逆元。
【定义】一个交换环叫做一个域。
8、什么是单位元,什么是一个元的逆元素,单位元和一个元素的逆元素唯一吗?
【定义】一个群 G 的唯一的能使 e=a a=e a ( a 是 G 的任意元)的元 e 叫做群 G 的单位元。 【定义】唯一的能使 a= −1a a= a−1 e 的元 a−1 叫做元 a 的逆元(有时简称逆)。

近世代数知识点

近世代数知识点

近世代数知识点近世代数,是数学中的一门重要分支,涉及了许多重要的知识点和概念。

在这篇文章中,我们将探讨一些近世代数中的关键概念和应用。

一、群论群论是近世代数中的基础概念,它描述了一种抽象的代数结构。

一个群由一个集合和一个二元运算组成,同时满足封闭性、结合律、单位元和逆元这四个性质。

群论的研究具有广泛的应用,如密码学、物理学中的对称性研究等。

二、环论环论是研究带有两个二元运算的代数结构,具有更多的性质和运算规则。

一个环由一个集合和两个二元运算组成,同时满足封闭性、结合律、分配律等性质。

环论的应用包括数论、代数几何等领域。

三、域论域论是研究带有四个基本运算(加法、减法、乘法、除法)的代数结构。

域是一种满足封闭性、结合律、单位元和逆元的代数结构。

域论在代数几何、密码学等领域有广泛应用。

四、线性代数线性代数是研究向量空间及其线性变换的代数学分支。

向量空间是一个满足特定性质的集合,其中定义了向量的加法和数量乘法运算。

线性代数的应用广泛,如机器学习、图像处理等。

五、域扩张域扩张是域论的重要内容之一,研究一个域如何通过添加元素扩张成一个更大的域。

域扩张的研究对于解决方程、证明数论中的一些性质等具有重要意义。

六、代数拓扑代数拓扑是代数学和拓扑学的交叉地带,研究了如何通过代数的方法来分析拓扑空间。

代数拓扑的研究在拓扑数据分析、几何学、非线性动力系统等领域有重要应用。

七、泛函分析泛函分析是研究函数空间和函数的特性以及泛函的理论和应用的数学分支。

泛函分析的应用广泛,如量子力学、信号处理等。

近世代数作为一门重要的数学学科,对于数学的发展和应用起到了重要的推动作用。

它通过抽象的方式研究代数结构,提供了一种新的思维方式和工具,为数学家们解决实际问题提供了新的途径。

同时,近世代数的理论和方法在信息科学、工程学、物理学等领域也得到了广泛的应用。

总之,近世代数是一门充满魅力的学科,通过对群论、环论、域论、线性代数、域扩张、代数拓扑和泛函分析等知识点的学习与探索,我们能够更好地理解数学的本质和思想,从而为更广泛的数学研究和应用打下坚实的基础。

近世代数基础知识点总结

近世代数基础知识点总结

近世代数基础知识点总结近世代数是现代数学中的一个重要分支,它研究的是代数结构和代数运算的一般性质。

近世代数的基础知识点包括群论、环论和域论,这些知识点在数学研究和应用中都有着广泛的应用。

一、群论群是近世代数中最基本的代数结构之一。

群由一个集合和一个二元运算组成,这个二元运算必须满足封闭性、结合律、单位元和逆元四个性质。

群论的基本概念包括子群、陪集、正规子群、循环群等,并且研究了群之间的同构和同态等映射关系。

群论的应用非常广泛,例如在密码学、物理学、化学等领域都有着重要的应用。

二、环论环是一种比群更一般化的代数结构。

环由一个集合和两个二元运算组成,这两个二元运算分别满足封闭性、结合律、交换律和分配律等性质。

环论的基本概念包括子环、理想、商环等,并且研究了环的同态和同构等映射关系。

环论在数论、代数几何、代数拓扑等领域有着广泛的应用。

三、域论域是一种比环更一般化的代数结构。

域由一个集合和两个二元运算组成,这两个二元运算满足封闭性、结合律、交换律和分配律等性质,并且其中一个二元运算有单位元和逆元。

域论的基本概念包括子域、域扩张、代数元和超越元等,并且研究了域之间的同态和同构等映射关系。

域论在数论、代数几何、代数数论等领域有着广泛的应用。

四、线性代数线性代数是近世代数的一个重要分支,研究的是向量空间及其线性变换的性质。

线性代数的基本概念包括向量、线性组合、线性相关性、基、维数等,并且研究了线性变换、特征值和特征向量等。

线性代数在几何学、物理学、工程学等领域有着广泛的应用。

五、Galois理论Galois理论是近世代数的一个重要分支,研究的是域的扩张和多项式方程的解的关系。

Galois理论的基本概念包括Galois扩张、Galois群、Galois对应等,并且研究了可解多项式和不可解多项式的判别方法。

Galois理论在数论、代数几何、代数数论等领域有着广泛的应用。

六、表示论表示论是近世代数的一个重要分支,研究的是群的表示及其性质。

近世代数前两章复习

近世代数前两章复习

第一章 基本概念1.1 集合1.集合:由一些事物所组成的一个整体。

通常用大写拉丁字母A,B,C,…表示。

2.组成一个集合的各个事物称为这个集合的元素,通常用小写拉丁字母a,b,c,…表示。

常见符号:;,.a A a A a A ∈∉∈3.子集:若,a A a B ∀∈⇒∈则称A 是B 的子集,B 是A 的扩集,或A 包含于B , B 包含A ,记作,A B B A ⊆⊇。

当A 不是B 的子集时,记作“A B ⊄”。

4.真子集:若A B ⊆,且b B ∃∈,而b A ∉,则称A 是B 的真子集,记作A B ⊂。

5.幂集:由给定集合A 的全体子集所组成的集合称为A 的幂集,记作()2A P A =。

6.设A,B 是全集U 的两个子集.{}|A B x x A x B ⋃=∈∈或{}|A B x x A x B ⋂=∈∈且A 的余:{}=|A x x U x A '∈∉,B 在A 中的余:{}{}\||.A B x x A x B x x A x B A B ''=∈∉=∈∈=⋂且 且 例. 设},,,,,{},,,,{},,,,,,,,{g f e d a N h e c a M h g f e d c b a U ===求,\,.M N M N M N ''⋃⋂解:{}{}{}{}{},,,,,,;\,;,,,,,,;.M N a c d e f g h M N c h M b d f g N b c h M N b ⋃==''''==⋂=1.2 映射1.映射:设A,B 是两个给定的非空集合,若有一个对应法则f ,使a A ∀∈,通过f ,!b B ∃∈与其对应,则称f 是A 到B 的一个映射,记作:f A B →或f A B −−→ A 称为f 的定义域,B 称为f 的陪域。

b 称为a 在f 下的像,a 称为b 在f 下的原像,记作()b f a =或:.f a b a2.映射相等:设f 是1A 到1B 的映射,g 是2A 到2B 的映射,若1122,,A B A B ==且1x A ∀∈,都有()()f x g x =,则称f 与g 相等,记作f g =。

最新近世代数复习提纲

最新近世代数复习提纲

最新近世代数复习提纲近世代数复习提纲群论部分一、基本概念1、群的定义(四个等价定义)2、基本性质(1)单位元的唯一性;(2)逆元的唯一性;(3)11111(),()ab b a a a -----==;(4)ab ac b c =?=;(5)1ax b x a b -=?=;1ya b y ba -=?=。

3、元素的阶使m a e =成立的最小正整数m 叫做元素a 的阶,记作||a m =;若这样的正整数不存在,则称a 的阶是无限的,记作||a =∞。

(1)11|,||||()|||a g ag g G a a --=?∈=。

(2)若m a e =,则①||a m ≤;②||a m =?由n a e =可得|m n 。

(3)当群G 是有限群时,a G ?∈,有||a <∞且||||a G 。

(4)||||r n a n a d =?=,其中(,)d r n =。

证明设|||r a k =。

因为()()n r r n d d a a e ==,所以n k d。

另一方面,因为()r k rk a a e ==,所以n rk ,从而n r k d d ,又(,)1r n d d =,所以n k d ,故n k d =。

注:1? ||||||ab a b ≠,但若ab ba =,且(||,||)1a b =,则有||||||ab a b =(P70.3)。

2? ||,||G a G a <∞??∈<∞;但,||||a G a G ?∈<∞?<∞/。

例1 令{|,1}n G a C n Z a =∈?∈?=,则G 关于普通乘法作成群。

显然,1是G 的单位元,所以a G ?∈,有||a <∞,但||G=∞。

二、群的几种基本类型1、有限群:元素个数(即阶)有限的群,叫做有限群。

2、无限群:元素个数(即阶)无限的群,叫做无限群。

3、变换群:集合A 上若干一一变换关于变换乘法作成的群,叫做集合A 上的变换群。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数复习提纲群论部分一、基本概念1、群的定义(四个等价定义)2、基本性质(1)单位元的唯一性;(2)逆元的唯一性;(3)11111(),()ab b a a a -----==;(4)ab ac b c =⇒=;(5)1ax b x a b -=⇒=;1ya b y ba -=⇒=。

3、元素的阶使m a e =成立的最小正整数m 叫做元素a 的阶,记作||a m =;若这样的正整数不存在,则称a 的阶是无限的,记作||a =∞。

(1)11|,||||()|||a g ag g G a a --=∀∈=。

(2)若m a e =,则①||a m ≤;②||a m =⇔由n a e =可得|m n 。

(3)当群G 是有限群时,a G ∀∈,有||a <∞且||||a G 。

(4)||||r n a n a d =⇒=,其中(,)d r n =。

证明 设|||r a k =。

因为()()n r r n d d a a e ==,所以n k d。

另一方面,因为()r k rk a a e ==,所以n rk ,从而n r k d d ,又(,)1r n d d =,所以n k d ,故n k d =。

注:1︒ ||||||ab a b ≠,但若ab ba =,且(||,||)1a b =,则有||||||ab a b =(P70.3)。

2︒ ||,||G a G a <∞⇒∀∈<∞;但,||||a G a G ∀∈<∞⇒<∞/。

例1 令{|,1}n G a C n Z a =∈∃∈∍=,则G 关于普通乘法作成群。

显然,1是G 的单位元,所以a G ∀∈,有||a <∞,但||G =∞。

二、群的几种基本类型1、有限群:元素个数(即阶)有限的群,叫做有限群。

2、无限群:元素个数(即阶)无限的群,叫做无限群。

3、变换群:集合A 上若干一一变换关于变换乘法作成的群,叫做集合A 上的变换群。

(1)变换群的单位元是A 的恒等变换。

(2)A 的所有一一变换的集合关于变换的乘法作成A 上最大的变换群。

(3)一般地,变换群不是交换群。

(4)任一个群都与一个变换群同构。

4、置换群:有限集合A 上的一一变换叫做置换,若干置换作成的变换群叫做置换群。

即有限集合上的变换群叫做置换群。

例2 设(123),(13)(24)αβ==是5S 中元素,求αβ。

解 12345123451234512345(123)(13)(24)(142)23145321451432541325αβ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(1)n 元集合A 的所有置换作成的置换群,叫做n 次对称群,记作n S 。

(2)||!n S n =。

(3)每个n 元置换都可表示为若干个没有公共数字的循环置换的乘积。

(4)11221()()k k i i i i i i -=L L 。

(5)任一有限群都与一个置换群同构。

5、循环群:若群G 中存在元素a ,使得(){|}n G a a n Z ==∈,则称G 是循环群。

(1)循环群是交换群(P61.1)。

(2)素数阶群是循环群(P70.1)。

(3)循环群的子群是循环群(P65.4)。

(4)当||G =∞时,2102{,,,,,,}G Z G a a e a a a --≅⇒==L L ; 当||G n =时,021{,,,,}n n G Z G e a a a a -≅⇒==L 。

(5)||||G a =(6)当||G =∞时,G 有且仅有两个生成元1,a a -; 当||G n =时,G 有且仅有()n ϕ个生成元,这里()n ϕ表示小于n 且与n 互素的正整数个数。

且当(,)1m n =时,m a 是G 的生成元。

(7)若G 与G 同态,则1︒ G 也是循环群;2︒ 当()a a ϕ=时,()G a =;3︒ G 的阶整除G 的阶。

例3(P79、3)三、子群1、定义:设H 是群G 的非空子集,若H 关于G 的于是也构成群,则称H 是G 的子群,记作H G ≤。

2、等价条件(1)群G 的非空子集H 是子群⇔,a b H ∀∈,有1,ab a H -∈ ⇔,a b H ∀∈,有1ab H -∈(2)群G 的非空有限子集H 是子群⇔,a b H ∀∈,有ab H ∈。

3、运算(1)若12,H H G ≤,则12H H G ≤I (可推广到任意多个情形)。

(2)若12,H H G ≤,则12H H U 未必是G 的子群。

(3)若12,H H G ≤,则12121122{|,}H H h h h H h H =∈∈未必是G 的子群。

(4)若12,H H G ≤,则12H H -不是G 的子群。

4、陪集设H G ≤,则G 的子集{|}aH ah h H =∈叫做H 的包含a 的左陪集;G 的子集{|}Ha ha h H =∈叫做H 的包含a 的右陪集。

(1)一般地,aH Ha ≠。

(2)1aH bH b a H -=⇔∈;1Ha Hb ab H -=⇔∈;()aH Ha H a H =⇔∈。

(3)()aH Ha G a H ≤⇔∈。

(4)()()()[()()]aH bH Ha Hb aH bH Ha Hb φφ≠≠⇔==I I 。

(5){|}aH a G ∈是G 的一个分类,{|}Ha a G ∈也是G 的一个分类。

即a GG aH ∈=U ,且()()aH bH φ=I (当aH bH ≠时)或a GG Ha ∈=U ,且()()Ha Hb φ=I (当Ha Hb ≠时)5、指数:群G 的子群H 的左陪集(右陪集)个数叫做H 的指数,记作[:]G H 。

当||G <∞时,有||||[:]G H G H =。

6、不变子群设H 是群G 的子群,若a G ∀∈,都有aH Ha =,则称H 是G 的不变子群,记作H G <。

群G 的子群H 是不变子群⇔a G ∀∈,有1a Ha H -=⇔,a G h H ∀∈∀∈,有1a ha H -∈。

例4(P74、1)例5(P74、3)1〫不变子群的交是不变子群。

2〫交换群的子群是不变子群。

3〫群G 的中心(){|,}C G a G x G xa ax =∈∀∈=是G 的不变子群。

4〫设12,H H G ≤且有一个是不变子群,则12H H G <。

7、商群 设H G <,令{|}G H aH a G =∈,,aH bH G H ∀∈,定义()()()aH bH ab H = 则它是G H 的代数运算,叫做陪集的乘法。

G H 关于陪集的乘法作成群,叫做G 关于H 的商群。

当||G <∞时,有||||||G G H H =。

四、群同态 设ϕ是群G 到G 的同态满射,则1、G 也是群;2、()e e ϕ=;3、11()[()]a a ϕϕ--=;4、|()|||a a ϕ;5、ker {|()}a G a e G ϕϕ=∈=<;6、ker (:ker ())G G a a σϕσϕϕ≅→;7、()H G H G ϕ≤⇒≤;8、()H G H G ϕ⇒<<;9、1()H G H G ϕ-≤⇒≤;10、1()H G H G ϕ-⇒<<。

注:若H G <,则映射:()a aH a G ϕ→∀∈是G 到G H 的同态满射,叫做自然同态。

环论部分一、基本概念1、环的定义设R 是一个非空集合,“+”与“。

”分别是加法与乘法运算,若(1)R 关于“+”作成交换群(叫做加群);(2)R 关于“。

”封闭;(3),,a b c R ∀∈,有()()a b c a b c =o o o o ;(4),,a b c R ∀∈,有()a b c a b a c +=+o o o()b c a b a c a +=+o o o则称R 关于“+”与“。

”作成环。

2、基本性质(1)()a b c a b a c -=-o o o ,()b c a b a c a -=-o o o ;(2)000a a ==o o ;(3)()()()a b a b a b -=-=-o o o ;(4)()()a b a b --=o o ;(5)1111(),()n n n n a b b a b a b b b a b a b a ++=++++=++o L o L o L o o L o ;(6)1111()()m n m ni j i j i j i j a b a b =====∑∑∑∑o o ;(7),()m n m n m n mn a a a a a +==o ;(8)当R 是交换环时,,a b R ∀∈,有1111()n n n n n n n n a b a C a b C ab b ---+=++++L 。

3、环的几种基本类型 设R 是环(1)交换环:,a b R ∀∈,有ab ba =。

例6(P89.2)(2)有单位元环:存在1R ∈,使得a R ∀∈,有11a a a ==。

(3)无零因子环:,a b R ∀∈,当0,0a b ≠≠时,0ab ≠。

注:无零因子环的特征:无零因子环R 中的非零元关于加法的阶,叫做R 的特征。

1︒ 无零因子环R 的特征,或是∞或是素数;2︒ 当无零因子环R 的元素个数||R 有限时,R 的特征整除||R 。

(4)整环:有单位元无零因子的交换环。

(5)除环:有单位元1(0)≠,且非零元都有逆元。

(6)域:交换的除环。

二、两类特殊的环1、模n 剩余类环:{[0],[1],[2],,[]}n Z n =L 。

(1)n Z 是有单位元的交换环,且[1]是n Z 的单位元;(2)[]n a Z ∀∈,[][0]a ≠,则[]a 不是零因子⇔(,)1a n =;(3)n Z 无零因子⇔n 是素数;(4)[]n a Z ∀∈,[][0]a ≠,则[]a 不是零因子⇔[]a 是可逆元;(5)n Z 是域⇔n 是素数。

2、多项式环:1010[]{()|,,,}n n n R x f x a x a x a a a a R ==+++∈L L 。

例7(P109.2)三、理想1、定义:设U 是环R 的非空子集,若(1),a b U ∀∈,有a b U -∈;(2),a U r R ∀∈∀∈,有,ar ra U ∈。

则称U 是环R 的理想子环,简称理想。

注:1︒ 理想一定是子环,但子环不一定是理想。

2︒ 环的中心是子环,但未必是理想。

2、运算(1)若12,U U 是环R 的理想,则12U U I 也是环R 的理想(可推广到任意多个情形)。

(2)若12,U U 是环R 的理想,则12U U U 未必是环R 的理想。

(3)若12,U U 是环R 的理想,则12121122{|,}U U u u u U u U +=+∈∈也是环R 的理想。

相关文档
最新文档