近世代数复习试题2010级

合集下载

近世代数复习试题2010级

近世代数复习试题2010级

《近世代数》复习试题一 填空题1.12,,n A A A L 是集合A 的子集,如果(1) ,(2) , 则称12,,n A A A L 为A 的一个分类.2.设},{21A =,},,,,{e d c b a B =,则有____个A 到B 的映射,_____个A 到B 的单射.3. 设G 是一个群,G a ∈,且21||=a ,则=||6a __________.4. 设G 是群,,,G b a ∈若1),(,||,||===n m n b m a ,而且ba ab =,则=||ab ______.5. 在3S 中,)23()12)(123(1-= .6. 模6的剩余类环6Z 的所有可逆元: .7. 模6的剩余类环6Z 的所有零因子: .8. R 是一个有单位元交换环,R a ∈,则由a 生成的主理想=)(a .9. 设群G 的阶是45, a 是群G 中的一个元素,则a 的阶只可能是____________.10. 高斯整环][i Z 的单位群])[(i Z U 的全部元素:____________________________.二 解答、证明题1.设Z 是全体整数的集合,在Z 中规定:.,,2Z b a b a b a ∈∀-+=ο证明:),(οZ 是一个交换群.2.证明:群G 不能表示成两个真子群的并.3.证明:r-循环为偶置换的充要条件是r 为奇数.4.设p 为素数,||G =n p ,证明:G 一定有一个p 阶子群.5.设G 是一个群,,,G K G H ≤≤证明:KH HK G HK =⇔≤.6.设H G ≤,N G <,证明:HN G ≤.7.设H G ≤,且2]:[=H G ,证明:.G H <8.证明:每个素数阶的群都是循环群.9.设N 是群G 的子群,N 的阶是r(1)证明1()gNg g G -∈也是G 的一个子群.(2)若N 是G 的唯一的r 阶子群,证明N 是G 的正规子群.10.设C(G)为G 中心, 且G/C(G)为循环群,证明G 为交换群.11.设G=)(a 是24阶循环群,试列举出G 的8阶子群的所有生成元。

近世代数基础测验卷

近世代数基础测验卷

近世代数测验题一、填空题(42分)1、设集合M 与M 分别有代数运算 与 ,且M M ~,则当 时, 也满足结合律;当 时, 也满足交换律。

2、对群中任意元素1)(,,-ab b a 有= ;3、设群G 中元素a 的阶是n ,n|m 则m a = ;4、设a 是任意一个循环群,若∞=||a ,则a 与 同构;若n a =||, 则a 与 同构;5、设G=a 为6阶循环群,则G 的生成元有 ;子群有 ;6、n 次对称群n S 的阶是 ;置换)24)(1378(=τ的阶是 ;7、设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=2314432114324321βα,,则=αβ ; 8、设)25)(136()235)(14(==τσ,,则=-1στσ ;9、设H 是有限群G 的一个子群,则|G|= ;10、任意一个群都同一个 同构。

二、证明题(24)1、 设G 为n 阶有限群,证明:G 中每个元素都满足方程e x n=。

2、 叙述群G 的一个非空子集H 作成子群的充要条件,并证明群G 的任意两个子群H 与K 的交K H 仍然是G 的一个子群。

3、 证明:如果群G 中每个元素都满足方程e x =2,则G 必为交换群。

二、解答题(34)1、 叙述群的定义并按群的定义验证整数集Z 对运算4++=b a b a 作成群。

2、 写出三次对称群3S 的所有子群并写出3S 关于子群H={(1),(23)}的所有左陪集和所有右陪集。

参考答案:一、填空题1、满足结合律; 满足交换律;2、11--a b ;3、e ;4、整数加群;n 次单位根群;5、5,a a ;{}{}{}{}5432423,,,,,,,,,,,a a a a a e a a e a e e ;6、n!;47、⎪⎪⎭⎫ ⎝⎛23144321 8、(456)(32)9、|H|:(G:H)10、(双射)变换群;二、证明题1、已知||n G =,|a|=k,则k|n令n=kq,则e a a a q k kq n ===)(即G 中每个元素都满足方程e x n =2、充要条件:H a H a H ab H b a ∈⇒∈∈⇒∈-1;,,;证明:已知H 、K 为G 的子群,令Q 为H 与K 的交设H b a ∈,,则K b a H b a ∈∈,,,H 是G 的子群,有H ab ∈K 是G 的子群,有K ab ∈Q ab ∈∴Ha Ka H a H a ∈∈∈∈∀-11,可知由定理且,则综上所述,H 也是G 的子群。

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。

答案:半群2. 一个群G的所有子群的集合构成一个________。

答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。

答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。

答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。

答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。

答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。

正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。

2. 请解释什么是群的同态和同构。

答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。

群的同构是同态,并且是双射,即存在逆映射。

3. 请解释什么是环的零因子和非零因子。

答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。

如果环R中不存在零因子,则称R为无零因子环。

近世代数复习题及答案

近世代数复习题及答案

近世代数复习题及答案1. 群的定义是什么?请给出一个例子。

答案:群是一个集合G,配合一个运算*,满足以下四个条件:封闭性、结合律、单位元的存在性、逆元的存在性。

例如,整数集合Z在加法运算下构成一个群。

2. 什么是子群?如何判断一个子集是否为子群?答案:子群是群G的一个非空子集H,使得H中的元素在G的运算下满足群的四个条件。

判断一个子集是否为子群,需要验证它是否在群运算下封闭,是否包含单位元,以及每个元素是否有逆元。

3. 什么是正规子群?请给出一个例子。

答案:正规子群是群G的一个子群N,对于G中任意元素g和N中任意元素n,都有gng^-1属于N。

例如,整数集合Z在加法运算下的子群2Z(所有偶数的集合)是一个正规子群。

4. 什么是群的同态?请给出一个例子。

答案:群的同态是两个群G和H之间的函数φ,使得对于G中任意两个元素a和b,都有φ(a*b) = φ(a) * φ(b)。

例如,函数φ: Z → Z_2定义为φ(n) = n mod 2,是整数群Z到模2整数群Z_2的一个同态。

5. 什么是群的同构?请给出一个例子。

答案:群的同构是两个群G和H之间的双射同态。

这意味着G和H不仅满足相同的群运算规则,而且它们之间存在一一对应关系。

例如,群Z_3(模3整数群)和群{1, -1}在乘法下构成的群是同构的。

6. 什么是环?请给出一个例子。

答案:环是一个集合R,配合两个运算+和*,满足以下条件:(R, +)是一个交换群,(R, *)满足结合律,且乘法对加法满足分配律。

例如,整数集合Z在通常的加法和乘法运算下构成一个环。

7. 什么是理想?如何判断一个子集是否为理想?答案:理想是环R的一个子集I,满足以下条件:I在加法下封闭,对于R中任意元素r和I中任意元素i,都有ri和ir属于I。

判断一个子集是否为理想,需要验证它是否在加法下封闭,以及是否满足吸收性质。

8. 什么是环的同态?请给出一个例子。

答案:环的同态是两个环R和S之间的函数φ,使得对于R中任意两个元素a和b,都有φ(a+b) = φ(a) + φ(b)和φ(a*b) = φ(a) * φ(b)。

(精选)近世代数练习题题库

(精选)近世代数练习题题库

§1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( )1.2 A ×B = B ×A ( )1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。

( ) 1.4 如果ϕ是A 到A 的一一映射,则ϕ[ϕ(a)]=a 。

( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。

( )1.6 设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( )1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。

( )1.8 整数的整除关系是Z 的一个等价关系。

( )2填空题:2.1 若A={0,1} , 则A A= __________________________________。

2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。

2.3 设={1,2,3} B={a,b},则A ⨯B=_______。

2.4 设A={1,2}, 则A A=_____________________。

2.5 设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。

2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。

2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。

2.8 设A 、B 是集合,| A |=| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。

2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},则A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},则A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件:_____________________________________________。

近世代数练习题试题库

近世代数练习题试题库

§1 第一章 根底知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

〔 〕1.2 A ×B = B ×A 〔 〕1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。

〔 〕 1.4 如果ϕ是A 到A 的一一映射,那么ϕ[ϕ(a)]=a 。

( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。

〔 〕1.6 设A 、B 、D 都是非空集合,那么B A ⨯到D 的每个映射都叫作二元运算。

〔 〕1.7 在整数集Z 上,定义“ 〞:a b=ab(a,b ∈Z),那么“ 〞是Z 的一个二元运算。

〔 〕1.8 整数的整除关系是Z 的一个等价关系。

( )2填空题:2.1 假设A={0,1} , 那么A ⨯A=__________________________________。

2.2 设A = {1,2},B = {a ,b},那么A ×B =_________________。

2.3 设={1,2,3} B={a,b},那么A ⨯B=_______。

2.4 设A={1,2}, 那么A ⨯A=_____________________。

2.5 设集合{}1,0,1-=A ;{}2,1=B ,那么有=⨯A B 。

2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,那么()[]=-a f f 1 。

2.7 设A ={a 1, a 2,…a 8},那么A 上不同的二元运算共有 个。

2.8 设A 、B 是集合,| A |=| B |=3,那么共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。

2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},那么A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},那么A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合以下三个条件:_____________________________________________。

近世代数考试试题题库

近世代数考试试题题库

近世代数考试试题题库近世代数是一门研究代数结构的数学分支,它主要研究群、环、域等代数结构的性质和它们之间的关系。

以下是一份近世代数考试试题题库的示例内容:一、选择题1. 以下哪个不是群的公理?A. 单位元存在性B. 可逆性C. 交换律D. 结合律2. 一个集合G,配合一个二元运算*,若满足以下条件,则G是一个群:A. 存在单位元B. 每个元素都有逆元C. 运算满足结合律D. 所有上述条件3. 在群G中,若a属于G,a的阶是最小的正整数n,使得a^n等于单位元,那么a的阶是:A. 1B. nC. 0D. G的阶4. 以下哪个是有限群的拉格朗日定理的表述?A. 群的子群的阶总是群的阶的因子B. 群的子群的阶等于群的阶C. 群的子群的阶总是群的阶的倍数D. 群的阶总是其子群的阶的倍数5. 环R中,若存在单位元1,并且对于任意的a, b属于R,都有a*b=b*a,则R是一个:A. 群B. 域C. 交换环D. 模二、填空题6. 群的______性质保证了每个元素都有逆元。

7. 一个有单位元的结合环,如果其每个非零元素都有逆元,则这个环称为一个______。

8. 一个环的加法群是阿贝尔群,如果它的加法运算满足______律。

9. 一个环R中,如果a^2 = a对于所有a属于R,则R被称为______环。

10. 一个域的特征是2,这意味着域中1+1=______。

三、简答题11. 解释什么是子群,并给出一个不是子群的例子。

12. 描述拉格朗日定理,并说明它在群论中的重要性。

13. 什么是环的雅各比恒等式,并解释它在交换环中的意义。

14. 举例说明什么是有限域,并讨论它的性质。

15. 解释什么是主理想环,并讨论它与环的整性之间的关系。

四、证明题16. 证明:如果H是群G的一个子群,那么G/H的阶等于[G:H]。

17. 证明:任何群的子群都是阿贝尔的当且仅当该群本身是阿贝尔的。

18. 证明:如果R是一个有单位元的交换环,并且对于任意的a, b属于R,都有a*b = b*a,则R是一个域。

近世代数复习题

近世代数复习题

近世代数复习题例1 :写出剩余类加群Z15的(1) 全部元素; { [0], [1], …, [14]}(2) 全部生成元; { [1], [2], [4], [7], [8], [11], [13], [14]}(3) 全部子加群;?[0]?, ?[1]?= Z15, ?[5]?={[0], [5], [10]}= ?[10]?,[3]?={ [0], [3], [6], [9], [12]} = ?[6]?= ?[9]?= ?[12]?.(4) 每个元素的负元;-[1]=[14], -[2]=[13], -[3]=[12],-[4]=[11], -[5]=[10], -[6]=[9], -[7]=[8].(5) 全部理想;([0]), ([1]) = Z15, ([5])={[0], [5], [10]}= ([10]),([3])={ [0], [3], [6], [9], [12]} = ([6])= ([9])= ([12]).(6) 全部可逆元;{ [1], [2], [4], [7], [8], [11], [13], [14]}(7) 全部零因子;{ [3], [5], [9], [10], [12]}(8) Z15是域吗?说明理由; 不是。

因为有零因子。

一、选择题1、设实数在有理数域Q上的极小多项式f(x)的次数为n, 则可以用圆规直尺作图作出的条件是(A)(A) n是2的方幂;(B) n是素数;(C) n是素数的方幂;(D) n>2。

2、设H是群G的正规子群,商群G/H中的元素是(C)(A) H中的元素;(B) G\H中的元素;(C) G 关于H 的所有右陪集;(D) H 的所有共轭1Hg -g.3、设是环同态, 则同态的核是 (D)(A) Ker(?)={a ∈S: 有?b ∈R, 使得 ?(b )=a };(B) Ker(?)={a ∈R: ? (a )=a };(C) Ker(?)={a ∈?R: ? (a )=1};(D) Ker(?)={a ∈?R: ? (a )=0}。

近世代数复习

近世代数复习

近世代数复习一、选择题(每题2分,共16分)1、若G (a), ord ( a) n,则下列说法正确得就是2、假定就是A与A(AI A )间得一一映射,a A,则1[(a)]与[1(a)]分别为83、若G 就是群,a G,ord(a) 18,4、指出下列那些运算就是二兀运算5、设A,A2丄,A n与D都就是非空集合,而f就是A A L A n 到D得一个映射,那么6、设o就是正整数集合N上得二元运算,其中aob maxa,b),那么o在Z中7、在群G中,a, b G ,则方程ax b与ya b分别有唯一解为&设H就是群G得子群,且G有左陪集分类{H,aH,bHcb}、如果[G : H ]6,那么G9、设集合A中含有5个元素,集合B中含有2个元素,那么,A 与B得积集合A X B中含有()个元素。

10、设A = B = R(实数集),如果A到B得映射:x—x+ 2, x € R,贝U就是从A到B得11、设Z15就是以15为模得剩余类加群,那么,Z15得子群共有( )个。

12、G就是12阶得有限群,H就是G得子群,则H得阶可能就是13、下面得集合与运算构成群得就是14、关于整环得叙述,下列正确得就是15、关于理想得叙述,下列不正确得就是16、整数环Z中,可逆元得个数就是a b17、设M2(R)= a,b,c,d€ R,R为实数域按矩阵得加法与乘法构成R上得二阶方阵c d环,那么这个方阵环就是-,当a为偶数时18、设Z就是整数集,c(a)= 2 4 ,a Z,则c就是R得「,当a为奇数时219、设A={所有实数x},A得代数运算就是普通乘法,则以下映射作成A到A得一个子集得同态满射得就是()、20、设就是正整数集Z上得二元运算,其中aob max a,b (即取a 与b中得最大者),那么在Z中()21、设S3={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2) },则S3 中与元(1 2 3)不能交换得元得个数就是()22、设G,o为群,其中G就是实数集,而乘法o:aob a b k,这里k为G中固定得常数。

近世代数期末考试试题和答案解析

近世代数期末考试试题和答案解析

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若是一个有限整数n ,那么G 与-------同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。

6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。

近世代数考题整理

近世代数考题整理

一、二、(45分)单项选择题和填空题的知识点:1. 任何有限群G 的子群H 的阶数是G 阶数的因子2. 任何素数阶数的群是循环群,而循环群是交换群3. 群的定义是什么?给出一些集合和集合上的运算,能判断集合关于运算是不是群。

P31-32第一定义:一个不空集合G 对于一个叫做乘法的代数运算来说作成一个群(1) G 对于这个乘法来说是闭的(2) 结合律成立a(bc)=(ab)c ,对于G 的任意三个元a,b,c 都对(3) 对于G 的任意两个元a,b 来说,方程ax=b 和ya=b 都在G 里有解 第二定义:一个不空集合G 对于一个叫做乘法的代数运算来说作成一个群(1) G 对于这个乘法来说是闭的(2) 结合律成立a(bc)=(ab)c ,对于G 的任意三个元a,b,c 都对(3) G 里至少存在一个左单位元e ,能让ea = a ,对于G 的任何元a 都成立(4) 对于G 的每一个元a ,在G 里至少存在一个左逆元a -1,能让a -1a = e4. 什么是一个群G 的生成元,给出一个子集合会判断该子集是不是子群若一个群G 的每一个元都是G 的某一个固定元a 的乘方,我们就把G 叫做循环群,也说G 是由a 所生成,并且用符号G=(a)来表示,a 叫做G 的一个生成元P635. 什么叫做结合律?给出一个集合和集合上的运算,会判断该运算是不是可结合的。

一个集合A 的代数运算o 适合结合律,对于A 的任意三个元a,b,c 来说,都有(a o b )o c = a o (b o c )6. 已知群G 的元素a 的阶是n, 那么m a 的阶是(,)n n m 。

7. 环、整环、除环、域的定义。

环:一个集合R 叫做环(1)R 是一个加群,R 对于一个叫做加法的代数运算来说作成一个交换群(2)R 对于另一个乘法的代数运算来说是闭的(3)这个乘法适合结合律:a(bc)=(ab)c ,不管a,b,c 是R 的哪三个元(4)两个分配律都成立a(b+c)=ab+ac ,(b+c)a=ba+ca ,不管a,b,c 是R 的哪三个元整环:一个环R 叫做整环,假如(1) 乘法适合交换律ab =ba(2)R有单位元1:1a = a1 = a(3)R没有零因子:ab=0 →a = 0或b=0a,b可以是R的任意元,整数环是整环除环:一个环R叫做一个除环(1)R至少包含一个不等于零的元(2)R有一个单位元(3)R的每一个不等于零的元有一个逆元域:一个交换除环叫做一个域(1)一个除环没有零因子。

近世代数期末考试试卷及答案.

近世代数期末考试试卷及答案.

近世代数期末考试试卷及答案.⼀、单项选择题(本⼤题共5⼩题,每⼩题3分,共15分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

错选、多选或未选均⽆分。

1、设G 有6个元素的循环群,a 是⽣成元,则G 的⼦集()是⼦群。

A 、{}aB 、{},a eC 、{}3,e aD 、{}3,,e a a2、下⾯的代数系统(G ,*)中,()不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在⾃然数集N 上,下列哪种运算是可结合的?()A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1(12)(23)(13)σ=,2(24)(14)σ=,3(1324)σ=,则3σ=()A 、21σB 、12σσC 、21σσD 、22σ5、任意⼀个具有2个或以上元的半群,它()。

A 、不可能是群B 、不⼀定是群C 、⼀定是群D 、是交换群 6、12阶有限群的任何⼦群⼀定不是()。

A 、2阶B 、3 阶C 、4 阶D 、 5 阶7、设G 是群,G 有()个元素,则不能肯定G 是交换群。

A 、4个B 、5个C 、6个D 、7个8、有限布尔代数的元素的个数⼀定等于()。

A 、偶数B 、奇数C 、4的倍数D 、2的正整数次幂9、若I,J 均是环A 的理想,则()不⼀定是A 的理想。

A 、I+JB 、I ∩JC 、I ∪JD 、IJ10、3S 中元素(123)的中⼼化⼦有()A 、(1),(123),(132)B 、(12),(13),(23)C 、(1),(123)D 、S3中的所有元素⼆、填空题(本⼤题共10⼩题,每空3分,共30分)请在每⼩题的空格中填上正确答案。

错填、不填均⽆分。

1、凯莱定理说:任⼀个⼦群都同⼀个同构。

近世代数10套试题

近世代数10套试题

《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。

2. ()满足左、右消去律的有单位元的半群是群。

3. ()存在一个4阶的非交换群。

4. ()素数阶的有限群G的任一子群都是G的不变子群。

5. ()无零因子环的特征不可能是2001。

6. ()无零因子环的同态象无零因子。

7. ()模97的剩余类环Z97是域。

8. ()在一个环中,若左消去律成立,则消去律成立。

9. ()域是唯一分解整环。

10. ()整除关系是整环R的元素间的一个等价关系。

一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。

2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。

3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。

4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。

5. 环Z6的全部零因子是。

6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。

(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。

3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。

四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。

近世代数10套试题

近世代数10套试题

《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。

2. ()满足左、右消去律的有单位元的半群是群。

3. ()存在一个4阶的非交换群。

4. ()素数阶的有限群G的任一子群都是G的不变子群。

5. ()无零因子环的特征不可能是2001。

6. ()无零因子环的同态象无零因子。

7. ()模97的剩余类环Z97是域。

8. ()在一个环中,若左消去律成立,则消去律成立。

9. ()域是唯一分解整环。

10. ()整除关系是整环R的元素间的一个等价关系。

一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。

2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。

3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。

4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。

5. 环Z6的全部零因子是。

6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。

(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。

3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。

四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。

近世代数期末考试试卷及答案

近世代数期末考试试卷及答案

近世代数期末考试试卷及答案⼀、单项选择题(本⼤题共5⼩题,每⼩题3分,共15分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

错选、多选或未选均⽆分。

1、设G 有6个元素的循环群,a 是⽣成元,则G 的⼦集(c )是⼦群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下⾯的代数系统(G ,*)中,( D )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在⾃然数集N 上,下列哪种运算是可结合的?( B )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意⼀个具有2个或以上元的半群,它( A )。

A 、不可能是群B 、不⼀定是群C 、⼀定是群D 、是交换群⼆、填空题(本⼤题共10⼩题,每空3分,共30分)请在每⼩题的空格中填上正确答案。

错填、不填均⽆分。

1、凯莱定理说:任⼀个⼦群都同⼀个----变换群------同构。

2、⼀个有单位元的⽆零因⼦-交换环----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于----25--。

4、a 的阶若是⼀个有限整数n ,那么G 与---模n 剩余类加群----同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。

6、若映射?既是单射⼜是满射,则称?为----双射-------------。

7、α叫做域F 的⼀个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成⽴x a x = ,则称a 为---右单位元------。

近世代数试题库

近世代数试题库

近世代数试题库近世代数一、单项选择题a、{1,2,3,4}b、{2,3,6,7}c、{2,3}d、{1,2,3,5,6,7}答案:c2、循环群与交换群关系正确的是()1、若a={1,2,3,5},b={2,3,6,7},则a?b=()a、循环群是交换群b、交换群是循环群c、循环群不一定是交换群d、以上都不对答案:a3、以下命题恰当的就是()a、n次对换群sn的阶为n!b、整环一定是域c、交换环一定是域d、以上都不对答案:a4、关于标架的命题中恰当的就是()设h就是g的子群,那么a、b、c、d、对于?ah,bh,有ah?bh??或ah?bhah?h?a?hah?bh?a?1b?h以上都对答案:d5、设a=r(实数域),b=r+(正实数域)f:a→10aa?a则f是从a到b的()a、单射b、单射c、一一映射d、既非单射也非满射答案:d16、有限群中的每一个元素的阶都()a、有限b、无限c、为零d、为1答案:a7、整环(域)的特征为()a、素数b、无限c、有限d、或素数或无限答案:d8、若s就是半群,则()a、任意a,b,c?s,都有a(bc)=(ab)cb、任意a,b?s,都有ab=bac、必有单位元d、任何元素必存在逆元答案:a9、在整环z中,6的真因子就是()a、?1,?6b、?2,?3c、?1,?2d、?3,?6答案:b10、偶数环的单位元个数为()a、0个b、1个c、2个d、无数个答案:a11、设a1,a2,?,an和d都不为空集合,而f就是a1?a2an至d的一个态射,那么()a、集合a1,a2,?,an,d中两两都不相同;b、a1,a2,?,an的次序不能调换;c、a1?a2an中相同的元对应的象必不相同;d、一个元?a1,a2,?,an?的象可以不唯一。

2答案:b12、指出下列那些运算是二元运算()a、在整数集z上,a?b?a?b;abb、在有理数集q上,a?b?ab;c、在也已实数集r?上,a?b?alnb;d、在子集?n?zn?0?上,a?b?a?b。

《近世代数》练习题及答案.doc

《近世代数》练习题及答案.doc

《近世代数》练习题及答案1. B u A,但B不是A的真子集,这个情况什么时候才能出现?解只有在A=B时才能出现。

证明如下:当A=B时,即有BA, A(Z B,若有' a e A而a £ B ,显然矛盾;若BuA,但B不是A的真子集,可知凡属于A的兀素不可能不属于B,故A=B2.A=(1, 2, 3, .... , 100},找一个AXA 到 A 的映射。

解S(a"2)= 1易证。

102都是AXA到A的映射。

3.在你为习题1所找的映射下,是不是A的每一个元都是AXA的一个元的象?解在0]下,有' A的元不是AX A的任何元的象;容易验证在啊下,A的每个元都是AXA的一个元的象。

4.A={所有实数}。

O (a, b) Ta+b=aOb这个代数运算适合不适合结合律?解这个代数运算不适合结合律。

(aOb) Oc=a+2b+2c, aO (bOc) =a+2b+4c(aOb) Oc#aO (bOc)除c=05.假定巾是A与A间的一个---- 映射,a是A的一个元。

厂[0(a)] = ?,如尸(«)] = ?解厂渺(a)] = a0[户(a)]未必有意义;当巾是A的一个一一变换时(/)-' [©(a)] =。

0[厂(a)] = a.6.假定A和,对于代数运算。

和:来说同态,云和云对于代数运算:和;来说同态, 证明A和云对于代数运算。

和;来说同态。

、〒S '• a — a表示A到屈勺同态满射iiE /Il —— ». _—,©2 :。

t。

表示A SU A的同态满射容易验证。

是A到葡满射a。

b T ONMa。

b)l =(/)2(a。

b) = a。

b所以6是A到工的关于代数运算:和;来说同态满射。

7.A={所有有理数},找一个A的对于普通加法来说的自同构(映射x<^x除外)证© : x —> 2x对于普通加法来说是A的一个同构,很容易验证。

近世代数考试复习

近世代数考试复习

<近世代数复习题>一、定义描述(8’)1、群:设G是一个非空集合,是它的一个代数运算。

如果满足以下条件:(1)结合律成立,即对G中任意元素a,b,c都有(a b)c = a (b c).(2)G中有元素e.叫做G的左单位元,它对G中每个元素a都有e a = a .(3)对G中每个元素a,在G中都有元素a-1,叫做a的左逆元,使a-1 a = e .则称G对代数运算做成一个群。

2、正规子群:设N是群G的一个子群,如果对G中每个元素a都有aN=Na,即aNa-1=N ,则称N是群G的一个正规子群(或不变子群)。

3、环:设非空集合R有两个代数运算,一个叫做加法并用加号+ 表示,另一个叫做乘法用乘号表示,如果:(1)R对加法作成一个加群;(2)R对乘法满足结合律:(ab)c = a(bc);(3)乘法对加法满足左右分配率:a(b+c)= ab + ac ,(b+c)a = ba + ca .其中a,b,c为R中任意元素,则称R对这两个代数运算作成一个环。

4、极大理想:设N是环R的一个理想,且N≠R .如果除R和N外,R中没有包含N的其它理想,则称N为环R的一个极大理想。

5、惟一分解整环:设K是有单位元的整环。

如果K中每个既不是零又不是单位的元素都能惟一分解,则称K为惟一分解整环。

整数环Z及域F上多项式环F[ x ]都是惟一分解整环。

6、欧氏环:设K是一个有单位元的整环,如果(1)有一个从K的非零元集K – { 0}到非负整数集的映射ψ存在;(2)这个ψ对K中任意元素a及b≠0,在K中有元素q,r使a=bq + r,r=0或ψ(r)<ψ(b),则称R关于ψ作成一个欧氏环。

-------------7、素理想:设R是一个交换环,P ◁R .如果ab∈P => a∈P或b∈P,其中a,b∈R,则称P是R的一个素理想。

显然,环R本身是R的一个素理想;又零理想{ 0}是R的素理想当且仅当R无零因子,亦即R是一个整环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《近世代数》复习试题
一 填空题
1.12,,n A A A 是集合A 的子集,如果(1) ,(2) , 则称12,,n A A A 为A 的一个分类.
2.设},{21A =,},,,,{e d c b a B =,则有____个A 到B 的映射,_____个A 到B 的单射.
3. 设G 是一个群,G a ∈,且21||=a ,则=||6a __________.
4. 设G 是群,,,G b a ∈若1),(,||,||===n m n b m a ,而且ba ab =,则=||ab ______.
5. 在3S 中,)23()12)(123(1-= .
6. 模6的剩余类环6Z 的所有可逆元: .
7. 模6的剩余类环6Z 的所有零因子: .
8. R 是一个有单位元交换环,R a ∈,则由a 生成的主理想=)(a .
9. 设群G 的阶是45, a 是群G 中的一个元素,则a 的阶只可能是____________.
10. 高斯整环][i Z 的单位群])[(i Z U 的全部元素:____________________________.
二 解答、证明题
1.设Z 是全体整数的集合,在Z 中规定:
.,,2Z b a b a b a ∈∀-+=
证明:),( Z 是一个交换群.
2.证明:群G 不能表示成两个真子群的并.
3.证明:r-循环为偶置换的充要条件是r 为奇数.
4.设p 为素数,||G =n p ,证明:G 一定有一个p 阶子群.
5.设G 是一个群,,,G K G H ≤≤证明:KH HK G HK =⇔≤.
6.设H G ≤,N G ,证明:HN G ≤.
7.设H G ≤,且2]:[=H G ,证明:.G H
8.证明:每个素数阶的群都是循环群.
9.设N 是群G 的子群,N 的阶是r
(1)证明1()gNg g G -∈也是G 的一个子群.
(2)若N 是G 的唯一的r 阶子群,证明N 是G 的正规子群.
10.设C(G)为G 中心, 且G/C(G)为循环群,证明G 为交换群.
11.设G=)(a 是24阶循环群,试列举出G 的8阶子群的所有生成元。

12.设H ,K 都是群G 的正规子群,且K H ⊆,则
/(/)/(/G H G K H K ≅
13.设G 是群,()C G 是G 的中心,N G ≤,且()N C G ⊆,证明:
(1)N G ;
(2)若/G N 是循环群,则G 是交换群.
14.设),,(⋅+R 是有单位元1的环,在R 上又定义
b a b a b a 1b a b a ⋅-+=-+=⊕⊕ :,:
证明:),,( ⊕R 也是一个有单位元的环.
15. 设R 是有单位元的环,R b a ∈,
(1) 若a, b ,a+b 都可逆, 证明11b a --+也可逆.
(2) 求111b a ---+)(
16. 证明:除环的中心是一个域.
17.设2n ≥为正整数,证明:
(1) 环n Z 中元素][a 可逆⇔1n a =),(,即a 与n 互素;
(2) 若p 是素数,则p Z 是域;若2n ≥不是素数,则n Z 不是整环.
18.求出模6剩余类环6Z 的所有理想.
19.求整数环Z 上一元多项式][x Z 的理想),(x 2, 并证明),(x 2不是主理想.
20. 在整数环Z 中,若)(),(b a 是Z 的两个理想,则)()()(d b a =+,)()()(c b a = ,其中d 是a 与b 的最大公因数,c 是a 与b 的最小公倍数.
21. 设R 是一个有单位元的有限交换整环,证明:R 的每一个非零素理想都是R 的极大理想.
22. 求下列剩余类环的素理想和极大理想:6Z ,12Z ,13Z ,16Z
23.][x R 是实数域R 上的一元多项式环, 证明: C 1x x R 2≅+)/(][.。

相关文档
最新文档