高层建筑钢结构连接节点的抗震设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

120

摘 要:本文介绍高层建筑钢结构抗震设计时,

并对钢结构构件节点和杆件接头处的三种杆件连接方式,其性能及适用范围进行了分析比较,然后对梁、与柱、柱与柱、梁与梁的连接以及抗震剪力墙与框架的连接等方式进行了阐述,以供同行参考。

关键词:高层建筑;钢结构;连接节点;安装中图分类号:TU352.1+1文献标识码:B

文章编号:1008-0422(2013)08-0120-02

1 前言

随着城市建设的发展,高层建筑在我国日益增多。高层钢结构具有承载力高、抗震性能好、施工周期短等特点,特别适用于高耸的高层建筑。在高层钢结构抗震设计中,节点连接良好的抗震设计是保证结构安全的重要一环。连接节点应满足强度、延性和耗能能力三方面的要求,其连接强度应高于相连构件端部的屈服承载力,并且必须有较大的变形能力,用以弥补强度方面的缺陷。钢材本身具有很好的延

性,但这种延性在结构中不一定能体现出来,这主要是由于节点局部压曲和脆性破坏而造成的,因此在设计中应采用合理的细部构造,避免应变集中而形成较大的约束应力。在钢材的选用上应满足强度、塑性、韧性及可焊性的要求。钢材强度指的是抗拉强度和屈服强度,钢材应具有较高的强屈比,其屈服强度的上限值和下限值应适当。钢材的塑性表现在伸长率和冷弯性能两项指标上,反映钢材承受残余变形量的程度及塑性变形能力。对抗震结构还必须满足冲击韧性的要求。钢材另一重要的基本要求是对化学成分含量的限制,它将直接影响结构的可焊性,应控制钢材的碳当量。在高层钢结构中,厚钢板的应用较为广泛,在梁一柱节点范围,当节点约束较强,板厚等于或大于40mm 时,应附加要求板厚方向的断面收缩率,以防发生平行于钢材表面的层状撕裂。

2 杆件连接

2.1连接方式2.1.1 连接类型

建筑钢结构的构件节点和杆件接头处的杆

作者简介:易文新(1972-),男,湖南衡山人,长沙有色冶金设计研究院有限公司高级工程师

高层建筑钢结构连接节点的抗震设计

Seismic Design of High-rise Steel Structure Construction Joints

易文新Yi Wenxin

或者梁板式。同外墙一样,底板除满足受力要求外,还要满足地下室抗渗、防水要求。

地下室底板厚度、配筋不宜太小,作为基础组成部分的底板厚度不宜小于400mm;只作为抗水板不作为基础部分考虑时,厚度不宜小于250mm,一般取300mm 以上。底板配筋除满足计算要求外,为防止裂缝产生,最小配筋率可适当提高,一般情况下可取0.30%。

底板的混凝土垫层,强度等级不应小于C15,厚度不应小于l00mm,在软弱土层中不应小于150mm [8]。

双向支座钢筋尚应有1/3-1/2贯通配置,跨中钢筋应按实际计算的配筋全部贯通。

当采用独立基础加抗水板的型式时,应在抗水板下铺设一定厚度的具有一定强度和压缩性材料,如泡沫聚苯板等,避免因基础沉降使抗水板成为满堂底板。

6 抗浮验算和超长裂缝控制

6.1地下水与抗浮验算

抗浮验算首先是要正确确定上浮力,尤其是抗浮设计水头,地下水位及其变幅是地下室抗浮设计的重要依据,当有长期水位观测资料时,场地抗浮设防水位可采用实测最高水位;当无长期水位观测资料时,可按勘察期间实测最高水位并考虑地下水补给、排泄条件等因素综合确定;若只考虑施工期间的抗浮设防,设防水位可按水文库的最高水位确定[9]。

文献[10]要求验算建筑物抗浮能力应满足:建筑物自重及压重之和/浮力作用值≥1.05。在地下室上部有多高层建筑时通常能满足抗浮验算,而地下室上无上部建筑,且无覆土或者覆土较少,当抗浮设计水位较高时,地下室可能存在整体抗浮验算不满足要求,此时应采取抗浮措施时,应按工程具体情况区别对待。

6.2 地下室超长和裂缝控制

地下室一般情况下不设永久性缝,这就会造成地下室结构整体超长,而应采取防止裂缝的措施,目前较为常见的方法有:设置膨胀加强带、设置后浇带、加强配筋。根据实际情况可以综合采用。

7 结语

在地下室设计前期,需先确定嵌固端位置,在现行规范基础上,确定地下室结构抗震等级,并相应的对局部构件内力和钢筋进行调整,以便在嵌固端部位实现上部结构为“弱柱”的设计。

在地下室顶板、侧墙和底板等关键结构设计时,应仔细分析构件所受荷载及受力特点,合理选取计算模型,同时结合工程中实际发生的教训,科学的采取恰当的构造措施,达到安全经济的效果。

重视地下室的抗浮验算,当不满足抗浮要求时,应才是合理的措施进行抗浮设计。地下室由于超长极易产生裂缝,在设计中应采取有效的措施防止裂缝产生。

参考文献:

[1]GB50011-2010.建筑抗震设计规范[S].2010.[2]JGJ3-2010.高层建筑混凝土结构技术规程[S].2010.

[3] 朱炳寅.建筑结构设计规范应用图解手册[M].北京:中国建筑工业出版社,2005.

[4] GB50009-2012.建筑结构荷载规范[S].2012.[5] DBJ/T5-46-2005.广东省实施《高层建筑混凝土结构技术规程》(JGJ 3—2002)补充规定[S].2005.

[6] 《全国民用建筑工程设计技术措施》编委会. 全国民用建筑工程设计技术措施(结构).2009.

[7] GB50010-2010.混凝土结构设计规范[S].2010.

[8] GB50108-2008.地下工程防水技术规范[S].2008.

[9] 刘东柏,王璇.地下室抗浮设计中的几个问题讨论[J].中外建筑,2010(2).

[10] GB50007-2011.建筑地基基础设计规范[s].2011.

件连接可采用:(1)全焊连接;(2)高强度螺栓连接;(3)焊缝和高强度螺栓混合连接。

2.1.2 性能比较2.1.2.1全焊连接,传力最充分,不会滑移。良好的焊接构造和焊接质量可以为结构提供足够的延性。缺点是焊接部位常留有一定的残余应力。

2.1.2.2高强度螺栓连接,施工较方便。但是,杆件的接头若全部采用高强度螺栓时,接头尺寸较大,钢板用量较多,费用较高;而且强烈地震时,接头可能产生滑移。

2.1.2.3栓焊混合连接,应用比较普遍。先用螺栓安装定位,然后施焊,操作方便。实验表明,此类连接的滞回曲线,与完全焊接情况相近;但翼缘焊接将使螺栓预拉力平均降低110%左右。因此,连接腹板的高强度螺栓实际预拉应力要留有一定富裕。

2.2焊缝连接2.2.1 拼接形式

2.2.1.1选定构件节点和杆件接头的连接形式时,应尽可能避免采用约束性强、容易产生板件层状撕裂的连接构造。

相关文档
最新文档