保险精算第二版习题及问题详解
保险精算习题及答案
第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
保险精算第二版复习分析
记
2A1 x:n
ne2t 0
fT(t)dt
(相当于利息(lìxī)力翻倍以后求n年期寿险的趸缴 保费)
所以方差V 等价a (为zt)r2Ax1:n(Ax1:n)2
第三十一页,共74页。
4.1.3 终身寿险 定义 保险人对被保险人在投保后任何时刻发生的保险
责任(范x ) 围内的死亡(sǐwáng)均给付保险金的险种。 假定: 岁的人,保额1元终身寿险
某一度量期的实际利率,是指该度量期内 得到(dédào)的利息金额与此度量其开始i 时投 入的本金金额之比。通常用 表示。
AnAn1 in An1
n1,n为 整 数
第三页,共74页。
1.1.3实际(shíjì)贴现率
一个度量期的实际(shíjì)贴现率为该度量期内取 得的利息金额与期末投资可回收金d 额之比,通常
基本b vtt函 数1 vt关,,t系t 00ztb tvtvt ,t0
第三十二页,共74页。
符号(fúhAàox ):
厘定:
AxE(zt)0 zt fT(t)dt 0vtt px xtdt0ett px xtdt
第三十三页,共74页。
方差公式
V a r ( z t ) E ( z t 2 ) E ( z t ) 2 0 e 2 tf T ( t ) d t E ( z t ) 2
lx
dxn
lxn
n
px
lxn lx
nqx n px 1
第二十三页,共74页。
保险(bǎoxiǎn)精算
第四章 人寿保险(rén shòu bǎo xiǎn)的精算现值
第二十四页,共74页。
第四章 人寿保险(rén shòu bǎo xiǎn) 的精算现值
保险精算(第二版)主编 李秀芳 傅安平 王静龙第6章习题讲评
第六章:期缴纯保费与营业保费练 习 题1. 设()0x t t μμ+=>,利息强度为常数δ,求 ()x P A 与Var(L)。
()00002220022212()()()2t t t x t x t t t x t x x t t t t x t x x t x x x x x x a v p dt e e dt A v p dt e e dt A v p dt e e dt A P A a A A Var L a δμδμδμμδμμμμδμμμμδμμδμδ+∞+∞--+∞+∞--++∞+∞--+===+===+===+∴==-==+⎰⎰⎰⎰⎰⎰ 3. 已知 140:20604040:200.029,0.005,0.034,6%,P P P i a ====求 。
40:2040:2040:2040:2040:2040:201 1140:2040:2040:20204040:2040:2040:2040:2040:20204060606060600.0566110.02911.68220.0240.2803710.i d i A da P a a a A A A E P P a a a E A da P a a ==+-===⇒=--====⇒=-===604020406040:2003411.037514.77679a a a E a ⇒==+=8. 已知 202020:4020:4010007,16.72,15.72,P a a P ===求1000 。
20:4020:4020:4020:4020:4020:4020202020202011000715.720.056616.721100010001000 3.2A da P a a a d a A da P a a -⎧===⎪⎨⎪=⎩⇒==-∴===11. 已知x 岁的人购买保额1000元的完全离散型终身寿险的年保费为50元,20.06,0.4,0.2x x d A A ===,L 是在保单签发时保险人的亏损随机变量。
保险精算 李秀芳 傅安平 王静龙(第二版)中国人民大学出版社 课后答案
保险精算 李秀芳 傅安平 王静龙(第二版)中国人民大学出版社 课后答案第一章1. 386.4元2. (1)0.1 0.083 3 0.071 4(2)0.1 0.1 0.1 3. 1 097.35元 1 144.97元 4. 794.1元5. (1)11 956 (2)12 2856. ()()m m d di i δ<<<<7. 20 544.332元 8. 0.074 6 9. 0.358 2 10. 1.822 11. B 12. A第二章1. 略2. 80 037.04元 3.0.082 99 4. 12 968.71元 5. 1 800 元 6. 略7. 6.71% 8. 28911i i =∑9. A 10. B第三章1. (1) 0.130 95 (2) 0.355 96 (3) 0.140 86 (4) 0.382 892. 0.020 583. 41 5714. (1) 0.92 (2) 0.915 (3) 0.9095. B6. C第四章1. (1) 0.092 (2) 0.0552. (1) 5.2546元 (2)5.9572元 (3)略3. (1) 0.05 (2) 0.54. 略5. 0.546. 0.817. 283 285.07元8. 略9. 2 174.29元 10. 71 959.02元 11. 690.97元 12. 3 406.34元 13. 749.96元 14. 397.02元 15. D 16. C 17. B第五章1. 15.382. (1) 0.035 (2) 0.653. 793元4. 25 692.23元5. 36 227.89元6. 略7. (1) 18 163.47元 (2) 18 458.69元(3)18 607.5 元(4)18 707.28 元8. 略9. 167.71元10. 106 11. 83 629.47元12. 46.43元13.A14. D 15. B第六章1.()xPμ=Ā,()()222āx xxVar Lδ=Ā-Ā2. 28.30元3. 14.784. 0.039 75. 0.1036. 20.07<P≤21.747. 21份8. 3.20 9. 0.01610. 0.041 311. (1)-100 (2) 134 444.44 (3) 0.272 712.()10.194471.7R bb=+13. B 14. C 15. D 第七章1.()()22::2:,x t n t x t n t t tx t n tE L a Var Lδ+-+-+--==ĀĀ2. 15 3. 0.5154. (2) (3)5. 0.001 66. 0.156 947. 556.88元8. 0.609. 0.40 10. 0.239 11. 0.90 12. 0.06 13. 0.40 14. 3.889 元15. 0.05816.xx q p17. C 18. B第八章1. 略2. 略3. 根据表8.1.3中的各种情况算出的1E分别为:(1)0.650.02ää0.65xxxp⎛⎫+⎪-⎝⎭(2)0.046 (3)0.650.02ää0.65xp⎛⎫+⎪-⎝⎭(4)0.40.250.02ää0.4xp pα⎛⎫++⎪-⎝⎭(5)0.250.36xpα+(6)0.650.02ää0.65xp⎛⎫+⎪-⎝⎭(7)0.046根据表8.1.4中的各种情况算出1E分别为:(1) 1.25P+0.01 (2) 0.064.(1)()()221k x x W⎡⎤-⎣⎦ĀĀ(2)()()()22 211::221x x k s x k sx k x k++++⎡⎤--⎢⎥⎣⎦-ĀĀĀĀĀ5. 0.073 86. (1)()11040:101CV L L⎡⎤---⎣⎦Ā1040E(2)154545:5(1)L E E -+Ā7.1:122x t n tn t x t b bE+--+⎛⎫+-⎪⎝⎭Ā8. 略9. 略10.(1)略(2)1ˆ1ˆ1h x hx hi Pi P+++⎛⎫⎛⎫+⋅ ⎪⎪+⎝⎭⎝⎭11. 略12. B 13. B.第九章1. 第0年到第十年的现金价值分别为:9300元10 137元11 168元12 303元13 551元14 925元14 722元16 475元17 307元18 000元18 720元第四年的准备金为13 819 元2.重新计算表9.2.8后的值。
保险精算1-10章答案(第二版)李秀芳
我是发老师给我们的答案上来的,老师姓周,供大家下载使用。
第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
保险精算第二版复习
(
1
Ax:n
)2
➢ n年定期两全保险
定义
被保险人投保后如果在n年期内发生保险责任范围内的死亡,保 险人即刻给付保险金;如果被保险人生存至n年期满,保险人在 第n年末支付保险金的保险。它等价于n年生存保险加上n年定期 寿险的组合。
假定(x)岁的人,保额1元,n年定期两全保险
基本函数关系
vt
v v
每 1 个度量期的实贴现率为 d m 。
m
m
d m
m
1 d 1 m
1.3 利息强度
投资一笔资金,设在时刻 t 的资金金额由总来能够函数 A(t)给出,这笔资金完全由于利息而变化,即本金不变。定义:
的式一中种,度t 为量该。投t 资为额t 在时每t 时一刻单的位利资息金强的度变,化即率。t 为利息在时刻 t
续存活的时间,称为剩余寿命,记作T(x)。
分布函数 t qx :
t qx Pr(T (X ) t) pr(x X x t X x) s(x) s(x t) s(x)
剩余寿命的生存函数 t px :
t px Pr(T (x) t) Pr(X x t X t) s(x t) s(x)
vn , t n
1 , t n bt 0 , t n
zt btvt 0 , t n
符号:
1
A x:n
趸缴纯保费厘定:
1
Ax:n
E(zt ) vn n px
e n n px
现值随机变量的方差:
Var(zt ) v2n n px (vn n px )2
21
Ax:n
1.1.3实际贴现率
一个度量期的实际贴现率为该度量期内取得的利息金额与
期末投资可回收金额之比,通常用字母 d 表示。
保险精算习题及答案
第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
【最新2018】精算纯保费试题-实用word文档 (22页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==精算纯保费试题篇一:保险精算第二版习题及答案保险精算(第二版)第一章:利息的基本概念练习题1.已知a?t??at?b,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,2在时刻8的积累值。
a(0)?b?1a(5)?25a?b?1.80.8 ,b?125300*100?a(5)?300180300*100300*100?a(8)?(64a?b)?508180180?a?2.(1)假设A(t)=100+10t, 试确定i1,i3,i5。
i1?A(1)?A(0)A(3)?A(2)A(5)?A(4)?0.1,i3??0.0833,i5??0.0714 A(0)A(2)A(4)n(2)假设A?n??100??1.1?,试确定 i1,i3,i5 。
i1?A(1)?A(0)A(3)?A(2)A(5)?A(4)?0.1,i3??0.1,i5??0.1 A(0)A(2)A(4)3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
500a(3)?500(1?3i1)?620?i1?0.08?800a(5)?800(1?5i1)?1120500a(3)?500(1?i2)?620?i1?0.0743363?800a(5)?800(1?i3)5?1144.974.已知某笔投资在3年后的积累值为1000元,第1年的利率为 i1?10%,第2年的利率为i2?8%,第3年的利率为 i3?6%,求该笔投资的原始金额。
3A(3)?1000?A(0)(1?i1)(1?i2)(1?i3)?A(0)?794.15.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
保险精算学2_li
如果每年年初支付:
4 0 0 0 a 60 : 20 4 0 0 0 N 60 N 80 D 60 4 1 9 4 9 .8 1 4 0
实验习题:利用excel编辑 a x : n 和 ax : n
的计算表。
3、2、5 n年延期期末付生存年金(从第n+1年开始支付到终生) n年延期生存年金是投保后经过n年才进入给付的年金。对(x)每 年l元的n年延期期末付生存年金现值以 n a x 表示。
如图:(相当于把 x +1 ~ ∞ 上每年1单位元的年金折算到x的时刻)
3 2 1
Ex Ex Ex
1 1 1
……
……
1
x
x +1
x +2
x +3
x 1
ω -1
(4· 4a)
a x 1E x 2 E x 3 E x
t
Ex
显然, 是保险期分为1年、2年、3年等一系列1元纯粹生存 ax 保险现值之和。 公式(4· 4a)的求和上限为x + t = ω -1 ,t =ω -1-x, ω -1是 生命表中的最大年龄。今后为了方便通常写为∞。
4 0 0 0 a 60 4 0 0 0 4 1 9 6 1 .0 8
6 0 1
4000
D 60
2 6 6 0 6 .0 2
这份保险的现值为41961.08元。 实验习题:利用excel制作 a x 的计算表。 3、2、2 期首付终身生存年金 对(x)岁投保的人每年1元的期初支付终身生存年金,其现值 以 ax 表示。
N x n 1 D x n D xn Dx
3、2、4 期首付n年定期生存年金 以 ax : n 表示对(x)的每年l元期首付n年定期生存年金现值,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
7.如果0.01t t δ=,求10 000元在第12年年末的积累值。
、1200.7210000(12)100001000020544.33t dt a e e δ⎰===8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
(4)(2)414212(1)(1)(1)(1)(1)421.1*1.086956522*1.061363551*1.050625 1.3332658580.74556336i i i i d i -+=+-++==⇒= 9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
()()2021211221212() 1.01()1.01, 1.432847643tt tt dtt ta t a t e ee t δ=⎰==⇒==10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。
()()()2210.010.1220.01*200.1*2020423()1()11 1.8221tt tt t dta t i a t e ei ee i δ++=+⎰==⇒+==+=11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。
A. 7.19B. 4.04C. 3.31D. 5.21(3)3*5153(1)3*1.02 4.03763i +==12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。
A.7 225B.7 213C.7 136D.6 987(2)2*24(1) 1.03 1.12552i +==第二章:年金练习题1.证明()n m m n v v i a a -=-。
()11()m nn m m n v v i a a i v v i i---=-=-2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。
年计息12次的年名义利率为8.7% 。
计算购房首期付款额A 。
12012011000100079962.96(8.7%/12)16000079962.9680037.04v a i i-===∴-= 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。
718711110.08299a a a i i ⎛⎫=+ ⎪+⎝⎭∴=4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。
年利率为10%,计算其每年生活费用。
10101015000112968.7123a x a i x ⎛⎫= ⎪+⎝⎭∴=5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。
年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知1012v=,计算K 。
10201010102010101110002000100011111800A a a a i iB Ka K a i A B K ⎛⎫⎛⎫=++ ⎪ ⎪++⎝⎭⎝⎭⎛⎫=+ ⎪+⎝⎭=∴=6. 化简()1020101a v v ++ ,并解释该式意义。
()102010301a v v a ++=7. 某人计划在第5年年末从银行取出17 000元,这5年中他每半年末在银行存入一笔款项,前5次存款每次为1000元,后5次存款每次为2000元,计算每年计息2次的年名义利率。
51055111000200017000113.355%a a i i i ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭⇒=8. 某期初付年金每次付款额为1元,共付20次,第k 年的实际利率为18k+,计算V(2)。
112119111(2)11(1)(1)(1)(1)9991101128V i i i i i =+++++++++=+++9. 某人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子第1到n 年每年末平分所领取的年金,n 年后所有的年金只支付给第三个孩子,若三个孩子所领取的年金现值相等,那么v=( )A. 113n⎛⎫⎪⎝⎭B. 13n C.13n⎛⎫ ⎪⎝⎭D.3n 1211213n n n n n a v a v v i i v ∞=-==11. 延期5年连续变化的年金共付款6年,在时刻t 时的年付款率为()21t +,t 时刻的利息强度为1/(1+t),该年金的现值为( )A.52B.54C.56D.5801125|651125|65()(1)111()()11(1)541t t dt a v t t dtv t a t t e a t dt t δ=+===+⎰⇒=+=+⎰⎰第三章:生命表基础练习题1.给出生存函数()22500x s x e-=,求:(1)人在50岁~60岁之间死亡的概率。
(2)50岁的人在60岁以前死亡的概率。
(3)人能活到70岁的概率。
(4)50岁的人能活到70岁的概率。
()()()10502050(5060)50(60)50(60)(50)(70)(70)70(50)P X s s s s q s P X s s p s <<=--=>==2. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求60q 。
()()()5|605606565(66)650.1895,0.92094(60)(60)65(66)0.2058(65)s s s q p s s s s q s -====-∴==3. 已知800.07q =,803129d =,求81l 。
8080818080800.07d l l q l l -=== 4. 设某群体的初始人数为3 000人,20年的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。
求生存函数s(x)在20岁、21岁和22岁的值。
120121122(20)0.92,(21)0.915,(22)0.909d d d d d d s s s l l l ++++++======5. 如果221100x x xμ=++-,0≤x ≤100, 求0l =10 000时,在该生命表中1岁到4岁之间的死亡人数为( )。
A.2073.92B.2081.61C.2356.74D.2107.5622211000100()1((1)(4))2081.61xxx dx dxx xx s x e e x l s s μ-+-+--⎛⎫⎰⎰=== ⎪+⎝⎭-=6. 已知20岁的生存人数为1 000人,21岁的生存人数为998人,22岁的生存人数为992人,则|201q 为( )。
A. 0.008B. 0.007C. 0.006D. 0.00522211|20200.006l l q l -== 第四章:人寿保险的精算现值练 习 题1. 设生存函数为()1100xs x =-(0≤x ≤100),年利率i =0.10,计算(保险金额为1元):(1)趸缴纯保费130:10Ā的值。
(2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。
1010130:101010211222230:1030:10()1()1100()100110.0921.17011()()0.0920.0920.0551.2170t x x t tt t x x t tt t x x t x s x t s x p s x xA v p dt dt Var Z A A v p dt dt μμμ+++'+=-⇒=-=-⎛⎫=== ⎪⎝⎭⎛⎫=-=-=-= ⎪⎝⎭⎰⎰⎰⎰2. 设年龄为35岁的人,购买一保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。