保险精算学寿险精算现值
精算学在人寿保险精确定价中的方法与实践
精算学在人寿保险精确定价中的方法与实践引言:人寿保险是一种金融保险产品,为个人或家庭提供在被保人身故或特定健康状况发生时的经济保障。
精算学作为保险精确定价的学科,通过运用数学、统计学和概率论等方法,对人寿保险的风险进行评估、估计和管理。
本文将探讨精算学在人寿保险精确定价中的方法与实践。
一、寿险产品定价的基本原理寿险产品的定价是指根据保险公司的风险承受能力和经验数据,对保费进行测算和核算的过程。
在精确定价中,精算师需要考虑以下几个方面:1. 死亡率:精算师通过研究大量数据和经验分析,对保险期间内被保险人的死亡率进行估计。
根据不同年龄、性别和健康状况等因素,死亡率的表现会有所不同。
2. 利率:利率是影响保险产品定价的关键因素之一。
保险公司需要根据经济环境和投资收益预期来确定合适的利率水平。
3. 保险金额:保险金额是指被保险人在保险期间内享受到的保险保障金额。
精算师需要综合考虑被保险人的需求、风险承受能力和保险公司的经济实力等因素,来确定合适的保险金额。
二、精算模型与方法1. 人寿保险精算模型人寿保险精算模型是利用数理统计学和概率论等理论,通过建立数学模型,对保险公司的经验数据进行分析和预测的方法。
常见的人寿保险精算模型包括:(1)Lee-Carter模型:该模型是一种经典的死亡率预测模型,通过分析历史死亡率数据和人口统计数据,预测未来死亡率的变化趋势。
(2)Cox风险模型:该模型是一种用于估计被保险人生存时间和死亡风险的模型。
通过建立被保险人个体的生存函数和死亡风险函数,对保险公司的风险进行量化。
(3)利用马尔科夫链的模型:该模型通过建立状态转移概率矩阵,对被保险人的状态变化进行建模。
可以用于分析被保险人的年龄、性别、健康状况等因素对保险风险的影响。
2. 精算方法(1)数理统计方法:数理统计是精算学的核心方法之一。
精算师通过收集和分析大量的历史数据,运用概率论和统计学的方法,对未来的风险进行预测和估计,从而对保险产品的保费进行定价。
寿险精算数学2012秋
北京师范大学珠海分校应用数学学院寿险精算数学教案10数学精算方向2012年秋周伟2012/9/1寿险精算教案周伟2012年秋应用数学学院10级数学与应用数学专业精算方向周一 5,6节周三 3,4节单周五 3,4节丽泽楼B203课程相关:(1)要记忆公式多,在理解的基础上记忆重点公式,在练习的过程中加深理解和记忆(2)计算量大,准备计算器,推荐casio fx95,考试不能用手机代替计算器(3)教材:寿险精算中国精算是协会组编中国财政经济出版社(4)参考书:寿险精算数学王燕中国人民大学出版社(5)预习看教材,上课认真听讲,复习看笔记,认真完成练习(6)概率基础很重要,注意温习课程考核:(1)平时30分,期中考试30分,期末考试40分。
(2)平时30分中包含考勤,作业,网上练习,思考题(问题探究)时间星期一星期二星期三星期四星期五上午1,2微积分继教2-A2043,4建模 A10310数学建模 B20210信息寿险精算 B20310数学精算微积分继教(6-11)C305寿险单B203下午5,6寿险精算B203建模综合B106 单10数学双10信息微积分继教2-C4037,8高数综合B103高数单综合B103微积分继教(6-11)C301绪论保险精算学的产生与相关概念为了准确地评估和控制风险,精算学得以产生和发展。
人类面临许多严重的风险事故,可能会使全家突然陷入经济困境。
个人通常无法预测和避免风险事故的发生,但是可以通过风险转移的方式将风险事故可能造成的财务后果降到可以接受的程度。
例10000人为了转移1年内死亡后家庭陷入经济困境的风险,每人出资100元,共计筹款100万,假设一年内有一人死亡,获得100万解决家庭经济问题。
风险转移的实质是将具有相同风险的个人聚合成一个团体,团体成员的损失共同分担,这就实现了个人风险向团体的转移。
作用原理类似与物理学中的压力与压强的关系。
另一方面,将风险聚合起来有利于风险的预测和控制。
保险精算学概述
我们国家的精算考试体系属于上述第二种精算师资格认可 体系,也就是说,考生必须通过专门的精算职业资格考试 才能获得中国精算师资格。
国际精算师资格考试制度-精算职业资格的认可
中国精算师协会
SOA:(寿险) CAS:(非寿险)
北美精算考试-VEE课程
该课程是针对那些在学校已修过相关课程的人士, 他们可以凭课程证明获得学分。对于没有在学校学 习过相关课程,或者SOA不认证你所在学校所提供 的课程的人士(中国大部分学校未获认证),可以 通过CAS网络课程学习来获得相应的VEE学分。可 关注CAS网站 ,通过考试的人 仍可以得到VEE的学分 包含三门课程:应用统计学、公司财务、经济学
——摘自英国精算行业业务报告
精算师(主要职责)
精算师的工作实质是风险管理工作,是对风险的 识别、计量、监控,从而保证保险公司的稳健经 营。 精算作为保险业的核心技术,正逐渐渗透到保险 公司经营管理的各个方面,渗透到风险管理的各 个关键点上。精算管理的过程就是风险管理的过 程,其最终目的就是防范风险。
具体包括产品开发设计、市场预测、投资顾问、 产品管理、财务管理
精算管理和控制系统
环境因素(法律、社会、经济、人口、税收等) 风险 分析 利润 分析 经验数据 分析 偿付能力 评价 产品 设计 定价
精算师的职业化
负债 评估
资产负债 管理
资产 评估
The Best and Worst Jobs(2008) The Best 1. Mathematician 2. Actuary 3. Statistician 4. Biologist 5. Software Engineer 6. Computer Systems Analyst 7. Historian 8. Sociologist 9. Industrial Designer 10. Accountant 11. Economist 12. Philosopher 13. Physicist 14. Parole Officer 15. Meteorologist 16. Medical Laboratory Technician 17. Paralegal Assistant The Worst 200. Lumberjack 199. Dairy Farmer 198. Taxi Driver 197. Seaman 196. EMT 195. Roofer 194. Garbage Collector 193. Welder 192. Roustabout 191. Ironworker 190. Construction Worker 189. Mail Carrier 188. Sheet Metal Worker 187. Auto Mechanic 186. Butcher 185. Nuclear Decontamination Tech 184. Nurse (LN)
中南大保险学第十二章 保险精算(含答案)
中南大保险学:第十二章保险精算(含答案)一、填空题1、寿险精算的两个基础是___、___。
2、寿险精算的三个要素是___、___、___。
3、D x =___,C x =___。
4、N x = ___,M x = ___。
5、S x = ___,R x =___。
二、名词解释1、大数法则2、生命表3、利息表4、换算函数表5、责任准备金6、保险精算学7、寿险精算学8、非寿险精算学三、问答题1、寿险精算和非寿险精算的基本任务有哪些?2、“大数”的测定有何作用?3、为什么要区分理论责任准备金和实际责任准备金?4、保险精算学有哪两大组成部分?5、保险精算的产生以什么为标志?6、保险精算学是什么时候引入我国的?7、保险精算的基本任务有哪些?8、保险精算的基本原理是什么?9、何为收支平衡(相等)原则?10、理论责任准备金与实际责任准备金的区别何在?11、有哪几种收支平衡等式?12、常见的有哪几种大数法则?13、非寿险精算的基本内容是什么?14、非寿险费率的厘定方法是什么?15、大数的测定有何作用?16、什么是财务稳定性分析?17、如何决定再保险中的自留额与分保额?18、寿险精算的基本内容是什么?19、寿险精算主要解决什么问题?20、何为单生命保险和多生命保险?21、寿险精算的思想方法是什么?22、精算现值的含义是什么?23、符号l x 、d x分别表示什么?24、符号p x 、q x分别表示什么?25、符号t p x 、t q x分别表示什么?26、1+i , v =( 1+i )-1分别是什么?27、(1+i ) t , v t =( 1+i )- t分别是什么?28、常用的寿险趸缴纯保费的计算公式有哪些?29、常用的年金保险的趸缴纯保费的计算公式有哪些?30、常用的均衡纯保险费的计算公式有哪些?附:参考答案一、填空题1、利息理论(利息表)、寿命分部理论(生命表)2、利率、死亡率、费用率二、名词解释1、对于大量的随机现象(事件),由于偶然性相互抵消所呈现的必然数量规律的一系列定理的统称。
保险精算学与保险经济学中保险产品定价之比较
保险精算学与保险经济学中保险产品定价之比较保险产品定价是保险精算学和保险经济学重要的研究内容,研究二者的异同对于丰富保险学理论、促进保险发展具有一定的理论意义和应用价值。
本文从定价数理基础、原理等方面对其异同做了尝试性的探索。
【关键词】保险产品定价保险精算学保险经济学精算一般是指运用数学、统计学、金融学、保险学以及人口学等学科知识和原理,定量解决工作,尤其保险经营管理中的实际问题,进而为决策提供科学依据。
精算和保险的结合形成保险精算,保险精算是精算学的重要组成部分。
保险经济学是经济学的一个分支,运用经济学原理来分析、研究关于保险领域问题的一门学科。
从微观层面来看,保险经济学研究个人、保险人、保险中间人、保险监管者在市场中的行为决策,如何在有限资源下达到效用最优。
从宏观层面来看,保险经济学研究保险在整个国民经济中的作用及影响。
在这两个既有联系又有区别的学科中,保险产品定价是它们共同的重要内容,究竟这两门学科中保险产品定价有何异同,这正是本文所要尝试探讨的问题。
一、保险定价的数理基础(一)保险精算学中保险定价的数理基础大数定律在保险定价中所起的作用主要有以下几个方面:一是利用贝努里大数定律和泊松大数定律来估计风险损失发生的概率;二是利用大数定律来分散和降低风险;三是大数定律是衡量保险公司财务稳定性的数理基础;四是大数定律也是再保险的数理基础。
保险精算一般分为寿险精算和非寿险精算,它们具有不同的数理基础。
寿险保费的计算涉及的数理基础主要有概率论与数理统计、人口数学、利息理论和生存模型等。
非寿险保费的计算比寿险保费计算更为复杂,因为非寿险中损失次数和损失额都是随机变量,其涉及的数理基础主要有概率论与数理统计、信度理论等。
(二)保险经济学中保险定价的数理基础保险经济学的建立与发展有赖于不确定情况下的经济分析工具的发展。
金融定价模型,如投资组合选择模型、资本资产定价模型、最佳证券投资理论、跨时期资本资产定价模型、套利定价理论、期权定价理论、折扣的现金流模型等,在保险定价中起着重要的作用,也是保险经济学中保险产品定价的重要的数理理论基础。
保险精算学1_li
大数法则是指随机现象在每次独立观察中出现的偶然性将 在大量重复观察中呈现必然的规律性。如:每次投掷一枚硬 币,正面朝上或反面朝上是偶然的,但大量投掷、重复观察 就会发现,正面朝上或反面朝上的次数大体上相同。 人身保险中,每个被保险人在一定时期是否遭遇危险事故 是随机的、不确定的,并且各被保险人之间发生危险事件是 相互独立的。当面临同类危险的被保险人组成被保险集团时, 相当于对随机事件进行多次重复观察。此时,被保险集团中 发生危险事件的频率随着被保险人数增多而趋于稳定值。这 个稳定值就是危险事件发生的概率。 单个人遭受危险事故损失的不确定性将在大量观察中消失, 从而表现为随机事故发生的确定的概率值。这一概率值也正 是被保险人面临危险事故的可能性。因此可以说,虽然单个 人遭遇危险事故是随机的、不可测的,但他遭遇危险事故的 可能性(即概率)是可测的、确定的。
参考书6: 邹公明、周俊所:《寿险精算数 学》,中国时代经济出版社。 该书为精算师资格考试辅导书, 内容侧重于数学推导和证明。要求 具有较好的数学功底。书中附有模 拟考试题和试题解答。
参考书7: 杨静平:《非寿险精算学》,北京 大学出版社。 该书比较系统地介绍了非寿险 精算学的理论基础和实际运用,举 例较充分。书中附有章节练习题, 并在书后给出了答案。
lx , 0 px 1 1 px px lx
人身保险精算的内容 人身保险精算的基本内容包括研究出险规律、计 算保险费、责任准备金、现金价值、资产份额等。 人身保险精算分单被保险人型人身保险和多被保 险人型(团体人身保险)人身保险两种进行研究。 单被保险人型人身保险的承保对象或被保险人只 有一个人,即以单个被保险人发生保险事故为保险金 给付条件。 多被保险人型(团体人身保险)人身保险的承保 对象或被保险人为两个以上,并以两个以上被保险人 组成联合被保险集团的“生存”或“死亡”为保险金 给付条件。这里联合被保险集团的“生存”或“死亡” 是在特定条件下定义的联合被保险集团状态的“生存” 或“死亡”。
21世纪保险精算系列教材寿险精算学
21世纪保险精算系列教材寿险精算学
21世纪保险精算系列教材寿险精算学:
一、简介
1、意义:寿险精算学是保险公司在实施寿险业务和制定寿险产品时,需要掌握并运用的精算技术,其目标旨在获得稳定的精算结果。
2、内容:本系列教材包括寿险精算基础知识、寿险产品设计、保费计算、条款拟定等各方面。
二、寿险精算基础知识
1、基础知识体系:此部分主要介绍了精算师的基本概念、精算的基本技术、精算的常用模型和寿险的总体概况,以及寿险精算的经济意义等。
2、工具:此部分介绍了常用的精算软件、精算计算器和其他一些专业的精算工具,主要用于计算和绘制精算图表。
三、寿险产品设计
1、基础知识:此部分介绍了寿险产品主要结构和功能,以及寿险报喜奖励计划的基本原理,如保单费率、给付条件、分红等。
2、设计方法:此部分介绍了寿险产品的设计流程、技术方法及其相关的精算工具,以及如何使用精算模型为寿险产品设计以及其他后续精算研究。
四、保费计算
1、基础知识:此部分介绍了寿险保费计算的基本原理和方法,以及如何使用精算软件和一些相关计算工具来进行计算和结果分析。
2、计算流程:此部分介绍了保费计算流程比较,以及如何实施保费计算手续、估算参数等。
五、条款拟定
1、基础知识:此部分介绍了寿险条款拟定的原则和技术,如保险条款的编制、条款精算原理与实践、条款评估与审查等。
2、实施方法:此部分主要介绍了拟定条款的实施流程,以及如何使用相关工具进行评估审查,从而保证条款的准确性。
中国精算师《寿险精算》章节题库-生存年金的精算现值(圣才出品)
第3章生存年金的精算现值1.设(50)岁的人以50000元的趸缴纯保费购买了每月给付k元的生存年金。
假设年金的给付从购买年金后的第一个月末开始,预定年利率i=0.005,死亡满足UDD假设,而且50=13.5 ,≈1,β12=-0.4665,则k的值为()。
[2008年真题] A.322B.333C.341D.356E.364【答案】A【解析】每月的年金精算现值为:由×12=50000 ,解得:k=322。
2.设死亡力为μ=0.06,利率力为δ=0.04,在此假设条件下,则超过的概率为()。
[2008年真题]A.0.4396B.0.4572C.0.4648D.0.4735E.0.4837【答案】C【解析】由已知,得3.根据以下条件计算=()。
[2008年真题]A.1.6B.1.8C.2.0D.2.2E.2.4【答案】D【解析】由已知,有4.支付额为1的期初生存年金从95岁开始支付,其生存模型为:已知i=0.06,以Y表示该年金的现值变量,则E(Y)和Var (Y)分别为()。
[2008年真题]A.2.03;0.55B.2.03;0.79C.2.05;0.79D.2.05;0.55E.2.07;0.79【答案】A【解析】由i=0.06,得:v=(1+i)-1=1.06-1。
5.考虑从退休基金资产中支付的期初年金组合:已知i=6%,只要年金领取人活着,每个年金的年支付额是1,若正态分布95%的分位数是1.645,则退休基金负担现值为()。
A.480B.481C.483D.485E.487【答案】C【解析】设支付的随机变量为Z,退休基金为P,则故。
6.考虑(90)的期初年金,每次年金支付额为1,生存模型为:已知利率i=0.06,则=()。
A.1.8B.1.9C.2.0D.2.1E.2.2【答案】C【解析】由于7.。
A.0.085B.0.125C.0.600D.0.650E.0.825【答案】D【解析】8.已知α(12)=1.000281,β(12)=0.46811951,=9.89693,假设死亡均匀分布。
保险精算学寿险精算现值
K的概率分布函数为 : P K k k px qxk k qx.
故
Ax E Z vk 1 k qx .
k 0
在上式两边同乘lx , 得到lxBiblioteka Ax vk 1 d xk . k 0
给出直观解释.
引入转换函数:
D x v xlx, x岁 存 活 人 数 每 人 1单 位 元 在 0岁 的 现 值 ;
N x D x t , 从 x岁 起 到 生 命 最 大 值 1岁 上 存 活 t0
人 每 人 每 年1单 位 元 赔 付 在 0岁 的 现 值 。
Cx
v
x
1
d
,
x
x
x 1岁 死 亡 的 人 数 每 人 1 单 位 元 赔
付 在 0岁 的 现 值 ;
M x
C
x
,
t
从
x岁
起
到
生
命
最
大
值
4、延期n年的终身寿险
延期n年的终身寿险:用n Ax表示,某人x岁开始投保,延期n年 后死亡年末给付1单位元的延期终身寿险的现值。 现值随机变量为:
0 Z vK1
K 0,1,...,n1 K n,n1,.......
n Ax E
Z
vk1 k
kn
qx
Mxn Dx
或者
n
Ax
Ax
A1 x:n
证明:n Ax vn n pxAxn
1岁
上
每
人
t0
1单 位 元 赔 付 在 0岁 的 现 值 。
则
Ax
Mx Dx
对于赔付现值随机变量Z,计算方差:
VarZ EZ2 [EZ]2
2Ax E Z2 v2k1 k qx e2k1 k qx
寿险精算学(第3版)习题答案3
【解3.1】因为()()ln ()Pr Pr Pr T z F z Z z e z T δδ-⎛⎫=≤=≤=≥ ⎪-⎝⎭且由条件知剩余寿命服从De Moivre 分布,即()0,70T U ,故70ln ln 1ln ()Pr 17070z z z F z T dt δδδ-⎛⎫=≥==+ ⎪-⎝⎭⎰密度函数等于分布函数求导()ln 117070Z z f z zδδ'⎛⎫=+= ⎪⎝⎭已知0.05δ=,0.6z =代入上式得()0.60.48Z f =【解3.2】(40)的剩余寿命T 服从均匀分布(0,70),其生存函数为407070t tP -=,070t ≤≤由题意,可得ln 70ln ln ()Pr()Pr()Pr()ln 70t z z v F z Z z v z t v-=≤=≤=≥=Z 的90%置信上限即为使()0.9F z =的z 值,即ln 70ln 0.970zv -=解得exp[(70700.9)ln ]0.84z v =-⨯=【解3.3】在恒定死亡力和恒定利息力场合,容易验证趸缴净保费等于x A μδμ=+在调整以前有0.60.05μμ=+则求得0.075μ=调整以后0.0750.020.095μ'=+=,0.04δ'=则调整后的趸缴净保费为0.0950.7040.0950.04x A μμδ'===''++【解3.4】(1)()()tx A E Z E v ==,则()()2200.055001 1.250.031252500.0312522Pr[0]t x T x tt t A e f t dtedte dte Y δ∞-∞--+⎛⎫∞- ⎪⎝⎭====≥⎰⎰⎰其中~( 1.25,25)Y N -,则()1.25Pr(0)Pr(0.25)10.255Y Y +≥=≥=-Φ()0.031252[10.25]0.83x A e =-Φ=(2)因为22()x x Var Z A A =-,其中()()()2220.100.15001 2.50.1252500.12522[10.5]0.70t x T x tt t A e f t dte dte dte ∞-∞--+⎛⎫∞- ⎪⎝⎭====-Φ=⎰⎰⎰所以222()0.700.830.014x x Var Z A A =-=-=【解3.5】给付函数和贴现函数都已知,容易得到现时值函数为1(10.2)t t Z b v t -==+密度函数已知()()40400.02,050T t f t p t t μ=+=≤≤则趸缴净保费等于()()505000ln 10.21110.020.2410.2500.210t E Z dt t +⎛⎫=⨯=== ⎪+⎝⎭⎰两倍利息力下,趸缴净保费等于()()50502200110.020.020.091(10.2)0.210.2E Z dt t t -=⨯=⨯=++⎰所以现值变量的方差等于222()()[()]0.09090.23980.0334Var Z E Z E Z =-=-=【解3.6】一般情况下,如果剩余寿命T 服从()0,ω的均匀分布,即1(),0T f t t ωω=≤≤可以得到()0111t x T tt A e f t dte dtev a δωδωδωωωωδωδω∞---==-=-==⎰⎰本题中,T 服从(0,60)的均匀分布,故所求的净保费为604040100010001000666.76060a A =⨯=⨯=【解3.7】令3z 为()x 岁的人投保期末赔付1的n 年定期生存保险的现时值变量,根据已知条件有3()0.20.450.09n n x E z v p =⋅=⨯=223()0.040.450.018n n x E z v p =⋅=⨯=根据定期两全保险与定期寿险和定期生存险的关系,有213z z z =+则213123()()()()()()0.350.090.26E z E z E z E z E z E z =+⇒=-=-=[][]222213222212322()()()()()()()()0.060.0180.350.1645Var z E z E z E z E z Var z E z E z =+-⇒=-+=-+=推导出()[]2221110.16450.260.0969Var Z E Z E Z ⎡⎤=-=-=⎣⎦【解3.8】因为死亡服从De Moivre 分布,故40岁的人剩余寿命的密度函数为()160T f t =,060t ≤≤由于延期20年,所以赔付现值变量为0,020,2060TT Z e T δ-≤≤⎧=⎨<≤⎩所以,0z =点为重概率点,该点概率值为20201Pr(0)Pr(020)()603T Z T f t dt ==≤≤===⎰【解3.9】该保单可以视为一个10000元的终身寿险和10000元的20年定期寿险的组合,则该保单趸缴净保费为14545:201000010000A A +已知450.25A =,下面求145:20A 的值。
寿险精算第七讲 总保费与修正准备金
• 未来保险收入的精算现值为
Ga 40:20
• 故总保费的准备金为
(100000 A40:20
ea 40:20
) Ga 40:10
《寿险精算数学》 --05总保费与修正准备金
5.2.2 总保费准备金对会计报表的影响
下面通过一个例子,说明总保费准备金作为负债对会计报表的影响 考虑一个年缴保费的3 年期生死两全保险,有关情况如下表:
5.2.1 总保费准备金的计算 总保费准备金,是包含费用的准备金。其计算原理与纯保费
准备金相同.根据过去法,有
总保费准备金=过去总保费收入的精算积累值- 过去保险给付 与费用的精算现值
根据未来法,有
总保费准备金= 未来保险给付与费用支出的精算现值 - 未来总保费 收入的精算现值
包含费用的损失变量
包含费用的损失变量= 未来保险给付与费用支出的现值 - 保费总保费 收入的精算现值
一、运用保险资金面发生的费用 例如,员工工资、场地租金、设备费用,其他的服务费及需 缴纳的税金竺。这一类费用称为投资费用。一般在投资收入中扣除, 下面不再分析投资费用。
二、保险费用 因保险业务而发生的费用,称为保险费用。
《寿险精算数学》 --05总保费与修正准备金 表5.1.1 寿险公司可能采用的费用分类制度
费用类别 1. 业务获得费用 2. 保单维持费用
3. 一般费用 4. 理赔费用
费用细目
(1) 销售费用,包括代理人佣金和广告费 (2) 风险分类,包括体检 (3) 新保单制作与记录
(1) 保费收取与记账 (2) 爱益人更换和保单选择权准备 (3)与保单持有人通讯联系
(1) 调查与研究费用 (2) 精算和一般法律服务 (3) 一般会计费用,包括工资、佣金,水电费等 (4) 保费税
保险精算学实验报告(3篇)
第1篇一、实验目的本次实验旨在通过模拟保险精算的实际操作,使学生了解保险精算的基本原理和方法,提高学生运用数学、统计学和金融学知识解决实际问题的能力。
通过本次实验,学生能够:1. 掌握保险精算的基本概念和原理;2. 熟悉寿险和非寿险的精算模型;3. 学会运用相关软件进行精算计算;4. 提高数据分析、模型构建和报告撰写能力。
二、实验内容本次实验主要包括以下内容:1. 寿险精算模型:- 寿险产品定价:运用生命表和利率计算寿险产品的预定死亡率、预定利率和预定净收益;- 责任准备金计算:根据预定净收益和预定死亡率,计算责任准备金;- 保单现金价值估值:运用折现现值法,估算保单现金价值。
2. 非寿险精算模型:- 保险费率厘定:根据事故损失数据,运用损失分布模型计算保险费率;- 责任准备金计算:根据损失数据,运用损失分摊模型计算责任准备金。
3. 精算软件应用:- 使用精算软件进行寿险和非寿险精算模型的构建和计算;- 学习使用Excel、R等工具进行数据分析。
三、实验步骤1. 寿险精算模型:- 收集生命表和利率数据;- 运用生命表和利率计算预定死亡率、预定利率和预定净收益;- 根据预定净收益和预定死亡率,计算责任准备金;- 运用折现现值法,估算保单现金价值。
2. 非寿险精算模型:- 收集事故损失数据;- 运用损失分布模型计算保险费率;- 根据损失数据,运用损失分摊模型计算责任准备金。
3. 精算软件应用:- 使用精算软件进行寿险和非寿险精算模型的构建和计算;- 学习使用Excel、R等工具进行数据分析。
四、实验结果与分析1. 寿险精算模型:- 通过实验,我们得到了预定死亡率、预定利率和预定净收益等数据; - 根据预定净收益和预定死亡率,我们计算了责任准备金;- 运用折现现值法,我们估算出了保单现金价值。
2. 非寿险精算模型:- 通过实验,我们得到了保险费率和责任准备金等数据;- 分析损失数据,我们发现损失分布呈现正态分布。
寿险精算学课件-(3)精选全文
费用分类
成分
投资费用
(1)投资分析成本(2)购买、销售及服务成本
1、新契约费 (1)销售费用,包括代理人佣金及宣传广告费(2)风
保
险分类,包括体检费用(3)准备新保单及记录
险 2、维持费 (1)保费收取及会计
费
(2)给付变更及理陪选择权准备
用
(3)与保单持有人进行联络
3、营业费用 (1)研究、开发新险种费用(2)精算及一般法律服务 (3)普通会计(4)税金、许可证等费用
0
Ax
P( Ax )ax
0
P( Ax )
Ax ax
方差确定
Var(L)
Var[vt
P(
Ax
)
1
v d
k
1
]
Var[v(k 1)(s1)
P
(
Ax
)
1
v d
k
1
]
Var[(vs1 P( Ax ) )vk1] d
记Z s
vs1
P( Ax d
)
,Z
k
vk 1
由于分数剩余寿命和整值剩余寿命相互独立,
(
Z
k
)
方差的确定
终身寿险场合有
E
(Z
2 k
)
2 Ax,Var(Zk
)
2 Ax
-
Ax
2
在分数期死亡服从均匀分布的假定下,有
E(Zs )
E
v
s-1
P( Ax )
d
i
P( Ax ) d
Var(Zs
)
Var
v
s-1
P( Ax d
)
Var (v s -1 )
保险精算中的人寿保险的精算现值的模型
保险精算中的人寿保险的精算现值的模型一、人寿保险简介保险精算学主要分为两大类:一个是所谓的人寿保险(寿险精算),另一个是非人寿保险。
前者主要以人的寿命、身体或健康为“保险标的”的保险。
非人身保险主要包括:汽车保险、屋主保险、运输保险、责任保险、信用保险、保证保险等。
而这次我们主要讨论人寿保险。
狭义的人寿保险是以被保险人在保障期是否死亡作为保险标的的一种保险。
广义的人寿保险是以被保险人的寿命作为保险标的的一种保险。
它包括以保障期内被保险人死亡为标的的狭义寿险,也包括以保障期内被保险人生存为标底的生存保险和两全保险。
人寿保险的分类根据不同的标准,人寿保险有不同的分类:(1)以被保险人的受益金额是否恒定进行划分,可分为:定额受益保险,变额受益保险。
(2)以保障期是否有限进行划分,可分为:定期寿险和终身寿险。
(3)以保单签约日和保障期是否同时进行划分分为:非延期保险和延期保险。
(4)以保障标的进行划分,可分为:人寿保险(狭义)、生存保险和两全保险。
人寿保险的特点1:保障的长期性这使得从投保到赔付期间的投资收益(利息)成为不容忽视的因素。
2:保险赔付金额和赔付时间的不确定性人寿保险的赔付金额和赔付时间依赖于被保险人的生命状况。
被保险人的死亡时间是一个随机变量。
这就意味着保险公司的赔付额也是一个随机变量,它依赖于被保险人剩余寿命分布。
3:被保障人群的大多数性保险公司可以依靠概率统计的原理计算出平均赔付并可预测将来的风险。
人寿保险趸缴纯保费厘定的原理1、假定传统的人寿保险产品的趸缴纯保费是在如下假定下厘定的:假定一:同性别、同年龄、同时参保的被保险人的剩余寿命独立同分布。
假定二:被保险人的剩余寿命分布可以用经验生命表进行拟合。
假定三:保险公司可以预测将来的投资受益(即预定利率)。
2、原理保险公司在上面三个假定条件下,按照净均衡的原则来厘定趸缴纯保费的数额。
而趸缴纯保费是指在保单生效日一次性支付将来保险赔付金的期望现时值。
《寿险精算学(第3版)》 PPT-ch3
vn
fx
(t)dt
A1 +A 1 x:n x:n
• 现时值方差
Var(Zt )
A 2 1 x:n
+
2
A1 x:n
Ax:n
2
例3.5
• (30)购买10年定期两全险,10年末生存给付1。假设复 利计息,年实质利率为5%,寿命服从(0,100)的de Moivre分布。请计算:
(1)趸缴净保费; (2)赔付现时值方差; (3)被保险人赔付成本小于趸缴净保费的概率。
• 假定二:被保险人的未来寿命分布已知,可以用经验生命 表或者某个参数寿命模型进行拟合。这个假定意味着被保 险人的索赔概率已知。
• 假定三:金钱的时间价值可以采用利率贴现的方式进行测 算。这个假定意味着保险人能预测未来的利息因素的影响。
精算模型的构造思路
保险受益金的现值函数
• 现值(present value)函数是指在未来任意时刻赔付的保 险受益金,考虑到钱的时间价值,贴现到现在(保单发行 日)值多少钱。
Var(Zt ) 2Ax Ax 2
例3.2
• (30)购买终身寿险,死亡即刻赔付1。假设复利计息, 年实质利率为5%,寿命服从(0,100)的de Moivre分布。 请计算:
(1)赔付现时值期望; (2)赔付现时值方差; (3)被保险人缴纳的趸缴净保费大于赔付现时值的概率。
(1)已知
S0
函数为
0 , 0 t n Zt vn ,t n
• 定期生存险趸缴净保费
A 1 x:n
E(Zt )
n
vn
fx
(t)dt
vn
n
px
• 现时值方差
Var(Zt )
A 2 1 x:n
保险精算教学大纲丶习题及答案
保险精算教学大纲本课程总课时:课程教学周,每周课时第一章:利息理论基础本章课时:学习的目的和要求要求了解利息的各种度量掌握常见利息问题的求解原理二、主要内容第一节:实际利率与实际贴现率利息的定义实际利率单利和复利实际贴现率第二节:名义利率和名义贴现率第三节:利息强度第二章年金本章课时:一、学习的目的和要求要求了解年金的定义、类别掌握年金问题求解的基本原理和常用技巧二、主要内容第一节:期末付年金第二节:期初付年金第三节:任意时刻的年金值一、在首期付款前某时刻的年金值二、在最后一期付款后某时刻的年金积累值三、付款期间某时刻的年金当前值第四节:永续年金第五节:连续年金第三章生命表基础本章课时:一、学习的目的与要求理解常用生命表函数的概率意义及彼此之间的函数关系了解生存函数与生命表的关系并掌握寿险生命表的特点与构造原理掌握各种分数年龄假定下,分数年龄的生命表函数的估计方法主要内容第一节生命函数一、分布函数二、生存函数三、剩余寿命四、取整余命五、死亡效力六、生存函数的解析表达式第二节生命表一、生命表的含义二、生命表的内容第四章人寿保险的精算现值本章课时:一、教学目的与要求掌握寿险趸缴纯保费的厘定原理理解寿险精算现值的意义,掌握寿险精算现值的表达方式及计算技巧认识常见的寿险产品并掌握各种产品趸缴纯保费的厘定及寿险精算现值方差的计算理解趸缴纯保费的现实意义主要内容第一节死亡即付的人寿保险一、精算现值的概念二、n年定期保险的精算现值(趸缴纯保费)三、终身寿险的趸缴纯保费四、延期寿险的趸缴纯保费五、生存保险与两全保险的趸缴纯保费死亡年末给付的人寿保险一、定期寿险的趸缴纯保费二、终身寿险的趸缴纯保费三、两全保险的趸缴纯保费四、延期寿险的趸缴纯保费死亡即刻赔付保险与死亡年末赔付保险的精算现值的关系递增型人寿保险与递减型人寿保险一、递增型寿险二、递减型寿险三、两类精算现值的换算第五章年金的精算现值本章课时:一、学习目的与要求理解生存年金的概念掌握各种场合计算生存年金现时值的原理和技巧。
《寿险精算》学习指南
迄今为止,国内外对精算尚未达成完全统一的定义。不过,大多采用如下方 式来描述。所谓精算,就是运用数学、统计学、金融学、保险学及人口学等多学 科的知识和原理,定量解决金融保险等领域中有关问题,进而为决策提供科学依 据的一门应用型学科。精算与保险的结合形成保险精算,保险精算是精算的重要 组成部分。保险精算一般被描述为:运用数学、统计学、金融学、保险学及人口 学等学科的知识和原理,去解决商业保险与各种社会保障业务中有关项目,如死 亡率的测定、生命表的构造、费率的厘定、准备金的计提、利源分析、盈余分配、 偿付能力管理等,以此保证保险经营的稳定性和安全性。
4
叉和边缘学科。
§1.2 寿险精算的起源
寿险精算是从寿险经营的窘境中应运而生的一门新兴学科。寿险的前身是欧 洲中世纪的基尔特(Guild)制定。据记载,世界上最早的寿险保单之一,是在 16 世纪末,由一群海上保险承保人在伦敦对 William Gibbon 签发的,一年保险 期限,保险金额为 382.68 镑的定期保单。
18 世纪中期以前,英国早期的寿险组织、资格最老的要数于 1706 年在伦敦 特许成立的协和保险社。1721 年经特许成立的皇家交易保险公司和伦敦保险公 司开始经营寿险业务。此外,还有一些捐助团体以及联盟协会也经营寿险业务。 这些互助协会、保险公司以及其他团体经营寿险业务,这些业务概括起来,具有 如下几个特点:(1)寿险仅为火险、海险的副产品,尚未大规模独立地经营寿险。 (2)寿险业务所承保的对象限制较多。互助协会承保会员人数有限,主要局限 于商人、企业合伙人;特许保险公司经营的寿险,将病人、老年人及天花病人等 一概拒之门外。(3)寿险的保险费采用赋课式,未将年龄大小、死亡率高低等与 保险费挂钩。(4)寿险经营缺乏严密的科学基础,表现在有关计算单一、粗糙, 考虑因素较少。这样的寿险经营导致的是寿险业的不景气,保险技术的停滞不前。 也正是在这种经营思想的指导下,协和保险社在 1756 年以詹姆斯·道森(James Dodson)年龄偏大(那时 Dodson 实际年龄仅 46 岁)为由,拒绝吸收其为保险 社成员,其结果成为寿险精算兴起的导火线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 1岁死亡的人数每人1单位元赔
付在0岁的现值; M x C x t,从x岁起到生命最大值 1岁上每人
t 0
1单位元赔付在0岁的现值。 则 Mx Ax Dx
对于赔付现值随机变量Z , 计算方差: Var Z E Z 2 [ E Z ]2
2
Ax E Z 2 v
k 0
2 k 1
q e k x
k 0
2 k 1 k
qx
它相当于以计算趸缴净保费息力的两倍计算的趸缴净保费。 Var Z Ax Ax
2 2
Z的方差反映赔付现值随机变量的变动程度,用于衡量保险公司 承担的风险赔付程度。
2、定期寿险
假设在x岁时有lx 人参加定期寿险,保险人给付的所 有保险金的现值为: vd x v 2 d x 1 v n d x n 1 v n d x n 1 v n d x n 1 v n n 1 qx x岁的lx 人共趸缴净保费为A1 l ,由平衡原理,有: x:n x
k 0
在上式两边同乘lx , 得到 lx Ax v k 1 d x k .
k 0
给出直观解释.
引入转换函数: Dx v x lx , x岁存活人数每人1单位元在0岁的现值; N x Dx t , 从x岁起到生命最大值 1岁上存活
t 0
人每人每年1单位元赔付在0岁的现值。 C x v x 1d x,x
第6章 净保费
保险公司销售保险产品获得保费收 入,用于补偿保单承诺的保险赔付 和费用支出,同时实现利润目标。
保费是投保人购买保险产品支付的价格,它是由保险公司 的精算师根据保险产品的成本、利润目标、市场竞争因素等制 定的。理论上,保险费又称为总保费或毛保费,可以分为净保 费和附加保险费两部分。 净保费:补偿保单所承诺的赔付和给付责任必需的缴费部分;
k 0
从概率的角度来看,我们可以得出这样的结论:
设 x 的整值余寿为K x , 简记为K , 则对 x 的赔付款的现值就 是一个随机变量 : Z v K 1 . 更一般, 如果赔付额也依赖于余寿K ,以bK 1表示, 则Z bK 1v K 1 . 赔付现值的随机变量Z的期望值就是保险的精算现值. K的概率分布函数为 : P K k k px qx k k qx . 故 Ax E Z v k 1 k qx .
1 x:n
Ax:n v k 1 k qx v n n px
1 k 0
n 1
M x M x n Dx n Dx Dx
两全寿险现值随机变量可以分解为定期寿险现值随机变 量和纯生存保险现值随机变量两部分。
设Z 为两全寿险现值随机变量, Z1为n年定期寿险现值随机变量, Z 2为n年纯生存保险现值随机变量, 则 Var Z Var Z1 Z 2 Var Z1 +Var Z 2 2Cov Z1 Z 2 又 Cov Z1 Z 2 E Z1Z 2 E Z1 E Z 2 Var Z Var Z1 Z 2 Var Z1 +Var Z 2 2E Z1 E Z 2 where Var Z 2 E Z 2 E Z 2
附加保险费:补偿保险公司因出售和管理保单发生的费用需要 的缴费部分。 主要内容: 寿险精算现值
生存年金精算现值
均衡净保费
6.1 寿险精算现值
终身寿险 定期寿险 两全寿险
精算现值是保险赔付在投保时的期望现值。
6.1.1 死亡年年末赔付的寿险
1、终身寿险
用Ax表示终身寿险的精算现值.
k 1 x k 1 Ax v d x k / lx v d x k / lx v x k 0 k 0 其中实质上是一个有限的数 x 1。 或Ax v k 1 k qx .
v n K n, n 1,... Z K 0,1,..., n 1 0 其精算现值以Ax:n 1表示,有 Ax:n 1 E Z v n n px .
把n年定期寿险与n年纯生存保险组合在一起,两全保险 现值随机变量为: v K 1 K 0,1,..., n 1 Z n K n, n 1,... v 其精算现值以Ax:n 表示,有 Ax:n A
Z的方差为:
1 Var Z 2 A1 A x:n x:n
2, where2A1 e x:nk 0
n 1
2 k 1 k
qx
3、两全寿险
两全寿险是定期寿险和生存保险的合险。对(x)的1 单位元n年两全寿险,是对(x)的n年定期寿险和n年 纯生存保险的合险。 后者是以n年期满被保险人仍然存活为给付条件的 生存保险,其现值随机变量为:
从概率的角度来看,我们的结论:
设 x 的1单位元赔付n年定期寿险, 则对 x 的赔付款的现值随 机变量 : v K 1 Z 0 故 A
1 x:n
K 0,1,..., n 1 k n, n 1,...
n 1 k 0
.
E Z v k 1 k qx .
2 A1 l vd v d x 1 x x:n x
所以: A1 x:n
vd x v 2 d x 1 lx v 0 qx v 2 1 qx
n 1 t 1
n 1 t 1 n 1 x t 1 v t qx v d x t / lx v d x t / lx v x t 0 t 0 t 0 1 1 Cx t Cx n t (M x M xn ) Dx t 0 t 0 Dx