(完整版)初中数学第一章有理数知识点归纳总结

合集下载

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0pq ,p (pq 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类:①负分数负整数负有理数零正分数正整数正有理数有理数②负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:)0a(a )0a (0)0a (a a或)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a ≠0,那么a 的倒数是a1;若ab=1 a 、b 互为倒数;若ab=-1a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n, 当n为正偶数时: (-a)n=a n或(a-b)n =(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a310n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学第一章有理数知识点归纳总结

初中数学第一章有理数知识点归纳总结

初中数学第一章有理数知识点归纳总结初中数学第一章主要涉及有理数的概念、运算规则、绝对值和相反数等知识点。

下面将对这些知识点进行归纳总结。

1.有理数的概念:有理数是整数和分数的统称,包括正整数、负整数、零,以及正分数和负分数。

有理数可以用分数形式表示,也可以用小数形式表示。

2.整数的概念:整数包括正整数、负整数和零。

正整数表示数量时为正,负整数表示数量时为负,零表示没有数量。

3.分数的概念:分数由分子和分母组成,分子表示被分成的份数,分母表示总的份数。

分数可以表示一个数在单位等分之中的一部分。

4.有理数的比较:有理数可以通过大小进行比较。

对于两个有理数a和b,如果a-b>0,则a>b;如果a-b<0,则a<b;如果a-b=0,则a=b。

5.有理数的加法与减法:有理数的加法和减法满足以下性质:-相同符号的两个数相加或相减,绝对值较大的数保留符号,结果的符号与原来的符号相同。

-不同符号的两个数相加或相减,绝对值较大的数保留符号,结果的符号与绝对值较大的数的符号相同。

6.有理数的乘法与除法:有理数的乘法和除法满足以下性质:-两个正数相乘或相除的结果为正数。

-两个负数相乘或相除的结果为正数。

-一个正数与一个负数相乘或相除的结果为负数。

-任何数除以零的结果为零。

7.绝对值:一个数的绝对值表示这个数离零的距离。

如果一个数是正数,那么它的绝对值就等于它本身;如果一个数是负数,那么它的绝对值等于它的相反数。

8.相反数:一个数与它的相反数的和为零。

一个数的相反数可以通过改变符号获得,正数变为负数,负数变为正数。

9.有理数的绝对值与相反数的关系:一个有理数的绝对值等于它的相反数的绝对值。

10.混合运算:混合运算指在一个表达式中同时包含加减乘除等不同的运算符号。

在混合运算中,先进行括号内的计算,然后进行乘除法运算,最后进行加减法运算。

11.近似数与精确数:在实际计算中,有时候需要使用近似数来代替精确数。

(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学上第一章有理数1.有理数2.数轴3.相反数4.绝对值5.有理数比大小6.互为倒数7. 有理数加法法则8.有理数加法的运算律9.有理数减法法则10 有理数乘法法则11 有理数乘法的运算律:12.有理数除法法则13.有理数乘方的法则:14.乘方的定义15.科学记数法16.近似数的精确位17.有效数字18.混合运算法则第二章整式的加减1.单项式2.单项式的系数与次数3.多项式4.多项式的项数与次数第三章一元一次方程1.一元一次方程2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”(2)画图分析法: …………多用于“行程问题”4.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C 正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.七年级数学下第五章相交线与平行线1.邻补角2.对顶角3.垂线4.平行线5.同位角、内错角、同旁内角:6.命题7.平移8.对应点9.定理与性质10垂线的性质:11.平行公理12.平行线的性质:13.平行线的判定:第六章平面直角坐标系1.有序数对2.平面直角坐标系3.横轴、纵轴、原点4.坐标5.象限第七章三角形1.三角形2.三边关系3.高4.中线5.角平分线6.三角形的稳定性6.多边形7.多边形的内角8.多边形的外角9.多边形的对角线10.正多边形11.平面镶嵌12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质,多边形内角和公式,多边形的外角和多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

七年级一二章知识点总结

七年级一二章知识点总结

七年级一二章知识点总结
第一章:有理数
1. 有理数的概念
有理数是整数和分数的统称。

整数包括正整数、负整数和0,分数包括正分数、负分数。

2. 有理数的比较
有理数可以通过比较大小来排序,需要掌握大小关系的判断方法。

3. 有理数的加减
有理数的加减运算需要掌握符号相同和相反的情况下的运算规则,包括加法和减法。

4. 有理数的乘除
有理数的乘除运算同样需要掌握符号相同和相反的情况下的运算规则,包括乘法和除法。

第二章:一元一次方程
1. 一元一次方程的概念
一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。

2. 一元一次方程的解法
一元一次方程的解法主要包括两种方法:等式两边的运算法和等式移项法。

3. 一元一次方程的应用
一元一次方程在生活中有着广泛的应用,比如已知两种不同价格的商品总价相同,求解两
种商品的价格等问题。

总结:七年级一二章的内容是初中数学学习的基础,对于后续的学习具有重要的意义。


过本章的学习,学生们需要掌握有理数的基本概念,包括大小比较、加减乘除等运算规则,以及一元一次方程的解法和应用。

这些知识点是我们后续学习的基础,因此需要认真对待,主动学习,积极思考,努力掌握。

在学习过程中,应多做一些练习题,提高自己的计算能力。

同时,要善于归纳总结,将知识点串联起来,形成知识网络,从而更好地掌握和运用
所学的知识。

希望本篇总结能够对学生们的学习有所帮助,祝大家学习进步,取得好成绩。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ³10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.第二章整式的加减一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

初中数学必背知识点(全)

初中数学必背知识点(全)

第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的,数,都是有理数. 正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的,分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的,一条直线.数轴上的,点和实数的,对应关系:数轴上的,每一个点都表示一个实数,而每一个实数都可以用数轴上的,唯一的,点来表示。

实数和数轴上的,点是一一对应的,关系。

3.相反数:(1)只有符号不同的,两个数,我们说其中一个是另一个的,相反数;0的,相反数还是0;(2)相反数的,和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:一个实数a的,绝对值,就是数轴上表示这个数的,点到原点的,距离。

|a|≥0。

(1)正数的,绝对值是其本身,0的,绝对值是0,负数的,绝对值是它的,相反数;注意:绝对值的,意义是数轴上表示某数的,点离开原点的,距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的,问题经常分类讨论;去掉绝对值符号(化简)必须要对绝对值符号里面的,实数进行数性(正、负)确认,再去掉绝对值符号。

5.有理数比大小:(1)正数的,绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的,反而小;(5)数轴上的,两个数,右边的,数总比左边的,数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的,两个数互为倒数;注意:0没有倒数;若 a≠0,那么a的,倒数是a1;若ab=1⇔ a、b互为倒数;若ab= - 1⇔ a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的,符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的,符号,并用较大的,绝对值减去较小的,绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的,运算律:(1)加法的,交换律:a+b=b+a ;(2)加法的,结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的,相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的,符号由负因式的,个数决定.11 有理数乘法的,运算律:(1)乘法的,交换律:ab=ba ;(2)乘法的,结合律:(ab )c=a (bc );(3)乘法的,分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的,倒数;注意:零不能做除数,无意义即0a . (1)两数相除,同号得正,异号得负,并把绝对值相除。

初中一年级数学知识点

初中一年级数学知识点

一、无忧考网整理的关于初中一年级数学上册知识点第一章:有理数1.有理数:(1)凡能写成形式的数,都是有理数,整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类: ①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数; a>0 a是正数; a<0 a是负数;a≥0 a是正数或0 a是非负数; a≤0 a是负数或0 a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 a+b=0 a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;(3) ; ;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1a、b互为倒数; 若ab=-1a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

(完整版)《有理数》章节知识点归纳总结

(完整版)《有理数》章节知识点归纳总结

有理数章节知识点归纳总结一、基本运算和基本概念本身之迷①倒数是它本身的数是±1②绝对值是它本身的数是非负数(正数和0)③平方等于它本身的数是0,1 ④立方等于经本身的数是±1,0⑤偶数次幂等于本身的数是0、1 ⑥奇数次幂等于本身的数是±1,0⑦相反数是它本身的数是0数之最①最小的正整数是1②最大的负整数是-1③绝对值最小的数是0 ④平方最小的数是0 ⑤最小的非负数是0 ⑥最大的非正数0⑦没有最大和最小的有理数⑧没有最大的正数和最小的负数例、填空:①两个互为相反数的数的和是_____; ②____与它绝对值的差为0;③两个互为相反数的数的商是___;(0除外)④ ____的倒数等于它本身;⑤____的绝对值与它本身互为相反数; ⑥ ____的平方与它的立方互为相反数;⑦_ __的倒数与它的平方相等;⑧____的平方是4,_____的绝对值是4;1、(1)、 ,___)9()6(=-++(2)、,___)9()6(=--+(3)、,(4)、___)9()6(=-⨯+, ___)14()56(=-÷-(5)、,(6)、___4716=-,___46=+-(7)、,(8)、____)3(3=-,____)2(4=-(9)、,(10)、____24=-,____)1(2008=-(11)、,(12)、____)2(3=--,___565=--(13)、,(14)、___2131=-, ___)103()65(=-⨯-(15)、,(16)、___8325.0=÷-,____5.04=(17)、,(18)、___55=+-,___1020=--(19)、, ___)1.6()9.5(=---(20)、。

___)13(0)56()7(=-÷⨯-⨯-(21)、=-------------- (22)、 =---------2)2(-23-----(23)、 =--------------(24)、 =----------2)32(-22-----(25)、 =-------------- ( 26)、 =-----32322----------”b=b4=43(2二、数的分类1、把下列各数填在相应的括号内:-16,26,-12,-0.92, 0, 0.1008,-4.95正数集合{ }; 负数集合{ };整数集合{ };正分数集合{ };负分数集合{ };2、下列各数中:7,-9.25,,-301,109-274,31.25, ,-1573.5,0,2,-7,1.25,-,-3,2153743-。

(完整版)人教版初一数学知识点总结

(完整版)人教版初一数学知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

(完整版)初中数学第一章有理数知识点归纳总结

(完整版)初中数学第一章有理数知识点归纳总结

- 1 - 第一章有理数
思维路径:
有理数数轴运算
(数)(形)
1.有理数:
(1)凡能写成)0p q ,p (p q
为整数且分数形式的数,都是有理数,整数和分数统称有理数.
▲注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;
(2)有理数的分类: ①负分数负整数
负有理数零正分数正整数正有理数有理数②负分数
正分数
分数负整数

正整数
整数有理数(3)自然数 0和正整数;
a >0 a 是正数;
a <0 a 是负数;
a ≥0 a 是正数或0 a 是非负数;▲
a ≤ 0 a 是负数或0 a 是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:。

(完整版)人教版初中数学各章节知识点总结

(完整版)人教版初中数学各章节知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章、有理数知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b互为倒数;若ab=-1⇔ a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版初一数学上册第一章 有理数知识点归纳总结

人教版初一数学上册第一章 有理数知识点归纳总结

第一章有理数1.有理数:(1)凡能写成是)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数是指表示物体个数的数,即由0开始,0,1,2,3,4,……一个接一个,组成一个无穷的集体,即指非负整数。

总之,自然数就是指大于等于0的整数。

当然,负数、小数、分数等就不算在其内了。

自然数⇔ 0和正整数.a >0 ⇔ a 正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数(a 和-a ),我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离记,作∣a ∣;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值。

第一章 有理数知识点、考点、难点总结归纳

第一章 有理数知识点、考点、难点总结归纳

第一章有理数知识点、考点、难点总结归纳有理数是初中数学中的重要概念,它是进一步学习数学的基础。

下面我们来详细总结归纳一下有理数的知识点、考点和难点。

一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。

整数可以看作是分母为 1 的分数。

分数则是两个整数的比值,形式为\(\frac{m}{n}\)(其中\(n\neq 0\))。

二、有理数的分类1、按定义分类整数:正整数、0、负整数。

分数:正分数、负分数。

2、按性质分类正有理数:正整数、正分数。

负有理数:负整数、负分数。

三、数轴数轴是规定了原点、正方向和单位长度的直线。

数轴的作用:1、可以直观地表示有理数,任何一个有理数都可以用数轴上的一个点来表示。

2、可以比较有理数的大小,数轴上右边的数总比左边的数大。

四、相反数只有符号不同的两个数叫做互为相反数。

例如,\(5\)的相反数是\(-5\),\(-3\)的相反数是\(3\),\(0\)的相反数是\(0\)。

相反数的性质:1、互为相反数的两个数之和为\(0\),即\(a +(a) = 0\)。

2、数轴上表示相反数的两个点位于原点两侧,且到原点的距离相等。

五、绝对值数轴上表示数\(a\)的点与原点的距离叫做数\(a\)的绝对值,记作\(\vert a\vert\)。

绝对值的性质:1、正数的绝对值是它本身,即当\(a > 0\)时,\(\vert a\vert = a\)。

2、 0 的绝对值是 0,即\(\vert 0\vert = 0\)。

3、负数的绝对值是它的相反数,即当\(a < 0\)时,\(\vert a\vert = a\)。

绝对值的计算:例如,\(\vert -5\vert = 5\),\(\vert 3\vert = 3\)。

六、有理数的大小比较1、正数大于 0,0 大于负数,正数大于负数。

2、两个负数比较大小,绝对值大的反而小。

例如,比较\(-3\)和\(-5\)的大小,因为\(\vert -3\vert =3\),\(\vert -5\vert = 5\),\(3 < 5\),所以\(-3 >-5\)。

人教版初一数学上册知识点归纳总结

人教版初一数学上册知识点归纳总结

第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;?不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数? 0和正整数; a >0 ? a 是正数; a <0 ? a 是负数;a ≥0 ? a 是正数或0 ? a 是非负数; a ≤ 0 ? a 是负数或0 ? a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数,0的相反数还是0,(2)注意:a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ? a+b=0 ? a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数
思维路径:
有理数
数轴 运算
(数)
(形)
1.有理数:
(1)凡能写成)0p q ,p (p q ≠为整数且分数形式的数,都是有理数,整数和分数统称有理数. ▲注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;
(2)有理数的分类: ① ⎪⎪⎩
⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数
(3)自然数⇔ 0和正整数;
a >0 ⇔ a 是正数;
a <0 ⇔ a 是负数;
a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;▲
a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:
a-b+c 的相反数是-(a-b+c)= -a+b-c ;
a-b 的相反数是b-a ;
a+b 的相反数是-a-b ;
(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
4.绝对值:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)
0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a
>⇔= ; 0a 1a a
<⇔-=;
(4) |a|是重要的非负数,即|a|≥0,非负性;▲
5.有理数比大小:
(1)正数永远比0大,负数永远比0小;
(2)正数大于一切负数;
(3)两个负数比较,绝对值大的反而小;▲
(4)数轴上的两个数,右边的数总比左边的数大;
(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

6.倒数:乘积为1的两个数互为倒数;
注意:0没有倒数; 若ab=1⇔ a 、b 互为倒数; 若ab=-1⇔ a 、b 互为负倒数. 等于本身的数汇总:▲
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;▲
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:
(1)两数相乘,同号得正,异号得负,并把绝对值相乘;
(2)任何数与零相乘都得零;
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );
(3)乘法的分配律:a (b+c )=ab+ac .(简便运算)
12.有理数除法法则:除以一个数等于乘以这个数的倒数;
▲注意:零不能做除数,无意义即0
a .
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;▲
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a 2是重要的非负数,即a 2≥0;▲
若a 2+|b|=0 ⇔ a=0,b=0;
(4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂
是正数。

(5)据规律 ⇒⎪⎪⎭
⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.
15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数+1
16.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.
17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。

18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。

相关文档
最新文档