数理统计课后复习西安交大施雨

合集下载

西安交大西工大 考研备考期末复习 概率论与数理统计 习题课

西安交大西工大 考研备考期末复习 概率论与数理统计 习题课

12. 条件概率
设 A, B 是 两 个 事 件,且 P(B) 0, 称 P( A | B) P( AB) P(B)
为 在 事 件B 发 生 的 条 件 下 事 件A发 生 的条 件 概 率.
A AB B
13. 乘法定理
设 P( A) 0, 则有 P( AB) P(B A)P( A). 设 A, B,C 为事件,且 P( AB) 0, 则有
2 若事件A与B相互独立, 则以下三对事件
① A与 B;
② A 与 B;
③ A 与 B.
18. 独立试验序列概型
设{Ei }(i=1,2,…)是一列随机试验,Ei的样本空 间为i ,设Ak 是Ek 中的任一事件,Ak k , 若Ak出
现的概率都不依赖于其它各次试验Ei (ik)的结果,
则称{Ei } 是相互独立的随机试验序列,简称独立试 验序列.
(2) 问:哪个系统的可靠性更大?
系统Ⅰ.
①1 2 … n
② n+1 n+2 …
2n
1
系统Ⅱ.
2
n

n+1
n+2
2n
解 设 Ai {第i个元件正常工作}, 则 P( Ai ) r
i 1,2,n 设 B1={ 系统Ⅰ正常工作}
j 1
称此为贝叶斯公式.
i 1,2,, n.
16.四个公式之间的联系
条件概率 P(B A) P( AB) P( A)
全概率公式
乘法定理
P( AB) P( A)P(B A)
P(A) P(B1)P(A B1) P(B2 )P(A B2) P(Bn)P(A Bn)
贝叶斯公式
P ( Bi
A)

数理统计总复习

数理统计总复习

则 D(aX bY ) a 2 DX b 2 DY . 若 X , Y 不相关,
目 录
前一页
后一页
退 出
4)熟记两点分布、二项分布、泊松分布、均匀分布、 正态分布、指数分布的期望值和方差值.
5)掌握协方差和相关系数的定义,不相关的定义及 独立与不相关的关系; COV( X, Y ) = E( X – EX )( Y-EY ) = E XY –EX EY
… … …

yj p1 j p2 j pij
x2
… … …

pi
p1 p2
pi
ቤተ መጻሕፍቲ ባይዱi
p j
pi1

p1
pi 2

p2





p j

5)掌握随机变量独立性的充分必要条件:
i , j pij pi p j f x, y f X x fY y 对于几乎所有x,y
5)理解贝努里试验,掌握两点分布及其概率背景;
X ~ B ( 1, p ), 6)掌握二项分布的概率背景,即会把实际问题中 服从二项分布的随机变量构设出来,运用有关公式 求概率. 若 X 表示n重贝努里试验中成功出现的次数, 则 X ~ B ( n , p ),
P{X k} C p 1 p
实轴某一区间上的概率.
(1) F ( x )
x
( 2)



f ( t )dt;
x2

f ( x )dx 1;
x1
(3) P{ x1 < X x 2 } F ( x 2 ) F ( x1 ) f ( x )dx;

应用数理统计习题答案西安交大施雨

应用数理统计习题答案西安交大施雨

应用数理统计答案学号:姓名:班级:目录第一章数理统计的基本概念 (2)第二章参数估计 (14)第三章假设检验 (23)第四章方差分析与正交试验设计 (28)第五章回归分析 (31)第六章统计决策与贝叶斯推断 (34)对应书目:《应用数理统计》施雨著西安交通大学出版社第一章 数理统计的基本概念1.1 解:∵2(,)XN μσ∴ 2(,)n XN σμ∴(0,1)N 分布∴(1)0.95P X P μ-<=<=又∵ 查表可得0.025 1.96u =∴ 221.96n σ=1.2 解:(1) ∵(0.0015)X Exp∴ 每个元件至800个小时没有失效的概率为:8000.001501.2(800)1(800)10.0015x P X P X e dxe -->==-<=-=⎰∴ 6个元件都没失效的概率为: 1.267.2()P ee --==(2)∵(0.0015)X Exp∴ 每个元件至3000个小时失效的概率为:30000.001504.5(3000)0.00151x P X e dxe--<===-⎰∴ 6个元件没失效的概率为: 4.56(1)P e-=-1.4 解:ini n x n x ex x x P ni i 122)(ln 2121)2(),.....,(122=--∏∑==πσμσ1.5证:21122)(naa x n x a x n i ni ii+-=-∑∑==∑∑∑===-+-=+-+-=ni i ni i ni i a x n x x na a x n x x x x 1222211)()(222a) 证:)(11111+=+++=∑n ni i n x x n x)(11)(1111n n n n n x x n x x x n n -++=++=++])()1(1 ))((12)[(11)](11[11)(11212111121211212112n n n i n n n i n i n i ni n n n i n i n in x x n n x x x x n x x n x x n x x n x x n S -+++--+--+=-+--+=-+=++=+=+=+=++∑∑∑∑] )(11))1()((12)([112111212n n n n n n n n n x x n x n x x n x x n x x nS n -++-+-+--++=++++ ])(11S [1 ])(1[n S 11212n 212n n n n n x x n n n x x n n n -+++=-+++=++1.6证明 (1) ∵22112211221()()()2()()()()()nni ii i nni i i i ni i X X X X X X X X X n X X X n X μμμμμ=====-=-+-=-+--+-=-+-∑∑∑∑∑(2) ∵2221112221221()22ii i nn ni i i i i ni ni XX X X X nX X nX nX X nX =====-=-+=-+=-∑∑∑∑∑1.10 解:(1).∑∑====ni i n i i x E n x n E X E 11)(1)1()(p np n=⋅=1np m p x D n x n D X D ni in i i )1()(1)1()(121-===∑∑==))(1()(122∑=-=n i i x x n E S E)1(1)])1(1())1(([1)])()(())()(([1])()([1])([12222212212212p mp nn p m p mp n n p m p mp n n x E x D n x E x D n x nE x E n x x E n ni i i n i i n i i --=+--+-=+-+=-=-=∑∑∑=== 同理,(2).λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(λnx D n x n D X D ni in i i 1)(1)1()(121===∑∑==λnn x E x D n x E x D n x nE x E n S E ni i i n i i 1)])()(())()(([1])()([1)(2122122-=+-+=-=∑∑==(3).2)(1)1()(11ba x E n x n E X E ni i n i i +===∑∑==na b x D nx n D X D ni ini i 12)()(1)1()(2121-===∑∑==12)(1)])()(())()(([1])()([1)(22122122a b n n x E x D n x E x D n x nE x E n S E ni i i n i i -⋅-=+-+=-=∑∑==(4).λ===∑∑==ni i ni i x E n x n E X E 11)(1)1()(nx D nx n D X D ni ini i 2121)(1)1()(λ===∑∑==221221221)])()(())()(([1])()([1)(λnn x E x D n x E x D n x nE x E n S E ni i i n i i -=+-+=-=∑∑==(5).μ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx n D X D ni in i i 2121)(1)1()(σ===∑∑==221221221)])()(())()(([1])()([1)(σ⋅-=+-+=-=∑∑==nn x E x D n x E x D n x nE x E n S E ni i i n i i1.11 解:由统计量的定义知,1,3,4,5,6,7为统计量,5为顺序统计量 1.17 证:),(~ λαΓXxe x xf λαααλ--Γ=∴1)()( 令kXY =ke ky k ke ky yf kyky⋅Γ=⋅Γ=∴----λαααλαααλαλ11)()( )()()(即 ),(~ky Y αΓ1.18 证:),(~ b a X β),()1()( 11b a B x xx f b a ---=∴),(),(),()1()( 11b a B b k a B b a B x x x X E b a k k +=-=∴⎰∞+∞---),(),1()( b a B b a B X E +=∴ba a ab a b a b a a a a b a b a a a b b a b a b a +=Γ+Γ++ΓΓ=Γ++Γ+Γ+Γ=ΓΓ+Γ⋅++ΓΓ+Γ=)()()()()()()1()()1()()()()1()()1(),(),2()(2b a B b a B X E +=))(1()1()()()()2()()2(b a b a a a a b b a b a b a ++++=ΓΓ+Γ⋅++ΓΓ+Γ= 22)]([)()( X E X E X D -=∴2))(1())(1()1(b a b a ab ba ab a b a a a +++=+-++++=1.19 解:∵(,)X F n m 分布12(1)022()((1))()(1)()()()(1)()()n n m n mn m yn m y n mn nP Y y P X X y m myP X y n n n x x dx m m m++--+≤=+≤=<-Γ=+ΓΓ⎰222212211()()()1()(1)()()11(1)(1)(,)n n m n m n mn mn mf y P Y y y y y y y yy B ++----'=≤Γ=+ΓΓ----=∴ 22(1)(,)n m n n Y X X m mβ=+分布1.20 解:∵()Xt n 分布122212()()(()2(1)n n P Y y P X y P X xdxn ++-≤=≤=≤≤Γ=+11111212122()()()(1)()1()(1)()()()n n n n nf y P Y y y yn y y n n n+++--+--'=≤Γ=+Γ=+ΓΓ∴2(1,)2nY XF =分布1.21 解: (1) ∵(8,4)XN 分布∴ 4(8,)25XN 分布,即5(8)(0,1)2X N -∴ 样本均值落在7.88.2分钟之间的概率为:5(7.88)5(8)5(8.28)(7.88.2)()2220.383X P X P ---≤≤=≤≤=(2) 样本均值落在7.58分钟之间的概率为:5(7.58)5(8)5(88)(7.58)()2225(8)(0 1.25)20.3944X P X P X P ---≤≤=≤≤-=≤≤=若取100个样品,样本均值落在7.58分钟之间的概率为:10(7.88)10(8)10(8.28)(7.88.2)()2222*(0.84130.5)0.6826X P X P ---≤≤=≤≤=-=单个样品大于11分钟的概率为:110.77340.2266P =-=25个样品的均值大于9分钟的概率为210.97980.0202P =-= 100个样品的均值大于8.6分钟的概率为310.99870.0013P =-= 所以第一种情况更有可能发生1.23 解:(1) ∵2(0,)XN σ分布∴2(0,)XN nσ分布∴22()(1)χσ∵ 22221()()ni i a X an X an σσ===∑∴21a n σ=同理 21b m σ=(2) ∵2(0,)XN σ分布∴222(1)X χσ分布由2χ分布是可加性得:2221()ni i X n χσ=∑()nic X t m ==∑∴c =(3) 由(2)可知2221()ni i X n χσ=∑2221122211(,)nni ii i n mn mi ii n i n X d Xnn dF n m XmXmσσ==++=+=+=∑∑∑∑∴ md n=1.25 证明:∵211(,)XN μσ分布∴2211()(1)i X μχσ-∴1221111()()n i i X n μχσ=-∑ 同理2222212()()n i i Y n μχσ=-∑1122222112211111222221122112()()(,)()()n n i i i i n n i i i i X n n X F n n Y n Y n μσμσμσμσ====--=--∑∑∑∑第二章 参数估计 2.1 (1) ∵ ()XExp λ分布∴ ()1E X λ=令 ˆ1X λ= 解得λ的矩估计为: ˆ1X λ= (2) ∵ (,)XU a b 分布∴ ()2a bE X +=2()()12b a D X -=令 1ˆˆ2ab A X +==22221ˆˆˆˆ()()1124n i i b a a b A X n =-++==∑ (22211n i i X X S n =-=∑)解得a 和b 的矩估计为:ˆˆaX bX ==(3) 110()1E X x x dx θθθθ-=*=+⎰令1ˆˆ1A X θθ==+∴ˆ1X X θ=- (4) 110()(1)!kk x kE X x x e dx k βββ--=*=-⎰令ˆkX β= ∴ ˆk Xβ=(5) 根据密度函数有2221()22()E X a aE X a λλλ=+=++根据矩估计有1222221ˆˆˆ22ˆˆˆa A X a a A S X λλλ+==++==+解得λ和a 的矩估计为: ˆˆaX λ==- (6) ∵ (,)X B m p∴ ()E X mp =令 1ˆmpA X == 解得p 的矩估计为:ˆX pm= 2.3解:∵ X 服从几何分布,其概率分布为:1()(1)k P X k p p -==-故p 的似然函数为: 1()(1)ni i x nnL p p p =-∑=-对数似然函数为:1ln ()ln ()ln(1)ni i L p n p x n p ==+--∑令 1ln ()1()01nii L p n x n p p p=∂=--=∂-∑ ∴ 1ˆpX= 2.4 解:由题知X 应服从离散均匀分布,⎪⎩⎪⎨⎧≤≤==其它011)(N k N k x p2)(NX E =矩估计: 令7102=∧N1420=∴∧N 极大似然估计:⎪⎩⎪⎨⎧≤≤=其它071011)(N N N L要使)(N L 最大,则710=N710=∴∧N2.5 解:由题中等式知:2196.196.196.1)025.01(025.0)(1S X +=+=∴+=+-Φ=∴=-Φ-∧∧∧-σμθσμμσθσμθ2.6 解:(1) 05.009.214.2=-=R0215.005.04299.05=⨯==∴∧d R σ (2)将所有数据分为三组如下所示:0197.005.03946.005.0)05.005.005.0(316=⨯==∴=++=∴∧d R R σ2.7 解:(1)⎩⎨⎧+<<=其它 01x1)(θθx fθθθθθθ≠+==+=++=∴∧21)()(2121)(X E E X E ∴ X =∧θ不是θ的无偏估计,偏差为21=-∧θθ (2) θ=-)21(X E 21-=∴∧X θ是θ的无偏估计 (3)22))(()())(()(θθθθ-+=-+=∧∧X E X D E D M S E41121+=n 2.8 证:由例2.24,令2211x a x a +=∧μ,则∧μ 为μ无偏估计应 满足121=+a a因此1μ,2μ,3μ都是μ的无偏估计)()()()(21)()(2513)()(95)9491)(()())(()()(1233212221212∧∧∧∧∧∧=∧<<===+=∴+==∑μμμμμμμD D D X D D X D D X D X D D a a X D X D a D i i i2132121X X +=∴∧μ最有效 2.9 证: )(~λp Xλλ==∴)( )(X D X EX 是λ=)(X E 的无偏估计,2*S 是λ=)( X D 的无偏估计 )()1()())1((2*2*S E X E S XE αααα-+=-+∴λλααλ=-+=)1(∴2*)1(SX αα-+是λ的无偏估计2.10 解:因为2222((1))()(1)()(1)()1(1)()11(1)1E X S E X E S na E S n n a E S n n n a n nααααλαλαλαλλ**+-=+-=+--=+---=+-=-所以 2(1)X S αα*+-是λ的无偏估计量2.15 解:因为ˆθ是θ的有效估计量ˆˆˆ()()()E uE a b aE b a b u θθθ=+=+=+= 221ˆˆˆˆ()()()()D u D a b a D a D θθθ=+=≤ (其中,1ˆθ是θ的任意无偏估计量中的一个)所以 ˆu是u 的有效估计量 2.26 解: 因为总体服从正态分布,所以)01X U N μσ-=(,)对于给定的1α-,查标准正态分布表可得2u α,使得 2()1P U u αα<=- 即:22()1P X p X ααα<<+=-区间的长度2d L α=<,所以22224u n L ασ>2.28 解:因为总体服从正态分布,所以)01X U N μσ-=(,), 222(1)nS V n χσ=-由因为U 和V 是相互独立的, 所以(1)X T t n =-对于给定的1α-,查标t 分布表可得2t α,使得 2()1P U t αα<=-,即:2()1P X X ααμα<<=- 当30n =,35X =,15S =时,第一家航空公司平均晚点时间μ的95%的置信区间为:(29.3032,40.6968)对于给定的1α-,查标t 分布表可得t α,使得 ()1P U t αα>=-, 即:()1P X αμα<+=- 故μ的具有单侧置信上限的单侧置信区间为(,)X α-∞+ 所以经计算可得:第一家航空公司的单侧上限置信区间为(,39.7327)-∞ 第二种航空公司的单侧上限置信区间为(,36.3103)-∞ 所以选择第二家航空公司。

应用数理统计习题答案_西安交大(论文资料)

应用数理统计习题答案_西安交大(论文资料)

应用数理统计答案学号:姓名:班级:目录第一章数理统计的基本概念 (2)第二章参数估计 (14)第三章假设检验 (24)第四章方差分析与正交试验设计 (29)第五章回归分析 (32)第六章统计决策与贝叶斯推断 (35)对应书目:《应用数理统计》施雨著西安交通大学出版社第一章 数理统计的基本概念1.1 解:∵2(,)X N μσ∼ ∴ 2(,)n X N σμ∼∴)(0,1)X N μσ−∼分布∴(1)0.95P X P μ−<=<=又∵ 查表可得0.025 1.96u = ∴ 221.96n σ=1.2 解:(1) ∵ (0.0015)X Exp ∼∴ 每个元件至800个小时没有失效的概率为:8000.001501.2(800)1(800)10.0015x P X P X e dxe −−>==−<=−=∫∴ 6个元件都没失效的概率为: 1.267.2()P e e −−==(2) ∵ (0.0015)X Exp ∼∴ 每个元件至3000个小时失效的概率为:30000.001504.5(3000)0.00151x P X e dxe−−<===−∫∴ 6个元件没失效的概率为: 4.56(1)P e −=−1.4 解:ini n x n x ex x x P ni i 122)(ln 2121)2(),.....,(122=−−Π∑==πσμσ1.5证:∵21122)(na a x n x a x ni ni ii+−=−∑∑==∑∑∑===−+−=+−+−=ni i ni i ni i a x n x x naa x n x x x x 1222211)()(222a) 证:)(11111+=+++=∑n ni i n x x n x )(11)(1111n n n n n x x n x x x n n −++=++=++])()1(1 ))((12)[(11)](11[11)(11212111121211212112n n n i n n n i n i n i ni n n n i n i n in x x n n x x x x n x x n x x n x x n x x n S −+++−−+−−+=−+−−+=−+=++=+=+=+=++∑∑∑∑] )(11))1()((12)([112111212n n n n n n n n n x x n x n x x n x x n x x nS n −++−+−+−−++=++++])(11S [1 ])(1[nS 11212n 212n n n n n x x n n n x x n n n −+++=−+++=++ 1.6证明 (1) ∵22112211221()()()2()()()()()nni ii i nni i i i ni i X X X X X X X X X n X X X n X μμμμμ=====−=−+−=−+−−+−=−+−∑∑∑∑∑(2) ∵2221112221221()22ii i nn ni i i i i ni ni XX X X X nX X nX nX X nX =====−=−+=−+=−∑∑∑∑∑1.10 解: (1).∑∑====ni i n i i x E n x n E X E 11)(1)1()(p np n=⋅=1np mp x D n x n D X D ni in i i )1()(1)1()(121−===∑∑==))(1()(122∑=−=n i i x x n E S E)1(1)])1(1())1(([1)])()(())()(([1])()([1])([12222212212212p mp nn p m p mp n n p m p mp n n x E x D n x E x D n x nE x E n x x E n ni i i n i i n i i −−=+−−+−=+−+=−=−=∑∑∑=== 同理,(2). λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(λnx D n x n D X D ni in i i 1)(1)1()(121===∑∑==λnn x E x D n x E x D n x nE x E n S E ni i i n i i 1)])()(())()(([1])()([1)(2122122−=+−+=−=∑∑==(3). 2)(1)1()(11b a x E n x n E X E ni i n i i +===∑∑==na b x D nx n D X D ni ini i 12)()(1)1()(2121−===∑∑==12)(1)])()(())()(([1])()([1)(22122122a b nn x E x D n x E x D n x nE x E n S E ni i i n i i −⋅−=+−+=−=∑∑==(4). λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx nD X D ni ini i 2121)(1)1()(λ===∑∑==221221221)])()(())()(([1])()([1)(λnn x E x D n x E x D n x nE x E n S E ni i i n i i −=+−+=−=∑∑==(5). μ===∑∑==ni ini i x E nx nE X E 11)(1)1()(nx D nx nD X D ni i ni i 2121)(1)1()(σ===∑∑==221221221)])()(())()(([1])()([1)(σ⋅−=+−+=−=∑∑==nn x E x D n x E x D n x nE x E n S E ni i i n i i1.11 解:由统计量的定义知,1,3,4,5,6,7为统计量,5为顺序统计量 1.17 证:),(~ λαΓX ∵xe x xf λαααλ−−Γ=∴1)()( 令kXY =ke ky k k e ky yf kyky ⋅Γ=⋅Γ=∴−−−−λαααλαααλαλ11)()( )()()(即 ),(~ky Y αΓ1.18 证:),(~ b a X β∵),()1()( 11b a B x xx f b a −−−=∴),(),( ),()1()( 11b a B b k a B b a B x x x X E b a k k +=−=∴∫∞+∞−−−),(),1()( b a B b a B X E +=∴ba a ab a b a b a a a a b a b a a a b b a b a b a +=Γ+Γ++ΓΓ=Γ++Γ+Γ+Γ=ΓΓ+Γ⋅++ΓΓ+Γ=)()()()()()()1()()1()()()()1()()1(),(),2()(2b a B b a B X E +=))(1()1()()()()2()()2(b a b a a a a b b a b a b a ++++=ΓΓ+Γ⋅++ΓΓ+Γ= 22)]([)()( X E X E X D −=∴2))(1())(1()1(b a b a ab ba ab a b a a a +++=+−++++= 1.19 解:∵ (,)X F n m ∼分布2212(1)022()((1))((1)()()()(1)()()n n m n mn m yn m y n mn nP Y y P X X y m myP X y n n n x x dx m mm ++−−+≤=+≤=<−Γ=+ΓΓ∫2222122221122()()()1((1()()11(1)(1)(,)n n m n m n m n m n m f y P Y y y y yy y yy B ++−−−−′=≤Γ=+ΓΓ−−−−=∴ 22(1)(,)n mn n Y X X m mβ=+∼分布1.20 解:∵ ()X t n ∼分布122212()()((2(1n n P Y y P X y P X xdxn ++−≤=≤=≤≤=+112211221212122()()()(1)()1()(1(()()n n n n n f y P Y y y y n y y nn n +++−−+−−′=≤Γ=+Γ=+ΓΓ∴ 2(1,)2nY X F =∼分布1.21 解: (1) ∵ (8,4)X N ∼分布∴ 4(8,)25X N ∼ 分布,即5(8)(0,1)2X N −∼ ∴ 样本均值落在7.88.2∼分钟之间的概率为:5(7.88)5(8)5(8.28)(7.88.2)()2220.383X P X P −−−≤≤=≤≤=(2) 样本均值落在7.58∼分钟之间的概率为:5(7.58)5(8)5(88)(7.58)(2225(8)(0 1.25)20.3944X P X P X P −−−≤≤=≤≤−=≤≤= 若取100个样品,样本均值落在7.58∼分钟之间的概率为:10(7.88)10(8)10(8.28)(7.88.2)(2222*(0.84130.5)0.6826X P X P −−−≤≤=≤≤=−= 单个样品大于11分钟的概率为:110.77340.2266P =−= 25个样品的均值大于9分钟的概率为210.97980.0202P =−= 100个样品的均值大于8.6分钟的概率为310.99870.0013P =−= 所以第一种情况更有可能发生1.23 解:(1) ∵ 2(0,)X N σ∼分布 ∴ 2(0,X N nσ∼分布∴ 22)(1)nXχσ∼∵ 222221()(ni i nXa X an X an σσ===∑∴ 21a n σ=同理 21b m σ=(2) ∵2(0,)X N σ∼分布 ∴222(1)X χσ∼分布由2χ分布是可加性得:2221()ni i X n χσ=∑∼()ninX c X t m ==∑∼ ∴c =(3) 由(2)可知2221()ni i X n χσ=∑∼2221122211(,)nni ii i n mn mi ii n i n X d Xnn dF n m XmXmσσ==++=+=+=∑∑∑∑∼∴ md n=1.25 证明:∵ 211(,)X N μσ∼分布 ∴ 2211((1)i X μχσ−∼∴ 1221111(()n i i X n μχσ=−∑∼同理 2222212(()n i i Y n μχσ=−∑∼ 1122222112211111222221122112()()(,)()()n n i i i i n n i i i i X n n X F n n Y n Y n μσμσμσμσ====−−=−−∑∑∑∑∼ 第二章 参数估计2.1 (1) ∵ ()X Exp λ∼分布∴ ()1E X λ=令 ˆ1X λ= 解得λ的矩估计为: ˆ1X λ= (2) ∵ (,)X U a b ∼分布∴ ()2a bE X +=2()()12b a D X −=令 1ˆˆ2ab A X +==22221ˆˆˆˆ()()1124n i i b a a b A X n =−++==∑ (22211n i i X X S n =−=∑)解得a 和b 的矩估计为:ˆˆaX bX =−=(3) 110()1E X x x dx θθθθ−=∗=+∫令 1ˆˆ1A X θθ==+∴ˆ1XXθ=− (4) 110()(1)!kk x kE X x x e dx k βββ−−=∗=−∫令ˆkX β= ∴ ˆkXβ=(5) 根据密度函数有2221()22()E X a aE X a λλλ=+=++根据矩估计有1222221ˆˆˆ22ˆˆˆa A X a a A S X λλλ+==++==+解得λ和a 的矩估计为:ˆˆaX λ==(6) ∵ (,)X B m p ∼ ∴ ()E X mp =令 1ˆmpA X == 解得p 的矩估计为:ˆXpm= 2.3解:∵ X 服从几何分布,其概率分布为:1()(1)k P X k p p −==−故p 的似然函数为: 1()(1)ni i x nnL p p p =−∑=−对数似然函数为:1ln ()ln ()ln(1)ni i L p n p x n p ==+−−∑令 1ln ()1()01nii L p n x n p p p =∂=−−=∂−∑ ∴ 1ˆpX= 2.4 解:由题知X 应服从离散均匀分布,⎪⎩⎪⎨⎧≤≤==其它01 1)(Nk N k x p2)(NX E =矩估计: 令 7102=∧N1420=∴∧N 极大似然估计:⎪⎩⎪⎨⎧≤≤=其它07101 1)(NN N L ∵要使)(N L 最大,则710=N710=∴∧N 2.5 解:由题中等式知:2196.196.196.1)025.01(025.0)(1S X +=+=∴+=+−Φ=∴=−Φ−∧∧∧−σμθσμμσθσμθ2.6 解:(1) 05.009.214.2=−=R ∵0215.005.04299.05=×==∴∧d Rσ(2)将所有数据分为三组如下所示:1x 2x 3x 4x5x 6x i R1 2.14 2.10 2.15 2.13 2.12 2.13 0.05 2 2.10 2.15 2.12 2.14 2.10 2.13 0.05 32.11 2.14 2.10 2.11 2.15 2.10 0.050197.005.03946.005.0)05.005.005.0(316=×==∴=++=∴∧d R R σ 2.7 解:(1)⎩⎨⎧+<<=其它 01x 1)(θθx f ∵ θθθθθθ≠+==+=++=∴∧21)()(2121)(X E E X E ∴ X =∧θ不是θ的无偏估计,偏差为21=−∧θθ(2) θ=−21(X E ∵ 21−=∴∧X θ是θ的无偏估计(3)22))(()())(()(θθθθ−+=−+=∧∧X E X D E D MSE41121+=n 2.8 证:由例2.24,令2211x a x a +=∧μ,则∧μ 为μ无偏估计应 满足121=+a a因此1μ,2μ,3μ都是μ的无偏估计)()()()(21)()(2513)()(95)9491)(()())(()()(1233212221212∧∧∧∧∧∧=∧<<===+=∴+==∑μμμμμμμD D D X D D X D D X D X D D a a X D X D a D i i i ∵∵2132121X X +=∴∧μ最有效2.9证: )(~λp X ∵ λλ==∴)( )(X D XEX ∵是λ=)(X E 的无偏估计,2*S 是λ=)( X D 的无偏估计)()1()())1((2*2*S E X E S X E αααα−+=−+∴λλααλ=−+=)1(∴2*)1(SX αα−+是λ的无偏估计2.10 解:因为2222((1))()(1)()(1)()1(1)()11(1)1E X S E X E S na E S n n a E S n n n a n nααααλαλαλαλλ∗∗+−=+−=+−−=+−−−=+−=− 所以 2(1)X S αα∗+−是λ的无偏估计量2.15 解:因为ˆθ是θ的有效估计量ˆˆˆ()()()E uE a b aE b a b u θθθ=+=+=+= 221ˆˆˆˆ()()()()D u D a b a D a D θθθ=+=≤ (其中,1ˆθ是θ的任意无偏估计量中的一个)所以 ˆu是u 的有效估计量 2.26 解: 因为总体服从正态分布,所以)01X U N μσ−=∼(,)对于给定的1α−,查标准正态分布表可得2u α,使得2()1P U u αα<=−即:22()1P X p X ααα−<<=−区间的长度2d L α=<,所以 22224u n L ασ>2.28 解:因为总体服从正态分布,所以)01X U N μσ−=∼(,), 222(1)nS V n χσ=−∼由因为U 和V 是相互独立的,所以(1)X T t n =−∼对于给定的1α−,查标t 分布表可得t α,使得 2()1P U t αα<=−,即:22()1P X X ααμα<<+=− 当30n =,35X =,15S =时,第一家航空公司平均晚点时间μ的95%的置信区间为:(29.3032,40.6968)对于给定的1α−,查标t 分布表可得t α,使得 ()1P U t αα>=−, 即:()1P X αμα<+=− 故μ的具有单侧置信上限的单侧置信区间为(,)X α−∞+ 所以经计算可得:第一家航空公司的单侧上限置信区间为(,39.7327)−∞第二种航空公司的单侧上限置信区间为(,36.3103)−∞所以选择第二家航空公司。

西安交大西工大 考研备考期末复习 概率论与数理统计 极大似然估计

西安交大西工大 考研备考期末复习 概率论与数理统计 极大似然估计
在本节课中,结合“捕鱼中的鱼群总数 估计”问题,设计了建模环节,恰如其分 的教学生如何创造性的运用所学知识解决 实际问题。
一、参数点估计问题
设总体 X 的分布函数形式已知, 但它的一个 或多个参数为未知, 借助于总体 X 的一个样本来 估计总体未知参数的值的问题称为点估计问题.
引例1 元件无故障的工件时间 X 具有负指数分
极大似然法的基本概念
得到样本值 x1, x2 ,, xn时,选取使似然函数L( )
取得最大值的ˆ 作为未知参数 的估计值,

L(
x1
,
x2
,,
xn

)
max
L(
x1
,
x2
,,
xn
;
).
(其中 是 可能的取值范围)
这样得到的ˆ 与样本值 x1, x2 ,, xn有关,记为 ˆ( x1, x2 ,, xn ), 参数 的最大似然估计值,
t
此时 L(N ) 关于 N 是单调递增的。于是在 N rs 时,
t
L(N ) 取最大值,故
^
N
rs
t
因为待估计量是整数,所以上式取最接近的整数.
模型评析
1、建模理论依据:超几何分布的概率计算,极 大似然估计。应用参数估计的思想和方法分 析、处理问题。
2、应用与推广:本例可推广到一定区域范围内 的生物总数估计等问题。例如,估计一个城 市的人口总数,也可以用同样的方法考虑。
模型2:参数点估计模型
设捕出的 s 条鱼中带有标记的个数为随机变量 ,则 服从超几何分布,取值0,1,2, l(l min{ s, r})
分布律
P(
i)
C Ci si r N r

2021年西安交大统计学题库

2021年西安交大统计学题库

1.描述动力学和推断记录学区别根据是(对总体数据分析研究办法不同)。

(B)2.记录数据是一种(详细量)。

(A)3.在抽样推断中, 总体参数是一种(未知量)。

(A)4.平均数是对(变量值平均)。

(B)5.如下哪一条不属于方差分析中假设条件(因此样本方差都相等)。

(C)6.要对某公司生产设备实际生产能力进行调查, 则该公司“生产设备”是(调核对象)。

(A)7.当变量之中有一项为零时, 不能计算(几何平均数和调和平均数)。

(D)8.某大学商学院一位教师根据本院职工6月份收入资料计算出该院全体职工六月份平均收入, 并同其她院系进行比较, 该教师运用是(描述记录学)办法。

(A)9.对于持续变量取值普通是采用(计量办法)。

(B)10.要理解上海市居民家庭收支状况, 最适当调查方式是(抽样调查)。

(D)11.记录调核对象是(现象总体)。

(C)12.有关系数取值范畴是(-1≤r≤1)。

(C)13.下列属于时点数列是(某厂各年生产工人占所有职工比重)。

(C)14.下面属于品质标志是(工人性别)。

(B)15.某工厂有100名职工, 把她们工资加总除以100, 这是对100个(变量值)求平均数。

(C)16.当一项科学实验成果尚未得出时, 这种实验将始终进行下去。

此时咱们可以将由这种实验次数构成总体当作(无限总体)。

D17.某单位职工平均年龄为35岁, 这是对(变量值)平均。

(B)18.随机实验所有也许浮现得成果, 称为(样本空间)。

(B)19.1999年全国从业人员比上年增长629万人, 这一指标是(增长量)。

(B)20.下面那个图形不适合描述分类数据(茎叶图)。

(B)21.数据型数据离散限度测度办法中, 受极端变量值影响最大是(极差)。

(A)22.下列指标中, 不属于平均数是(某省人均粮食产量)。

(A)23.加权算术平均数大小(受各组标志值与各组次数共同影响。

)。

(D)24.在变量数列中, 当标志值较大组权数较小时, 加权算术平均数(偏向于标志值较小一方。

西安交通大学数理统计研究生试题

西安交通大学数理统计研究生试题

百度文库•让每个人平等地捉升口我2009 (±)《数理统计》考试题(A卷)及参考解答一、填空题(每小题3分,共15分)1.设总体X和丫相互独立,且都服从正态分布N(O, 32),而(X r X2...,X9)和&上…,岭)是分别来自X和Y的样本,则” =[「二%二服从的分布是 ________ 解:”9).2,设玄与&都是总体未知参数&的估讣,且玄比玄有效,则玄与&的期望与方差满足 ________ •解:E(&) = E(瓦),D(a)<Q(瓦)•3,“两个总体相等性检验”的方法有 _________ 与_________ .解:秩和检验、游程总数检验.4,单因素试验方差分析的数学模型含有的三个基本假泄是__________ •解:正态性、方差齐性、独立性.5,多元线性回归模型Y =XB + £中,B的最小二乘估计是A二____________ _■解:金=二、单项选择题(每小题3分,共15分)1,设(X p X2,...,X…)(n>2)为来自总体N(O,1)的一个样本,乂为样本均值,S?为样本方差,则__9_(A) n乂〜N(O,1):(B) H S2~/2(/O;(D) G_)S〜F(1,“_1).2,若总体X〜N(“,其中b,已知,当置信度1— a保持不变时,如果样本容量〃增大,则“的宜信区间(A)长度变大: (B)长度变小: (C)长度不变: (D)前述都有可能.3,在假设检验中,分别用a, 0表示犯第一类错误和第二类错误的概率,则当样本容量〃一左时,下列说法中正确的是(A) a减小时"也减小: (B) a增大时0也增大;4,对于单因素试验方差分析的数学模型,设»为总离差平方和,»为误差平方和, 为效应平方和,则总有」__・(B )吕〜才(/・一1):5,在一元回归分析中,判定系数立义为生,则_B.三、(本题10分)设总体X 〜Ngb 冷、Y 〜Ngb 、(XM ,…,XJ 和僅上,…比丿分别是来自X 和丫的样本,且两个样本相互独立,乂、卩和S ;、S ;分别是■它们的样本均值和样本方差,证明f _2)<其中 s 2 = (q j )S ; +(“2_1)S :n } + n 2 _ 2证明:易知由上理可知由独立性和X 1分布的可加性可得由"与V 得独立性和I 分布的宦义可得(C ) 7 0其中一个减小,另一个会增大: (D ) (A )和(B )同时成立.(D ) S.*与»相互独立.(A ) 接近o 时回归效果显著; (B ) /?'接近1时回归效果显著; (C ) 接近s 时回归效果显著:(D )前述都不对.X - 丫 ~ NQi\—禺、—+ —)»/7i ①=(x-{-(“r)~ “(0, i)(A ) S T = S e + S i :'X S :蹬如=护爲厂2) ~心严- 2) •丄4四、(本题io 分)已知总体x 的概率密度函数为fM = \e e '0,数&>0. (X p X 2,...5X n )为取自总体的一个样本,求&的矩估计量,并证明该估计量是无 偏估计量.//• W 1 — -1八 1 片 _解:(1) V {=E(X)=\ xf\x)dx = \ -xe °dx = —用 vi=-YX ? = X 代替,所JpJ() 0n以(2) E(6) = E (力= + £f(XJ = E(X) = &,所以该估计疑是无偏估计.五、(本题10分)设总体X 的概率密度函数为f(x^) = (l + ^)x\O<x<l,其中未 知参数&>-1,(X£2,…X“)是来自总体X 的一个样本,试求参数0的极大似然估计.解:厶⑹』心(轴’0—V, 其它〃 d In L(3 } n n 当0 v 兀 v 1 时,In 厶(8) = n In(& + 1) + &工In x i ,令 ---------- - = ----- + 工In 兀=0,伺dO &+1伺得6 = _1_ —. fin 召 /-IQ 巳-加 X > 0.六.(本题10分)设总体X 的密度函数为/(x;2)=7 ''未知参数几>0,0,x<0,(乙“2,…)为总体的一个样本,证明斤是丄的一个UMVUE.Ax>°,其中未知参其它证明:由指数分布的总体满足正则条件可得亍的的无偏估计方差的C-R 下界为另一方面E(X) = l/2, Var(X) =即X 得方差达到C-R 下界,故文是丄的UMVUE.A七、(本题10分)合格苹果的重量标准差应小于公斤.在一批苹果中随机取9个苹果称 重,得英样本标准差为5 = 0.007公斤,试问:(1)在显著性水平a = 0.05 K 可否认为该批 苹果重疑标准差达到要求? (2)如果调整显箸性水平a = 0.025,结果会怎样?参考 数据: 爲。

西安交通大学概率论与数理统计考试及答案

西安交通大学概率论与数理统计考试及答案

2(0,)N σ15)X 是来自225122156)X X X ++++服从的分布是___ 机变量X 服从数为λ的]2)1=,则λ= 设两个随机变量X 与Y 的方差分别为共 4 页 第 1 页,)X为来自总体n求(1)θ的矩估计;共4 页第4 页西安交通大学本科生课程考试试题标准答案与评分标准课程名称:概率论与数理统计(A ) 课时:48 考试时间:2007 年7 月9 日(200,169)N 180200169P -⎧⎨⎩1.54)=0.93941()x dx =⎰1X θ=+,得1()(nk f θ==∏,),n1,,),n 当0,)nln k x ∑,求导得似然方程0=其唯一解为2,故θ的极大似然估优于第 1 页1(1,F n -(24,19)=0.429,221.507≈∈2的条件下,进一步检验假设:2μ<。

选取检验统计量12(t n n +0.05(43)t =-2.647 1.681-<-)B=)1Y≥=个人在第一层进入十八层楼的电梯,假如每个人以相同的概率从任个人在不同楼层走出电梯的概2=-1Xe-5,,X 都服从参数为分布,若将它们串联成整机,求整机寿命的分布密度。

分)某汽车销售点每天出售的汽车数服从参数为且每天出售的汽车数是相互独立的,西安交通大学本科生课程考试试题标准答案与评分标准课程名称:概率论与数理统计(A)课时:48 考试时间:2008 年7 月9 日三、1exp(),5 X2 (5,)B e-,∴四、设1iX⎧=⎨⎩第,n1n-第 1页1,2,,5min {k X 5,0,x e λ--0,x > exp(5)λ,365,(3652,365iN ⨯⨯3652)3652-⨯=⨯七、()E X dx θθ==+1X θθ=+2⎪⎫; 1)(ni θ==∏()ln nθθ=第 2 页(0,1)N 的样本9,)X 是来自正态总体N1,2,,n.设各部件的状态相互独立,以转中同时需要调整的部件数,求(E X,)X是来自总体的一组样本nˆμ,它是否是的极大似然估计量*μ,它是否是西安交通大学本科生课程考试试题标准答案与评分标准(A)n ,则X ,n X 相互独立,1,2,i n = ()E X =()D X : (1)0x y <<<⎰⎰ 10000,X 独立同分布,1,2,n ,因此当,)n x 中最小值时,的极大似然估计量为 ,}n X 2,}n X X 分布函数是1(1(X F z --,分布密度是((Z x f z μμ>≤ ()n x nxe dx μ--=12min{,,}n X X X 不是统计量X T S -=代入数据()Pλ,且已知{(,)=G x y,X)为来自总体服从参数为…,n,λ>服从以λ(0)求该样本的联合密度函数共2 页第1 页,,X是独立同分布的随机变量,其共同密度函数为:55,,)X 的数学期望和方差。

应用数学系研究生课程介绍(西安交通大学)

应用数学系研究生课程介绍(西安交通大学)

研究生课程介绍课程编码:091002课程名称:计算方法(A)Computational Methods (A)学分:3课内总学时数:72上机(实验)学时数:18课程内容简介:本课程讲授电子计算机上使用的各种基本的数值计算方法, 如插值法, 最小二乘法, 最佳一致逼近, 数值微积分, 方程求根法, 线性与非线性代数方程组解法, 矩阵特征值与特征向量求法, 常微分方程初值问题的解法, 求解数理方程定解问题的差分法, 有限元法等. 书中重点讨论了各种计算方法的构造原理和使用, 对稳定性, 收敛性, 误差估计等也作了适当讨论. 本课程适合于计算数学专业以外的理工科各专业研究生学习。

先修课:高等数学, 线性代数, C 语言或FORTRAN 语言参考书目:1. 邓建中,刘之行编, 计算方法,西安交通大学出版社,2002执笔人:梅立泉、李乃成、高静审定人:彭济根课程编码:091003课程名称:计算方法(B)Computational Methods (B)学分:3课内总学时数:54上机(实验)学时数:48课程内容简介:由于现代计算机技术的迅速发展,数值方法已成为科学研究的最重要的手段之一。

本课程在介绍数值计算的基本问题,包括浮点数、误差形成等的基础上,主要介绍:线性方程组的直接解法与迭代解法、离散数据的连续化处理(包括多项式插值、分段插值和最小二乘法)、数值积分和数值导数、非线性方程解法简介、常微分方程数值解法、以及最优化方法简介。

通过听课与相应的上机练习等途径,理解数值方法的形成原理,掌握最基本的数值方法,了解采用数值方法时应注意的主要问题,为以后在科研和工程技术工作中设计算法、应用数值软件进行数值计算奠定必要的基础。

先修课:高等数学、线性代数、算法语言(Fortran、C、C++、或Matlab 等)参考书目:1.凌永祥、陈明逵编,计算方法教程(第二版)西安交通大学出版社,2005执笔人:黄昌斌、苏剑、马军审定人:彭济根课程名称:工程优化方法及其应用Engineering Optimization Methods and Its Applications学分:2课内总学时数:40上机(实验)学时数:课程内容简介:讲述工程优化的数学基础,凸集、凸函数、凸规划的基本概念与基本理论;突出非线性规划各类算法的共性分析及其在计算机上可实现的步骤,并指出每类算法中所包含各种常用和著名算法;简介工程中常用到的几类特殊规划,如:线性规划、二次规划、几何规划和多目标规划的基本概念、常用和最新算法;简介工程优化设计应用实例(包括建立优化模型,根据模型特点构造或选用相适应的算法、计算流程图)。

西安交大西工大 考研备考期末复习 概率论与数理统计 第一部分 随机事件及其概率(带答案)

西安交大西工大 考研备考期末复习 概率论与数理统计 第一部分 随机事件及其概率(带答案)

第一部分 随机事件及其概率基础练习一. 填空1 设====)(,7.0)(,5.0)(,4.0)(B A P B A P B P A P 则若 答案:0.552 三次独立重复射击中,至少有一次击中的概率为则每次击,6437中的概率为 答案:1/43箱中盛有8个白球6个黑球,从其中任意地接连取出8个球,若每球被取出后不放还,则最后取出的球是白球的概率等于_________________。

答案:8144 任取两个正整数,则它们之和为偶数的概率是_______ 答案:1/25 设10件产品中有3件不合格品,从中任取两件,已知两件中有一件是不合格品,则另一件也是不合格品的概率为__________答案:2/96已知P (A )=0.8,P(A-B)=0.5,且A 与B 独立,则P (B )= 答案:3/87从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________ 答案:9876104⨯⨯⨯=0.3024 8箱中盛有8个白球6个黑球,从其中任意地接连取出8个球,若每球被取出后不放还,则最后取出的球是白球的概率等于_________________ 答案:8149平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。

答案:12010设样本空间U={1,2, 10},A={2,3,4,},B={3,4,5,},C={5,6,7},则()C B A 表示的集合=______________________。

答案:{1,2,5,6,7,8,9,10} 二. 计算题1 一打靶场备有5支某种型号的枪,其中3支已经校正,2支未经校正.某人使用已校正的枪击中目标的概率为1p ,使用未经校正的枪击中目标的概率为2p .他随机地取一支枪进行射击,已知他射击了5次,都未击中,求他使用的是已校正的枪的概率(设各次射击的结果相互独立).解 以M 表示事件“射击了5次均未击中”,以C 表示事件“取得的枪是已经校正的”,则,5/3)(=C P,5/2)(=C P 又,按题设,)1()|(51p C M P -=52)1()|(p C M P -=,由贝叶斯公式 ,)()()|(M P MC P M C P =)()|()()|()()|(C P C M P C P C M P C P C M P +=52)1(53)1(53)1(525151⨯-+⨯-⨯-=p p p.)1(2)1(3)1(3525151p p p -+--= 2 某人共买了11只水果,其中有3只是二级品,8只是一级品.随机地将水果分给C B A 、、三人,各人分别得到4只、6只、1只. (1)求C 未拿到二级品的概率.(2)已知C 未拿到二级品,求B A ,均拿到二级品的概率. (3)求B A ,均拿到二级品而C 未拿到二级品的概率.解 以,,,C B A 分别表示事件C B A ,,取到二级品,则C B A ,,表示事件C B A ,,未取到二级品.(1).11/8)(=C P(2)就是需要求).|(C AB P 已知C 未取到二级品,这时B A ,将7只一级品和3只二级品全部分掉.而B A 、均取到二级品,只需A取到1只至2只二级品,其它的为一级品.于是.5441027234103713)|(=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=C AB P(3).55/32)()|()(==C P C AB P C AB P3 一系统L 由两个只能传输字符0和1的独立工作的子系统1L 和2L 串联而成(如图13-1),每个子系统输入为0输出为0的概率为)10(<<p p ;而输入为1输出为1的概率也是p .今在图中a 端输入字符1,求系统L 的b 端输出字符0的概率.ab解 “系统L 的输入为1输出为0”这一事件(记)01(→L )是两个不相容事件之和,即),00()01()01()11()01(2121→→→→=→L L L L L 这里的记号“)11(1→L ”表示事件“子系统1L 的输入为1输出为1,其余3个记号的含义类似.于是由子系统工作的独立性得)}00()01({)}01()11({)}01({2121→→+→→=→L L P L L P L P)}00({)}01({)}01({)}11({2121→→+→→=L P L P L P L P).1(2)1()1(p p p p p p -=-+-=4 甲乙二人轮流掷一骰子,每轮掷一次,谁先掷得6点谁得胜,从甲开始掷,问甲、乙得胜的概率各为多少?解 以i A 表示事件“第i 次投掷时投掷者才得6点”.事件i A 发生,表示在前1-i 次甲或乙均未得6点,而在第i 次投掷甲或乙得6点.因各次投掷相互独立,故有.6165)(1-⎪⎭⎫⎝⎛=i i A P 因甲为首掷,故甲掷奇数轮次,从而甲胜的概率为}{}{531 A A A P P =甲胜+++=)()()(531A P A P A P ),(21两两不相容因 A A⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+= 426565161.116)6/5(11612=-=同样,乙胜的概率为}{}{642 A A A P P =乙胜+++=)()()(642A P A P A P.1156565656153=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=5 将一颗骰子掷两次,考虑事件=A “第一次掷得点数2或5”,=B “两次点数之和至少为7”,求),(),(B P A P 并问事件B A ,是否相互独立.解 将骰子掷一次共有6种等可能结果,故.3/16/2)(==A P 设以i X 表示第i 次掷出骰子的点数,则}).6({1})7({)(2121≤+-=≥+=X X P X X P B P因将骰子掷两次共有36个样本点,其中621≤+X X 有6,5,4,3,221=+X X 共5种情况,这5种情况分别含有1,2,3,4,5个样本点,故.12/712/5136/)54321(1)(=-=++++-=B P以),(21X X 记两次投掷的结果,则AB 共有(2,5),(2,6),(5,2),(5,3)(5,4),(5,5),(5,6)这7个样本点.故 .36/7)(=AB P今有).(36/7)12/7)(3/1()()(AB P B P A P === 按定义B A ,相互独立.6 B A ,两人轮流射击,每次各人射击一枪,射击的次序为A B A B A ,,,,,射击直至击中两枪为止.设各人击中的概率均为p ,且各次击中与否相互独立.求击中的两枪是由同一人射击的概率.解 A 总是在奇数轮射击,B 在偶数轮射击.先考虑A 击中两枪的情况.以12+n A 表示事件“A 在第12+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”. 12+n A 发生表示“前n 2轮中A 共射击n 枪而其中击中一枪,且A 在第12+n 轮时击中第二枪”(这一事件记为C ),同时“B 在前n 2轮中共射击n 枪但一枪未中”(这一事件记为D ),因此)()()()(12D P C P CD P A P n ==+nn p p p p n )1()1(11-⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛=- .)1(122--=n p np注意到 ,,,753A A A 两两互不相容,故由A 击中了两枪而结束射击(这一事件仍记为A )的概率为∑∑∞=-∞=++∞=-===1122112121)1()()()(n n n n n n p np A P A P A P1122])1[()1(-∞=∑--=n n p n p p.)2(1])1(1[1)1(2222p pP p p --=---(此处级数求和用到公式.1,)1(1112<=-∑∞=-x nx x n n 这一公式可自等比级数1,11<=-∑∞=x x x n n 两边求导而得到.) 若两枪均由B 击中,以)1(2+n B 表示事件 “B 在第)1(2+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”. )1(2+n B 发生表示在前12+n 轮中B 射击n 枪其中击中一枪,且B 在第)1(2+n 轮时击中第2枪,同时A 在前12+n 轮中共射击1+n 枪,但一枪未中.注意到 ,,,864A A A 两两互不相容,故B 击中了两枪而结束射击(这一事件仍记为B )的概率为∑∞=+-+∞=--⎪⎪⎭⎫ ⎝⎛==111)1(21)1()1(1)()(n n n n n p p p p n B P B P 12112222])1[()1()1(-∞=∞=--=-=∑∑n n n np n p p p np.)2()1(])1(1[1)1(222222p p p p p --=---= 因此,由一人击中两枪的概率为222)2()1()2(1)()()(p p p p B P A P B A P --+--=+= .21pp --= 7 有3个独立工作的元件1,元件2,元件3,它们的可靠性分别为.,,321p p p 设由它们组成一个“3个元件取2个元件的表决系统”,记为2/3].[G 这一系统的运行方式是当且仅当3个元件中至少有2个正常工作时这一系统正常工作.求这一2/3][G 系统的可靠性. 解 以i A 表示事件“第i 个元件正常工作”,以G 表示事件“2/3][G 系统正常工作”,则G 可表示为下述两两互不相容的事件之和: 321321321321A A A A A A A A A A A A G = 因321,,A A A 相互独立,故有)()()()()(321321321321A A A P A A A P A A A P A A A P G P +++=)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++=.)1()1()1(321321321321p p p p p p p p p p p p +-+-+-= 8 甲、乙、丙三部机床独立工作由一名工人照看,某段时间内甲、乙、丙三部机床不需要照看的概率依次为3/4、2/3、1/2,求在这段时间内有机床需要工人照看的概率及恰有1台机床需要工人照看的概率。

历年西安交通大学概率论与数理统计试题及答案

历年西安交通大学概率论与数理统计试题及答案

2(0,)N σ15)X 是来自225122156)X X X ++++服从的分布是___ 机变量X 服从数为λ的]2)1=,则λ= 设两个随机变量X 与Y 的方差分别为共 4 页 第 1 页共4 页第2 页,)X为来自总体n求(1)θ的矩估计;(10分)设ˆθ是一定是θ的相合估计。

共4 页第3 页共4 页第4 页西安交通大学本科生课程考试试题标准答案与评分标准课程名称:概率论与数理统计(A ) 课时:48 考试时间:2007 年7 月9 日(200,169)N 180200169P -⎧⎨⎩1.54)=0.93941()x dx =⎰1X θ=+,得1()(nk f θ==∏,),n1,,),n 当0,)nln k x ∑,求导得似然方程0=其唯一解为2,故θ的极大似然估优于页1(1,F n -(24,19)=0.429,21.507≈∈2的条件下,进一步检验假设:2μ<。

选取检验统计量12(t n n +0.05(43)t =-2.647 1.681-<-)B=)1Y≥=个人在第一层进入十八层楼的电梯,假如每个人以相同的概率从任个人在不同楼层走出电梯的概2=-1Xe-5,,X 都服从参数为分布,若将它们串联成整机,求整机寿命的分布密度。

分)某汽车销售点每天出售的汽车数服从参数为且每天出售的汽车数是相互独立的,西安交通大学本科生课程考试试题标准答案与评分标准课程名称:概率论与数理统计(A)课时:48 考试时间:2008 年7 月9 日三、1exp(),5 X2 (5,)B e-,∴四、设1iX⎧=⎨⎩第,n1n-第 1页1,2,,5min {k X 5,0,x e λ--0,x > exp(5)λ,365,(3652,365iN ⨯⨯3652)3652-⨯=⨯七、()E X dx θθ==+1X θθ=+2⎪⎫; 1)(ni θ==∏()ln nθθ= 第 2 页(0,1)N 的样本9,)X 是来自正态总体N 的置信区间为 分)某卡车为乡村小学运送书籍,共装有1,2,,n.设各部件的状态相互独立,以转中同时需要调整的部件数,求(E X,)X是来自总体的一组样本nˆμ,它是否是的极大似然估计量*μ,它是否是西安交通大学本科生课程考试试题标准答案与评分标准(A)n,则X,nX相互独立,1,2,i n= ()E X=()D X: (1)0x y<<<⎰⎰10000,X独立同分布,1,2,n ,因此当,)n x 中最小值时,的极大似然估计量为 ,}n X 2,}n X X 分布函数是1(1(X F z --,分布密度是((Z x f z μμ>≤ ()n x nxe dx μ--=12min{,,}n X X X 不是统计量X T S -=代入数据()Pλ,且已知{(,)=G x y,X)为来自总体服从参数为…,n,λ>服从以λ(0)求该样本的联合密度函数共2 页第1 页5,,X 是独立同分布的随机变量,其共同密度函数为:,试求5,,)Y X =的数学期望和方差。

西安交大研究生课程之应用数理统计作业

西安交大研究生课程之应用数理统计作业

研究生教材《应用数理统计》——课后习题答案详解学号:3113312042姓名:齐以年班级:硕3079班目录第一章数理统计的基本概念 (1)第二章参数估计 (18)第三章假设检验 (36)第四章方差分析与正交试验设计 (46)第五章回归分析 (51)第六章统计决策与贝叶斯推断 (56)对应书目:《应用数理统计》施雨编著西安交通大学出版第一章 数理统计的基本概念1.1 解:∵ 2~(,)X N μσ∴ 2~(,)n X N σμ∴~(0,1)N 分布∴(1)0.95P X P μ-<=<=又∵ 查表可得0.025 1.96u = ∴ 221.96n σ=1.2 解:(1) ∵ ~(0.0015)X Exp∴ 每个元件至800个小时没有失效的概率为:8000.001501.2(800)1(800)10.0015x P X P X e dxe -->==-<=-=⎰∴ 6个元件都没失效的概率为: 1.267.2()P e e --==(2) ∵ ~(0.0015)X Exp∴ 每个元件至3000个小时失效的概率为:30000.001504.5(3000)0.00151x P X e dxe--<===-⎰∴ 6个元件没失效的概率为: 4.56(1)P e -=-1.3解:(1) X ={(x 1,x 2,x 3)|x k =0,1,2,…,k =1,2,3},p (x 1,x 2,x 3)=λx 1+x 2+x 3x 1!x 2!x 3!e −3λ,x k =0,1,2,…;k =1,2,3(2) X ={(x 1,x 2,x 3)|x k ≥0;k =1,2,3},f (x 1,x 2,x 3)=λ3e −λ(x 1+x 2+x 3), x k ≥0;k =1,2,3(3) X ={(x 1,x 2,x 3)|a ≤x k ≤b;k =1,2,3},f (x 1,x 2,x 3)=1(b−a)3, a ≤x k ≤b;k =1,2,3(4) X ={(x 1,x 2,x 3)|−∞<x k <+∞;k =1,2,3}=R 3,f (x 1,x 2,x 3)=1(2π)3/2e −12∑(x k −μ)23k=1,−∞<x k <+∞;k =1,2,31.4 解:ini n x n x ex x x P ni i 122)(ln 2121)2(),.....,(122=--∏∑==πσμσ1.5证:21122)(na a x n x a x n i ni i i +-=-∑∑==∑∑∑===-+-=+-+-=ni i ni i n i i a x n x x na a x n x x x x 1222211)()(2221.6证明 (1) ∵22112211221()()()2()()()()()nnii i i nni i i i ni i XX X X X X X X X n X X X n X μμμμμ=====-=-+-=-+--+-=-+-∑∑∑∑∑(2) ∵2221112221221()22ii i nn ni i i i i ni ni XX X X X nX X nX nX X nX =====-=-+=-+=-∑∑∑∑∑1.7证明:a) 证:)(11111+=+++=∑n n i i n x x n x)(11)(1111n n n n n x x n x x x n n -++=++=++b )证:221111()1nn n i i S x x n ++==-+∑ 221112211121111[()]11121[()()()()]11(1)n n n i n i nn n n n n i i n n i i x x x x n n n x x x x x x x x n n n +=++++===---+++=----+-+++∑∑∑221112112[()()((1))111() ]1n n n n n n n n n nS x x x x nx x n x n n x x n ++++=+---+-+++-+22n122n 11[nS ()] 111[S ()]11n n n n n x x n n n x x n n ++=+-++=+-++ 1.8证明:显然: Zm+n ̅̅̅̅̅̅̅=nX ̅+mY ̅m+nS Z2=1m +n[∑(X i −Z m+n ̅̅̅̅̅̅̅)2n i=1+∑(Y i −Z m+n ̅̅̅̅̅̅̅)2mi=1] =1m +n[∑X i 2ni=1−2Zm+n ̅̅̅̅̅̅̅∗nX ̅+∑Y i 2−2Z m+n ̅̅̅̅̅̅̅∗mY ̅+(m +n)mi=1Zm+n ̅̅̅̅̅̅̅2] 因为: nS X 2=∑X i 2n i=1−nX ̅2 nS Y 2=∑Y i 2n i=1−nY ̅2所以:S Z2=nS X2+nS Y2m+n+1m+n[nX̅2+nY̅2−(nX̅+mY̅)2m+n] =nS X2+nS Y2m+n+m∗n(n+m)2(X̅−Y̅)21.10解:(1).∑∑====niiniixEnxnEXE11)(1)1()(=1n∙n∙mp=mpnpmpxDnxnDXDniinii)1()(1)1()(121-===∑∑==))(1()(122∑=-=niixxnESE)1(1)])1(1())1(([1)])()(())()(([1])()([1])([12222212212212p mp nn p m p mp n n p m p mp n n x E x D n x E x D n x nE x E n x x E n n i i i n i i n i i --=+--+-=+-+=-=-=∑∑∑=== 同理,(2).λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(λnx D n x n D X D ni ini i 1)(1)1()(121===∑∑==λnn x E x D n x E x D n x nE x E n S E n i i i n i i 1)])()(())()(([1])()([1)(2122122-=+-+=-=∑∑==(3).2)(1)1()(11ba x E n x n E X E n i i n i i +===∑∑==na b x D nx n D X D ni in i i 12)()(1)1()(2121-===∑∑==12)(1)])()(())()(([1])()([1)(22122122a b n n x E x D n x E x D n x nE x E n S E ni i i n i i -⋅-=+-+=-=∑∑==(4).λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx n D X D ni in i i 2121)(1)1()(λ===∑∑==221221221)])()(())()(([1])()([1)(λnn x E x D n x E x D n x nE x E n S E n i i i n i i -=+-+=-=∑∑==(5).μ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx n D X D ni in i i 2121)(1)1()(σ===∑∑==221221221)])()(())()(([1])()([1)(σ⋅-=+-+=-=∑∑==nn x E x D n x E x D n x nE x E n S E n i i i n i i1.11 解:由统计量的定义知,1,3,4,5,6,7为统计量,5为顺序统计量 1.12 解:顺序统计量:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21中位数Me=0 极差R=(3.21+4)=7.21 再抽一个样本2.7,则顺序统计量变为:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,2.7,3.2,3.21 此时,样本中位数Me=(0+1.2)/2=0.61.13解: F 20x={ 0 , x <0620, 0≪x <11320, 1≪x <21620, 2≪x <31820, 3≪x <41 , x ≫41.14解:利用伽马分布的可加性 X~Γ(α,λ) 则Y =∑X i ~Γ(nα,λ)n i=1X ̅=Y nf Y (y )=λnαy nα−1Γ(nα)e −λy,y >0根据随机变量函数的概率密度公式得:f X ̅(x )=λnα(nx)nα−1Γ(nα)e −λnx∗n =λnαn nαx nα−1Γ(nα)e −λnx ,x >01.15解:运用顺序统计量的概率密度公式 (1) f (m)(x )=n!(m−1)!(n−m )![F (x )]m−1[1−F (x )]n−m f(x) 1≪m ≪n (2) f (k)(j)(x )=n!(k−1)!(j−k−1)!(n−j )![F (x )]k−1[F (y )−F (x )]j−k−1[1−F (y )]n−j f(x)f(y) 1≪k<j ≪n (3) 样本极差R =X (n)−X (1), 其中X (n)和X (1)的概率密度可由(1)得到,再根据函数关系可推出R 的概率密度函数 1.16解:X i −μσ~N(0,1)(X i −μσ)2~χ2(1)故:∑(X i −μσ)2~ni=1χ2(n )1.17 证:),(~ λαΓXx ex x f λαααλ--Γ=∴1)()( 令kXY =ke ky kke ky yf ky ky⋅Γ=⋅Γ=∴----λαααλαααλαλ11)()( )()()(即 ),(~ky Y αΓ1.18 证:),(~ b a X β),()1()( 11b a B x xx f b a ---=∴),(),( ),()1()( 11b a B b k a B b a B x x x X E b a k k +=-=∴⎰∞+∞---),(),1()( b a B b a B X E +=∴ba a ab a b a b a a a a b a b a a a b b a b a b a +=Γ+Γ++ΓΓ=Γ++Γ+Γ+Γ=ΓΓ+Γ⋅++ΓΓ+Γ=)()()()()()()1()()1()()()()1()()1(),(),2()(2b a B b a B X E +=))(1()1()()()()2()()2(b a b a a a a b b a b a b a ++++=ΓΓ+Γ⋅++ΓΓ+Γ= 22)]([)()( X E X E X D -=∴2))(1())(1()1(b a b a ab ba ab a b a a a +++=+-++++=1.19 解:∵ ~(,)X F n m 分布2212(1)022()((1))()(1)()()()(1)()()n n m n mn m yn m y n mn nP Y y P X X y m myP X y n n n x x dx m m m++--+≤=+≤=<-Γ=+ΓΓ⎰2222122221122()()()1()(1)()()11(1)(1)(,)n n m n m n mn m n mf y P Y y y y y y y yy B ++----'=≤Γ=+ΓΓ----=∴ 22(1)(,)n mn n Y X X m mβ=+分布1.20 解:∵ ~()X t n 分布122212()()(()2)n n P Y y P X y P X xdxn ++-≤=≤=≤≤Γ=+112211221212122()()()(1)()1()(1)()()()n n n n n f y P Y y y y n y y n n n+++--+--'=≤Γ=+Γ=+ΓΓ∴ 2~(1,)2nY X F =分布1.21 解: (1) ∵ ~(8,4)X N 分布∴ 4~(8,)25X N 分布,即5(8)~(0,1)2X N - ∴ 样本均值落在7.8~8.2分钟之间的概率为:5(7.88)5(8)5(8.28)(7.88.2)()2220.383X P X P ---≤≤=≤≤=(2) 样本均值落在7.5~8分钟之间的概率为:5(7.58)5(8)5(88)(7.58)()2225(8)(0 1.25)20.3944X P X P X P ---≤≤=≤≤-=≤≤=若取100个样品,样本均值落在7.5~8分钟之间的概率为:10(7.88)10(8)10(8.28)(7.88.2)()2222*(0.84130.5)0.6826X P X P ---≤≤=≤≤=-= 单个样品大于11分钟的概率为:P 1=1−0.9333=0.0667 25个样品的均值大于9分钟的概率为: P 2=1−0.9938=0.0062 100个样品的均值大于8.6分钟的概率为P 3=1−0.9987=0.0013 所以第一种情况更有可能发生1.22 解:μ=2.5 2σ=36 n=5 (1)44302<<s ⇔)955,625(22∈σns 而)1(~222-n ns χσ即 )4(36522χ∈s通过查表可得 P =0.1929(2)样本方差落在30~40的概率为0.1929 样品均值-x 落在1.3~3.5的概率即:P{1.3<-x <3.5} ⇔P{-0.4472<σμ)(--x n <0.3727}又σμ)(--x n ~N(0,1)查标准正态分布表可得:P{1.3<-x <3.5}=0.3179 由于样本均值与样本方差相互独立,故:这样两者同时成立的概率为P =0.1929⨯0.3179=0.06131.23 解:(1) ∵2~(0,)X N σ分布 ∴ 2~(0,)X N nσ分布∴ 22()~(1)nXχσ∵ 22221()()ni i a X an X an σσ===∑∴ 21a n σ=同理 21b m σ= (2) ∵ 2~(0,)X N σ分布 ∴222~(1)X χσ分布由2χ分布是可加性得:2221~()ni i X n χσ=∑()nic X t m ==∑ ∴c =(3) 由(2)可知2221~()ni i X n χσ=∑ 2221122211~(,)nni ii i n mn mi ii n i n X d Xnn dF n m XmXmσσ==++=+=+=∑∑∑∑∴ m d n =1.24证明:X n+1~N(μ,σ2) X̅~N(μ,σ2/n) X n+1−X ̅~N(0,n +1n σ2)X n+1−X̅√n +1nσ2~N(0,1)(n −1)S n∗2σ2~χ2(n −1) 所以:Y =X n+1−X ̅S n ∗√n n +1~t(n −1) 1.25 证明:∵ 211~(,)X N μσ分布∴2211()~(1)i X μχσ-∴ 1221111()~()n i i X n μχσ=-∑同理 2222212()~()n i i Y n μχσ=-∑ 1122222112211111222221122112()()~(,)()()n n i i i i n n i i i i X n n X F n n Y n Y n μσμσμσμσ====--=--∑∑∑∑第二章 参数估计2.1 (1) ∵ ~()X Exp λ分布∴ ()1E X λ=令 ˆ1X λ= 解得λ的矩估计为:ˆ1X λ= (2) ∵ (,)X U a b 分布∴ ()2a bE X +=2()()12b a D X -=令 1ˆˆ2ab A X +==22221ˆˆˆˆ()()1124n i i b a a b A X n =-++==∑ (22211n i i X X S n =-=∑)解得a 和b 的矩估计为:ˆˆaX bX =-=(3) 110()1E X x x dx θθθθ-=*=+⎰令 1ˆˆ1A X θθ==+ ∴ˆ1XXθ=- (4) 110()(1)!kk x kE X x x e dx k βββ--=*=-⎰令 ˆkX β=∴ ˆkXβ=(5) 根据密度函数有2221()22()E X a aE X a λλλ=+=++根据矩估计有1222221ˆˆˆ22ˆˆˆa A X aa A S X λλλ+==++==+解得λ和a 的矩估计为:ˆˆaX λ==(6) ∵ (,)X B m p∴ ()E X mp =令 1ˆmpA X == 解得p 的矩估计为:ˆX pm= 2.2解:(1)X 服从指数分布,λ的似然函数为:L (λ)=λn e −λ∑x i n i=1, x i>0,i =1,2,⋯,nlnL (λ)=nlnλ−λ∑x i ni=1∂lnL (λ)∂λ=nλ−∑x i ni=1解得:λ̂=1x̅(2)f (x )=1b−a,a <x <b似然函数为:L (a,b )=1(b −a)n,a <x i <b显然:a ̂=X (1) b ̂=X (n) (3)f (x )={θ x θ−1 ,0<x <10, 其他似然函数为:L (θ)=θn ∗∏x i θ−1ni=1,0<x i <1lnL (θ)=nlnθ+(θ−1)∑lnx i ni=1∂lnL (θ)∂θ=nθ+∑lnx i ni=1=0 解得:θ̂=−n ∑lnx in i=1(4) f (x )={βk(k−1)!x k−1e −βx ,x >00, x ≤0似然函数为:L (β)=(βk(k −1)!)n ∗∏x i k−1ni=1∗e −β∑x i n i=1 ,x i >0 i =1,2,⋯,n lnL (β)=nk ∗lnβ−n ∗ln (k −1)!+(k −1)∑lnx i ni=1−β∑x i ni=1∂lnL (β)∂β=nkβ−∑x i ni=1=0解得:θ̂=−kx̅(5) f (x )={λ x −λ(x−a),x >a 0, x ≤a似然函数为:L (a,λ)=λn x −λ∑(x i ni=1−a) ,x i >a,i =1,2,⋯,nlnL (a,λ)=n ∗lnλ−λ∑x i ni=1+nλa ∂lnL (a,λ)∂λ=nλ−∑(x i ni=1−a)=0 解得:a ̂=X (1) , λ̂=−1X ̅−X (1)(6) X~B(m , P)P {X =k }=(m k)P k(1−P)m−k ,k =0,1,⋯,m似然函数为:L (p )=(m k)n P ∑xi n i=1(1−P)∑(m−x i )n i=1,x i =0,1,2,⋯,nlnL (p )=n ∗ln (mk)+∑x i n i=1∗lnp +∑(m −x i )ni=1∗ln (1−p)∂lnL (p )∂p=∑x in i=1p−∑(m −x i )n i=11−p=0解得:p ̂=−X̅m2.3解:∵ X 服从几何分布,其概率分布为:1()(1)k P X k p p -==-故p 的似然函数为: 1()(1)ni i x nnL p p p =-∑=-对数似然函数为:1ln ()ln ()ln(1)ni i L p n p x n p ==+--∑令 1ln ()1()01nii L p n x n p p p=∂=--=∂-∑ ∴ 1ˆpX= 2.4 解:由题知X 应服从离散均匀分布,⎪⎩⎪⎨⎧≤≤==其它01 1)(Nk N k x pE (X )=N+12矩估计: 令N ̂+12=710 ∴N̂=1419 极大似然估计:⎪⎩⎪⎨⎧≤≤=其它07101 1)(NN N L要使)(N L 最大,则710=N710=∴∧N2.5 解:由题中等式知:2196.196.196.1)025.01(025.0)(1S X +=+=∴+=+-Φ=∴=-Φ-∧∧∧-σμθσμμσθσμθ2.6 解:(1) 05.009.214.2=-=R0215.005.04299.05=⨯==∴∧d Rσ(2)将所有数据分为三组如下所示:0197.005.03946.005.0)05.005.005.0(316=⨯==∴=++=∴∧d R R σ 2.7 解:(1)⎩⎨⎧+<<=其它 01x 1)(θθx f θθθθθθ≠+==+=++=∴∧21)()(2121)(X E E X E ∴ X =∧θ不是θ的无偏估计,偏差为21=-∧θθ(2) θ=-)21(X E 21-=∴∧X θ是θ的无偏估计(3) 22))(()())(()(θθθθ-+=-+=∧∧X E X D E D M S E41121+=n 2.8 证:由例2.24,令2211x a x a +=∧μ,则∧μ 为μ无偏估计应 满足121=+a a因此1μ,2μ,3μ都是μ的无偏估计)()()()(21)()(2513)()(95)9491)(()())(()()(1233212221212∧∧∧∧∧∧=∧<<===+=∴+==∑μμμμμμμD D D X D D X D D X D X D D a a X D X D a D i i i2132121X X +=∴∧μ最有效2.9 证: )(~λp X λλ==∴)( )(X D X EX 是λ=)(X E 的无偏估计,2*S 是λ=)( X D 的无偏估计 )()1()())1((2*2*S E X E S X E αααα-+=-+∴λλααλ=-+=)1(∴ 2*)1(SX αα-+是λ的无偏估计2.10 解:因为2222((1))()(1)()(1)()1(1)()11(1)1E X S E X E S na E S n n a E S n n n a n nααααλαλαλαλλ**+-=+-=+--=+---=+-=- 所以 2(1)X S αα*+-是λ的无偏估计量2.11证明:X~P (λ)假设T(X 1)为θ=e −2λ的无偏估计,即: E[T(X 1)]= θ, E [T (X1)]=∑T (X )∞x=0∗λx x!e−λ=e −2λ=∑T (X )∞x=0∗λx x!=e−λ=∑(−λ)xx!∞x=0=∑(−1)x λx x!∞x=0(泰勒展开)所以T (X 1)=(−1)X 1是θ=e −2λ的唯一无偏估计。

应用数理统计,施雨,课后答案,

应用数理统计,施雨,课后答案,

习题11.1 解:由题意95.01=⎭⎬⎫⎩⎨⎧<--u x p 可得:95.0=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<-σσn n u x p而()1,0~N u x n σ⎪⎭⎫ ⎝⎛-- 这可通过查N (0,1)分布表,975.0)95.01(2195.0=-+=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--σσn n u x p 那么96.1=σn∴2296.1σ=n1.2 解:(1)至800小时,没有一个元件失效,则说明所有元件的寿命>800小时。

{}2.10015.08000015.00800|e 0015.0800--∞+-=∞+-==>⎰e e dx x p x x 那么有6个元件,则所求的概率()2.762.1--==e e p(2)至300小时,所有元件失效,则说明所有元件的寿命<3000小时{}5.4300000015.030000015.001|e 0015.03000----=-==<⎰e e dx x p x 那么有6个元件,则所求的概率()65.41--=e p1。

3解: (1) 123{(,,)|0,1,2,,1,2,3}k x x x x k χ===因为~()i X P λ,所以 112233{,,}P X x X x X x ≤≤≤112233{}{}{}P X x P X x P X x =≤≤≤1233123!!!x x x e x x x ++-λλ=其中,0,1,2,,1,2,3k x k ==(2) 123{(,,)|0;1,2,3}k x x x x k χ=≥=因为~()i X Exp λ,其概率密度为,0()0,0x e x f x x -λ⎧λ≥=⎨ <⎩所以, 123(,,)3123(,,)x x x f x x x e-λ=λ,其中0;1,2,3k x k ≥=(3) 123{(,,)|;1,2,3}k x x x a x b k χ=≤≤=因为~(,)i X U a b ,其概率密度为1,()0,|a x b f x b a x a x b⎧≤≤⎪=-⎨⎪ <>⎩所以,12331(,,)()f x x x b a =-,其中;1,2,3k a x b k ≤≤= (4) 123{(,,)|;1,2,3}k x x x x k χ=-∞<<+∞= 因为~(,1)i X N μ,其概率密度为(2(),()x f x x 2-μ)-=-∞<<+∞所以,311(2123321(,,)(2)k k x f x x x e π2=--μ)∑=,其中;1,2,3k x k -∞<<+∞=1.4解:由题意可得:()⎪⎩⎪⎨⎧∞<<=--,其它00,21)(i 2ln i i 22i x e x x f u x σσπ则∏==ni x f x x f 1i n i )(),...(=⎪⎪⎩⎪⎪⎨⎧=∞<<∏=∑--=,其它0,...1,0,1n )2()(ln 212n 12i 2i x x e i n i i u x ni σπσ1.5证: 令21()()nii F a Xa ==-∑则'1()2()nii F a Xa ==--∑,''()20F a n => 令'1()2()0ni i F a X a ==--=∑,则可解得11ni i a X X n ===∑由于这是唯一解,又因为''()20F a n =>,因此,当11ni i a X X n ===∑时,()F a 取得最小值1.6证: (1)等式左边11((nnii i i XX X X 22==-μ)=-+-μ)∑∑111(2()()(n n n i i i i i X X X X X X 22====-)+-μ-+-μ)∑∑∑21(()ni i X X n X 2==-)+-μ∑左边=右边,所以得证。

西安交大西工大 考研备考期末复习 概率论与数理统计第三章假设检验

西安交大西工大 考研备考期末复习  概率论与数理统计第三章假设检验

查表得 t / 2(n 1) t0.025(14) 2.1448 t 0.327,
故接受 H0, 认为金属棒的平均长度无显著变化.
3. 为未知, 关于 2的检验( 2 检验)
设总体 X ~ N (, 2 ), , 2均为未知,
X1, X2 ,, Xn 为来自总体 X 的样本,
要检验假设:
其中 0 为已知常数. 设显著水平为 ,
分析:Sn*2是2的无偏估计, 当H0为真时,
根据第一章§3知,
(n
1)
S
* n
2
02
~ 2(n 1),
取 2
(
n
1)S 02
* n
2




量.
当H 0为真时,由 2分布分位数的定义知
P
(
n
1)Sn*2 02
12/ 2 (n 1)
, 2
P
化? ( 0.05) 解 依题意 X ~ N (, 2 ), , 2均为未知,
要检验假设 H0 : 10.5, H1 : 10.5, n 15, x 10.48, 0.05, sn* 0.237 ,
t x 0 10.48 10.5
sn* / n 0.237 / 15
0.327,
小概率事件在一次试验 中基本上不会发生.
我们不妨先假设:这个盒子里有99个白球. 现在我们从中随机摸出一个球,发现是 此时你如何判断这个假设是否成立呢?
假设其中真有99个白球, 摸出红球的概率只有1/100, 这是小概率事件.
小概率事件在一次试验中竟然发生了,不能不 使人怀疑所作的假设.
这个例子中所使用的推理方法,可以称为 带概率性质的反证法
因为 2 未知, 不能利用 X 0 来确定拒绝域. / n

《随机过程》习题_施雨(西交大)

《随机过程》习题_施雨(西交大)



X (t, 3 ) sin t, X (t, 4 ) cos t (t 0) ,并且 P({k }) 1 4, k 1,2,3,4 ,求 X 的均
值函数与自相关函数。 1.34 设 X X (t ), t T 与 Y Y (t ), t T 是定义在相同概率空间上的两个二阶矩过程, 假设 X 与 Y 相互独立,证明 X 与 Y 不相关。 1.35 设 X sin(t ), t 0, 1, 2,
1.31 设随机过程 X e At , t 0 ,其中 A 为具有概率密度 f 的随机变量。 (1) 求 X 的一维和二维概率分布; (2) 如果 A ~Exp(2),求 X 的均值函数与自协方差函数。 1.32 设随机过程 X At B, t 0 ,其中 A 和 B 是相互独立的标准正态变量,求 X 的一 维和二维概率密度。 1.33 如果随机过程 X X (t ), t 0 只有四条样本曲线: X (t, 1 ) 1, X (t, 2 ) 1,
N (t ) n 与 Sn t ; N (t ) n 与 Sn t ; N (t ) n 与 Sn t 。
证明:定义 2.1.4 的条件与定义 2.1.2 的条件等价。 设 N (t ), t 0 是强度为 λ 的 Poisson 过程,求该过程的自协方差函数。 设 Sn , n 0 是强度为 λ 的 Poisson 过程的到达时刻流,证明:
S0 S1 S2 , (a.s.)
2.5
设 N1 (t ), t 0 和 N 2 (t ), t 0 是相互独立、强度分别为 λ1 与 λ2 的 Poisson 过程, 证明 N1 (t ) N 2 (t ), t 0 是强度为 λ1 + λ2 的 Poisson 过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 共25题,作12题 可摘抄任7—8道1.1 解析:X~N(μ,2σ),则X ~N(μ,2nσ),所以X -μ~N(0,2nσ)P{X-μ<1}= P{σ}=0.95N (0,1),因为:P{Φ—(Φ=2Φ—1=0.95所以:σΦ=(1+0.95)/2 =0.975,,求得n 最小要取21.96x 2σ1.2解析:至800小时,没有一个元件失效,这个事件等价与P{123456X X X X X X >800}的概率,有已知X 服从指数分布,可求得P{123456X X X X X X >800}=7.2e-(2)至3000小时,所有六个元件都失效的概率也就等价与P{ 123456X X X X X X <3000}的概率,可求得P{ 123456X X X X X X <3000}= 4.56(1)e --1.5证明:21()nii Xa =-∑=21[()()]ni i X X X a =-+-∑=22111()2()()()nn nii i i i XX X a X X X a ===-+--+-∑∑∑因为1()nii XX =-∑=0=2211()()nnii i XX X a ==-+-∑∑=221()ni nS X a =+-∑所以当a =X 时,21()nii Xa =-∑有最小值且等于2nS1.6证明:11ni i X X n ==∑1)等式的左边=22112nnii i i XX n μμ==-+∑∑等式的右边=22221122nniii i X X X nX nX nX n μμ==-++-+∑∑ =222221122nnii i i XnX nX nX X n μμ==-++-+∑∑=22112nnii i i XX n μμ==-+∑∑左边等于右边,结论得证。

1.9 解析:1):∵ i i y ax b =+∴ 111111()n n ni i i i i i y y ax b ax b ax b n n n =====+=+=+∑∑∑222111111()()()n n n yi i i i i i S y y ax b ax b ax ax n n n ====-=+--=-∑∑∑22x a S =2):令179.98y =,……,1479.96y =再令 a=1,b=80 ∴由80i i i y ax b x =+=+得:i x 为:-0.02,0.04,0.02,0.04,0.03,0.03,0.04,-0.03,0.05,0.03,0.02,0.00,0.02,-0.04∴ 14110.016414i i x x ===∑14142221111()(0.0164)0.00071414xi i i i S x x x ===-=-=∑∑∴ 0.01648080.0164y ax b =+=+=2220.0007y x S a S ==2)等式的左边=22112n n ii i i X X X nX ==-+∑∑=221nii X nX =-∑=等式的右边 结论得证。

1.20证明:已知~()X t n ,则存在Y~N(0,1), 2~()Z n χ使得X =则22/Y X Z n= 这里22~(1)Y χ所以2~(1,)X F n 结论得证。

1.22解析:X~N(2.5,36) ,222~(1)nS n χσ-~(0,1)N1) 2222555{3044}{}69nS P S P σ≤≤=≤≤=15522925622(/2)n x n xedx n --Γ⎰=552925262(4/2)xx edx -Γ⎰=0.19294 2) 2{3044 1.3 3.5}P S X ≤≤≤≤I =2{3044}P S ≤≤{1.3 3.5}P X ≤≤=222555{}69nS P σ≤≤ 2.5){}66X P --≤ =0.19294*0.638=0.123 1.23解析:1) 将21()nii X =∑和21()n mii nX +=+∑各看成一个整体,可得,a=21n σ,b=21m σ原式服从2(2)χ2)原式服从t(m) 3) d= mn原式服从(,)F n m1.7 证明:(1): 由11n n i i X X n ==∑,2211()n n i n i S X X n ==-∑∴1111111111()1111n nnn n i i n ii i i X X X X X X n n n n ++++=====+=+++++∑∑∑ 111()111n n n n n nX X X X X n n n ++=+=+-+++ (2): 1221111()1n n i n i SX X n +++==-+∑ 121111[()]11n i nn n i X X X X n n ++==---++∑ 121111[()()]11n i nn n i X X X X n n ++==---++∑ 1221121121[()()()()]11(1)n i n i n n n n n i X X X X X X X X n n n +++==----+-+++∑ 2221121111()()()]11(1)n i n n n n n i X X X X X X n n n ++==-+---+++∑ 2212()1(1)n n n nS nX X n n +=+-++ 2211[()]11n n n n S X X n n +=+-++ 1.9 解:(1):∵ i i y ax b =+∴ 111111()n n ni i i i i i y y ax b ax b ax b n n n =====+=+=+∑∑∑222111111()()()n n n yi i i i i i S y y ax b ax b ax ax n n n ====-=+--=-∑∑∑22x a S =(2):令179.98y =,……,1479.96y = 再令 a=1,b=80 ∴由80ii i y ax b x =+=+得:i x 为:-0.02,0.04,0.02,0.04,0.03,0.03,0.04,-0.03,0.05,0.03,0.02,0.00,0.02,-0.04∴14110.016414i i x x ===∑14142221111()(0.0164)0.00071414xi i i i S x x x ===-=-=∑∑∴ 0.01648080.0164y ax b =+=+= 2220.0007y x S a S == 1.10 解:11n i i X X n ==∑ 2211()n i i S X X n ==-∑∴ 1111()()()()n ni i i i E X E X E X E X n n =====∑∑211111()()()()n ni i i i D X D X D X D X n n n =====∑∑()222211111[()][(2)()n n i i i i i n E S E X X E X X X X D X n n n==-=-=-+=∑∑ (1):()E X mp = ()(1)D X mp p =- ∴ ()()E X E X mp ==1(1)()()mp p D X D X n n -==211()()(1)n n E S D X mp p n n--==-(2):()E X λ= ()D X λ= ∴ ()()E X E X λ==1()()D X D X n n λ== 211()()n n E S D X n nλ--==(3):()2a bE X += 2()()12b a D X -=∴ ()()2a b E X E X +==2()1()()12b a D X D X n n -==22()11()()12b a n n E S D X n n ---== (4):1()E X λ=21()D X λ=∴ 1()()E X E X λ==211()()D X D X n n λ== 2211()()n n E S D X n n λ--== (5):()E X μ= 2()D X σ=∴ ()()E X E X μ==21()()D X D X n nσ==2211()()n n E S D X n nσ--== 1.11 解:统计量有:(1),(3),(4),(5),(6),(7)。

顺序统计量有:(5)1.12 解: 顺序统计量为:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21 ∴ 1317()20e m XX +===131 3.21(4)7.21r X X =-=--= 添加2.7后: 顺序统计量为:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,2.7,3.2,3.21 ∴ 781()0.62e m X X =+= 1.16解:∵ 2(,)X N μσ:∴ (0,1)X Z N μσ-=:∴ 由定理1.2.1知: 222221111()()()nnni iii i i X Y ZXn μμχσσ===-===-∑∑∑:1.25:证明:令11X Z μσ-=,22Y Q μσ-=∵ 211(,)X N μσ: ,222(,)Y N μσ:∴ (0,1)Z N : ,(0,1)Q N :∴12211()n ii Zn χ=∑: ,22221()n i i Q n χ=∑:∴由定理1.2.3知:1221112212(,)n ii n ii Zn F n n Qn ==∑∑:即:1222221112221121()(,)()n ii n i i n XF n n n Y σμσμ==--∑∑:第二章共35题,作18题 可摘抄任11—12道2.2解:(1)~()X Exp λ,则X 的概率密度为,0(;)0,0x e x f x x λλλ-⎧>=⎨≤⎩故λ的似然函数为11()(),(0,1,2,,)niii nx x ni i L eex i n λλλλλ=--=∑==>=∏L对数似然函数为1ln ()ln ni i L n x λλλ==-∑令1ln ()0ni i L x n λλλ=∂=-=∂∑ 解得11nii nxxλ∧===∑ 所以,λ的极大似然估计量1Xλ∧=(2)~(,)X U a b ,X 的概率密度为1,(;,)0,a x b f x a b b a ⎧≤≤⎪=-⎨⎪⎩其他由于12,,,n a x x x b ≤≤L ,等价于(1)(),n a x x b ≤≤。

相关文档
最新文档