焊接冷裂纹
焊接冷裂纹
.
6
2、三大要素的作用 (1)氢的作用
❖ 氢是引起的冷裂纹具有延迟的特征,称为氢致裂纹。
❖ 氢在钢中分为残余的固溶氢和扩散氢,只有扩散氢 对钢的焊接冷裂纹起直接影响。
1)氢在焊缝中的溶解
❖ 从图4.9中可知,氢在铁中 的溶解度随温度变化很大, 并在凝固点发生突变。由于 熔池很快由液态凝固,多余 的氢来不及逸出,结果就以 过饱和状态存在于焊缝中. 。
二、冷裂纹的特征及产生机理
1、产生延迟裂纹的三个基本要素 ① 钢材的淬硬倾向
② 焊接接头中的氢含量及其分布
③ 焊接接头的拘束应力状态
❖ 产生延迟裂纹的孕育期:
决定于焊缝金属中扩散氢的含量与焊接接头 所处的应力状态的交互作用。
相应于某一应力状态,焊缝金属中含氢量愈 高,裂纹的孕育期愈短,裂纹倾向就愈大。
❖ 裂纹的起源多发生在具有缺口效应的焊接热影响区或物理 化学不均匀的氢聚集的局部地带;
❖ 裂纹的分布与最大应力方向有关。
.
2
2、分类
❖ 焊接生产中由于采用的钢种、焊接材料不同,结构 的类型、刚度以及施工的条件不同,大致分为: 1)淬硬脆化裂纹
❖ 一些淬硬倾向很大的钢种(焊接含碳较高的Ni-CrMo钢、马氏体不锈钢、工具钢,及异种钢等), 焊接时即使没有氢的诱发,仅在拘束应力作用下就 能导致开裂。
❖ 碱性焊条熔敷金属中的扩散氢含量比酸性焊条低, 所以碱性焊条的抗冷裂纹性能大大优于酸性焊条。
❖ 对于重要的低合金高强度钢结构的焊接,原则上 都应选用碱性焊条。
❖ 通常也是焊后立即产生,无延迟现象。
3)延迟裂纹
❖ 焊后不立即出现,有一定孕育期(又叫潜伏期),具 有延迟现象。
焊接裂纹-冷裂纹资料PPT教学课件
2020/10/16
3
二、冷裂纹的种类
延迟裂纹还可以进一步分类,常见的有以下三种。
(一)焊趾裂纹
这种裂纹起源于母材与焊缝交界处,并有明显应力 集中部位(如咬肉处)。裂纹的走向经常与焊道平 行,一般由焊趾表面开始向母材的深处扩展,如图 5-40中A所示。
氢是引起高强钢焊接冷裂纹重要因素之一,并且有 延迟的特征。高强钢焊接接头的含氢量越高,则裂 纹的敏感性越大,当局部地区的含氢量达到某一临 界值时,便开始出现裂纹,此值称为产生裂纹的临 界含氢量。
钢中的含氢量分为两部分,即残余氢量和扩散氢量。
扩散氢对冷裂的产生和扩展起了决定性作用。
在Ms点以下扩散氢才具有致裂的作用。这一部分 扩散氢可以称为“残余扩散氢”。
2020/10/16
10
当焊缝由奥氏体转变为铁素体、珠光体等组织时, 氢的溶解度突然下降,而氢在铁素体、珠光体中 的扩散速度很快,因此氢就很快的从焊缝越过熔 和线向尚未发生分解的奥氏体影响区扩散。
由于氢在奥氏体中的扩散速度较小,不能很快把 氢扩散到距熔合线较远的母材中去,因而在熔合 线附近就形成了富氢地带。
第三节 焊接冷裂纹
一、冷裂纹的危害性及其一般特征
(一)冷裂纹的危害性 建造结构由于焊接冷裂纹而带来的危害性十分严重
2020/10/16
1
(二)冷裂纹的一般特征
高强钢焊接冷裂纹一的,也有的要推迟 很久才产生。冷裂纹的起源多发生具有缺口效应的 焊接热影响区或有物理化学不均匀的氢聚集的局部 地带。冷裂纹的断裂行径,有时是沿晶界扩展,有 时是穿晶前进,这要由焊接接头的金相组织和应力 状态及氢的含量等而定。这一点不像热裂纹那样, 都是沿晶界开裂。
在焊接中什么是冷裂纹和热裂纹
在焊接中什么是冷裂纹和热裂纹低碳钢焊接性分析:(一)冷裂纹碳当量:钢材和熔敷金属的碳含量增加大桥焊条,焊接性变差;硅锰含量增加,焊接性变差;CE值增加,产生冷裂纹倾向增大,焊接性变差淬硬倾向:淬硬组织或马氏体组织越多,其硬度越高,焊缝和热影响区硬度越高,焊接性差。
冷却速度影响因素:(1)钢材厚度和接头几何形状,(2)焊接时母材的实际起始温度(3)焊接线能量大小。
拘束度和氢。
板厚增加,拘束度增加;焊接区被刚性固定,拘束度增加,提高氢致裂纹敏感性钢材成分一定,淬硬组织比例越高,冷裂所需临界氢含量越低,所需拘束应力也就越低,冷裂倾向越大。
组织氢含量一定时,拘束度越大,冷裂纹敏感性越大。
(二)热裂纹在焊接SP过高的碳钢时,一方面:在焊接热影响区的晶界上聚集的低熔点SP化物,引起热影响区熔合线附近的液化裂纹;若板厚较大,沿不同偏析带分布的碳化物等,在T形等接头中引起层状撕裂。
另一方面:当母材稀释率较高时,进入焊缝的SP也偏多,容易引起焊缝中热裂纹。
中碳钢焊接大多需要预热和控制层间温度,以降低焊缝金属和热影响区冷却速度,抑制马氏体形成,提高接头塑性,减小残余应力。
合金结构钢种类:低合金钢,中合金钢,高合金钢。
1强度用钢:热轧及正火钢,低碳调质钢,中碳调质钢。
2专用钢:珠光体耐热钢,低温钢,低合金耐蚀钢热轧钢:把钢锭加热到1300度左右,经热轧成板材,然后空冷。
正火钢:钢板轧制和冷却后,再加热到900度附近,然后在空气中冷却。
调质钢:900度附近加热后放入淬火设备中水淬,后在600度左右回火处理。
控轧:采用控制钢板温度和轧制工艺得到高强度,高韧性钢的方法。
热轧钢通常是铝镇静的细晶粒铁素体+珠光体组织。
正火钢是在固溶强化基础上,加入合金元素在正火条件下通过沉淀强化和细化晶粒来提高强度和保证韧性的。
热轧及正火钢焊接性分析:Q345(16Mn)裂纹脆化1冷裂纹淬硬组织是引起冷裂纹的决定性因素。
冷裂敏感性一般随强度提高而增加2热裂纹降低焊缝中碳含量和提高锰含量,解决了热裂纹问题。
焊接冷裂纹产生原因及防止措施
焊接冷裂纹产生原因及防止措施1.原因:1.1材料的选择不当:焊接材料的化学成分不合适,或者材料含有较高的残留应力,容易导致冷裂纹的生成。
1.2焊接过程中的热输入不合适:焊接过程中产生的热量和焊接速度不合理,容易造成焊缝和母材之间的温度差异,从而导致冷裂纹的生成。
1.3焊接残余应力:焊接后,热量的收缩导致焊缝和母材之间的残余应力,这些应力容易导致冷裂纹的生成。
1.4接缝设计不合理:接缝的形状和尺寸设计不合理,例如锯齿形的接头,容易导致应力集中,增加冷裂纹的风险。
1.5焊接过程中的不合理操作:焊接过程中出现的不合理操作,例如焊接速度太快或太慢,焊接温度不稳定,都会增加冷裂纹的发生风险。
2.防止措施:2.1合理选择焊接材料:选择合适的焊接材料,确保化学成分符合要求,并且没有过高的残余应力。
2.2控制热输入:控制焊接过程中的热输入,一方面要保证足够的热能输入,使焊缝和母材温度均匀,另一方面要避免过高的热输入,以免造成过大的残余应力。
2.3使用预热和后热处理:对于容易产生冷裂纹的材料和结构,可以采用预热和后热处理的方法来减少焊接过程中的残余应力。
2.4设计合理的焊缝:在设计焊缝时,应尽量避免锯齿形的接头,可以采用圆弧形或其他形状,以减少应力集中。
2.5严格控制焊接过程参数:焊接过程中应严格控制焊接速度、焊接压力和焊接温度等参数,确保稳定和合理的焊接条件。
2.6检测和治理裂纹:焊接后应对焊缝进行严格的裂纹检测,如超声波检测、磁粉检测等,一旦发现裂纹,应及时采取治理措施,包括打磨、退火或重新焊接等。
2.7人员培训和操作规范:通过人员培训,提高焊接人员的技术水平和操作规范,减少不合理操作的发生,从而减少冷裂纹的产生。
总结起来,焊接冷裂纹的产生主要是由材料的选择不当、焊接过程中的热输入不合适、焊接残余应力、接缝设计不合理和焊接过程中的不合理操作等原因造成的。
为了防止焊接冷裂纹的产生,应选择合适的焊接材料、控制热输入、使用预热和后热处理、设计合理的焊缝、严格控制焊接过程参数、检测和治理裂纹,并加强人员培训和操作规范。
常见焊接裂纹的解析
常见焊接裂纹的解析焊接裂纹,焊接件中最常见的一种严重缺陷。
在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界而所产生的缝隙。
它具有尖锐的缺口和大的长宽比的特征,按照形成的条件可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四帧一、冷裂纹冷裂纹是在焊接过程中或焊后,在较低的温度下,大约在钢的马氏体转变温度(即Ms 点)附近,或300〜200C以下(或TV0.5Tm, Tm为以绝对温度表示的熔点温度)的温度区间产生的,故称冷裂纹。
冷裂又可分为延迟裂纹、淬火裂纹和低塑性脆化裂纹。
(一)产生条件1.焊接接头形成淬硬组织。
由于钢的淬硬倾向较大,冷却过程中产生大量的脆、硬,而且体积很大的马氏体,形成很大的内应力。
接头的硬化倾向:碳的影响是关键,含碳和貉虽:越多、板越厚、截积越大、热输入量越小,硬化越严重。
2.钢材及焊缝中含扩散氢较多,氢原子在缺陷处(空穴、错位)聚积(浓集)形成氢分子,氢分子体积较氢原子大,不能继续扩散,不断聚积,产生巨大的氢分子压力,甚至会达到几万个大气压,使焊接接头开裂。
许多情况下,氢是诱发冷裂最活跃的因素。
3.焊接拉应力及拘朿应力较大(或应力集中)超过接头的强度极限时产生开裂。
(二)产生原因:可分为选材和焊接工艺两个方面。
1.选材方而(1)母材与焊材选择匹配不当,造成悬殊的强度差异;(2)材料中含碳、、铝、锐、硼等元素过髙,钢的淬硬敏感性增加。
2.焊接工艺方面(1)焊条没有充分烘干,药皮中存在着水分(游离水和结晶水):焊材及母材坡口上有油、锈、水、漆等:环境湿度过大(>90%);有雨、雪污染坡口。
以上的水分及有机物,在焊接电弧的作用下分解产生H,使焊缝中溶入过饱和的氢。
(2)环境温度太低:焊接速度太快;焊接线能量太少。
会使接头区域冷却过快,造成很大的内应力。
(3)焊接结构不当,产生很大的拘束应力。
(4)点焊处已产生裂纹,焊接时没有铲除掉;咬边等应力集中处引起焊趾裂纹:未焊透等应力集中处引起焊根裂纹;夹渣等应力集中处引起焊缝中裂纹。
焊接冷热裂纹知识
焊接热裂纹和冷裂纹知识
(1)产生的温度和时间不同
热裂纹:产生在焊缝结晶过程中,即由结晶开始一直到723度以前。
冷裂纹:产生在焊件冷却到200-300度以下,焊后数小时。
(2)产生的部位和方向不同
热裂纹:多数产生在焊缝金属中,少数延伸到基本金属中去,有纵向也有横向。
冷裂纹:多数产生在熔合线基本金属侧,大多数为纵向,少数为横向。
(3)外观特征不同
热裂纹:断面有明显的氧化色彩(发蓝黑)。
冷裂纹:断口发亮,为脆性断口,无氧化色彩。
(4)金相结构不同
热裂纹:沿晶界开裂。
冷裂纹:贯穿晶粒内部,即穿晶开裂。
(5)产生的原因不同
热裂纹:①焊缝金属中的低熔点共晶成分和杂质造成晶间偏析,形成液态间层。
②金属冷却过程中引起的拉应力使液态间层拉开而形成裂纹。
冷裂纹:①淬硬组织,热影响区产生马氏体组织,塑性下降,脆性增加。
②氢的作用,氢在结晶过程中向热影响区扩散,在空穴处氢原子结合成氢分子,造成很大压力。
③焊接应力作用。
焊接裂纹的分类
焊接裂纹的分类焊接裂纹是指在焊接过程中或焊接后,由于内部应力、冷却速度等因素的影响,导致焊接接头内部或表面产生的裂纹。
根据裂纹的产生原因和裂纹形态不同,可以将焊接裂纹分为不同的类型。
下面就几种常见的焊接裂纹进行分类和介绍。
1. 热裂纹热裂纹是由于焊缝热影响区的结构组织和化学成分发生变化而引起的。
热裂纹通常在焊接过程中或焊接后的短时间内出现。
根据裂纹出现的位置和形态,热裂纹可以分为几种不同的类型:(1) 固相转变裂纹:当金属处于固相转变的温度范围内,由于组织的变化和内部应力的影响,容易产生热裂纹。
这种裂纹通常直接出现在焊缝和热影响区的边缘。
(2) 晶粒边界裂纹:在焊接过程中,由于焊接区和热影响区的组织结构发生变化,晶粒边界处的脆性增大,容易形成裂纹。
这种裂纹通常呈线状,沿着晶粒边界方向延伸。
(3) 退火裂纹:由于焊接过程中产生的应力或变形,在焊接后的退火过程中,容易引起焊接接头的内部产生裂纹。
这种裂纹通常在焊缝和热影响区内部产生,对焊接接头的强度和韧性产生负面影响。
2. 冷裂纹冷裂纹是由于焊接后在室温条件下产生的裂纹。
冷裂纹通常是由于焊接接头内部的残余应力和变形引起的。
根据裂纹形态和位置的不同,冷裂纹可以分为以下几种类型:(1) 焊接残余应力裂纹:由于焊接接头的热变形以及冷却过程中产生的残余应力,容易导致焊接接头内部产生裂纹。
这种裂纹通常沿着焊缝或热影响区的方向延伸,严重影响焊接接头的力学性能。
(2) 氢致裂纹:在焊接过程中,如果焊接材料和焊接环境中存在水、油、脂肪等含氢物质,容易引起焊接接头内部产生氢致裂纹。
这种裂纹通常呈细小的网状分布,对焊接接头的韧性和可靠性产生严重影响。
3.应力腐蚀裂纹应力腐蚀裂纹是由于金属在受到应力和腐蚀介质的共同作用下产生的裂纹。
这种裂纹通常在金属制品长期使用过程中出现,对金属制品的可靠性和使用寿命产生严重影响。
根据裂纹产生的条件和形态不同,应力腐蚀裂纹可以分为以下几种类型:(1) 晶间腐蚀裂纹:当金属在受到腐蚀介质和应力的作用下,容易发生晶间腐蚀和产生裂纹。
焊接冷裂纹
焊接冷裂纹1.1焊接裂纹的简介焊接裂纹是指金属在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区金属原子结合力遭到破坏所产生的缝隙。
在焊接生产中由于钢种和结构的类型不同,可能出现各种裂纹,焊接裂纹产生的条件和原因各有不同。
有些裂纹在焊后立即产生,有些在焊后延续一段时间才发生,有的在一定外界条件诱发下才产生;裂纹既出现在焊缝和热影响区表面,也产生在其内部。
焊接裂纹对焊接结构的危害有:①减少了焊接接头的工作截面,因而降低了焊接结构的承载能力②构成了严重的应力集中。
裂纹是片状缺陷,其边缘构成了非常尖锐的切口应力集中,既降低结构的疲劳强度,又容易引发结构的脆性破坏。
③造成泄漏。
由于盛装或输送有毒且可燃的气体或液体的各种焊接储罐和管道,若有穿透性裂纹,必然发生泄漏。
④表面裂纹能藏污纳垢,容易造成或加速结构的腐蚀。
⑤留下隐患,使结构变得不可靠。
由于延迟裂纹产生具有不定期性,微裂纹和内部裂纹易于漏检,这些都增加了焊接结构在使用中的潜在危险。
焊接裂纹是焊接结构最严重的工艺缺陷,直接影响产品质量,甚至引起突发事故,例如,焊接桥梁坍塌,大型海轮断裂,各种类型压力容器爆炸等恶性事故。
随着现代钢铁、石油化工、船舶和电力等工业的发展,在焊接结构方面都趋向大型化、大容量和高参数方向发展,有的在低温、深冷或腐蚀介质下工作,都广泛采用各种低合金高强钢材料,而这些金属材料通常对裂纹十分敏感。
因此,从焊接裂纹的微观形态、起源与扩展及影响因素等进行深入分析,对防止焊接裂纹和保证工程结构的质量稳定性是十分重要的。
1.2焊接裂纹分类焊接裂纹按产生的机理可分为热裂纹、冷裂纹、再热裂纹、层状撕裂和应力腐蚀裂纹等。
(1)热裂纹焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的裂纹,它的特征是沿原奥氏体晶界开裂。
根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也不同。
一般把热裂纹分为结晶裂纹、液化裂纹和多边化裂纹三类。
热裂纹和冷裂纹产生的原因
热裂纹和冷裂纹产生的原因一、热裂纹的特征热裂纹常发生在焊缝区,在焊缝结晶过程中产生的叫结晶裂纹,也有发生在热影响区中,在加热到过热温度时,晶间低熔点杂质发生熔化,产生裂纹,叫液化裂纹。
特征:沿晶界开裂(故又称晶间裂纹),断口表面有氧化色。
(2)热裂纹产生原因:①晶间存在液态间层焊缝:存在低熔点杂质偏析 } 形成液态间层热影响区:过热区晶界存在低熔点杂质②存在焊接拉应力(3)热裂纹的防止措施:①限制钢材和焊材的低熔点杂质,如S、P含量。
②控制焊接规范,适当提高焊缝成形系数(即焊道的宽度与计算厚度之比)枣焊缝成形系数太小,易形成中心线偏析,易产生热裂纹。
③调整焊缝化学成分,避免低熔点共晶物;缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性,减少偏析。
④减少焊接拉应力⑤操作上填满弧坑1 / 2二、冷裂纹的形态和特征焊缝区和热影响区都可能产生冷裂纹,常见冷裂纹形态有三种冷裂纹形态 { 焊道下裂纹:在焊道下的热影响区内形成的焊接冷裂纹,常平行于熔合线发展焊指裂纹:沿应力集中的焊址处形成的冷裂纹,在热影响内扩展焊根裂纹:沿应力集中的焊缝根部所形成的冷裂纹,向焊缝或热影响发展a-焊道下裂纹; b-焊趾裂纹;c-焊根裂纹特征:无分支、穿晶开裂、断口表面无氧化色。
最主要、最常见的冷裂纹为延迟裂纹(即在焊后延迟一段时间才发生的裂纹-------因为氢是最活跃的诱发因素,而氢在金属中扩散、聚集和诱发裂纹需要一定的时间)。
(2)延迟裂纹的产生原因①焊接接头存在淬硬组织,性能脆化。
②扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力。
(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹)③存在较大的焊接拉应力(3)防止延迟裂纹的措施①选用碱性焊条,减少焊缝金属中氢含量、提高焊缝金属塑性②减少氢来源枣焊材要烘干,接头要清洁(无油、无锈、无水)③避免产生淬硬组织枣焊前预热、焊后缓冷(可以降低焊后冷却速度)④降低焊接应力枣采用合理的工艺规范,焊后热处理等⑤焊后立即进行消氢处理(即加热到250℃,保温2~6左右,使焊缝金属中的扩散氢逸出金属表面)。
焊接冷裂纹
拘束度
焊接接头根部间隙产生单位长度的弹性位移 时,单位长度焊缝上所承受的力。
L 两端被固定 的对接接头
假定焊缝冷却结束时,根部间隙产生了单位长度 的弹性位移,则应变为:
h
1
L
焊缝对母材产 生的拉伸应力为:
E0
E0 L
单位长度母材上所承受的力与单位长度焊缝 上所承受的力相等,即拘束度R为:
I. 钢种的淬硬倾向
钢种的淬硬倾向主要决定于化学成 分,板厚、焊接工艺及冷却条件等也有 影响。钢种的淬硬倾向越大,冷裂倾向 越大。
• 脆硬的片M组织 • 淬硬会产生较多的晶格缺陷
焊接时,近缝区加热温度高,A晶 粒严重长大,在焊后快速冷却条件下, 粗大的A就转变为粗大的M。这种脆硬 的M组织易于裂纹的萌生及裂纹的扩展。
氢、组织和应力三者对冷 裂纹的影响是非常复杂的。
R / ×1000N(mm·mm)-1
20
氢
HD=4~5mL/100g
15
t8/5=8~9s
Ceq: IIW
10
应
组织
力
5
0.3
0.4
0.5
Ceq
Ceq
C
Mn 6
Cr
Mo V 5
Cu Ni 15
4.4.2 冷裂纹敏感指数
PC
Pcm
适用范围:
1) 合金元素含量 wt%
C Si Mn Cu Ni Cr Mo V Ti Nb B
0.07~
~ 0.4~
~
~
~
~
~
~
~
~
0.22 0.6 1.4 0.5 1.20 1.2 0.7 0.12 0.05 0.04 0.005
碳钢焊接裂纹产生的原因及预防措施
碳钢焊接裂纹产生的原因及预防措施碳钢焊接常出现裂纹,其产生的原因有很多,主要包括:冷裂纹、热裂纹、固化裂纹和应力裂纹等。
本文主要介绍这些裂纹产生的原因以及预防措施。
1. 冷裂纹碳钢焊接后如果在冷却过程中产生裂纹,这种情况就称为冷裂纹。
冷裂纹主要产生于低温条件下,通常发生在焊接过程中或者焊后的冷却过程中。
产生冷裂纹的原因主要有以下两方面:(1)组织条件。
低温下,钢材的组织会发生相变,易形成脆性组织。
(2)应力状态。
在焊接过程中,产生的内应力、残余应力和变形应力等可能导致焊缝区出现应力集中,从而引发裂纹。
为了预防冷裂纹的产生,需要注意以下几点:(1)焊接前需要对钢材进行预热处理,提高焊接温度。
(2)控制焊接过程中的加热速度和冷却速度,使之均匀。
(3)选择对于在低温环境中具有较好韧性的钢材进行焊接。
热裂纹是指在焊接加热过程中或者焊接结束后,钢材表面或焊缝处产生的裂纹。
热裂纹通常发生在焊接开始或者结束的瞬间,并具有一定的热时间。
(1)固溶体凝固温度范围内的液体区域中积累了高应力。
(2)合金成分使得焊缝区域易于析出特定化合物,从而引发热裂纹。
(2)选择焊接材料的化学成分符合所需的要求。
(1)焊接材料中含有的一些元素,如磷、硫和锰等等,会导致产生固化裂纹。
(2)焊接区域的硬度或脆性较高,若后续应力应变变化较大就容易出现固化裂纹。
(3)进行足够的热处理,同时注意减少后续的应力应变变化。
应力裂纹是指在加工过程中或者使用过程中产生的裂纹。
应力裂纹通常发生在焊接后或者机械加工、冷加工或者零部件在使用过程中受到过大的载荷和应力时。
(2)加工过程中出现应力集中,从而引发裂纹。
(3)在零部件使用过程中,负载过大,应力过大,从而引发裂纹。
(1)控制加工过程中应力的大小,注意减少应力的影响。
(2)对于连接件,应该选择适当的焊接方式,从而避免应力的集中。
(3)在零部件使用前进行充分测试,确保零部件能够承受相关的加载。
综上所述,针对碳钢焊接中出现的裂纹,需要针对不同的裂纹类型采取相应的措施,从而实现有效的预防和治疗。
焊接冷裂纹成因
焊接冷裂纹成因一、引言焊接是现代工业生产中常见的加工方法之一,但其过程中可能会产生冷裂纹,造成产品质量问题。
因此,研究焊接冷裂纹成因对于提高产品质量具有重要意义。
二、焊接冷裂纹的定义及分类焊接冷裂纹是指在焊接过程中或者焊后,在低温下(通常小于室温)由于应力作用而产生的裂纹。
根据其发生位置和形态特征,可分为热影响区(HAZ)冷裂纹、熔合线(FZ)冷裂纹和母材(BM)冷裂纹等。
三、焊接冷裂纹成因1.组织变化引起的应力集中在焊接过程中,由于高温作用下金属晶粒会发生组织变化,如晶粒长大或者晶粒形态不规则等,这些变化都会导致局部应力集中。
当局部应力超过材料的强度极限时就会发生冷裂纹。
2.残余应力引起的开裂在焊接完成后,由于热胀冷缩和相邻材料的热膨胀系数不同,会产生残余应力。
当残余应力达到一定程度时,就会导致冷裂纹的形成。
3.热输入过大或者焊接速度过慢在焊接过程中,如果热输入过大或者焊接速度过慢,就会造成局部过热和冷却不均匀的现象,从而引起冷裂纹。
四、预防焊接冷裂纹的措施1.选择合适的焊接工艺和参数针对不同材料和结构形式,选择合适的焊接工艺和参数是预防冷裂纹的关键。
例如,在高强度钢板的焊接中要采用低温热输入、高速焊接等措施。
2.控制残余应力在焊接完成后采取措施消除或者降低残余应力是预防冷裂纹的有效方法。
例如,在大型构件的制造中可以采用局部加热、后续退火等手段来消除残余应力。
3.增加预热温度和时间增加预热温度和时间可以减少组织变化引起的应力集中,并提高材料的韧性,从而预防冷裂纹的发生。
五、结论焊接冷裂纹的成因是多方面的,需要综合考虑材料、结构和焊接工艺等因素。
预防冷裂纹需要采取相应的措施,如选择合适的焊接工艺和参数、控制残余应力、增加预热温度和时间等。
只有在生产实践中不断总结经验并加以应用,才能有效地预防焊接冷裂纹的产生。
压力容器焊接冷裂纹产生的机理和防止措施
断裂期三个连续的过程,潜伏期有可能几小时、几天、几个月甚至几年,有可能压力容器已投入使用期间,因此更具危险性。
2 焊接冷裂纹的产生原理及其影响因素大量的理论研究和生产实践经验证明,产生焊接冷裂纹的三大主要因素主要为焊缝中的扩散氢、焊接接头的淬硬组织及焊接接头的应力,通常我们称为冷裂纹三要素[3]。
这三个因素或单独或相互作用共同对焊接接头冷裂纹产生影响。
2.1 扩散氢引起压力容器焊接冷裂纹的一个重要因素是焊接接头中的扩散氢。
扩散氢在焊缝中并且有延迟性的特点,与温度本身关系不大,我们把由扩散氢引起的冷裂纹也称为“氢致裂纹”或“氢诱发裂纹”。
理论及试验研究表明,具有淬硬倾向的高强钢焊接接头的含氢量越高,则裂纹的敏感性越大,越容易出现冷裂纹。
在焊接时,熔池的高温状态下,液态金属所吸收溶解了大量氢,随着熔池冶金反应,部分氢在熔池金属的凝固过程中逸出,但由于焊接接头熔池具有存在的短时性特征,熔池冷却速度较快,在3~10 s 内液态金属凝固,部分氢来不及逸出,留在了固态焊缝金属中。
在金属焊缝中,氢是以H 、H+、H -的形式存在于金属组织中,在晶格的边缘形成间隙固溶体,氢原子和离子的半径很小,在特定条件下,H 、H+、H -可以在焊缝中扩散移动,这部分氢为我们称为扩散氢[4]。
理论研究表明,焊接接头中的扩散氢会从氢的含量较高的焊缝金属,向氢的含量较低的焊接接头熔合线区及热影响区扩散,特别是在焊缝接头熔合线及热影响区中的粗晶区部位,扩散氢含量相对于焊接接头其它部位要高出很多,如在应力集中的结构部位和存在焊缝缺陷部位,逐渐形成氢的富集合区。
随着时间的推移,氢原子逐渐析出,残存在固态金属中的氢原子,形成氢分子,聚集到一定数量时,形成微观上的空穴,这个过程持续时间有时会很长。
由于微观上的空穴并不是圆滑的表面,存在尖角,微观上可视为裂纹的起点,当在金属材料受到内部及外部应力时,金属材料的淬硬组织无法通过塑性变形来释放0 引言焊接在金属压力容器制造过程中是一道主要的工序,随着压力容器的大型化和重型化,焊接在压力容器制造过程中处于关键和重要的工序[1]。
焊接冷裂纹成因
焊接冷裂纹成因一、引言焊接冷裂纹是一种常见的焊接缺陷,主要发生在焊接完成后的冷却过程中。
它会导致焊接件在使用过程中出现裂纹,并对焊接件的强度和可靠性产生负面影响。
本文将探讨焊接冷裂纹的成因,以期提高焊接过程中的质量控制和缺陷预防能力。
二、焊接冷裂纹的基本概念焊接冷裂纹是指在焊接过程中,焊缝和热影响区在冷却过程中产生的裂纹。
它通常发生在高热应力和残余应力的作用下,并与材料本身的力学性能,焊接工艺参数,以及环境因素密切相关。
三、焊接冷裂纹的成因3.1 材料选择材料的选择是焊接冷裂纹发生的重要因素之一。
不同材料的热膨胀系数差异大,而焊接过程中,高温下的膨胀会产生应力。
如果材料的热膨胀系数不匹配,就容易导致焊接区域的应力集中,从而引发冷裂纹的发生。
3.2 焊接参数焊接参数的选择也是影响焊接冷裂纹的重要因素之一。
焊接过程中,焊接电流、焊接速度、预热温度等参数的不合理选择,都可能导致焊接区域内产生较大的残余应力。
残余应力的存在会使焊接件在冷却后发生变形和应力集中,从而引发冷裂纹的形成。
3.3 焊接过程焊接过程中的一些因素也会对冷裂纹的形成产生影响。
例如,焊接过程中的间歇冷却,温度冷降过快都会导致焊接区域内的应力集中,进而导致冷裂纹的发生。
此外,焊接过程中的气氛条件,如氧气含量过高,也会对冷裂纹形成起到促进作用。
3.4 环境条件环境条件对冷裂纹的形成同样具有重要影响。
焊接完成后,如果焊接件受到较低温度的环境影响,将会产生残余应力和冷却应力,进而引发冷裂纹的出现。
此外,一些特殊的环境,如腐蚀介质的作用、高温环境的影响等,都可能加剧冷裂纹形成的风险。
四、焊接冷裂纹的预防措施针对焊接冷裂纹发生的成因,可以采取以下预防措施来降低焊接冷裂纹的风险。
4.1 合理选择材料在焊接过程中,要合理选择材料,尽量控制不同材料的热膨胀系数差异。
优先选择具有较小热膨胀系数差异的材料,以降低残余应力的产生。
4.2 优化焊接参数通过合理优化焊接参数,控制焊接过程中的热输入和冷却过程,以减少残余应力的产生。
焊接冷裂纹
氢在铁中的溶解度(a)及在不同组织钢中扩散速度(b)
27
焊接时在高温作用下,将有大量的氢溶解在 溶池中,在随后的冷却和凝固过程中,由于 溶解度的急剧降低,氢极力逸出,但因冷却 很快,使氢来不及逸出而保留在焊缝金属中, 使焊缝中的氢处于过饱和状态,因而氢要极 力进行扩散。氢在不同组织中的扩散速度, 主要决定于它的扩散系数D。氢在不同组织 中的扩散系数如表所示。
2
• 国内某石化总厂一台1000m3的液化石油气 罐,材质为FG43钢,施工时由于对进口钢 材焊接要求不熟悉,焊后经检验发现许多 裂纹(其中主要是冷裂纹),总长达7540mm, 占球罐焊缝总长的11.9%。 • 事故带来的不仅是设备本身的损失,更重 要的是直接威胁人的生命安全,所以引起 了世界各国的重视。因此,深入探讨冷裂 纹的原因,防止冷裂纹的产生是焊接领域 中一项重要的任务。
16
• (二)氢的作用 • 氢是引起高强钢焊接冷裂纹重要因素之一,并 且有延迟的特征,因此,在许多文献上把氢引起 的延迟裂纹称为“氢致裂纹”或称“氢助裂纹”。 • 试验研究证明,高强钢焊接接头的含氢量越高, 则裂纹的敏感性越大,当局部地区的含氢量达到 某一临界值时,便开始出现裂纹。此值称为产生 裂纹的临界含氢量[H]cr。 • 各种钢产生冷裂的[H]cr值是不同的,它与钢 的化学成分、刚度、预热温度,以及冷却条件等 有关。图5-43是钢种碳当量Pcm和CE与临界含氢 量[H]cr的关系。
28
• 3 氢在致裂过程中的动态行为 • 在焊接过程中,由于热源的高温作用,焊缝金 属中溶解了很多的氢,冷却时又极力进行扩散和 逸出,原子氢从焊缝向热影响区扩散的情况如图 所示。
高强钢热影响区延迟裂纹的形成过程
29
由于焊缝的含碳量低于母材,因此焊缝在较高的温 度就发生相变,即由奥氏体分解为铁素体、珠光体、 贝氏体以及低碳马氏体等。此时母材热影响区金属 尚未开始奥氏体分解。当焊缝由奥氏体转变为铁素 体、珠光体等组织时,氢的溶解度突然下降,而氢 在铁素体、珠光体中的扩散速度很快,因此氢就很 快地从焊缝越过熔合线ab向尚未发生分解的奥氏体 热影响区扩散。由于氢在奥氏体中的扩散速度较小, 不能很快把氢扩散到距熔合线较远的母材中去,因 而在熔合线附近就形成了富氢地带。当滞后相变的 热影响区由奥氏体向马氏体转变时,氢便以过饱和 状态残留在马氏体中,促使这个地区进一步脆化。 如果这个部位有缺口效应,并且氢的浓度足够高时, 就可能产生根部裂纹或焊趾裂纹。若氢的浓度更高。 可使马氏体更加脆化,也可能产生焊道下裂纹。
焊接裂纹产生原因及防治
焊接裂纹产生原因及防治焊接裂纹是在焊接过程中或焊接完成后在焊缝或母材中产生的开裂缺陷。
焊接裂纹的产生原因多种多样,主要包括以下几个方面:1.焊接过程中的温度应力:焊接时,因为焊接区域发生了局部加热和冷却,导致焊接接头中的温度差异,从而造成了焊接区域的应力。
如果这种应力超过了焊接材料的强度极限,就会产生裂纹。
2.冶金因素:焊接过程中,由于温度升高,焊接材料和母材之间发生相互作用,形成了互溶区。
如果溶液比较富含低熔点的物质,就会导致物质从高温区流向低温区,从而增大了焊接接头的收缩量,引起裂纹。
3.废气、含氧量过高:当焊接环境中的氧气含量过高时,焊接时会发生氧化反应,在焊接接头中产生大量的氧化物,增大了焊接接头的收缩量,从而导致了裂纹的产生。
4.焊接过程中的振动:焊接过程中的振动会使焊接接头中的晶粒发生变化,从而影响了焊接材料的性能,使其发生了裂纹。
针对焊接裂纹的防治措施主要包括以下几个方面:1.提高焊接工艺:合理选择焊接工艺参数,如焊接电流、焊接电压和焊接速度等,以控制焊接过程中的温度和应力。
2.控制焊接过程中的温度升降速度:控制焊接过程中的升温速度和冷却速度,以避免焊接接头产生过大的应力。
3.控制焊接环境:减少焊接环境中的含氧量,避免产生氧化反应和氧化物。
4.优化焊接材料:合理选择焊接材料,根据焊接接头的要求选择合适的材料,以提高焊接接头的性能。
5.加强材料的前处理:在焊接前进行必要的预处理工作,如去污、除锈、磷化等,以提高焊接接头的质量。
综上所述,焊接裂纹的产生原因多种多样,需要综合考虑多个方面的因素来进行防治。
通过合理选择焊接工艺参数、控制焊接过程中的温度和应力、控制焊接环境、优化焊接材料以及加强材料的前处理等措施,可以有效预防和防治焊接裂纹的产生,提高焊接接头的质量。
焊接中冷裂纹的形成原理及防止措施
[ H ]R 在接头中的分布状况取决于氢在接 头中的扩散行为,后者服从以下规律:
“浓度扩散” 焊接热影响区 “相变诱导扩散” 焊道下过热粗晶区
“应力诱导扩散” 焊趾与焊根部位
可见接头中的 [ H ]R 聚集部位正是延迟裂纹 的多发部位。
L
F
F
m 是转换系数,与钢的线胀系数、比热
容、接头坡口形式和焊接方法等有关。
δ
L
三、应延力迟诱裂导纹扩的散形理成论机:理
裂缺纹陷热尖前应端沿力形应在成力缺新增陷的大, 三材(向料裂应脆纹力性源区增)。加前氢。沿继形 续氢成向浓三新度向的达应三到力向临区应界,力值诱 区时使扩,氢散缺向、陷其聚前内集沿扩…开散裂、、 微聚裂这集纹一使扩过内展程压。周力而增复大。 始持续进行,直至 形成宏观裂纹。
熔敷金相属因变含诱碳量导低扩于母散材而先氢发在生奥(氏A体→(γF-+FPe))转中变的,溶使解焊缝
中的度[ H较大]R向,焊扩接散系热数影较响小区;扩而散在。铁继素续体冷(却α该-区Fe金)属中由的奥溶氏解体向 马氏度体较转小变,,扩氢散便系以数过较饱大和。状因态此残,留当在金马属氏自体高中温。冷却发生
3
3
3
1
2
2
图11-60 焊接冷裂纹分布形态 1-焊道下裂纹 2-焊根裂纹 3-焊趾裂纹
二、冷裂纹的影响因素
高强度钢接头产生冷裂纹的主要因素是:
(一) 接头中扩散氢的含量与分布 (二) 钢材的淬硬倾向 (三) 接头中的拘束应力状态
实际低合金高强钢接头中产生的冷裂纹是上述三大因素 综合作用的结果,但有时可能只是其中一个或二个因素起 主要作用,其余的起辅助作用。
焊接冷裂纹的分类、危害及机理
焊接裂纹不仅造成设备的损失,更重要的是直接威胁人 的生命安全。
冷裂纹的一般特征
裂纹在Ms点附近或更低温度区间逐渐产生;裂纹起源 多发生在具有缺口效应的热影响区或物理化学不均匀 的氢聚集的局部地带;裂纹扩展或沿晶或穿晶,取决 于组织、应力状态和氢含量等。
冷裂纹可以焊后立即出现, 也有要经过一段时间才出 现
氢的应力扩散理论:金属内部的缺陷(包括微孔、夹 杂、晶格缺陷)提供潜在的裂源,在应力作用下,微 观缺陷的前沿形成三向应力区,诱使氢向该处扩散并 聚集。当氢的浓度达到一定程度时,一方面产生较大 的应力,另一方面阻碍位错移动而脆化,当应力进一 步加大时,促使缺陷扩展形成裂纹。
电解渗氢的钢丝加载试验 和W.F.Savage等人观察形 成裂纹时气泡的逸出情况说明 应力扩散理论的合理性。
cr [132.3 27.5 lg([H ] 1) 0.216HV 0.0102t100 ) 9.8
国产低合金钢抗裂试验建立的经验公式
初略估计,σ cr大于σ s,认为是安全的。否 则设法降低[H] ,提高t8/5和t100。
高强钢焊接产生冷裂纹的机理在于钢种淬硬之后受到氢 的侵袭和诱发,使之脆化,在拘束应力的作用下产生 裂纹。
淬硬引起开裂的原因: 形成淬硬的马氏体组织 焊接条件下形成的M是一脆硬组织,发生断裂消耗能量 较低,裂纹易形成和扩展。但不同成分和形态的M,对 裂纹的敏感性是不同的。组织对裂纹敏感性顺序 F或P→BL→ML→Bu→Bg→M-A→MT 淬硬会形成更多的晶格缺陷
氢的作用
氢是引起高强钢焊接冷裂纹重要因素之一,并具有延 迟特性。
预测某结构各部位 的焊接拘束应力比较困 难,采用拘束度作为预 测拘束应力的桥梁比较 方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接冷裂纹1.前言1.1焊接裂纹的简介焊接裂纹是指金属在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区金属原子结合力遭到破坏所产生的缝隙。
在焊接生产中由于钢种和结构的类型不同,可能出现各种裂纹,焊接裂纹产生的条件和原因各有不同。
有些裂纹在焊后立即产生,有些在焊后延续一段时间才发生,有的在一定外界条件诱发下才产生;裂纹既出现在焊缝和热影响区表面,也产生在其内部。
焊接裂纹对焊接结构的危害有:①减少了焊接接头的工作截面,因而降低了焊接结构的承载能力②构成了严重的应力集中。
裂纹是片状缺陷,其边缘构成了非常尖锐的切口应力集中,既降低结构的疲劳强度,又容易引发结构的脆性破坏。
③造成泄漏。
由于盛装或输送有毒且可燃的气体或液体的各种焊接储罐和管道,若有穿透性裂纹,必然发生泄漏。
④表面裂纹能藏污纳垢,容易造成或加速结构的腐蚀。
⑤留下隐患,使结构变得不可靠。
由于延迟裂纹产生具有不定期性,微裂纹和内部裂纹易于漏检,这些都增加了焊接结构在使用中的潜在危险。
焊接裂纹是焊接结构最严重的工艺缺陷,直接影响产品质量,甚至引起突发事故,例如,焊接桥梁坍塌,大型海轮断裂,各种类型压力容器爆炸等恶性事故。
随着现代钢铁、石油化工、船舶和电力等工业的发展,在焊接结构方面都趋向大型化、大容量和高参数方向发展,有的在低温、深冷或腐蚀介质下工作,都广泛采用各种低合金高强钢材料,而这些金属材料通常对裂纹十分敏感。
因此,从焊接裂纹的微观形态、起源与扩展及影响因素等进行深入分析,对防止焊接裂纹和保证工程结构的质量稳定性是十分重要的。
1.2焊接裂纹分类焊接裂纹按产生的机理可分为热裂纹、冷裂纹、再热裂纹、层状撕裂和应力腐蚀裂纹等。
(1)热裂纹焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的裂纹,它的特征是沿原奥氏体晶界开裂。
根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也不同。
一般把热裂纹分为结晶裂纹、液化裂纹和多边化裂纹三类。
①结晶裂纹(凝固裂纹):是在焊缝凝固过程的后期所形成的裂纹,所有结晶裂纹都是沿一次结晶的晶界分布,特别是沿柱状晶的晶界分布。
裂纹多呈纵向分布在焊缝中心,也有呈弧形分布在焊缝中心线两侧;通常纵向裂纹铰长、较深,而弧形裂纹较短、较浅。
弧坑裂纹也属结晶裂纹,它产生于焊缝收尾处。
多数结晶裂纹的断口上可以看到氧化色彩,表明它是在高温下产生的。
在扫描电镜下观察结晶裂纹的断口具有典型的沿晶开裂特征,断口晶粒表面光滑。
②液化裂纹:在母材近缝区或多层焊的前一焊道因受热作用而液化的晶界上形成的焊接裂纹。
液化裂纹多为微裂纹,尺寸很小,一般在0.5mm以下,个别达1mm。
主要出现在合金元素铰多的高合金钢、不锈钢和耐热合金的焊件中。
③多边化裂纹(高温低塑性裂纹):焊接时在金属多边化晶界上形成的一种热裂纹,由于在高温时塑性很低造成的,多发生在纯金属或单相奥氏体焊缝中,个别情况下出现在热影响区中。
(2)冷裂纹冷裂纹是焊接中最为普遍的一种裂纹,它是焊后冷至较低温度下产生的。
对于低合金高强钢来讲在Ms附近,是由拘束应力、淬硬组织和氢的共同作用而产生的。
冷裂纹主要发生在低合金钢、中合金钢、中碳和高碳钢的焊接热影响区,个别情况下,如焊接超高强钢或某些铁合金时,也出现在焊缝金属上。
冷裂纹的起源多发生在具有缺口效应的焊接热影响区或物理化学不均匀的氢聚集的局部地带。
冷裂纹有时沿晶界扩展,有时穿晶前进,较多的是沿晶为主兼有穿晶的混合型断裂。
裂纹的分布与最大应力方向有关,纵向应力大,出现横向冷裂纹,横向应力大,出现纵向裂纹。
冷裂纹大致可以分为三类:淬硬脆化裂纹纹、低塑性脆化裂纹和延迟裂纹。
(3)再热裂纹(消除应力裂纹)厚板焊接结构并含有某些沉淀强化合金元素的钢材,在进行消除应力热处理或在一定温度下服役的过程中,在焊接热影响区粗晶部位发生的裂纹称为再热裂纹。
由于这种裂纹是再次加热过程中产生的,故称为“再热裂纹”,简称SR裂纹。
再热裂纹多发生在低合金高强钢、珠光体耐热钢、典氏体不锈钢和某些镍基合金的焊接热影响区粗晶部位。
再热裂纹的敏感温度,视钢种的不同约在550-650℃。
这种裂纹具有沿晶开裂的特点,但在本质上与结晶裂纹不同。
(4)层状撕裂当焊接大型厚壁结构时,如果在钢板厚度方向受到较大的拉伸应力,就可能在钢板内部出现沿钢板轧制方向发展的具有阶梯状的裂纹,这种裂纹称为层状撕裂。
层状撕裂常出现在T形接头、角接接头和十字接头中,对接接头中很少出现,但当在焊趾和焊根处由于冷裂纹的诱导也会出现层状撕裂,层状撕裂不发生在焊缝上,只产生在焊接热影响区或母材金属的内部,一般在钢表面上难以发现;由焊趾或焊根冷裂纹诱发的层状撕裂,有可能在这些部位暴露于金属表面。
层状撕裂与钢种强度级别无关,主要与钢中夹杂物的数量及其分布状态有关,在撕裂平台上常发现不同种类的非金属夹杂物。
层状撕裂的危险在于它的隐蔽性,外观上没有任何迹象,现有的无损检测手段难以发现。
发生层状撕裂的结构多为大型厚壁的重要结构,如海洋采油平台、核反应堆压力容器、潜艇外壳等。
(5)应力腐蚀裂纹金属材料在一定温度下受腐蚀介质和拉伸应力共同作用而产生的裂纹称为应力腐蚀裂纹,简称SCC。
由应力腐蚀而引起的断裂没有明显的宏观变形、无任何征兆,破坏具有突发性,裂纹往往深入到金属内部,一旦发生很难修复。
从宏观形态看,应力腐蚀裂纹只产生在与腐蚀介质接触的金属表面,然后由表面向内部延伸,表面看呈多直线状、树枝状、龟裂状或放射状等多种形态,但都没有明显塑性变形,裂纹走向与所受拉应力垂直。
平焊缝上多为垂直焊缝的横向裂纹;而管材焊缝多为平行于焊缝的裂纹。
从微观形态看,深入金属内部的应力腐蚀裂纹呈干枯的树枝状,裂纹断口为典型的脆性断口。
一般情况下,低碳钢、低合金钢、铝合金等多为沿晶断裂。
2.焊接冷裂纹2.1冷裂纹的分类冷裂纹大致可以分为三类:淬硬脆化裂纹纹、低塑性脆化裂纹和延迟裂纹。
淬硬脆化裂纹(淬火裂纹) 。
一些淬硬倾向很大的钢种,焊接时即使没有氢的诱发,仅在拘束应力的作用下就能导致开裂。
它完全是由于冷却时发生马氏体相变而脆化所造成的,与氢的关系不大,基本上没有延迟现象。
焊后常立即出现,在热影响区和焊缝上都可发生。
焊接含碳量较高的Ni-Cr-Mo钢、马氏体不锈钢、工具钢,以及异种钢等都有可能出现这种裂纹。
低塑性脆化裂纹。
某些塑性较低的材料冷至低温时,由于收缩应变超过了材料本身所具有的塑性储备或材质变脆而产生的裂纹。
例如,铸铁补焊、堆焊硬质合金和焊接高铬合金时,就容易出现这类型纹。
通常也是焊后立即产生,无延迟现象。
延迟裂纹。
焊后不立即出现,有一定孕育期(又叫潜伏期),具有延迟现象,它是冷裂纹中较为常见的一种形态。
延迟现象决定于淬硬倾向、焊接接头的应力状态和熔敷金属中的扩散氢含量,其中扩散氢起着非常特殊的作用。
2.2冷裂纹的特征冷裂纹产生于有淬硬倾向的中碳、高碳钢及低合金高强度钢的焊接接头中,裂纹大多在热影响区,通常发源于熔合线附近,有时也出现在高强度钢或钛合金的焊缝中。
其出现的时间具有不确定性,有时出现在焊接过程中,但较多的是在焊后延迟一段时间后才产生,延迟的时间可能几秒钟、几分钟,也可能达数月之久。
从宏观上看冷裂纹的断口具有脆性断裂的特征,有金属光泽,呈人字形发展;从微观上看裂纹多起源于粗大奥氏体晶粒的晶界处,可以沿晶发展也可以穿晶发展,多是沿晶与穿晶断裂的混合。
根据焊接冷裂纹在焊接接头中发生和分布的特征,将焊接冷裂纹分为四种典型情况①焊道下裂纹:裂纹发生于距熔合线0.1-0.2mm的近缝区,这个部位常具有粗大的马氏体组织,裂纹走向与熔合线大体平行,而且一般不显露于焊缝表面。
②焊趾裂纹:即在应力集中的焊趾(焊缝表面与母材交界处)处形成的裂纹,裂纹一般向热影响区的粗晶区发展,有时也向焊缝中发展。
③根部裂纹:即沿应力集中的焊根处形成的裂纹,裂纹可能扩展到热影响区的粗晶区,也可能向焊缝中发展。
根部裂纹是高强钢焊接时最为常见的一种冷裂纹类型。
④横向裂纹:对于淬硬倾向大的合金钢,一般起源于熔合线,沿垂直于熔合线的方向向热影响区及焊缝扩展,常可显露于表面。
在厚板多层焊时,则多发生在距焊缝上表面有一小段距离的焊缝内部,为不显于表面的微裂纹形态,其方向大致垂直于焊缝轴线。
降低焊缝氢含量可以防止这种焊缝横裂纹。
2.2冷裂纹产生的原因焊接接头中的氢含量、钢种的淬硬倾向、焊接接头的拘束应力是形成冷裂纹的三大要素,通常称为生成冷裂纹的三要素。
三大因素之间相互联系、相互依赖,不同条件下起主要作用的因素不同,它们对焊接冷裂纹产生的影响都有各自的内在规律。
2.2.1焊接接头中的氢含量氢在钢中以扩散氢和残余氢两种形式存在。
实验证明,只有扩散氢才会导致焊接冷裂纹,随着焊缝金属中扩散氢含量的增加,冷裂纹率提高。
另外,扩散氢还影响延迟裂纹延时的长短,扩散氢含量越高,延时越短。
焊缝金属二次结晶时要发生金属的相变,金属相变时,氢的溶解度会发生急剧变化。
因为氢在奥氏体中的溶解度大,在铁素体中的溶解度小,当焊缝金属由奥氏体向铁素体转变时,氢的溶解度会突然下降,与此同时,氢的扩散速度突然增加。
氢在铁素体、珠光体中的扩散速度较大,氢很快从焊缝穿过熔合区向未发生分解的奥氏体热影响区中扩散。
氢在奥氏体中的扩散速度小,来不及扩散到距离熔合区较远的母材中,在熔合区附近形成富氢地带。
当滞后相变的热影响区发生奥氏体向马氏体转变时,氢以过饱和状态残存于马氏体中。
如果热影响区存在微观缺陷(显微杂质和微孔等),氢会在这些原有微观缺陷的地方不断扩展,直至形成宏观裂纹。
氢由溶解、扩散、聚集、产生应力以至开裂需要时间,因此具有延迟性。
焊接热影响区中氢的浓度足够高时,能使具有马氏体组织的热影响区进一步脆化,形成焊道下裂纹;氢的浓度稍低时,仅在有应力集中的部位出现裂纹,容易形成焊趾裂纹和焊根2.2.2钢种的淬硬倾向。
焊接时钢种的淬硬倾向越大,就意味着得到更多的马氏体组织,从而越容易产生冷裂纹。
马氏体是碳在α-铁中的过饱和固溶体,是一种脆硬组织,在一定的应变条件下,马氏体由于变形能力低而容易发生脆性断裂形成裂纹。
焊接接头的淬硬倾向主要取决于钢种的化学成分、焊接工艺、结构板厚度及冷却条件等。
2.2.3焊接接头的拘束应力。
焊接时产生和影响拘束应力的主要因素有①焊缝和热影响区在不均匀加热和冷却过程中的热应力;②金属相变时由于体积的变化而引起的组织应力;③结构在拘束条件下产生的应力:结构形式、焊接位置、施焊顺序及方向等都会使焊接接头承受不同的应力。
2.3防止冷裂纹的措施主要是对影响冷裂纹产生的三大要素进行控制,如改善焊接接头组织、消除一切氢的来源和尽可能降低焊接应力。
常用措施主要有控制母材的化学成分,合理选用焊接材料和严格控制焊接工艺,必要时采用焊后热处理等。