Smith预估控制原理

合集下载

内模控制和Smith预估器

内模控制和Smith预估器

第五节 Smith 预估控制Smith 预估控制方法是在1957年由Smith 提出来的,其特点是预先估计被控系统在基本扰动下的动态特性,然后用预估器进行补偿,力图使被延迟的被控制量超前反映到控制器中,使控制器提前动作,从而显著地减小系统的超调量,同时加速系统的调节过程。

一、Smith 预估控制原理预估控制系统原理图如图7-24所示。

(a) 预估控制系统原理框图 (b) Smith 预估器图7-24 预估控制系统原理图 图中,s e s G τ−)(p 为具有时滞为τ的对象传递函数,其中)(p s G 为被控对象;)(m s G 为内部模型(又称为对象的标称或名义模型),即Smith 预估器的传递函数,()s e s G s G τ−−=1)()(p m ;)(s D 为(前馈)内模控制器;)(s d 为扰动;)(s R 为参考输入;)(s Y 为被控对象输出;)(m s Y 为内部模型输出。

由图7-24可知,将Smith 预估器与控制器(或被控对象)二者并联。

在理论上可以使被控对象的时间滞后得到完全补偿,控制器的设计就不必再考虑对象的时滞作用了。

现在,系统中假设没有补偿器(预估器),则控制器输出与被控量之间的传递函数便为 s e s G s U s Y τ−=)()()(p (7-50) 上式表明,受到)(s U 控制作用的被控量)(s Y 要经过纯滞后时间τ之后才能反馈到系统控制器输入端。

若采用预估补偿器,则控制量)(s U 与反馈到控制器输入端的反馈信号)(s Y ′之间的传递函数乃是两个并联通道之和,即)()()()(m p s G e s G s U s Y s +=′−τ (7-51) 为使反馈信号)(s Y ′不发生时间滞后τ,则要求(7-51)式满足)()())(()()(p m p s G s G e s s G s U s Y s =+=′−τ (7-52) 于是,就导出了Smith 预估补偿器的传递函数为()s e s G s G τ−−=1)()(p m (7-53) 在系统中设置了Smith 预估器的情况下,可以推导出系统的闭环传递函数为)()(1)()()1)(()(1)()(1)1)(()(1)()()()(p p p p p p s G s D e s G s D e s G s D e s G s D e s G s D e s G s D s R s Y s s s s+=−++−+=−−−−−ττττ (7-54) 由上式可以明显看出,在系统的特征方程中,已经不含有s e τ−项。

大纯滞后过程特性Smith预估控制

大纯滞后过程特性Smith预估控制

过程控制系统课程设计题目之十三大纯滞后过程特性Smith 预估控制对于一个大纯滞后过程特性的对象:s PC e s s s G 10)12)(3(1)(-++=,试设计一个Smith 预估控制系统,并用SIMULINK 和MATLAB 程序仿真实现。

当系统设定值R(s)为1时,调整PI 参数,使过渡过程尽可能满意。

(假设检测变送环节的传递函数为1);比较在预估模型有偏差时,在相同的输入条件下,与预估模型无偏差情况的仿真结果;如果系统有扰动信号F(s)为单位阶跃信号或SINS 信号时,比较系统的仿真结果;如有可能,再试设计一种改进的Smith 预估器。

实验报告要求: 1、供系统仿真图;2、按照题目要求,给出每个实验的仿真结果图;3、根据以上仿真结果,分析)(s G PC 有滞后与无滞后情况下,PI 参数整定的特点。

大纯滞后过程特性Smith预估控制摘要:Matlab 是一套高性能的数值计算和可视化软件。

它集数值分析、矩阵计算、信号分析与图形显示为一体,构成的一个方便的、界面友好的用户环境。

历经二十几年的发展和竞争,现已成为国际公认的最优秀的科技应用软件。

Matlab 最突出的特点就是简洁、它用直观的、符合人们思维习惯的代码、代替C 语言和FORTRAN 语言的冗长代码。

为此,Matlab 获得了对应用学科的极强适应力。

在国内外高校、Matlab 已成为大学生,硕士生、博士生必须掌握的基本技能。

在设计研究学位和工业部门,Matlab 已经成为研究和解决各种具体工程问题的一种标准软件。

Matlab 软件广泛用于数字信号分析,系统识别,时序分析与建模,神经网络、动态仿真等方面有着广泛的应用。

利用Matlab 这个最优秀的科技软件,把计算机技术与信号分析紧密地结合起来,对信号进行分析处理仿真研究,经实例验证,取得了非常好的效果,具有一定的实用价值。

本文控制系统为研究主体,提出一种Smith 预估控制算法,通过设计自适应非线性反馈回路来自适应调节参数,从而满足对象参数大幅度变化的要求。

史密斯预估的原理

史密斯预估的原理

史密斯预估的原理史密斯预估是一种估算未知数量的方法,其原理是通过将现有数据和经验进行比较和分析,推断出未知数量的大致范围。

史密斯预估的核心思想是利用已知的相关信息来推测未知的数量。

在许多情况下,我们无法直接量化或测量某些数量,例如某种资源的存量、某个群体的数量、某个事件的发生概率等。

但我们可以通过观察与这些数量相关的其他特征,如同类资源的消耗速率、群体中已知的个体数量、类似事件的发生频率等,来推测未知的数量。

史密斯预估的基本步骤包括:1. 收集相关数据和信息:首先要收集现有的数据和经验,这些数据和经验可能涉及到相关的特征、变量或因素。

例如,要估计某种资源的存量,就需要收集与该资源相关的消耗速率、生产速率等数据。

2. 建立模型和关系:根据收集到的数据和信息,可以建立数学模型或推断出两个或多个变量之间的关系。

这可以通过统计分析、回归分析或其他适当的方法来实现。

模型和关系的建立可以帮助我们理解数据之间的相互作用和影响,从而更好地进行预估。

3. 进行数据清洗和处理:在进行预估之前,通常需要对收集到的数据进行清洗和处理。

这包括删除异常值、填补缺失值、转换数据类型等步骤,以确保数据的准确性和一致性。

4. 进行估计和推断:在完成数据清洗和处理后,可以应用建立的模型和关系进行估计和推断。

这可以通过直接计算、模拟仿真、蒙特卡洛方法等方式来实现。

根据具体情况选择合适的方法,得出未知数量的估计值和置信区间。

5. 验证和修正:进行预估后,需要对结果进行验证和修正。

这可以通过与现实情况进行对比、与其他独立估计进行比较等方法来实现。

如果估计结果与实际情况不符,可能需要重新评估模型和关系,或者收集更多的数据进行修正。

史密斯预估的优点在于它可以在缺乏直接测量或准确数据的情况下,通过合理的推断和分析,得出对未知数量的估计。

史密斯预估的缺点在于它依赖于已有数据和经验的质量和代表性,如果数据不准确或不完整,预估结果可能存在偏差。

因此,在进行史密斯预估时,应该注意数据的获取和处理过程,以及模型和关系的选择和验证,以提高预估结果的准确性和可靠性。

具有Smith预估器的神经元PID控制在电加热炉中的应用

具有Smith预估器的神经元PID控制在电加热炉中的应用

图 2 带 Smith 预估器的控制系统结构图 从图中可以看出, Smith 预估补偿实际就是在含有 纯滞后环节的被控对象上并联一个补偿器 Dt(s)(Dt(s)=G (s)(1- e-τs)), 使补偿后的等效对象的传递函数中不含纯滞 后环节。但在实际应用当中, Dt(s)是反向并联在控制器 D(s)上的。 将 Smith 预 估 器 与 前 面 介 绍 的 单 神 经 元 PID 控 制器有机地结合起来, 就能得到具有 Smith 预估器的 单神经元自适应 PID 控制器, 其框图如图 3 所示:
大时滞对系统的影响, 系统的控制性能得到了较大的改善。
关键词: Smith 预估器; 神经元 PID 控制; 仿真
中图分类号: TP273
文献标识码: A
文章编号: 1672- 0547( 2006) 01- 0070- 02
引言 PID 控制是最早发展起来的控制策略之一, 常规 PID 控制器 具 有 结 构 简 单 、易 于 实 现 、鲁 棒 性 强 等 优 点, 但其参数在工况变化时不易在线调整, 当被控对 象具有大迟延、大惯性、时变性等特点时, 其控制性能 就会下降。近年来, 神经网络的研究引起了控制界的 高度重视, 在神经网络控制中, 单神经元是最基本的 控制部件。它只有一个神经元, 结构简单, 学习过程比 较快, 又具有神经网络的信息 综合、学习记忆和自适 应能力, 表现出良好的自适应性和鲁棒性, 将神经网 络与常规 PID 结合为一体的神经网络 PID 控制 器是 控制领域的一个发展方向。 然而, 单神经元 PID 控制器也存在自身的不足, 比如当控制系统开环增益过大或被控对象存在大的 纯滞后环节时, 控制系统会出现振荡, 甚至出现不稳 定 。高 温 力 学 试 验 机 的 电 加 热 炉 就 是 一 个 典 型 的 具 有 大滞后环节的控制对象, 若使用简单的神经元 PID 控 制器很难获得良好的控制效果。 Smith 预估补偿的原理就是在含有纯滞后环节的 被控对象上并联一个补偿器, 使补偿后的等效对象的 传递函数中不含纯滞后环节, 力图使被延迟了的被控 量提前反映到控制器, 使控制器超前动作, 从而明显 减少超调, 加速调节过程。本文将普通的单神经元 PID 控制器与 Smith 预估补偿算法结合起 来, 形成带 有 Smith 预估器的神经元自适应 PID 控制器。在高温 力学试验机加热炉上的仿真实验表明, 其控制品质优 于一般单神经元 PID 控制器。 1. 单神经元 PID 控制器 增量式 PID 控制规律可用差分方程表示为[1]: !u( k) =u( k) - u( k- 1) =KP!e( k) +KIe( k) +KD!2e( k) ( 1) 式中, KP— ——比例系数;

斯密斯预估控制器

斯密斯预估控制器

施密斯预估控制姓名:学号:班级:1 实验目的对大多数控制系统,采用常规的控制技术均可以达到满意的控制效果,但对于复杂及特殊要求的控制系统,采用常规的控制室技术很难达到目的,在这种情况下,就需要采用复杂控制技术,其中Smith 预估控制算法是常用的一种,通过本实验加深对Smith 预估控制算法的理解和掌握。

2 实验原理图1为被控对象具有纯滞后特性的单回路反馈控制系统,D (s )是控制器,被控对象的传递函数为etss -)(G p ,其中,)(G p s 为被控对象中不包含纯滞后部分的传递函数,ts-e为被控对象纯滞后部分的传递函数。

)(t r )(t e )(t u )(t y_施密斯预估原理:与D (s )并接一补偿环节,用来补偿被控对象中的纯滞后部分,这个补偿环节称为预估器,其传递函数为)1)((G p tse s --,t 为纯滞后时间,补偿后的系统结构如图2所示。

)(t r )(t e )(t u )(t y_ _)(t y τ由施密斯预估控制器)1)((G p tses --和控制器D (s )组成的回路陈伟纯滞后补偿器,)(s Ds e s τ-)(G p)(s Ds e s τ-)(G p)1)((G p ts e s --其传递函数为:)1)(()(1)()(D m s p e s G s D s D s τ--+=经过补偿后的系统闭环传递函数为:s p p sp m sp m e s G s D s G s D es G s D e s G s D τττ---+=+=Φ)()(1)()()()(1)()(s )(该式说明,进过补偿后,消除了之后部分对控制系统的影响,因为式中ts-e 在闭环控制回路之外,不影响系统的稳定性。

设广义被控对象为:1011()()()1Ts s se e H s G s G s es T sττ----==⋅+取T=1、τ=2、T 1=2.88,经采样(T=1s )保持后,其广义对象z 传递函数为00.2934()0.7066G z z =-,而2se -转换为2个单位迟延。

施密斯预估控制ppt课件

施密斯预估控制ppt课件

u(t) GP (S)es
y(t)
带纯滞后环节的控制系统
施密斯预估控制原理: 与 D(s) 并接一补偿环节,用
来补偿被控对象中的纯滞后部分。
.
这个补偿环节称为预估器, 其传递函数为GP(s)1(es) ,为纯滞后 时间,补偿后的系统框图示于下图中。
e(t) r(t)
D(s)
u(t) GP (S)es
.
施密斯预估器的输出可按下图顺序 计算。
施密斯预估
u(k) GP (s) m(k)
y (k)
e s
m(K N)
施密斯预估器方框图
.
图中,u(k)是PID数字控制器 的输出,是施密斯预估器的输出。 从图中可知,必须先计算传递函数 的输出m(k)后,才能计算预估器的 输出
y(k)m (k)m (kN )
施密斯预估控制
1.施密斯预估控制原理: 如下图所示,在单回路控制
系统中,D(s)为调节器的传递函数, 用于校正 部GP分(s); 表示被控 GP(s)es 对象的传递函数, 为GP被(s) 控对象 中不包含纯滞后部分的传递函数, 为被控e 对s 象纯滞后部分的传递函 数。
.
r(t)
e(t) D(s)
r(t) e1(t) e1 (k) e2(k) PID
T
T
y (k) GP (S)(1 es )
1 es
y(t) GP (S)es
S
具有纯滞后补偿的控制系统
.
纯滞后补偿的数字控制器由两部 分组成:一部分是数字PID控制器 (由D(s)离散化得到);一部分是施 密斯预估器。
(1)施密斯预估器经补偿后,消除 了纯滞后部分对控制系统的影响,因 式中es 在闭环控制回路之外,不影响 系统的稳定性,拉氏变换的位移定 理说明,e s 仅将控制作用在时间坐标 上推移了一个时间,控制系统的过 渡过程及其它性能指标都与对象特 性为GP (s)时完全相同。

Smith预估补偿器的算法研究与实现

Smith预估补偿器的算法研究与实现

目录1.引言 (3)1.1 概述 (3)1.2 毕业设计(论文)的主要内容 (3)2.Smith预估器的理论知识 (4)2.1 Smith预估器的模拟补偿控制原理 (4)2.2 数字Smith预估系统 (5)3.数字PID控制器 (7)3.1 序言 (7)3.2 模拟PID控制器 (7)3.3 数字PID控制器 (7)3.4 PID控制参数的整定 (10)3.4.1 绪论 (10)3.4.2 采样周期T的选取。

(10)3.4.3 PID控制参数的整定方法 (10)4.数字Smith 预估器 (12)4.1 介绍数字PID控制算法的几种发展 (12)4.1.1 积分分离的PID算式 (12)4.1.2带有死区的PID控制算式 (12)4.1.3微分先行的PID控制算式 (13)4.1.4 时间最优PID控制 (13)4.2 数字Smith预估器的计算机实现 (14)4.3 数字Smith预估控制算式的推导 (15)5.软、硬件设计及调试.................................................................................. 错误!未定义书签。

5.1 硬件设计部分.................................................................................. 错误!未定义书签。

5.1.1设计接线图.........................................................................错误!未定义书签。

5.1.2 控制参数的计算....................................................................错误!未定义书签。

5.2 软件设计部分..................................................................................错误!未定义书签。

内模控制和Smith预估器

内模控制和Smith预估器

第五节 Smith 预估控制Smith 预估控制方法是在1957年由Smith 提出来的,其特点是预先估计被控系统在基本扰动下的动态特性,然后用预估器进行补偿,力图使被延迟的被控制量超前反映到控制器中,使控制器提前动作,从而显著地减小系统的超调量,同时加速系统的调节过程。

一、Smith 预估控制原理预估控制系统原理图如图7-24所示。

(a) 预估控制系统原理框图 (b) Smith 预估器图7-24 预估控制系统原理图 图中,s e s G τ−)(p 为具有时滞为τ的对象传递函数,其中)(p s G 为被控对象;)(m s G 为内部模型(又称为对象的标称或名义模型),即Smith 预估器的传递函数,()s e s G s G τ−−=1)()(p m ;)(s D 为(前馈)内模控制器;)(s d 为扰动;)(s R 为参考输入;)(s Y 为被控对象输出;)(m s Y 为内部模型输出。

由图7-24可知,将Smith 预估器与控制器(或被控对象)二者并联。

在理论上可以使被控对象的时间滞后得到完全补偿,控制器的设计就不必再考虑对象的时滞作用了。

现在,系统中假设没有补偿器(预估器),则控制器输出与被控量之间的传递函数便为 s e s G s U s Y τ−=)()()(p (7-50) 上式表明,受到)(s U 控制作用的被控量)(s Y 要经过纯滞后时间τ之后才能反馈到系统控制器输入端。

若采用预估补偿器,则控制量)(s U 与反馈到控制器输入端的反馈信号)(s Y ′之间的传递函数乃是两个并联通道之和,即)()()()(m p s G e s G s U s Y s +=′−τ (7-51) 为使反馈信号)(s Y ′不发生时间滞后τ,则要求(7-51)式满足)()())(()()(p m p s G s G e s s G s U s Y s =+=′−τ (7-52) 于是,就导出了Smith 预估补偿器的传递函数为()s e s G s G τ−−=1)()(p m (7-53) 在系统中设置了Smith 预估器的情况下,可以推导出系统的闭环传递函数为)()(1)()()1)(()(1)()(1)1)(()(1)()()()(p p p p p p s G s D e s G s D e s G s D e s G s D e s G s D e s G s D s R s Y s s s s+=−++−+=−−−−−ττττ (7-54) 由上式可以明显看出,在系统的特征方程中,已经不含有s e τ−项。

Simulink的时滞过程Smith预估控制与IMC研究方法研究 精品

Simulink的时滞过程Smith预估控制与IMC研究方法研究 精品

基于Simulink的时滞过程Smith 预估控制与IMC控制方法研究Smith预估控制一、基本原理PID控制器因算法简单、鲁棒性好、可靠性高,一直是工业生产过程中应用最广的控制器。

然而实际生产过程往往具有非线性、时变不确定性,应用常规PID控制不能达到理想的控制效果。

这时往往不得不采用模型预测控制、自适应控制等先进控制策略来获得更好的控制性能。

近年来越来越多的研究人员就上层采用模型预测控制这类先进的控制算法,而底层保留传统的PID控制算法,即所谓的预测PID 控制算法,展开了一系列的研究。

1、纯滞后产生的主要原因:1)物料及能量在管道或者容器中传输及运送需要时间;2)物质反应、能量的释放及能量交换需要一定过程和时间;3)设备和设备之间的串联需要许多的中间环节;4)测量装置的响应时间;5)执行机构的动作时间;在控制对象调节通道、测量装置及执行机构等环节存在纯滞后时,控制系统闭环特征方程中就存在纯滞后因子,而且存在纯滞后的环节较多时,系统滞后时间也将随之增加。

因此明显降低了系统的稳定性,而且纯滞后时间越长,系统稳定性就越差。

由于纯滞后的存在,调节作用不及时,导致被调节系统的动态品质下降。

纯滞后越大,则系统的动态品质越差。

2、史密斯预估器原理在单回路控制系统中,控制器的传递函数为GC(s),被控对象传递函数为G O(s)e-ts,被控对象中不包含纯滞后部分的传递函数为G O(s),被控对象纯滞后部分的传递函数为e-ts。

则系统的闭环传递函数为Φ(S)=[GC(S)GO(S)e-τs]/[1+GC(S)GO(S)] (1)由式(1)可以看出,系统特征方程中含有纯滞后环节,它会降低系统的稳定性。

史密斯补偿的原理是:与控制器Gc(s)并接一个补偿环节,用来补偿被控对象中的纯滞后部分,这个补偿环节传递函数为Gm(s)=G o(s)(1-e-ts),t为纯滞后时间,补偿后的系统如图1所示。

图1 史密斯补偿后的控制系统从图中可以看出,若无系统延时时,系统等同于简单的预测PID 控制回路;而当系统有延时时,延时对系统的影响即可由Smith预估控制器消除,而预测PID参数则仅需根据无延时模型来整定,这样就可以避免延时带来的参数整定误差。

Smith预估

Smith预估

史密斯(Smith)预估器工业生产过程中的大多数被控对象都具有较大的纯滞后性质。

被控对象的这种纯滞后性质经常引起超调和持续的振荡。

在20世纪50年代,国外就对工业生产过程中纯滞后现象进行了深入的研究,史密斯提出了一种纯滞后补偿模型,由于当时模拟仪表不能实现这种补偿,致使这种方法在工业实际中无法实现。

随着计算机技术的飞速发展,现在人们可以利用计算机方便地实现纯滞后补偿。

1.史密斯补偿原理在图6.14所示的单回路控制系统中,控制器的传递函数为D(s),被控对象传递函数为G p (s)e -τs ,被控对象中不包含纯滞后部分的传递函数为G p (s),被控对象纯滞后部分的传递函数为e -τs 。

图6.14 纯滞后对象控制系统图6.14所示系统的闭环传递函数为()()()1()()sp s p D s G s e s D s G s e ττ--Φ=+ (6.43)由式(6.43)可以看出,系统特征方程中含有纯滞后环节,它会降低系统的稳定性。

史密斯补偿的原理是:与控制器D(s)并接一个补偿环节,用来补偿被控对象中的纯滞后部分,这个补偿环节传递函数为G p (s)(1-e -τs ),τ为纯滞后时间,补偿后的系统如图6.15所示。

‘图6.15 史密斯补偿后的控制系统由控制器D(s)和史密斯预估器组成的补偿回路称为纯滞后补偿器,其传递函数为'()()1()()(1)s p D s D s D s G s e τ-=+- (6.44) 根据图6.15可得史密斯预估器补偿后系统的闭环传递函数为 '()()()1()()p s p D s G s s e D s G s τ-Φ=+ (6.45)由式(6.45)可以看出,经过补偿后,纯滞后环节在闭环回路外,这样就消除了纯滞后环节对系统稳定性的影响。

拉氏变换的位移定理说明e -τs仅仅将控制作用在时间座标上推移了一个时间τ,而控制系统的过渡过程及其它性能指标都与对象特性为G p (s)时完全相同。

第8章-史密斯预估控制说课讲解

第8章-史密斯预估控制说课讲解

第8章史密斯预估控制
由此可见,由于纯滞后环节的存在,使被调量存在较 大的超调,且响应速度很慢,如果在控制精度要求很高的 场合,则需要采取其他控制手段,例如补偿控制、采样控 制等。
第8章史密斯预估控制
8.1 史密斯补偿概述
在纯滞后系统中采用的补偿方法不同于前馈补偿,它是按照 过程的特性设想出一种模型加入到原来的反馈控制系统中,以补偿 过程的动态特性。这种补偿反馈也因其构成模型的方法不同而形成 不同的方案。
第8章史密斯预估控制
第8章-史密斯预估控制
第8章史密斯预估控制
此外,如反应器、管道混合、皮带传输以及用分析仪表测量 流体的成分等过程都存在着较大的纯滞后。
在这些过程中,由于纯滞后的存在,使得被控变量不能及时 反映系统所受的扰动,即使测量信号到达控制器,执行机构接受 调节信号后立即动作,也需要一段纯滞后以后,才会影响被控变 量,使之受到控制。
Y R((ss))1GG c(cs()sG )G 0(0s()se)ess 对干扰量的闭环传递函数为
Y F((ss))1Gc(G s)fG (s0)(s)es
在上两式的特征方程中,由于引入了e- s项,使闭环系统的品质大大 恶化。
若能将G0(s)与e- s分开并以G0(s)为过程控制通道的传递函数,以G0(s) 的输出信号作为反馈信号,则可大大改善控制品质。
第8章史密斯预估控制
史密斯预估控制: G m (s)G 0(s)1 (e s)
Y(s) Gc(s)G0(s)es R(s) 1Gc(s)G0(s)
第8章史密斯预估控制
【例8-1】 对一阶惯性加纯滞后的过程进行单回路控制和加入史密斯 预估器进行控制。设过程参数kp=2, =4 ,Tp=4,当调节器参数Kc =20,TI=1min时,系统在设定值扰动(设x=10.1(t))下的响应曲线 如图8-6所示。其中: 黑线是经过史密斯预估器补偿后的响应曲线,其超调量仅为 0.32,调节时间缩短到8s,与单回路PID控制(图中红线所示)相比, 效果十分显著。

Smith预估器

Smith预估器

0 引言时滞现象常产生于化工、轻化、冶金、计算机网络通讯和交通等系统中[1,2]。

就控制系统而言,时滞是指作用于系统上的输入信号或控制信号与在它们的作用下系统所产生的输出信号之间存在的时间上的延迟,当时滞较大时,将会使系统中的被调量不能及时反映控制信号的作用;另外,当被控对象受到干扰而使被调量改变时,控制器产生的控制作用不能及时有效地抑制干扰的影响,从而导致较大的超调量和较长的调节时间,甚至产生不稳定。

因此,大时滞系统一直受到人们关注,成为目前过程控制研究领域的一个重要课题。

过程控制中,通常用过程纯滞后时间常数和系统时间常数之比来衡量过程时滞。

当τ/T≤0.3时,称为一般时滞过程,过程比较容易控制,常规PID控制就能收到良好的控制效果;当τ/T>0.3时,称为大时滞过程,需要采取特殊的高级控制方法,其控制难度随τ/T的比值增加而增加。

本文分析了在过程控制中广泛采用的大时滞过程控制算法——Smith预估补偿法,即Smith预估器,并重点讲述了其改进算法——双自由度Smith预估器,最后进行了仿真。

仿真结果表明该改进算法是可行的。

1 传统Smith预估器传统Smith预估器实质上是一种模型补偿控1.1 Smith预估控制基本思路Smith预估控制是瑞典科学家Smith于1957年提出的一种解决时滞系统控制问题的预估控制方法,其控制基本思路是预先估计出过程在基本扰动下的动态特性,然后由预估器进行补偿控制,使被延迟了的被调量提前反映到调节器,并使之动作,以此来减小超调量与加速调节过程[3]。

1.2 Smith预估控制补偿算法引入补偿环节Gk(s)后的闭环系统方框图如图1所示。

其中,Gc(s )e-τσ表示实际过程,Gk(s)表示系统一般PID调节器。

由图1可知系统闭环传递函数为引入补偿环节Gk (s)后,希望系统闭环传递函数的分母不再含e-τσ项,即要求1+Gc(s )Gk(s )+Gc(s )Gk(s )e-τσ=1+Gc(s)Gp(s) (2)即Gk(s)=(1-e-τσ)Gp(s) (3)将式(3)代入图1便可得到图2所示的传统连续Smith预估器方框图。

Smith预估控制

Smith预估控制

东南大学能源与环境学院实验报告课程名称:计算机控制及系统实验名称:Smith预估控制院(系):能源与环境学院专业:热能与动力工程姓名:学号:0301110实验室:金智楼实验时间:2014 年04月07 日评定成绩:审阅教师:一 实验目的通过实验掌握Smith 预估控制的方法及程序编制及调试。

二 实验内容1. Smith 预估控制系统如图所示,对象G(S)= K ·e-τs/ (1+T 1S),K = 1, T1 = 10 s , τ = 5 s ,Wc(z)采用数字PI 控制规律。

2.对象扰动实验画出U(t) = u0·1(t)时,y(t)曲线。

3.Smith 预估控制(1) 构造W τ(S),求出W τ(Z)。

(2) 整定Wc(s)(按什么整定?) (3) 按图仿真,并打印曲线。

(4) 改变W τ(S)中K ,τ(对象不变),进行仿真比较,观察它们对调节 过程的影响。

三 实验步骤 1.拟订实验方案(1)、对象扰动实验,G(S)离散化,采用后向差分1()()()(1)sY s K e G s U s T s τ-•==+ 令 11z s T --= 则有:y(k)u(k)=K ∙e −τTlnz 1+T1T(1−Z −1)整理得:11()(1)()TKu k N T y k y k T T -+-=+ 其中 N Tτ=#include<iostream.h>#include<math.h> #include<iomanip.h>#include<fstream.h>void main(){ofstream ofile("d:\\21.xls");ofile<<"T"<<'\t'<<"u[k]"<<'\t'<<"y[k]"<<'\n';double u0,T,T1=10,a,b,t=5,k=1;double u[100],y[100];int N,i;cout<<"输入采样周期T:\n";cin>>T;cout<<"输入扰动阶跃值u0:\n";cin>>u0;a=exp(-T/T1);b=k*(1-a);N=int(t/T);cout<<'\n';cout<<"T"<<'\t'<<"u[k]"<<'\t'<<"y[k]"<<'\n';cout<<'\n';cout<<0<<'\t'<<0<<'\t'<<0<<'\t'<<'\n';for(i=0;i<100;i++){if(i==0)u[i]=0;elseu[i]=u0*1;if(i<=(N+1))y[i]=0;elsey[i]=b*u[i-(N+1)]+a*y[i-1];ofile<<i*T<<'\t'<<u[i]<<'\t'<<y[i]<<'\n';cout<<i*T<<'\t'<<u[i]<<'\t'<<y[i]<<'\n';}ofile.close();}(2)、Smith 预估控制按照Smith 的控制,构造1(1)()(1)(1)Ts s t K e W s e s T s τ---=-+对其离散化得:1111()(1)1Nt b z W z z a z---=-- 其中 11TT a e -=, 11(1)b K a =- N Tτ≈取整数。

Smith补偿控制原理

Smith补偿控制原理

Smith 补偿控制原理针对纯滞后系统闭环特征方程含的影响系统控制品质的纯滞后问题,1957年Smith 提出了一种预估补偿控制方案,即在PID 反馈控制基础上,引入一个预估补偿环节,使闭环特征方程不含有纯滞后项,以提高控制质量。

如果能把图4-5中假想的变量B 测量出来,那么就可以按照图4-6所示的那样,把B 点信号反馈到控制器,这样就把纯滞后环节移到控制回路外边。

扰动)(s N图4-6 反馈回路的理想结构示意图由图4-6可以得出闭环传递函数为)()(1)()()(s G s D e s G s D z p s p +=Φ-τ(4-27)由上式可见,由于反馈信号B 没有延迟,闭环特征方程中不含有纯滞后项,所以系统的响应将会大大地改善。

但是由于B 点信号是一个不可测(假想)的信号,所以这种方案是无法实现的。

为了实现上面的方案,假设构造了一个过程的模型,并按图4-7所示那样把控制量U(S)加到该模型上去。

在图 4-7中,如果模型是精确的,那么虽然假想的过程变量B 是得不到的,但能够得到模型中的B m 。

如果不存在建模误差和负荷扰动,那么B m 就会等于B , E m (s )= Y (s )−Y m (s )=0 ,可将B m 点信号作为反馈信号。

但当有建模误差和负荷扰动时,则E m (s )= Y (s )−Y m (s )≠0 ,会降低过程的控制品质。

为此,在图4-7中又用E m (s )实现第二条反馈回路,以弥补上述缺点。

以上便是Smith 预估器的控制策略。

扰动)(s N图4-7 Smith 预估器控制系统结构图实际工程上设计Smith 预估器时,将其并联在控制器D(s)上,对图4-7作方框图等效变换,得到图4-8所示的形式。

图4-8 Smith 预估器控制系统等效图 图中虚线部分是带纯滞后补偿控制的控制器,其传递函数为)1)(()(1)()()()(s p e s G s D s D s E s U s D ττ--+==经过纯滞后补偿控制后系统的闭环传递函数为)1)(()(1)()(1)1)(()(1)()( )()(1)()()()()(s p s p sp sp sp s p e s G s D e s G s D e s G s D e s G s D e s G s D e s G s D s R s Y s ττττττττ-------++-+=+==Φ)()(1)()((s) s G s D e s G s D p s p +=Φ-τ由式(4-29)可见,带纯滞后补偿的闭环系统与图4-6所示的理想结构是一致的,其特征方程为:0)()(1=+s G s D p 。

第8章 史密斯预估控制

第8章 史密斯预估控制

Y(s) R(s)

Gc (s)G0 (s)es 1 Gc (s)G0 (s)es
对干扰量的闭环传递函数为
Y(s) F(s)

1
Gf (s) Gc (s)G0 (s)es
在上两式的特征方程中,由于引入了e- s项,使闭环系统的品质大大 恶化。
若能将G0(s)与e- s分开并以G0(s)为过程控制通道的传递函数,以G0(s) 的输出信号作为反馈信号,则可大大改善控制品质。
图中:
G0(s)是被控过程除去纯滞后环节 e- s后的传递函数。
Y1(s)
Gm(s)是史密斯预估器的传递函数。 假如无此预估器,则由控制器
输出u(s)到被控量Y(s)之间的传递函数为:
图8-4史密斯预估控制系统框图
Y(s) u(s)

G0
(s)es
上式表明,受到调节作用之后的被控量要经过滞后时间之后才 能返回到控制器。
G
f
(s)

Tf
1 s
1
第8章史密斯预估控制
对上述改进型方案进行数字仿真,假设对象的传递函数和模 型的传递函数为
Go (s)e ps

2 4s
1
e
4
s
,
Gm
(
s)e

m
s

2.4 e2s 3s 1
即模型的纯滞后小于对象的纯滞后。
第8章史密斯预估控制
分别用原史密斯预估器和改进型方案进行控制,仿真结果如图 8-11所示,其中设定值在t=0时刻从0%上升至10%,而在t=50min 时刻外部扰动从0%上升至10%。 图中:实线为改进型预估控制系统的响应曲线;
58 0 20 40 60 80 100 120 140 160 180 200 Time, min

时滞系统的Smith预估补偿控制器研究

时滞系统的Smith预估补偿控制器研究

时滞系统的Smith预估补偿控制器研究作者:辛海燕李成祥来源:《山东工业技术》2016年第12期摘要:近年来,对Smith预估补偿控制器的研究成为一种趋势,其可以有效的对时滞系统进行延迟补偿,但其要求系统具有准确的控制模型,控制精度不高。

目前国内外很多研究者将Smith预估补偿控制器结构进行优化、结合PID进行参数整定以及将Smith预估补偿器与模糊控制、神经网络等先进的控制方法相融合,本文将从以上三个方面阐述目前对Smith预估补偿控制器的研究现状。

关键词:时滞;Smith;预估补偿DOI:10.16640/ki.37-1222/t.2016.12.1920 引言在工业控制领域或者网络控制系统当中,常常由于容积或传输过程而导致系统响应延时或系统不稳定,鲁棒性变差。

由于系统响应延时,被控制量不能及时反映系统所受的外界扰动,即使控制器接到被测量信号后,立即响应动作,也要延迟时间τ后,才能对被控制对象产生输出影响,从而使得系统产生明显的超调量,使得系统的稳定性能变坏,调整时间ts变长,系统响应速度变慢,对控制系统的设计和控制增加了很大的难度。

1958年,Smith提出了一种基于时延的补偿控制算法,即Smith预估补偿控制器,其最大的优点是将闭环特征方程中的时滞去掉了,因而将有时滞问题转化为无时滞问题,实现较好的控制性能,改善系统的鲁棒性。

1 Smith预估补偿器原理Smith预估补偿器原理结构如图(1)所示,r(t)为系统的输入量,c(t)为系统的输出量,D(s)为调节器的传递函数,为被控制对象的传递函数,为Smith预估补偿器传递函数。

经补偿控制后,系统的闭环传递函数为式(1):上式(1)显示表明,smith预估补偿控制克服了纯滞后部分对控制系统性能的影响,经补偿后在闭合回路外,从控制系统的角度来看,纯滞后部分不再影响系统的稳定性。

拉普拉斯变换的位移定理,表明仅将控制作用延迟了一个时间τ,系统的动态过程及其他性能指标与被控对象为GP(s)时完全相同,说明smith预估补偿控制器有效改善了因延时对控制系统性能的影响。

Smith预估控制原理

Smith预估控制原理
等效图
R(S)
这样,引入了Smith预估器后,系统 中等效对象的传递函数就不含纯滞 s 后环节 e 部分
_
D(S)
G(s)
e s
显然,经Smith预估补偿后,已消除了纯滞后部分对控制系统的影响,而受控制对象的纯 滞后部分在等效系统的闭环控制回路之外,不影响系统的稳定性。所以对任何纯滞后时 间,系统都是稳定的。
R(S) R( s)
E1(s) E2(s) Y(S) D(S)
— —
G( S )e s
Y(S) Y(S)
ቤተ መጻሕፍቲ ባይዱ
G(S )(1 e s )
令前向通道传递函数为
D( S )G( S )e s G (S ) 1 D( S )G( S )e s

G ( S ) D(S )G(S )e s 所以该系统的闭环传递函数 ( S ) 1 G ( S ) 1 D(S )G( S )e s
三、PID控制器
PID控制基本原理图
PID控制系统主要由PID控制器和被控对象所组成,而PID控制器则由比例(P)、积分(I)、微 分(D)三个环节组成,它根据给定值r(t)与实际输出值y(t)构成的偏差信号e(t),并将偏差 的比例、积分、微分通过线性组合构成控制量,对被控对象进行控制,故称PID控制。PID控 制器的数学模型可以用下式表示: 1 t de(t )
( S )
Y (S ) D( S )G( S ) s e R( S ) 1 D( S )G( S )e s
由于在分母中包含纯滞后环节,它降低了系统的稳定性,如果纯滞后 时间足够大的话,系统将是不稳定的,并且降低了系统的控制质量, 大大恶化了闭环系统的品质。 如果能将G(S)与 e s 分开,并以G(S)为过程控制通道的传递函 数,以G(S)的输出信号作为反馈信号,则可以大大改善控制品质。Z 这就需要引入了一个与对象并联的补偿器,该补偿器称为Smith预估器, 其系统图如下

计算机控制系统13Smith预估控制

计算机控制系统13Smith预估控制
则系统特征方程变为:
1 D(s)Wp (s) 0
特征方程中纯滞后环节消失, Smith预估控制有效地 解决了纯滞后系统的稳定性问题
(3) 数字Smith预估控制系统的设计
由计算机实现的Smith预估控制系统
PID
零阶保持器
r(k) e(k) e(k)
+ -
+ - y(t)
D(z) u(k) T
至产生振荡
——纯滞后时间
Tm——对象的主导时间常数
4.1 纯滞后问题的提出
纯滞后对系统稳定性影响的理论分析
r(t) +-
e D(s) u(t) Wp(s) yp(t) s
y(t)
有纯滞后环节的常规反馈控制系统
系统的闭环传递函数为:
W
B(s)
1
D(s)Wp (s)es D(s)Wp (s)es
ym1(t)
e ym(t) - + ms
Wm1(s)
Smith预估器
T
(3)计算PID的输入偏差 e(k) e(k) y(k)
(4)计算数字PID的输出 u(k) u(k 1) u(k)
u(k 1) K p e(k) e(k 1) Kie(k) Kd e(k) 2e(k 1) e(k 2)
(1)Smith预估器的设计思想
有纯滞后环节的常规反馈控制系统
r(t) +-
e D(s) u(t) Wp(s) yp(t) s
y(t)
反馈回路的期望配置
r(t) +-
e D(s) u(t) Wp(s) yp(t) s
y(t)
(1)Smith预估器的设计思想
初步的Smith预估控制方案
对象
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等Байду номын сангаас图
R(S)
这样,引入了Smith预估器后,系统 中等效对象的传递函数就不含纯滞 s 后环节 e 部分
_
D(S)
G(s)
e s
显然,经Smith预估补偿后,已消除了纯滞后部分对控制系统的影响,而受控制对象的纯 滞后部分在等效系统的闭环控制回路之外,不影响系统的稳定性。所以对任何纯滞后时 间,系统都是稳定的。
u (t ) K P e(t ) TI
e(t )d (t ) T
0
D
dt
式中u(t)-控制器的输出; e(t)-控制器的输入,它是给定值和被控对象输出的差,称为偏差 信号;
K P -控制器的比例系数;
TI
TD
-控制器的积分时间; -控制器的微分时间。
PID控制器各控制规律的作用如下: (1)比例控制(P):比例控制是一种最简单的控制方式。其控制器的输 出与输入误差信号成比例关系,能较快克服扰动,使系统稳定下来。但当仅 有比例控制时系统输出存在稳态误差 (2)积分控制(I):在积分控制中,控制器的输出与输入误差信号的积分 成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称 此控制系统是有差系统。为了消除稳态误差,在控制器中必须引入“积分项” 积分项对误差的累积取决于时间的积分,随着时间的增加,积分项会越大。 这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输 出增大使稳态误差进一步减小,直到等于零。但是过大的积分速度会降低系统 的稳定程度,出现发散的振荡过程。比例+积分(PI)控制器,可以使系统在进 入稳态后无稳态误差。 (3)微分控制(D):在微分控制中,控制器的输出与输入误差信号的微分 (即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能 会出现振荡甚至失稳。其原因是由于存在有较大惯性环节或有滞后环节,具有 抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的 作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
( S )
Y (S ) D( S )G( S ) s e R( S ) 1 D( S )G( S )e s
由于在分母中包含纯滞后环节,它降低了系统的稳定性,如果纯滞后 时间足够大的话,系统将是不稳定的,并且降低了系统的控制质量, 大大恶化了闭环系统的品质。 如果能将G(S)与 e s 分开,并以G(S)为过程控制通道的传递函 数,以G(S)的输出信号作为反馈信号,则可以大大改善控制品质。Z 这就需要引入了一个与对象并联的补偿器,该补偿器称为Smith预估器, 其系统图如下
e s
二、Smith预估控制原理
R(S)
R(s)
E(S) E(s)


D(S)
G( S )e s
Y(s) Y(S) Y(S)
具有纯延迟的单回路反馈控制系统 D(s)为控制器的传递函数。G(s)为对象不包含纯滞后部分的传递函数, 其中 e s 为对象纯滞后部分的传递函数。 传递函数为:
三、PID控制器
PID控制基本原理图
PID控制系统主要由PID控制器和被控对象所组成,而PID控制器则由比例(P)、积分(I)、微 分(D)三个环节组成,它根据给定值r(t)与实际输出值y(t)构成的偏差信号e(t),并将偏差 的比例、积分、微分通过线性组合构成控制量,对被控对象进行控制,故称PID控制。PID控 制器的数学模型可以用下式表示: 1 t de(t )
R(S) R( s)
E1(s) E2(s) Y(S) D(S)
— —
G( S )e s
Y(S) Y(S)
G(S )(1 e s )
令前向通道传递函数为
D( S )G( S )e s G (S ) 1 D( S )G( S )e s

G ( S ) D(S )G(S )e s 所以该系统的闭环传递函数 ( S ) 1 G ( S ) 1 D(S )G( S )e s
相关文档
最新文档