应用光学习题解答13年
应用光学习题解答
习题巩固
巩固练习
习题难度:从易到难,逐步提高解题能力 习题类型:覆盖多种题型,包括选择题、填空题、计算题等 习题内容:涉及多个知识点,帮助学生巩固所学内容 习题答案:提供详细的答案解析,帮助学生理解解题思路
练习答案
答案:光在平面镜上的反射遵守光的反射定律。
答案:在应用光学中,透镜的焦距是指平行于主轴的光线通过透镜后汇聚 的点到透镜中心的距离。
题目:应用光学实验操作
解析:通过实验操作,加深对应用光学理论的理解,掌握实验仪器的使用技巧,提高实验操作能力 和数据分析能力。
练习总结
习题巩固:通过 练习题来巩固所 学知识
解题技巧:掌握 解题技巧,提高 解题效率
错题分析:分析 错题原因,避免 重复犯错
举一反三:通过练 习题学会举一反三, 拓展知识面
学科交叉:与其 他学科的知识点 进行交叉融合, 拓宽学生的知识 面和思维方式。
创新实验:设计 一些创新性的实 验,让学生通过 动手实践来加深 对光学的理解。
拓展总结
解题技巧:掌握常用解题方 法,提高解题效率
习题难度:由易到难,逐步 提高解题能力
知识点拓展:通过习题巩固 和拓展所学知识点
举一反三:学会触类旁通, 能够解决类似问题
应用光学习题解析
01
02
习题拓展
习题巩固
03
04
习题解答
光的折射与反射
光的折射:光从一 种介质斜射入另一 种介质时,传播方 向发生改变的现象。
光的反射:光在两 种介质的交界面上 返回原介质的现象。
折射定律:入射角i 、折射角r和介质的 折射率n之间的关 系。
反射定律:入射角i 、反射角i'和介质 的折射率n之间的 关系。
应用光学习题解答13年
、填空题1、光学系统中物和像具有共轭关系的原因是。
2、发生全反射的条件是3、光学系统的三种放大率是、、,当物像空间的介质的折射率给定后,对于一对给定的共轭面,可提出种放大率的要求。
4、理想光学系统中,与像方焦点共轭的物点是。
5、物镜和目镜焦距分别为f物' 2mm 和 f目' 25mm的显微镜,光学筒长△ = 4mm,则该显微镜的视放大率为,物镜的垂轴放大率为,目镜的视放大率为。
6、某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是(填“实”或“虚” )像。
7、人眼的调节包含调节和调节。
8、复杂光学系统中设置场镜的目的是9、要使公共垂面内的光线方向改变60 度,则双平面镜夹角应为度。
10、近轴条件下,折射率为1.4 的厚为14mm的平行玻璃板,其等效空气层厚度为mm。
11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的12、有效地提高显微镜分辨率的途径是。
13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度。
一、填空题1、光路是可逆的2、光从光密媒质射向光疏媒质,且入射角大于临界角I0,其中,sinI0=n2/n13、垂轴放大率;角放大率;轴向放大率;一4、轴上无穷远的物点5、-20;-2;106、实7、视度瞳孔8、在不影响系统光学特性的的情况下改变成像光束的位置,使后面系统的通光口径不致过大。
9、3010、1011、保持系统的共轴性12、提高数值孔径和减小波长13、小二、简答题1、什么是共轴光学系统、光学系统物空间、像空间?答:光学系统以一条公共轴线通过系统各表面的曲率中心,该轴线称为光轴,这样的系统称为共轴光学系统。
物体所在的空间称为物空间,像所在的空间称为像空间。
2、如何确定光学系统的视场光阑?答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间。
这些像中,孔径对入瞳中心张角最小的一个像所对应的光阑即为光学系统的视场光阑。
应用光学课后习题答案
应用光学课后习题答案应用光学课后习题答案光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象。
应用光学是将光学原理应用于实际问题的学科,广泛应用于光学仪器、光学通信、光学材料等领域。
在学习应用光学的过程中,习题是巩固知识、提高应用能力的重要途径。
下面是一些应用光学课后习题的答案,希望对大家的学习有所帮助。
1. 一束入射光线从空气射向玻璃,入射角为30°,玻璃的折射率为1.5。
求折射光线的入射角和折射角。
解答:根据折射定律,入射角和折射角之间满足的关系是:n₁sinθ₁ =n₂sinθ₂,其中n₁和n₂分别为两种介质的折射率,θ₁和θ₂分别为入射角和折射角。
已知n₁ = 1(空气的折射率),θ₁ = 30°,n₂ = 1.5(玻璃的折射率),代入折射定律得:1sin30° = 1.5sinθ₂,解得θ₂ ≈ 19.47°。
所以,折射光线的入射角为30°,折射角为19.47°。
2. 一束光线从空气射入水中,入射角为60°,水的折射率为1.33。
求折射光线的入射角和折射角。
解答:同样利用折射定律,已知n₁ = 1(空气的折射率),θ₁ = 60°,n₂ = 1.33(水的折射率),代入折射定律得:1sin60° = 1.33sinθ₂,解得θ₂ ≈ 45.05°。
所以,折射光线的入射角为60°,折射角为45.05°。
3. 一束光线从玻璃射入空气,入射角为45°,玻璃的折射率为1.5。
求折射光线的入射角和折射角。
解答:同样利用折射定律,已知n₁ = 1.5(玻璃的折射率),θ₁ = 45°,n₂ = 1(空气的折射率),代入折射定律得:1.5sin45° = 1sinθ₂,解得θ₂ ≈ 30°。
所以,折射光线的入射角为45°,折射角为30°。
应用光学习题解答13年(精编文档).doc
【最新整理,下载后即可编辑】一、填空题1、光学系统中物和像具有共轭关系的原因是。
2、发生全反射的条件是。
3、光学系统的三种放大率是、、,当物像空间的介质的折射率给定后,对于一对给定的共轭面,可提出种放大率的要求。
4、理想光学系统中,与像方焦点共轭的物点是。
5、物镜和目镜焦距分别为mmf2'=物和mmf25'=目的显微镜,光学筒长△= 4mm,则该显微镜的视放大率为,物镜的垂轴放大率为,目镜的视放大率为。
6、某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是(填“实”或“虚”)像。
7、人眼的调节包含调节和调节。
8、复杂光学系统中设置场镜的目的是。
9、要使公共垂面内的光线方向改变60度,则双平面镜夹角应为度。
10、近轴条件下,折射率为1.4的厚为14mm的平行玻璃板,其等效空气层厚度为mm。
11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的是。
12、有效地提高显微镜分辨率的途径是 。
13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度 。
一、填空题1、光路是可逆的2、光从光密媒质射向光疏媒质,且入射角大于临界角I 0,其中,sinI 0=n 2/n 1。
3、垂轴放大率;角放大率;轴向放大率; 一4、轴上无穷远的物点5、-20;-2; 106、实7、视度 瞳孔8、在不影响系统光学特性的的情况下改变成像光束的位置,使后面系统的通光口径不致过大。
9、3010、1011、保持系统的共轴性12、提高数值孔径和减小波长13、小二、简答题1、什么是共轴光学系统、光学系统物空间、像空间?答:光学系统以一条公共轴线通过系统各表面的曲率中心,该轴线称为光轴,这样的系统称为共轴光学系统。
物体所在的空间称为物空间,像所在的空间称为像空间。
2、如何确定光学系统的视场光阑?答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间。
这些像中,孔径对入瞳中心张角最小的一个像所对应的光阑即为光学系统的视场光阑。
应用光学习题解答13年
、填空题1、光学系统中物和像具有共辘关系的原因是。
2、发生全反射的条件是3、光学系统的三种放大率是、、,当物像空间的介质的折射率给定后,对于一对给定的共辘面,可提出种放大率的要求。
4、理想光学系统中,与像方焦点共轨的物点是。
5、物镜和目镜焦距分别为f物'2mm和f目'25mm的显微镜,光学筒长厶=4mm,则该显微镜的视放大率为,物镜的垂轴放大率为,目镜的视放大率为。
6、某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是(填“实”或“虚”)像。
7、人眼的调节包含调节和调节。
8、复杂光学系统中设置场镜的目的是9、要使公共垂面内的光线方向改变60度,则双平面镜夹角应为度。
10、近轴条件下,折射率为1.4的厚为14mm的平行玻璃板,其等效空气层厚度为mm。
11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的12、有效地提高显微镜分辨率的途径是13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度。
一、填空题1、光路是可逆的2、光从光密媒质射向光疏媒质,且入射角大于临界角Io,其中,sinlo=n2/ni3、垂轴放大率;角放大率;轴向放大率;一4、轴上无穷远的物点5、一20;— 2; 106、实7、视度瞳孔8、在不影响系统光学特性的的情况下改变成像光束的位置,使后面系统的通光口径不致过大。
9、3010、1011、保持系统的共轴性12、提高数值孔径和减小波长13、小二、简答题1、什么是共轴光学系统、光学系统物空间、像空间?答:光学系统以一条公共轴线通过系统各表面的曲率中心,该轴线称为光轴,这样的系统称为共轴光学系统。
物体所在的空间称为物空间,像所在的空间称为像空间。
2、如何确定光学系统的视场光阑?答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间。
这些像中,孔径对入瞳中心张角最小的一个像所对应的光阑即为光学系统的视场光阑。
3、共轴光学系统的像差和色差主要有哪些?答:像差主要有:球差、慧差(子午慧差、弧矢慧差)、像散、场曲、畸变;色差主要有:轴向色差(位置色差)、倍率色差。
物理光用与应用光学习题解答(整理后全)
1-1.计算由 E = ( -2i + 2 3 j ) exp éi ( 3 x + y + 6 ´ 108 t ) ù 表示的平面波电矢量的振动方向、
ê ë
ú û
传播方向、相位速度、振幅、频率、波长。 解:由题意: E x = -2e
i ( 3 x + y + 6 ´ 108 t )
解: (1)∵ k = w / v ∵ k = 2p / l ∴ vg = v - l ∴ vg =
d (kv) dv =v+k dk dk
∴ dk = -( 2p / l2 ) dl
dv b 2l =v-l dl c 2 + b 2 l2
2 2
= c +b l 2
b 2 l2 c 2 + b 2 l2
1-4 题用图 - 2( Ex '2 sin a cos a - E y '2 sin a cos a + E x ' E y ' cos 2 a - E x ' E y ' sin 2 a ) E x 0 E y 0 cos j = E 2 E2 sin 2 j x0 y0 ( E x '2 cos 2 a + E y '2 sin 2 a - E x ' E y ' sin 2a ) E 2 + ( E x '2 sin 2 a + E y '2 cos 2 a + E x ' E y ' sin 2a ) E 2 y0 x0
i ( 3 x + y + 6 ´ 108 t )
v v ky = 1
应用光学习题解答13年
1、光学系统中物和像具有共轭关系的原因是 。
2、发生全反射的条件是 。
3、 光学系统的三种放大率是 、 、 ,当物像空间的介质的折射率给定后,对于一对给定的共轭面,可提出 种放大率的要求。
4、 理想光学系统中,与像方焦点共轭的物点是 。
5、物镜和目镜焦距分别为mm f 2'=物和mm f 25'=目的显微镜,光学筒长△= 4mm ,则该显微镜的视放大率为 ,物镜的垂轴放大率为 ,目镜的视放大率为 。
6、 某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是 (填“实”或“虚”)像。
7、人眼的调节包含 调节和 调节。
8、复杂光学系统中设置场镜的目的是 。
9、要使公共垂面内的光线方向改变60度,则双平面镜夹角应为 度。
10、近轴条件下,折射率为的厚为14mm 的平行玻璃板,其等效空气层厚度为 mm 。
11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的是 。
12、有效地提高显微镜分辨率的途径是 。
13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度 。
1、光路是可逆的2、光从光密媒质射向光疏媒质,且入射角大于临界角I0,其中,sinI=n2/n1。
3、垂轴放大率;角放大率;轴向放大率;一4、轴上无穷远的物点5、-20;-2; 106、实7、视度瞳孔8、在不影响系统光学特性的的情况下改变成像光束的位置,使后面系统的通光口径不致过大。
9、3010、1011、保持系统的共轴性12、提高数值孔径和减小波长13、小二、简答题1、什么是共轴光学系统、光学系统物空间、像空间答:光学系统以一条公共轴线通过系统各表面的曲率中心,该轴线称为光轴,这样的系统称为共轴光学系统。
物体所在的空间称为物空间,像所在的空间称为像空间。
2、如何确定光学系统的视场光阑答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间。
这些像中,孔径对入瞳中心张角最小的一个像所对应的光阑即为光学系统的视场光阑。
应用光学习题(含答案).docx
应用光学习题本习题供学习、复习使用。
精练这些习题及作业和课件上的例题有助于掌握、理解应用光学课程的基本知识、理论和规律。
应用光学的基本问题包括在本习题内,但不仅限于本习题。
本习题仅供课程学习时参考。
习题中一些问题提供了解答,限于时间,其它则略去。
一、筒答题1、几何光学的基本定律及其内容是什么?答:几何光学的基本定律是自钱传播定律、独立传播定W:、反射定律和折射定律。
直线传播定律:光线在均匀透明介质中按直线传播。
独立传播定律:不同光源的光在通过介质某点时互不影响。
反射定律:反射光线位于入射面内;反射角等于入射角:折射定律:折射光线位于入射面内:入射角和折射角正弦之比,对两种定的介j员来说,是=个和入射角无关的常数n isin/,-msin/。
22、理想光学系统的基点和基面有哪些?理想光学系统的基点包指物方焦点、{象方焦点;物方主点、像方主点:物方节点、像方节点。
基面包括:物方焦平丽、像方然平面:物方主平丽、像方主平面;物方节平面、像方节平面。
3、什么是光学系统的孔役光阑和视场光阙?答:孔径光阑是限制轴上物点成像光束立体角的光阔。
晴荡艾丽王辅前有字亩7茧事宝肯车夜夜古国的光册J。
4、常见非正常跟有哪两种?如何校正常见非正常1'常见正常目艮包括近视酬远视盹近视眼将工二(远附近点)矫正到无限远,远视眼,将一丘丛(远点就近点)矫正到明视距离。
3、光'于系统极限分辨角为多大?采取什么途径可以提岗极限分辨角?答:衍射决定的极限分辨角为0=3®。
可见其与波长和孔役有关。
订蔬小波长D和增大孔径可以提高光学系统的分辨率。
I什么是共和1)也学系统、元学系统物空间、像空间?答:光学系统以一条公共制线通过系统各表面的幽率中心,该轴线称为光轴,这样的系统称为共轴光学系统。
物体所在的空间称为物空间,像所在的空间称为像空间。
、如何确定光学系统的视场Jt阙?答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间;这些像中,孔径对入暗中心张角最小的一个像所对应的光阑即为光学系统的视场光阙。
应用光学习题解答13年
远视眼。近视眼是将其近点校正到明视距离,可以用负透镜进行校正;远视眼 是将其远点校正到无限远,可以用正透镜进行校正。 12、显微镜的分辨率跟哪些参数有关?采取什么途径可以提高显微镜的分辨 率? 答:显微镜的分辨率为 0.61 。可见其分辨率与波长和物镜数值孔径有关。
题答案不唯一
(3 分)
三、计算题
1、光束投射到一水槽中,光束的一部分在顶面反射而另一部分在底面反射, 如图所示。试证明两束(P1、P2)返回到入射介质的光线是平行的。
证明定律可得:
n sin i1 n'sin r1
(2 分)
n i1 i1’ P1
i3 P2
d f1' f2 d f1' f2 ' 50mm 50mm 100 mm 100 mm
求系统焦点位置:
xF
F1F
f1 f1'
f1' f1' 50mm 50mm 25mm
100mm
xF '
F2 ' F '
f2 f2'
f2'
f2'
100mm 100mm
100mm
根据高斯公式 1 '
1
1 f'
得
'1 183 .3mm, '2 225mm
像的长短
' 2
' 1
41.7mm
(2)
200mm,
y
40mm
根据高斯公式
1 '
1
1 f'
得
' 200mm
应用光学习题解答
按题目要求,该物镜为最简单结构的薄透镜系统,则设系统由两片透镜组成,该两透镜皆为薄透镜,则此两片透镜的距离为:
同时,为求解方便,设无限远处轴上所发出的与光轴平行的光线入射到系统的第一面上时,入射高度为:
根据长焦距物镜的特性,有:
又:
该系统结构已确定:
11.一薄透镜组焦距为100mm,和另一焦距为50mm的薄透镜组合,其组合焦距仍为100mm,间两薄透镜的相对位置,并求基点位置,以图解法校核之。
解:(1)对于第一面,运用单个折射球面的物像公式,有:
对于第二面,由题目可见,两个球面之间的距离正好为300,所以第一面所成的像就落在第二面上,对第二面的物距为0,像距也为0,所以高斯像位于第二面的顶点上。
(2)此时,十字丝是实物,所以有:
所以,十字丝所成的像在球面前方无限远处。
(3)当入射高度为10mm时,即
解:AB经透镜所成的像为A'B',A'B'经平面镜后成像为A''B'',由于A''B''位于平面镜后150mm处,则它的物A'B'必位于平面镜前150mm处,同样为倒立,大小与A''B''相同,则对于透镜来说,有:
设该透镜为薄透镜,则有:
利用高斯公式:
该透镜距离平面镜为300mm,其焦距为100mm。
根据转面公式,
,此时是实像。
(2)若在凸面镀反射膜,则该球成为一个球面反射镜。应用反射成像公式,则有:
,此为虚像。
(3)若在凹面镀膜,则光线先经第一面折射,再经第二面反射,运用在(1)中得到的结果,对于第二面有:
,此为实像。
(4)反射光经凹面镜反射后,回到第一表面,又会折射,此时光线的实际方向为从右至左,则此时折射面的各项参数为:
应用光学习题解答
第二章P47 1(题目见书)解:(1)运用大L 公式解该问题:对于第一条光线,11300,2L U =-=-时:11111130083.220sin sin sin(2)0.1607,9.247583.220L r I U I r ---==-== 111111sin sin 0.16070.0992, 5.69361.6199n I I I n ''==⨯==' 1111129.2475 5.6936 1.5539,sin 0.0271U U I I U '''=+-=-+-== 11111sin 0.099283.22083.220387.8481sin 0.0271r I L r mm U ''=+=+⨯=' 运用转面公式:21121387.84812385.8481, 1.5539L L d U U ''=-=-===222222385.848126.271sin sin sin1.55390.3709,21.772626.271L r I U I r --==== 22222 1.6199sin sin 0.37090.3927,23.12061.5302n I I I n ''==⨯==' 222221.553921.772623.12060.2059,sin 0.0036U U I I U '''=+-=+-== 22222sin 0.392726.27126.2712892sin 0.0036r I L r mm U ''=+=+⨯=' 32232289262886,0.2059L L d U U ''=-=-=== 3333332886(87.123)sin sin 0.00360.1229,7.056787.123L r I U I r ---==⨯=-=-- 33333 1.5302sin sin (0.1229)0.1881,10.83971n I I I n ''==⨯-=-=-' 333330.2059(7.0567)(10.8397) 3.9889,sin 0.0696U U I I U '''=+-=+---== 33333sin 0.188187.123(87.123)148.3344sin 0.0696r I L r mm U '-'=+=-+-⨯='对于第二条光线,光线与光轴平行入射,所以有:111110sin 0.1202, 6.901583.22h I I r ==== 111111sin sin 0.12020.0742, 4.25541.6199n I I I n ''==⨯==' 111110 6.9015 4.2554 2.6461,sin 0.0462U U I I U '''=+-=+-== 11111sin 0.074283.22083.220216.9726sin 0.0462r I L r mm U ''=+=+⨯=' 21121216.97262214.9726, 2.6461L L d U U ''=-=-=== 222222214.972626.271sin sin sin 2.64610.3316,19.366626.271L r I U I r --==⨯== 22222 1.6199sin sin 0.33160.3510,20.55081.5302n I I I n ''==⨯==' 222222.646119.366620.5508 1.4619,sin 0.0255U U I I U '''=+-=+-== 22222sin 0.351026.27126.271387.9866sin 0.0255r I L r mm U ''=+=+⨯=' 32232387.98666381.9866, 1.4619L L d U U ''=-=-=== 333333381.9866(87.123)sin sin 0.02550.1373,7.891887.123L r I U I r ---==⨯=-=-- 33333 1.5302sin sin (0.1373)0.2101,12.12831n I I I n ''==⨯-=-=-' 333331.4596(7.8918)(12.1283) 5.6961,sin 0.0993U U I I U '''=+-=+---== 33333sin 0.210187.123(87.123)97.2128sin 0.0993r I L r mm U '-'=+=-+-⨯=' (2)现在利用近轴光路的计算公式,再将上面的两条光线计算一下,这样可以进行比较。
应用光学习题解答
第二章 P47 1(题目见书)解:(1)运用大L 公式解该问题:对于第一条光线,11300,2L U =-=-o 时:11111130083.220sin sin sin(2)0.1607,9.247583.220L r I U I r ---==-==o o 111111sin sin 0.16070.0992, 5.69361.6199n I I I n ''==⨯=='o 1111129.2475 5.6936 1.5539,sin 0.0271U U I I U '''=+-=-+-==o o o o11111sin 0.099283.22083.220387.8481sin 0.0271r I L r mm U ''=+=+⨯=' 运用转面公式:21121387.84812385.8481, 1.5539L L d U U ''=-=-===o222222385.848126.271sin sin sin1.55390.3709,21.772626.271L r I U I r --====o o 22222 1.6199sin sin 0.37090.3927,23.12061.5302n I I I n ''==⨯=='o 222221.553921.772623.12060.2059,sin 0.0036U U I I U '''=+-=+-==o o o o 22222sin 0.392726.27126.2712892sin 0.0036r I L r mm U ''=+=+⨯=' 32232289262886,0.2059L L d U U ''=-=-===o 3333332886(87.123)sin sin 0.00360.1229,7.056787.123L r I U I r ---==⨯=-=--o 33333 1.5302sin sin (0.1229)0.1881,10.83971n I I I n ''==⨯-=-=-'o 333330.2059(7.0567)(10.8397) 3.9889,sin 0.0696U U I I U '''=+-=+---==o o o o 33333sin 0.188187.123(87.123)148.3344sin 0.0696r I L r mm U '-'=+=-+-⨯='对于第二条光线,光线与光轴平行入射,所以有:111110sin 0.1202, 6.901583.22h I I r ====o 111111sin sin 0.12020.0742, 4.25541.6199n I I I n ''==⨯=='o 111110 6.9015 4.2554 2.6461,sin 0.0462U U I I U '''=+-=+-==o o o11111sin 0.074283.22083.220216.9726sin 0.0462r I L r mm U ''=+=+⨯=' 21121216.97262214.9726, 2.6461L L d U U ''=-=-===o222222214.972626.271sin sin sin 2.64610.3316,19.366626.271L r I U I r --==⨯==o o 22222 1.6199sin sin 0.33160.3510,20.55081.5302n I I I n ''==⨯=='o 222222.646119.366620.5508 1.4619,sin 0.0255U U I I U '''=+-=+-==o o o o 22222sin 0.351026.27126.271387.9866sin 0.0255r I L r mm U ''=+=+⨯=' 32232387.98666381.9866, 1.4619L L d U U ''=-=-===o 333333381.9866(87.123)sin sin 0.02550.1373,7.891887.123L r I U I r ---==⨯=-=--o 33333 1.5302sin sin (0.1373)0.2101,12.12831n I I I n ''==⨯-=-=-'o 333331.4596(7.8918)(12.1283) 5.6961,sin 0.0993U U I I U '''=+-=+---==o o o o 33333sin 0.210187.123(87.123)97.2128sin 0.0993r I L r mm U '-'=+=-+-⨯=' (2)现在利用近轴光路的计算公式,再将上面的两条光线计算一下,这样可以进行比较。
应用光学习题集答案
习 题第一章1、游泳者在水中向上仰望,能否感觉整个水面都是明亮的?(不能,只能感觉到一个明亮的圆,圆的大小与游泳都所在的水深有关,设水深H ,则明亮圆半径HtgIc R =)2、有时看到窗户玻璃上映射的太阳光特别耀眼,这是否是由于窗玻璃表面发生了全反射现象?答:是。
3、一束在空气中波长为nm 3.589=λ的钠黄光从空气射入水中时,它的波长将变为多少?在水中观察这束光时其颜色会改变吗?答:'λλ=n ,nm 442'=λ不变 4、一高度为m 7.1的人立于路灯边(设灯为点光源)m 5.1远处,路灯高度为m 5,求人的影子长度。
答:设影子长x ,有:57.15.1=+x x ∴x=0.773m 5、为什么金钢石比磨成相同形状的玻璃仿制品显得更加光彩夺目?答:由于金钢石折射率大,所以其临界角小,入射到其中的光线大部分都能产生全反射。
6、为什么日出或日落时太阳看起来稍微有些发扁?(300例P1)答:日出或日落时,太阳位于地平线附近,来自太阳顶部、中部和底部的光线射向地球大气层的入射角依次增大(如图)。
同时,大气层密度不均匀,折射率水接近地面而逐渐增大。
当光线穿过大气层射向地面时,由于n 逐渐增大,使其折射角逐渐减小,光线的传播路径就发生了弯曲。
我们沿着光线去看,看到的发光点位置会比其实际位置高。
另一方面,折射光线的弯曲程度还与入射角有关。
入射角越大的光线,弯曲越厉害,视觉位置就被抬得越高,因为从太阳上部到下部发出的光线,入射角依次增大,下部的视觉位置就依次比上部抬高的更多。
第二章1、如图2-65所示,请采用作图法求解物体AB的像,设物像位于同一种介质空间。
图2-652、如图2-66所示,'MM 为一薄透镜的光轴,B 为物点,'B 为像点,试采用作图法求解薄透镜的主点及焦点的位置。
BM B 'M ′ B M M ′B ' ●● ● ●(a) (b)图2-663、如图2-67所示,已知物、像的大小及位置,试利用图解法求解出焦点的位置,设物、像位于同一种介质空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题1、光学系统中物和像具有共轭关系的原因是 。
2、发生全反射的条件是 。
3、 光学系统的三种放大率是 、 、 ,当物像空间的介质的折射率给定后,对于一对给定的共轭面,可提出 种放大率的要求。
4、 理想光学系统中,与像方焦点共轭的物点是 。
5、物镜和目镜焦距分别为mm f 2'=物和mm f 25'=目的显微镜,光学筒长△= 4mm ,则该显微镜的视放大率为 ,物镜的垂轴放大率为 ,目镜的视放大率为 。
6、 某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是 (填“实”或“虚”)像。
7、人眼的调节包含 调节和 调节。
8、复杂光学系统中设置场镜的目的是 。
9、要使公共垂面内的光线方向改变60度,则双平面镜夹角应为 度。
10、近轴条件下,折射率为1.4的厚为14mm 的平行玻璃板,其等效空气层厚度为 mm 。
11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的是。
12、有效地提高显微镜分辨率的途径是。
13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度。
一、填空题1、光路是可逆的2、光从光密媒质射向光疏媒质,且入射角大于临界角I0,其中,sinI0=n2/n1。
3、垂轴放大率;角放大率;轴向放大率;一4、轴上无穷远的物点5、-20;-2;106、实7、视度瞳孔8、在不影响系统光学特性的的情况下改变成像光束的位置,使后面系统的通光口径不致过大。
9、3010、1011、保持系统的共轴性12、提高数值孔径和减小波长13、小二、简答题1、什么是共轴光学系统、光学系统物空间、像空间?答:光学系统以一条公共轴线通过系统各表面的曲率中心,该轴线称为光轴,这样的系统称为共轴光学系统。
物体所在的空间称为物空间,像所在的空间称为像空间。
2、如何确定光学系统的视场光阑?答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间。
这些像中,孔径对入瞳中心张角最小的一个像所对应的光阑即为光学系统的视场光阑。
3、共轴光学系统的像差和色差主要有哪些?答:像差主要有:球差、慧差(子午慧差、弧矢慧差)、像散、场曲、畸变;色差主要有:轴向色差(位置色差)、倍率色差。
4、对目视光学仪器的共同要求是什么?答:视放大率||Γ应大于1;通过仪器后出射光束应为平行光束,即成像在无限远,使人眼相当观察无限远物体,处于自然放松无调节状态。
5、什么叫理想光学系统?答:在物像空间均为均匀透明介质的条件下,物像空间符合“点对应点、直线对应直线、平面对应平面”的光学系统称为理想光学系统。
6、什么是理想光学系统的分辨率?写出望远镜的分辨率表达式。
答:假定光学系统成像完全符合理想,没有像差时,光学系统能分辨的最小间隔。
α=。
望远镜的分辨率表达式:D/.1λ227、几何光学的基本定律及其内容是什么?答:几何光学的基本定律是直线传播定律、独立传播定律、反射定律和折射定律。
直线传播定律:光线在均匀透明介质中按直线传播。
独立传播定律:不同光源的光在通过介质某点时互不影响。
反射定律:反射光线位于入射面内;反射角等于入射角;折射定律:折射光线位于入射面内;入射角和折射角正弦之比,对两种一定的介质来说,是一个和入射角无关的常数2111sin sin I n I n =。
8、 理想光学系统的基点和基面有哪些?其特性如何?答:理想光学系统的基点包括物方焦点、像方焦点;物方主点、像方主点;物方节点、像方节点。
基面包括:物方焦平面、像方焦平面;物方主平面、像方主平面;物方节平面、像方节平面。
入射光线(或其延长线)过焦点时,其共轭光线平行与光轴;入射光线过节点时,其共轭光线与之平行;焦平面上任一点发出的同心光束的共轭光束为平行光束;物方主平面与像方主平面共轭,且垂轴放大率为1。
9、用近轴光学公式计算的像具有什么实际意义?答:作为衡量实际光学系统成像质量的标准;用它近似表示实际光学系统所成像的位置和大小。
10、什么是光学系统的孔径光阑和视场光阑?答:孔径光阑是限制轴上物点成像光束立体角的光阑。
视场光阑是限制物平面上或物空间中成像范围的光阑。
11、如何计算眼睛的视度调节范围?如何校正常见非正常眼? 答:眼睛的视度调节范围为:pr P R A 11-=-=。
常见非正常眼包括近视眼和远视眼。
近视眼是将其近点校正到明视距离,可以用负透镜进行校正;远视眼是将其远点校正到无限远,可以用正透镜进行校正。
12、显微镜的分辨率跟哪些参数有关?采取什么途径可以提高显微镜的分辨率?答:显微镜的分辨率为NAλσ61.0=。
可见其分辨率与波长和物镜数值孔径有关。
减小波长和提高数值孔径可以提高显微镜的分辨率。
由u n NA sin =可知,在物和物镜之间浸以液体可增大物方折射率n ,即可提高显微镜的分辨率。
13、如何区分实物空间、虚物空间以及实像空间和虚像空间?是否可按照空间位置来划分物空间和像空间?解:实物空间:光学系统第一个曲面前的空间。
虚物空间:光学系统第一个曲面后的空间。
实像空间:光学系统最后一个曲面后的空间。
虚像空间:光学系统最后一个曲面前的空间。
物空间和像空间在空间都是可以无限扩展的,不能按照空间进行划分。
2、光学系统中可能有哪些光阑?解:限制轴上物点成像光束的口径或立体角大小的孔径光阑;限制物平面上或物空间中成像的范围即限制视场大小的视场光阑;用于产生渐晕的渐晕光阑;用于限制杂散光的消杂光阑。
3、光学系统有哪些单色几何像差和色像差?解:五种单色几何像差是:球差、彗差、像散、场曲、畸变。
两种色像差是:位置色差(或轴向色差)、放大率色差(或垂轴色差)。
二、作图题1、求实物AB的像2、求虚物AB的像3、求实物AB的像4、求虚物AB的像5、求棱镜反射后像的坐标系方向6、画出虚线框内应放置何种棱镜x yzz ’7、画出虚线框内应放置何种棱镜z ’8、求棱镜反射后像的坐标系方向9、假设光线方向从左至右,画出物体AB 经光组后的像。
xyz屋脊棱镜10、假设光线方向遵循从左至右,如图,已知垂直于光轴的物AB经过一薄透镜后成的像为A′B′,试作图确定透镜及其物方和像方焦点的位置,并说明该薄透镜是正还是负透镜。
11、根据下列平面镜棱镜系统中的成像方向要求,画出虚线框内所需的反射棱镜类型。
题答案不唯一 (3分) 三、计算题1、光束投射到一水槽中,光束的一部分在顶面反射而另一部分在底面反射,如图所示。
试证明两束(P 1、P 2)返回到入射介质的光线是平行的。
证明:由图可知12'32r i i r ===(2分)由折射定律可得:11sin 'sin r n i n = (2分)33sin 'sin r n i n =(2分) 所以 31i i =又由反射定律可得:'11i i =故 '13i i =所以P 1平行于P 2。
9、试证明单折射球面的物像方焦距分别满足下列关系:P 1P 2i 1 i 1’ r 1 i 2 i 2’r 3i 3n n ’n n r n f --=',nn rn f -=''',其中,n 、n ′和r 分别是球面的物方、像方折射率和球面半径。
解:将l = - ∞代入下列物像关系式得到的像距就是像方焦距,即l′= f ′:rn n l n l n -=-'''即:rn n n f n -=∞--'''求得:nn rn f -=''' 同理,将l′ = ∞代入物像关系式得到的物距就是物方焦距,即l= f′: 即:rn n f n n -=-∞''求得:nn rn f --=' 3、光源位于mm f 30'=的透镜前40mm 处,问屏放在何处能找到光源像?垂轴放大率等于多少?若光源及屏位置保持不变,问透镜移到什么位置时,能在屏上重新获得光源像,此时放大率等于多少? 解:mm f mm 30,40'=-=λ, 由高斯公式''111f =-λλ得mm 120'=λ即光源像在透镜后120mm 处。
又 3)40/(120'-=-==λλβ由题列出以下方程 16040120'=+=-λλ''111f=-λλ=1/30 解得mmmm mm mm 40,120120,40'22'11=-==-=λλλλ3/1)120/(40'-=-==λλβ4、由两个焦距相等的薄透镜组成一个光学系统,两者之间的间距也等于透镜焦距,即d f f =='2'1。
用此系统对前方60mm 处的物体成像,已知垂轴放大率为-5,求薄透镜的焦距及物像平面之间的共轭距。
解:物体先经过第一个透镜成像dl 16011'1=-- 解得 ddl -=6060'1dd d d l l --=--==606060601'11β第一透镜的像再经过第二透镜成像由过渡公式可得:dd d d d d l l -=--=-=6060602'12由高斯公式有:d ddl 160112'2=-- 解得:602'2d l =60602'22dl l -==β 因为560606021-=-⋅--==dd d βββ解得:mm d 300=透镜焦距mm d f f 300'2'1===mm d l 150060300300602'2=⨯==则物像共轭距为:mm l d l L 1860150030060'21=++=++=5、一个正透镜焦距为100mm ,一根棒长40mm ,平放在透镜的光轴上,棒中点距离透镜200mm 。
求: (1)像的位置和长短;(2)棒绕中心转090时,像的位置和大小。
解:(1)棒两端点到透镜的距离分别为 mm mm 180,22021-=-=λλ根据高斯公式''111f =-λλ得 mm mm 225,3.183'2'1==λλ像的长短mm 7.41'1'2=-=∆λλλ(2)mm y mm 40,200=-=λ根据高斯公式''111f =-λλ得 mmy y y y mm401200200200''''-==-=-====ββλλλ6、一组合系统如图所示,薄正透镜的焦距为20mm ,薄负透镜的焦距为-20mm ,两单透镜之间的间隔为10mm ,当一物体位于正透镜前方100mm 处,求组合系统的垂轴放大率和像的位置。
解:对单正透镜来说mm f mm l 20,100'11=-=,因此有所以mm l 25'1=对负透镜来说,mm f mm d l l 20,151025'2'12-==-=-=,有20110011'1=--l2011511'1-=-l 所以mm l 60'2=,即最后像位置在负透镜后60mm 处。