应用光学习题[1]

合集下载

应用光学习题

应用光学习题

应用光学习题应用光学习题.第一章 : 几何光学基本原理 ( 理论学时: 4 学时 )? 讨论题:几何光学和物理光学有什么区别?它们研究什么内容?? 思考题:汽车驾驶室两侧和马路转弯处安装的反光镜为什么要做成凸面,而不做成平面? ? 一束光由玻璃( n=1.5 )进入水( n=1.33 ),若以45 ° 角入射,试求折射角。

? 证明光线通过二表面平行的玻璃板时,出射光线与入射光线永远平行。

? 为了从坦克内部观察外界目标,需要在坦克壁上开一个孔。

假定坦克壁厚为200mm ,孔宽为 120mm ,在孔内部安装一块折射率为 n=1.5163 的玻璃,厚度与装甲厚度相同,问在允许观察者眼睛左右移动的条件下,能看到外界多大的角度范围?? 一个等边三角棱镜,若入射光线和出射光线对棱镜对称,出射光线对入射光线的偏转角为40 °,求该棱镜材料的折射率。

? 构成透镜的两表面的球心相互重合的透镜称为同心透镜,同心透镜对光束起发散作用还是会聚作用? ? 共轴理想光学系统具有哪些成像性质?第二章 : 共轴球面系统的物像关系 ( 理论学时: 10 学时,实验学时: 2 学时 )? 讨论题:对于一个共轴理想光学系统,如果物平面倾斜于光轴,问其像的几何形状是否与物相似?为什么?? 思考题:符合规则有什么用处?为什么应用光学要定义符合规则?? 有一放映机,使用一个凹面反光镜进行聚光照明,光源经过反光镜以后成像在投影物平面上。

光源高为 10mm ,投影物高为 40mm ,要求光源像高等于物高,反光镜离投影物平面距离为 600mm ,求该反光镜的曲率半径等于多少?? 试用作图法求位于凹的反光镜前的物体所成的像。

物体分别位于球心之外,球心和焦点之间,焦点和球面顶点之间三个不同的位置。

? 试用作图法对位于空气中的正透镜()分别对下列物距:求像平面位置。

? 试用作图法对位于空气中的负透镜()分别对下列物距:求像平面位置。

应用光学习题答案

应用光学习题答案
• 解: (1)x= -∝ ,xx′=ff′ 得到:x′=0 (2)x=-10,x′=0.5625 (3)x=-8m,x′=0.703 (4)x=-6m,x′=0.937 (5)x=-4m,x′=1.4 (6)x=-2m,x′=2.81
7、 设一物体对正透镜成像,其垂直放大率等于-1, 试求物平面与像平面的位置,并用作图法验证。
在轴上的孔径角L1大于L2,所以L2为系统的孔径光阑
入瞳即为L2对L1成像,在L1前方2.18cm处,口径为2y=2.9cm
出瞳为L2,视场光阑为L1
3.照相物镜,f ' 50mm, D / f ' 1/ 5 2m远处目标照相, 假定底片上像点弥散斑直径小于0.05mm仍可认为成像清 晰,问物空间能清晰成像的最远、最近距离各位多少?
解:
y
f
' 1
tg
y' f2'tg
y'
f
' 2
y
f
' 1
15. 电影放映机镜头的焦距f′=120mm,影片画面的 尺寸为22×16mm2,银幕大小为6.6 ×4.8m2,问电 影机应放在离银幕多远的地方?如果把放映机移到 离银幕50m远处,要改用多大焦距的镜头?
解:
6600
300
22
l' 36.12m
• 解:
8、已知显微镜物平面和像平面之间距离180mm, 垂直放大率-5,求该物镜组的焦距和离开物平面的 距离。
• 解:
9. 已知航空照相机物镜的焦距f′=500mm,飞机 飞行高度为6000m,相机的幅面为300×300mm2, 问每幅照片拍摄的地面面积。
解:
f f f ' 8.3 105

应用光学习题(第一章一些例题)

应用光学习题(第一章一些例题)


l 751.88mm
然后再被照相物镜成像,其x值为
x 1000 751 .88 1751 .88mm
f /x
75 0.0428 1751 .88
x' f ' (0.0428 ) 75 3.21m m
即照相底片在照相物镜像方焦平面外3.21mm处,
垂轴放大率为-0.0428。
编号
A1_001
有一束白光以300的入射角由空气射向ZF6玻璃内,已知ZF6玻璃的折射
率为 n 1.7550 n 1.7550 C D 求 折射后各色光的折射角为多少?
nF 1.7550
答: 根据折射定律
n sin 300 nD sin I D
sin 300 1 sin I D nD 2 1.7550
由图可知,当
f1 所以 l1 那么像点的位置应该是F‘的位置,l1
由单折射球面的焦距公式
nr f n n
f1 l1
nr 1.5 10 30 mm n n 1.5 1
即 经过第一个面之后,成像恰好在第二个面上。 如果把透镜翻转180度,那么
编号
A1_004
离水面1m深处有一条鱼,现用f‘=75mm的照相物镜拍摄该 鱼,照相物镜的物方焦点离水面1m。试求(1)垂轴放大率为 多少?(2)照相底片应离照相物镜像方焦点F’多远?
答: 根据题意,鱼经过水面成像,由
n n n n l l r
1 1.33 0 l 1000
l1 30mm
r
r1 10mm n n n n 1 1.5 1.5 0 l r l 10 30
l'

应用光学习题集答案

应用光学习题集答案

应⽤光学习题集答案习题第⼀章1、游泳者在⽔中向上仰望,能否感觉整个⽔⾯都是明亮的?(不能,只能感觉到⼀个明亮的圆,圆的⼤⼩与游泳都所在的⽔深有关,设⽔深H ,则明亮圆半径HtgIc R =)2、有时看到窗户玻璃上映射的太阳光特别耀眼,这是否是由于窗玻璃表⾯发⽣了全反射现象?答:是。

3、⼀束在空⽓中波长为nm 3.589=λ的钠黄光从空⽓射⼊⽔中时,它的波长将变为多少?在⽔中观察这束光时其颜⾊会改变吗?答:'λλ=n ,nm 442'=λ不变 4、⼀⾼度为m 7.1的⼈⽴于路灯边(设灯为点光源)m 5.1远处,路灯⾼度为m 5,求⼈的影⼦长度。

答:设影⼦长x ,有:57.15.1=+x x ∴x=0.773m 5、为什么⾦钢⽯⽐磨成相同形状的玻璃仿制品显得更加光彩夺⽬?答:由于⾦钢⽯折射率⼤,所以其临界⾓⼩,⼊射到其中的光线⼤部分都能产⽣全反射。

6、为什么⽇出或⽇落时太阳看起来稍微有些发扁?(300例P1)答:⽇出或⽇落时,太阳位于地平线附近,来⾃太阳顶部、中部和底部的光线射向地球⼤⽓层的⼊射⾓依次增⼤(如图)。

同时,⼤⽓层密度不均匀,折射率⽔接近地⾯⽽逐渐增⼤。

当光线穿过⼤⽓层射向地⾯时,由于n 逐渐增⼤,使其折射⾓逐渐减⼩,光线的传播路径就发⽣了弯曲。

我们沿着光线去看,看到的发光点位置会⽐其实际位置⾼。

另⼀⽅⾯,折射光线的弯曲程度还与⼊射⾓有关。

⼊射⾓越⼤的光线,弯曲越厉害,视觉位置就被抬得越⾼,因为从太阳上部到下部发出的光线,⼊射⾓依次增⼤,下部的视觉位置就依次⽐上部抬⾼的更多。

第⼆章1、如图2-65所⽰,请采⽤作图法求解物体AB的像,设物像位于同⼀种介质空间。

图2-652、如图2-66所⽰,'MM 为⼀薄透镜的光轴,B 为物点,'B 为像点,试采⽤作图法求解薄透镜的主点及焦点的位置。

BM B 'M ′ B M M ′B ' ●●●●(a) (b)图2-663、如图2-67所⽰,已知物、像的⼤⼩及位置,试利⽤图解法求解出焦点的位置,设物、像位于同⼀种介质空间。

北京理工应用光学习题

北京理工应用光学习题

第一章 : 几何光学基本原理 ( 理论学时: 4 学时 )•讨论题:几何光学和物理光学有什么区别?它们研究什么内容?•思考题:汽车驾驶室两侧和马路转弯处安装的反光镜为什么要做成凸面,而不做成平面?•一束光由玻璃( n=1.5 )进入水( n=1.33 ),若以45 ° 角入射,试求折射角。

•证明光线通过二表面平行的玻璃板时,出射光线与入射光线永远平行。

•为了从坦克内部观察外界目标,需要在坦克壁上开一个孔。

假定坦克壁厚为 200mm ,孔宽为 120mm ,在孔内部安装一块折射率为 n=1.5163 的玻璃,厚度与装甲厚度相同,问在允许观察者眼睛左右移动的条件下,能看到外界多大的角度范围?•一个等边三角棱镜,若入射光线和出射光线对棱镜对称,出射光线对入射光线的偏转角为40 °,求该棱镜材料的折射率。

•构成透镜的两表面的球心相互重合的透镜称为同心透镜,同心透镜对光束起发散作用还是会聚作用?•共轴理想光学系统具有哪些成像性质?第二章 : 共轴球面系统的物像关系 ( 理论学时: 10 学时,实验学时: 2 学时 )•讨论题:对于一个共轴理想光学系统,如果物平面倾斜于光轴,问其像的几何形状是否与物相似?为什么?•思考题:符合规则有什么用处?为什么应用光学要定义符合规则?•有一放映机,使用一个凹面反光镜进行聚光照明,光源经过反光镜以后成像在投影物平面上。

光源高为 10mm ,投影物高为 40mm ,要求光源像高等于物高,反光镜离投影物平面距离为 600mm ,求该反光镜的曲率半径等于多少?•试用作图法求位于凹的反光镜前的物体所成的像。

物体分别位于球心之外,球心和焦点之间,焦点和球面顶点之间三个不同的位置。

•试用作图法对位于空气中的正透镜()分别对下列物距:求像平面位置。

•试用作图法对位于空气中的负透镜()分别对下列物距:求像平面位置。

•已知照相物镜的焦距毫米,被摄景物位于距离米处,试求照相底片应放在离物镜的像方焦面多远的地方?•设一物体对正透镜成像,其垂轴放大率等于- 1 ,试求物平面与像平面的位置,并用作图法验证。

(完整)应用光学习题

(完整)应用光学习题

一、填空题1、光学系统中物和像具有共轭关系的原因是 光路可逆 。

2、发生全反射的条件是 光从光密媒质射向光疏媒质,且入射角大于临界角I 0,其中,sinI 0=n 2/n 1 。

3、 光学系统的三种放大率是 垂轴放大率 、 角放大率 、轴向放大率 ,当物像空间的介质的折射率给定后,对于一对给定的共轭面,可提出 一 种放大率的要求.4、 理想光学系统中,与像方焦点共轭的物点是 轴上无穷远的物点 。

5、物镜和目镜焦距分别为mm f 2'=物和mm f 25'=目的显微镜,光学筒长△= 4mm ,则该显微镜的视放大率为 -20 ,物镜的垂轴放大率为 -2 ,目镜的视放大率为 10 。

6、某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是实 (填“实”或“虚”)像。

7、人眼的调节包含 视度 调节和 瞳孔 调节。

8、复杂光学系统中设置场镜的目的是 在不影响系统光学特性的的情况下改变成像光束的位置,使后面系统的通光口径不致过大。

9、要使公共垂面内的光线方向改变60度,则双平面镜夹角应为30 度。

10、近轴条件下,折射率为1.4的厚为14mm 的平行玻璃板,其等效空气层厚度为 10 mm. 11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的是 保持系统的共轴性 。

12、有效地提高显微镜分辨率的途径是 提高数值孔径和减小波长 。

13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度 小 。

14.用垂轴放大率判断物、像虚实关系方法:当β>0时 物像虚实相反β<0时 物像虚实相同。

15.平面反射镜成像的垂轴放大率为 1 ,物像位置关系为 镜像 ,如果反射镜转过α角,则反射光线方向改变 2α 。

二、简答题1、几何光学的基本定律及其内容是什么?答:几何光学的基本定律是直线传播定律、独立传播定律、反射定律和折射定律。

直线传播定律:光线在均匀透明介质中按直线传播.独立传播定律:不同光源的光在通过介质某点时互不影响。

应用光学习题(第一章部分课后习题)

应用光学习题(第一章部分课后习题)

编号
出处
1_004
P124_8
答:(接上一页)
若透镜为无焦系统,则 Φ 即
n(r2 r1 ) (n 1)d 0
1 0 f
d
n (r2 r1 ) n 1
此时构成望远结构分别 有 f f ' lH lF lF lH 主面和焦面都在无穷远 处
h2 h1 d1tgu1 h1 d1tgu1 d 2 tgu 2 h3 h2 d 2 tgu 2
n1 h h tgu1 1 1 1 1 n1 n1 n1
n2 h2 2 n1 h11 h2 2 1 h11 h2 2 tgu 2 tgu2 n2 n2 n2 n1 n2 n2
d )f f1
lk 400mm lF
所以可以得到
(1 d ) f 400 f1 (2)
n1
ff1 f 2
1
2
n2
像面
由双子系统焦距公式 f1 f 2 f 1200 f1 f 2 d
(3)
H
H1 H1
H2 H2
x2 f 2 2 x1 f 2 4 x1 f 2 0 l2
x1
1 f 2 50 mm 4 物体所处的位置 -50mm x1 100mm
即,物体放在 L1左面150mm以内
(3) 假如双子系统由正负透镜组合
A
1时,如果1 0, 2 0时,
答:由组合系统光焦度公式 1 h h h 1 1 2 2 3 3 h1 如果考虑平行光入射到 这个薄透镜系统, 即 tgu1 0,薄透镜系统处于空气中

应用光学习题及答案

应用光学习题及答案

四、分析作图题(共25分)1. 已知正光组的F 和F’,求轴上点A 的像,要求用五种方法。

(8分)2. 已知透镜的焦距公式为1122111nr f 'r d (n )n()(n )r r =⎡⎤--+-⎢⎥⎣⎦,11H n l'f 'd nr -=-,21H n l f 'd nr -=-,分析双凹透镜的基点位置,并画出FFL 、BFL 和EFL 的位置。

(9分)3. 判断下列系统的成像方向,并画出光路走向(8分)(a ) (b )五、计算题(共35分) 1.由已知150f mm '=,2150f mm '=-的两个薄透镜组成的光学系统,对一实物成一放大4倍的实像,并且第一透镜的放大率12β⨯=-,试求:1.两透镜的间隔;2.物像之间的距离;3.保持物面位置不变,移动第一透镜至何处时,仍能在原像面位置得到物体的清晰像?与此相应的垂铀放大率为多大?(15分)2. 已知一光学系统由三个零件组成,透镜1:11100f f '=-=,口径140D =;透镜2:22120f f '=-=,口径230D =,它和透镜1之间的距离为120d =;光阑3口径为20mm ,它和透镜2之间的距离230d =。

物点A 的位置1200L =-,试确定该光组中,哪一个光孔是孔径光阑,哪一个是视场光阑?(20分)试题标准答案及评分标准用纸课程名称:应用光学 (A 卷)一、选择题(每题2分,共10分)1.B ;2.A ;3.C ;4.C ;5.D二、填空题(每题2分,共10分)1.物镜的像方焦点F '物到目镜物镜焦点F 目之间的距离 2.又叫后截距,用Fl '表示,是系统最后一个面的顶点到像方焦点之间的距离 3.一般认为最大波像差小于四分之一波长,则系统质量和理想光学系统没有显著差别4.入瞳直径D 和物镜焦距f '物之比D f '物5.假设物空间不动,棱镜绕P 转θ,则像空间先绕P ’转1(1)n θ--,后绕P 转θ三、简答题(每题4分,共20分)1.限制进入光学系统的成像光束口径的光阑叫空径光阑。

应用光学习题(第一章部分课后习题)

应用光学习题(第一章部分课后习题)

编号
出处
1_008
P125_13
答:(接上一页)

h1 d1 h1 d1 h2 h1 d1tgu1 n 1 h1 1 n 1 1 1
h1 d1 d2 d 2 h2 1 h3 h1 d1 d h h h 1 2 2 1 1 1 2 n 1 2 n 1 1 n2 n2 h1 2 1 n1 d1 d2 d 2 2 d1 h1 1 1 1 h1 1 1 n n n h n 1 2 2 1 1 d1 d2 d2 d1 d 2 h1 1 1 2 1 2 n 1 n n2 n1n1 1 2
答:由组合系统光焦度公式 1 h h h 1 1 2 2 3 3 h1 如果考虑平行光入射到 这个薄透镜系统, 即 tgu1 0,薄透镜系统处于空气中
n1 1 n n n 2 1 令 1 n3 n2 n 2 1 n3 光线在第二个子系统主 面上的高度 光线在第三个子系统主 面上的高度 而 由角度公式得, tgu1
f1 f 2
r1 n1 1.5 20 60m m n1 1.5 1 n1
n2 r2 1.5 ( 15 ) 132.35m m n2 n2 1.33 1.5
r2 n2 1.33 ( 15 ) 117.35m m n2 n2 1.33 1.5
答: 透镜的结构参数为: r1 20mm, r2 15mm
d 15mm
该透镜为双凸透镜
n1 1 n 2 n 1 .5 n1 n 1.33 2

应用光学习题(含答案).docx

应用光学习题(含答案).docx

应用光学习题本习题供学习、复习使用。

精练这些习题及作业和课件上的例题有助于掌握、理解应用光学课程的基本知识、理论和规律。

应用光学的基本问题包括在本习题内,但不仅限于本习题。

本习题仅供课程学习时参考。

习题中一些问题提供了解答,限于时间,其它则略去。

一、筒答题1、几何光学的基本定律及其内容是什么?答:几何光学的基本定律是自钱传播定律、独立传播定W:、反射定律和折射定律。

直线传播定律:光线在均匀透明介质中按直线传播。

独立传播定律:不同光源的光在通过介质某点时互不影响。

反射定律:反射光线位于入射面内;反射角等于入射角:折射定律:折射光线位于入射面内:入射角和折射角正弦之比,对两种定的介j员来说,是=个和入射角无关的常数n isin/,-msin/。

22、理想光学系统的基点和基面有哪些?理想光学系统的基点包指物方焦点、{象方焦点;物方主点、像方主点:物方节点、像方节点。

基面包括:物方焦平丽、像方然平面:物方主平丽、像方主平面;物方节平面、像方节平面。

3、什么是光学系统的孔役光阑和视场光阙?答:孔径光阑是限制轴上物点成像光束立体角的光阔。

晴荡艾丽王辅前有字亩7茧事宝肯车夜夜古国的光册J。

4、常见非正常跟有哪两种?如何校正常见非正常1'常见正常目艮包括近视酬远视盹近视眼将工二(远附近点)矫正到无限远,远视眼,将一丘丛(远点就近点)矫正到明视距离。

3、光'于系统极限分辨角为多大?采取什么途径可以提岗极限分辨角?答:衍射决定的极限分辨角为0=3®。

可见其与波长和孔役有关。

订蔬小波长D和增大孔径可以提高光学系统的分辨率。

I什么是共和1)也学系统、元学系统物空间、像空间?答:光学系统以一条公共制线通过系统各表面的幽率中心,该轴线称为光轴,这样的系统称为共轴光学系统。

物体所在的空间称为物空间,像所在的空间称为像空间。

、如何确定光学系统的视场Jt阙?答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间;这些像中,孔径对入暗中心张角最小的一个像所对应的光阑即为光学系统的视场光阙。

《应用光学》第一章例题.

《应用光学》第一章例题.

第一章例题1.P20习题1(部分):已知真空中的光速c=3Í108m/s,求光在火石玻璃(n=1.65)和加拿大树胶(n=1.526)中的光速。

解:根据折射率与光速的关系 vcn =可求得 火石玻璃 )/(10818.165.11038811s m n c v ⨯=⨯==加拿大树胶 )/(10966.1526.11038822s m n c v ⨯=⨯==3.P20习题5,解:设水中一点A 发出的光线射到水面。

若入射角为I 0(sinI 0=n 空/ n 水 ),则光线沿水面掠射;据光路可逆性,即与水面趋于平行的光线在水面折射进入水中一点A ,其折射角为I 0(临界角)。

故以水中一点A 为锥顶,半顶角为I 0 的 圆锥范围内,水面上的光线可以射到A 点(入射角不同)。

因此,游泳者向上仰 望,不能感觉整个水面都是明亮的,而只 能看到一个明亮的圆,圆的大小与游泳者 所在处水深有关,如图示。

满足水与空 气分界面的临界角为 75.033.11sin 0==I 即 '36480︒=I , 若水深为H ,则明亮圆的半径 R = H tgI 0 4. ( P20习题7 )解:依题意作图如图按等光程条件有:''''1OA n O G n MA n GM n ⋅+⋅=⋅+⋅即.1)100(5.11221+=+-⋅++O G y x x O G所以x y x -=+-⋅150)100(5.122两边平方得222)150(])100[(25.2x y x -=+-2223002250025.245022500x x y x x +-=++- 025.225.115022=++-y x x0120101822=-+x x y ——此即所求分界面的表达式。

第二章例题1.(P53习题1)一玻璃棒(n =1.5),长500mm ,两端面为半球面,半径分别为50mm 和100mm ,一箭头高1mm ,垂直位于左端球面顶点之前200mm 处的轴线上,如图所示。

应用光学习题

应用光学习题

应用光学习题、第一章 : 几何光学基本原理 ( 理论学时: 4 学时 )•讨论题:几何光学与物理光学有什么区别?它们研究什么内容?•思考题:汽车驾驶室两侧与马路转弯处安装的反光镜为什么要做成凸面,而不做成平面?•一束光由玻璃( n=1、5 )进入水( n=1、33 ),若以45 ° 角入射,试求折射角。

•证明光线通过二表面平行的玻璃板时,出射光线与入射光线永远平行。

•为了从坦克内部观察外界目标,需要在坦克壁上开一个孔。

假定坦克壁厚为 200mm ,孔宽为 120mm ,在孔内部安装一块折射率为 n=1、5163 的玻璃,厚度与装甲厚度相同,问在允许观察者眼睛左右移动的条件下,能瞧到外界多大的角度范围?•一个等边三角棱镜,若入射光线与出射光线对棱镜对称,出射光线对入射光线的偏转角为40 °,求该棱镜材料的折射率。

•构成透镜的两表面的球心相互重合的透镜称为同心透镜,同心透镜对光束起发散作用还就是会聚作用?•共轴理想光学系统具有哪些成像性质?第二章 : 共轴球面系统的物像关系 ( 理论学时: 10 学时,实验学时: 2 学时 )•讨论题:对于一个共轴理想光学系统,如果物平面倾斜于光轴,问其像的几何形状就是否与物相似?为什么?•思考题:符合规则有什么用处?为什么应用光学要定义符合规则?•有一放映机,使用一个凹面反光镜进行聚光照明,光源经过反光镜以后成像在投影物平面上。

光源高为10mm ,投影物高为 40mm ,要求光源像高等于物高,反光镜离投影物平面距离为 600mm ,求该反光镜的曲率半径等于多少?•试用作图法求位于凹的反光镜前的物体所成的像。

物体分别位于球心之外,球心与焦点之间,焦点与球面顶点之间三个不同的位置。

•试用作图法对位于空气中的正透镜( )分别对下列物距:求像平面位置。

•试用作图法对位于空气中的负透镜( )分别对下列物距:求像平面位置。

•已知照相物镜的焦距毫米,被摄景物位于距离米处,试求照相底片应放在离物镜的像方焦面多远的地方?•设一物体对正透镜成像,其垂轴放大率等于- 1 ,试求物平面与像平面的位置,并用作图法验证。

应用光学例题

应用光学例题

应用光学例题(总29页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--近轴光学系统例1.一厚度为200mm的平行平板玻璃(n=)下面放着一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径为多少例2.用费马定理证明光的折射定律和反射定律。

例3.如图有两个平面反射镜,M1、M2夹角为α,今在两反射镜之间有一光线以50°角入射,入射到M1的反射镜上,经M1、M2四次反射后,起反射光线与M1平行,求其夹角α。

例4.设计一个在空气中和某种玻璃之间的单个折射表面构成的光学系统,希望物在空气中离表面。

实像在玻璃中,离表面,放大率为。

那么玻璃的折射率应为多少表面的曲率半径为多少例5.直径为100mm的球形玻璃缸,将半面镀银,内有一条鱼在镀银面前25mm处。

问缸外的观察者看到几条鱼位置在何处相对大小事多少(水的折射率为4/3)例6.在一张报纸上放一个平凹透镜,通过镜面看报纸。

当平面朝着眼睛时,报纸的虚像在平面下处。

当凸面朝着眼睛时,报纸的虚像在凸面下处。

若透镜中央厚度为20mm。

求透镜的折射率和凸球面的曲率半径。

例7.一凹球面镜将一实物成一实像,物与像的距离为1m,物高为像高的4倍,求凹面镜的曲率半径。

例8.①一束平行光入射到一半径r=30mm,折射率n=的玻璃球上,求其汇聚点的位置。

②如果在凸面上镀反射膜,其汇聚点应在何处③如果凹面镀反射膜,则反射光束在玻璃中的汇聚点在何处④反射光束经前表面折射后,汇聚点在何处说明各汇聚点的虚实。

(2)(3)(4)例9.一直径为400mm,折射率为的玻璃球中有两个小气泡,一个位于球心,另一个在1/2半径处。

沿两气泡连线方向在球两边观察,问看到的气泡在何处如果在水中观察者看到的气泡又在何处例10.位于空气中的等腰直角棱镜折射率n=,问当光线在斜边上发生全反射时直角边1上入射光线的入射角I1应为多大若棱镜折射率增大,I1增大还是减小又问若棱镜放入水中,按图中光轴方向入射的光线是否会发生全反射。

北京理工应用光学习题

北京理工应用光学习题

北京理⼯应⽤光学习题第⼀章 : ⼏何光学基本原理 ( 理论学时: 4 学时 )讨论题:⼏何光学和物理光学有什么区别?它们研究什么内容?思考题:汽车驾驶室两侧和马路转弯处安装的反光镜为什么要做成凸⾯,⽽不做成平⾯?⼀束光由玻璃( n=1.5 )进⼊⽔( n=1.33 ),若以45 ° ⾓⼊射,试求折射⾓。

证明光线通过⼆表⾯平⾏的玻璃板时,出射光线与⼊射光线永远平⾏。

为了从坦克内部观察外界⽬标,需要在坦克壁上开⼀个孔。

假定坦克壁厚为 200mm ,孔宽为 120mm ,在孔内部安装⼀块折射率为 n=1.5163 的玻璃,厚度与装甲厚度相同,问在允许观察者眼睛左右移动的条件下,能看到外界多⼤的⾓度范围?⼀个等边三⾓棱镜,若⼊射光线和出射光线对棱镜对称,出射光线对⼊射光线的偏转⾓为40 °,求该棱镜材料的折射率。

构成透镜的两表⾯的球⼼相互重合的透镜称为同⼼透镜,同⼼透镜对光束起发散作⽤还是会聚作⽤?共轴理想光学系统具有哪些成像性质?第⼆章 : 共轴球⾯系统的物像关系 ( 理论学时: 10 学时,实验学时: 2 学时 )讨论题:对于⼀个共轴理想光学系统,如果物平⾯倾斜于光轴,问其像的⼏何形状是否与物相似?为什么?思考题:符合规则有什么⽤处?为什么应⽤光学要定义符合规则?有⼀放映机,使⽤⼀个凹⾯反光镜进⾏聚光照明,光源经过反光镜以后成像在投影物平⾯上。

光源⾼为10mm ,投影物⾼为40mm ,要求光源像⾼等于物⾼,反光镜离投影物平⾯距离为 600mm ,求该反光镜的曲率半径等于多少?试⽤作图法求位于凹的反光镜前的物体所成的像。

物体分别位于球⼼之外,球⼼和焦点之间,焦点和球⾯顶点之间三个不同的位置。

试⽤作图法对位于空⽓中的正透镜()分别对下列物距:求像平⾯位置。

试⽤作图法对位于空⽓中的负透镜()分别对下列物距:求像平⾯位置。

已知照相物镜的焦距毫⽶,被摄景物位于距离⽶处,试求照相底⽚应放在离物镜的像⽅焦⾯多远的地⽅??设⼀物体对正透镜成像,其垂轴放⼤率等于- 1 ,试求物平⾯与像平⾯的位置,并⽤作图法验证。

应用光学例题

应用光学例题

应用光学例题近轴光学系统例 1. 一厚度为 200mm 的平行平板玻璃(n=1.5)下面放着一直径为 1mm 的金属片。

若在玻璃板上盖一圆形纸片, 要求在玻璃板上方任何方向上都看不到该金属片, 问纸片的最小直径为多少?例 2. 用费马定理证明光的折射定律和反射定律。

例 3. 如图有两个平面反射镜, M1、 M2夹角为α, 今在两反射镜之间有一光线以50°角入射, 入射到 M1的反射镜上,经 M1、 M2四次反射后,起反射光线与 M1平行,求其夹角α。

例 4. 设计一个在空气中和某种玻璃之间的单个折射表面构成的光学系统,希望物在空气中离表面 15.0cm 。

实像在玻璃中,离表面 45.0cm ,放大率为 2.0。

那么玻璃的折射率应为多少?表面的曲率半径为多少?例 5. 直径为 100mm 的球形玻璃缸,将半面镀银,内有一条鱼在镀银面前 25mm 处。

问缸外的观察者看到几条鱼?位置在何处?相对大小事多少?(水的折射率为 4/3)例 6. 在一张报纸上放一个平凹透镜,通过镜面看报纸。

当平面朝着眼睛时,报纸的虚像在平面下 13.3mm 处。

当凸面朝着眼睛时, 报纸的虚像在凸面下 14.6mm 处。

若透镜中央厚度为 20mm 。

求透镜的折射率和凸球面的曲率半径。

例 7. 一凹球面镜将一实物成一实像,物与像的距离为 1m ,物高为像高的 4倍,求凹面镜的曲率半径。

例8. ①一束平行光入射到一半径 r=30mm,折射率 n=1.5的玻璃球上,求其汇聚点的位置。

②如果在凸面上镀反射膜, 其汇聚点应在何处?③如果凹面镀反射膜, 则反射光束在玻璃中的汇聚点在何处?④反射光束经前表面折射后,汇聚点在何处?说明各汇聚点的虚实。

(2)(3)(4)例 9. 一直径为 400mm ,折射率为 1.5的玻璃球中有两个小气泡,一个位于球心,另一个在 1/2半径处。

沿两气泡连线方向在球两边观察,问看到的气泡在何处?如果在水中观察者看到的气泡又在何处?例 10. 位于空气中的等腰直角棱镜折射率 n=1.54, 问当光线在斜边上发生全反射时直角边 1上入射光线的入射角 I 1 应为多大?若棱镜折射率增大, I1增大还是减小?又问若棱镜放入水中,按图中光轴方向入射的光线是否会发生全反射。

应用光学试题(第一章)

应用光学试题(第一章)
轴向
32、nuy n'u'y' J,即在一对共轭平面内物高、物方介质折射率、物方孔径角
三者之积与像高、像方介质折射率、像方孔径角三者之积相等,该值常用字母J表示,称为 不变量。
拉赫(或拉氏)
33、反射镜按形状可分为球面反射镜、及非球面反射镜。
平面反射镜
34、常见的球面反射镜分为两种,即 镜及凸面镜。
凹面
35、是一种最简单且能完善成像的平面光学元件。 平面反射镜
36、平面反射镜的反射面是一个平面,可以将它看作是一个曲率半径r的
反射镜
球面
37、平面反射镜的物距和像距大小相等,相反。
符号
38、
I级2空
1、通 常可 见光 的 范 围 取 为380nm~760nm, 波 长 大 于760nm的 光 称 为 ,波长小于380nm的光称为。(2分)
1、红外光的缩写为,紫外光的缩写为
IR,UV
III级3空
1、平面反射镜的垂轴放大率为倍,轴向放大率为 倍,角放大
率为 倍。
1,-1,-1
二、选择题(单选,建议每题2分)
I级
1、不同波长的电磁波有不同的频率,频率、波长与速度三者之间的关系为:
(A)c(B)c(C)c
A
2、光程是指:
(A)光在介质中传播的几何路程与所在的介质折射率的和。
四、要求
为了将来便于建数据库, 我以第一章为例做了个样板, 各位 看看还有什么不妥之处可直接与我联系。初步想法如下:
(一)颜色(必须标清)
1、红色标明级别 ;
2、兰色表示答案;
3、绿色表示需要注意之处;
4、酱色表示分点;
5、浅绿表示一些说明
(二)难易级别
I级表示简单

(整理)应用光学习题.

(整理)应用光学习题.

—、填空题1、光学系统中物和像具有共轭关系的原因是光路可逆__________ 。

2、发生全反射的条件是光从光密媒质射向光疏媒质,且入射角大于临界角I °,其中,sinl o=n/n 1 _______________________ 。

3、光学系统的三种放大率是垂轴放大率、角放大率、轴向放大率,当物像空间的介质的折射率给定后,对于一对给定的共轭面,可提出一种放大率的要求。

4、理想光学系统中,与像方焦点共轭的物点是轴上无穷远的物点__________ 。

5、物镜和目镜焦距分别为f物、2mm和f目25mm的显微镜,光学筒长厶=4mm则该显微镜的视放大率为—20 ,物镜的垂轴放大率为—2 ,目镜的视放大率为10 。

6某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是实(填“实”或“虚”)像。

7、人眼的调节包含视度调节和瞳孔调节。

8复杂光学系统中设置场镜的目的是在不影响系统光学特性的的情况下改变成像光束的位置,使后面系统的通光口径不致过大。

9、要使公共垂面内的光线方向改变60度,则双平面镜夹角应为30_度。

10、近轴条件下,折射率为1.4的厚为14mm的平行玻璃板,其等效空气层厚度为10 mm。

11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的是保持系统的共轴性。

12、有效地提高显微镜分辨率的途径是提高数值孔径和减小波长。

13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度小。

14、用垂轴放大率判断物、像虚实关系方法:当B >0时物像虚实相反B <0时物像虚实相同。

15、平面反射镜成像的垂轴放大率为亘,物像位置关系为镜像,如果反射镜转过a 角,则反射光线方向改变2a。

二、简答题1、几何光学的基本定律及其内容是什么?答:几何光学的基本定律是直线传播定律、独立传播定律、反射定律和折射定律。

直线传播定律:光线在均匀透明介质中按直线传播。

独立传播定律:不同光源的光在通过介质某点时互不影响。

应用光学课件习题

应用光学课件习题
y = f1' tgω − y'= f 2' tgω = f 2' y' β = =− ' y f1
由两个同心的反射球面(二球面球心重合) 13. 由两个同心的反射球面(二球面球心重合)构成 的光学系统, 的光学系统,按照光线反射的顺序第一个反射球 面是凹的,第二个反射球面是凸的,要求系统的 面是凹的,第二个反射球面是凸的, 像方焦恰好位于第一个反射球面的顶点, 像方焦恰好位于第一个反射球面的顶点,求两个 球面的半径r 和二者之间的间隔d之间的关系。 球面的半径r1,r2和二者之间的间隔d之间的关系。
d1 = 78.87 f ' = 173.19 ∆ = 28.87
d 2 = 21.13 f ' = −173.19 ∆ = −28.87 舍去
如果将上述系统用来对10m远的物平面成像, 10m远的物平面成像 11. 如果将上述系统用来对10m远的物平面成像, 用移动第二组透镜的方法, 用移动第二组透镜的方法,使像平面位于移动 前组合系统的像方焦平面上, 前组合系统的像方焦平面上,问透镜组移动的 方向和移动距离。 方向和移动距离。
解: − 6600 β= = −300
22
l'= 36.12m =
若l'= 50m =
l' β = = −300 l
1 1 1 − = l' l f '
50 × 103 f '= = 166.11mm 301
一个投影仪用5 的投影物镜, 16. 一个投影仪用5×的投影物镜,当像平面与投影屏不重合 而外伸10mm时 则须移动物镜使其重合, 而外伸10mm时,则须移动物镜使其重合,试问物镜此时应 10mm 向物平面移动还是向像平面移动?移动距离多少? 向物平面移动还是向像平面移动?移动距离多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1、光学系统中物和像具有共轭关系的原因是 光路可逆 。

2、发生全反射的条件是 光从光密媒质射向光疏媒质,且入射角大于临界角I 0,其中,sinI 0=n 2/n 1 。

3、 光学系统的三种放大率是 垂轴放大率 、 角放大率 、轴向放大率 ,当物像空间的介质的折射率给定后,对于一对给定的共轭面,可提出 一 种放大率的要求。

4、 理想光学系统中,与像方焦点共轭的物点是 轴上无穷远的物点 。

5,某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是 实 (填“实”或“虚”)像。

6.要使公共垂面内的光线方向改变60度,则双平面镜夹角应为30 度。

10、近轴条件下,折射率为1.4的厚为14mm 的平行玻璃板,其等效空气层厚度为 10 mm 。

11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的是 保持系统的共轴性 。

13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度 小 。

14.用垂轴放大率判断物、像虚实关系方法:当β>0时 物像虚实相反β<0时 物像虚实相同。

15.平面反射镜成像的垂轴放大率为 1 ,物像位置关系为 镜像 ,如果反射镜转过α角,则反射光线方向改变 2α 。

二、简答题1、几何光学的基本定律及其内容是什么?答:几何光学的基本定律是直线传播定律、独立传播定律、反射定律和折射定律。

直线传播定律:光线在均匀透明介质中按直线传播。

独立传播定律:不同光源的光在通过介质某点时互不影响。

反射定律:反射光线位于入射面内;反射角等于入射角;折射定律:折射光线位于入射面内;入射角和折射角正弦之比,对两种一定的介质来说,是一个和入射角无关的常数2111sin sin I n I n 。

2、如何区分实物空间、虚物空间以及实像空间和虚像空间?是否可按照空间位置来划分物空间和像空间?答:实物空间:光学系统第一个曲面前的空间。

虚物空间:光学系统第一个曲面后的空间。

实像空间:光学系统最后一个曲面后的空间。

虚像空间:光学系统最后一个曲面前的空间。

物空间和像空间在空间都是可以无限扩展的,不能按照空间进行划分。

3、什么是共轴光学系统、光学系统物空间、像空间?答:光学系统以一条公共轴线通过系统各表面的曲率中心,该轴线称为光轴,这样的系统称为共轴光学系统。

物体所在的空间称为物空间,像所在的空间称为像空间。

4、什么叫理想光学系统?答:在物像空间均为均匀透明介质的条件下,物像空间符合“点对应点、直线对应直线、平面对应平面”的光学系统称为理想光学系统。

5、理想光学系统的基点和基面有哪些?其特性如何?答:理想光学系统的基点包括物方焦点、像方焦点;物方主点、像方主点;物方节点、像方节点。

基面包括:物方焦平面、像方焦平面;物方主平面、像方主平面;物方节平面、像方节平面。

入射光线(或其延长线)过焦点时,其共轭光线平行与光轴;入射光线过节点时,其共轭光线与之平行;焦平面上任一点发出的同心光束的共轭光束为平行光束;物方主平面与像方主平面共轭,且垂轴放大率为1。

6、用近轴光学公式计算的像具有什么实际意义?答:作为衡量实际光学系统成像质量的标准;用它近似表示实际光学系统所成像的位置和大小9、什么是光学系统的孔径光阑和视场光阑?答:孔径光阑是限制轴上物点成像光束立体角的光阑。

视场光阑是限制物平面上或物空间中成像范围的光阑。

10、光学系统中可能有哪些光阑?答:限制轴上物点成像光束的口径或立体角大小的孔径光阑;限制物平面上或物空间中成像的范围即限制视场大小的视场光阑;用于产生渐晕的渐晕光阑;用于限制杂散光的消杂光阑。

11、如何确定光学系统的视场光阑?答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间。

这些像中,孔径对入瞳中心张角最小的一个像所对应的光阑即为光学系统的视场光阑。

12、如何计算眼睛的视度调节范围?如何校正常见非正常眼? 答:眼睛的视度调节范围为:pr P R A 11-=-=。

常见非正常眼包括近视眼和远视眼。

近视眼是将其近点校正到明视距离,可以用负透镜进行校正;远视眼是将其远点校正到无限远,可以用正透镜进行校正。

13、显微镜的分辨率跟哪些参数有关?采取什么途径可以提高显微镜的分辨率? 答:显微镜的分辨率为NAλσ61.0=。

可见其分辨率与波长和物镜数值孔径有关。

减小波长和提高数值孔径可以提高显微镜的分辨率。

由u n NA sin =可知,在物和物镜之间浸以液体可增大物方折射率n ,即可提高显微镜的分辨率。

14、光学系统有哪些单色几何像差和色像差?答:五种单色几何像差是:球差、彗差、像散、场曲、畸变。

两种色像差是:位置色差(或轴向色差)、放大率色差(或垂轴色差)。

3、共轴光学系统的像差和色差主要有哪些?答:像差主要有:球差、慧差(子午慧差、弧矢慧差)、像散、场曲、畸变; 色差主要有:轴向色差(位置色差)、倍率色差。

二、作图题 1、求实物AB 的像2、求虚物AB的像3、求实物AB的像4、求虚物AB的像5、求棱镜反射后像的坐标系方向6、画出虚线框内应放置何种棱镜7、画出虚线框内应放置何种棱镜z ’ z ’ x yz8、求棱镜反射后像的坐标系方向9、假设光线方向从左至右,画出物体AB 经光组后的像。

10、假设光线方向遵循从左至右,如图,已知垂直于光轴的物AB 经过一薄透镜后成的像为A′B′,试作图确定透镜及其物方和像方焦点的位置,并说明该薄透镜是正还是负透镜。

xyz屋脊棱镜11、根据下列平面镜棱镜系统中的成像方向要求,画出虚线框内所需的反射棱镜类型。

四、证明题和计算题1、光束投射到一水槽中,光束的一部分在顶面反射而另一部分在底面反射,如图所示。

试证明两束(P 1、P 2)返回到入射介质的光线是平行的。

证明:由图可知12'32r i i r ===(2分)由折射定律可得:11sin 'sin r n i n = (2分)33sin 'sin r n i n =(2分) 所以 31i i =又由反射定律可得:'11i i =故 '13i i =所以P 1平行于P 2。

2、试证明单折射球面的物像方焦距分别满足下列关系:n n r n f --=',nn rn f -=''',其中,n 、n ′和r 分别是球面的物方、像方折射率和球面半径。

解:将l = - ∞代入下列物像关系式得到的像距就是像方焦距,即l′= f ′:rn n l n l n -=-'''P 1P 2i 1 i 1’ r 1 i 2 i 2’r 3i 3n n ’即:rn n nf n -=∞--'''求得:nn rn f -=''' 同理,将l′ = ∞代入物像关系式得到的物距就是物方焦距,即l= f′: 即:rn n f n n -=-∞''求得:nn rn f --=' 3、一个正透镜焦距为100mm ,一根棒长40mm ,平放在透镜的光轴上,棒中点距离透镜200mm 。

求: (1)像的位置和长短;(2)棒绕中心转090时,像的位置和大小。

解:(1)棒两端点到透镜的距离分别为 mm mm 180,22021-=-=λλ根据高斯公式''111f=-λλ得 mm mm 225,3.183'2'1==λλ像的长短mm 7.41'1'2=-=∆λλλ(2)mm y mm 40,200=-=λ根据高斯公式''111f=-λλ得 mmy y y y mm401200200200''''-==-=-====ββλλλ4、一组合系统如图所示,薄正透镜的焦距为20mm ,薄负透镜的焦距为-20mm ,两单透镜之间的间隔为10mm ,当一物体位于正透镜前方100mm 处,求组合系统的垂轴放大率和像的位置。

解:对单正透镜来说mm f mm l 20,100'11=-=,因此有A所以mm l 25'1=对负透镜来说,mm f mm d l l 20,151025'2'12-==-=-=,有2011511'1-=-l 所以mm l 60'2=,即最后像位置在负透镜后60mm 处。

根据放大率21βββ=2'221'11,l l l l ==ββ所以11560100252'21'1-=⨯-==l l l l β5、置于空气中的两薄凸透镜L 1和L 2的焦距分别为mm f 50'1=,mm f 100'2=,两镜间隔为d =mm 50,试确定该系统的焦点和主平面位置。

(7分) 解:mm mm mm mm f f d f f d 1001005050'''2121-=--=--=+-=∆求系统焦点位置:mm mmmmmm f f f f F F x F 251005050'''11111=-⨯-=-===∆∆()()mm mmmm mm f f f f F F x F 100100100100''''''22222-=--⨯-=∆--=∆-== 即系统物方焦点F 在F 1的右边25mm 处,像方焦点'F 在'2F 的左边100mm 处。

求系统主平面位置:()()()()mm mmmm mm f f f f HF f 5010010050''2121-=--⨯-=∆--=∆== mm mmmmmm f f F H f 5010010050'''''21=-⨯-=-==∆即系统物方主平面在F 的右边50mm 距离处,像方主平面在'F 的左边50mm 距离20110011'1=--l处。

6、由两个焦距相等的薄透镜组成一个光学系统,两者之间的间距也等于透镜焦距,即d f f =='2'1。

用此系统对前方60mm 处的物体成像,已知垂轴放大率为-5,求薄透镜的焦距及物像平面之间的共轭距。

解:物体先经过第一个透镜成像dl 16011'1=-- 解得 ddl -=6060'1dd d d l l --=--==606060601'11β第一透镜的像再经过第二透镜成像由过渡公式可得:dd d d d d l l -=--=-=6060602'12由高斯公式有:d dd l 160112'2=-- 解得:602'2d l =60602'22dl l -==β 因为560606021-=-⋅--==dd d βββ解得:mm d 300=透镜焦距mm d f f 300'2'1===mm d l 150060300300602'2=⨯==则物像共轭距为:mm l d l L 1860150030060'21=++==+= 7、若人肉眼刚好能看清200m 远处的一小物体,若要求在1200m 远处也能看清该物体,问应使用视放大率至少为多大的望远镜?解:设物高为y ,因为用眼睛在200m 处恰好能分辨箭头物体,则该物体对人眼所张视角刚好是人眼的最小分辨角06''。

相关文档
最新文档