深基坑排桩变形监测方案
深基坑监测方案
目录一、工程概况 (1)二、编制根据 (1)三、基坑侧壁安全级别划分 (1)四、基坑支护方案 (1)五、监测目的及规定 (2)六、工程地质概要 (2)七、监测内容 (3)八、监测频率 (8)九、测试重要仪器设备........................... 错误!未定义书签。
十、监测工作管理、保证监测质量的措施........... 错误!未定义书签。
十一、监测人员配备............................. 错误!未定义书签。
十二、监测资料的提交........................... 错误!未定义书签。
一、工程概况:本项目为CENTER工程, 本子项为通风中心;工程号为HB1001, 子项号为VX。
建设地点: 四川省乐山市夹江县南岸乡。
通风中心长58.60m, 宽33.10m, 建筑高度(室外地坪至女儿墙)为22.900m, 消防高度(室外地坪至屋面面层)为22.200m, 地上二层, 局部三层。
占地面积1956.19㎡, 建筑面积4298.00㎡。
建筑构造形式:钢筋混凝土框架——抗震墙构造, 本建筑设计使用年限为50年, 抗震Ⅰ类建筑。
二、编制根据:1.《建筑基坑工程变形技术规范》(GB50497-)2.《都市测量规范》(CJJ/T8-)3.《精密水准测量规范》(GB/T15314-940)4.《工程测量规范》(GB 50026-)5.《建筑边坡工程技术规范》(GB50330-)6.《建筑基坑支护技术技术规程》(JGJ120-)7、基坑支护工程施工方案设计三、基坑侧壁安全级别划分:基坑 1-2交A-B, 1-2交E-F, 开挖的基坑深度较大概为8m, 放坡系数80°, 近似垂直开挖, 如破坏后果较严重, 因此侧壁安全级别定为一级, 侧壁重要性系数1.1。
基坑其她位置地势相对开阔, 无相邻建筑级别评估为二级, 侧壁重要性系数1.0。
四、基坑支护方案:放坡体系:根据设计图纸的规定, 本工程的基坑放坡为80°, 近似垂直开挖, 基坑壁失稳对周边有一定危害, 采用垂直开挖形成基坑, 开挖前必须先对其设立支挡, 保证既有周边的安全, 根据场地周边环境、场地工程地质条件及水文地质状况。
深基坑支护工程的设计、施工及其监测
收稿 日期 :0 1 7 1 2 1 一O —3
( ) 三 暂定支护桩为钻孔灌 注桩 , 径 090 0 mm, 凝土 强 混
2 1 年 O 期 总第 18 01 8 5 期
叶茂青 ・ 深基坑支护工程 的设计 、 施工及其监测
1 1 1’
四、 工工 艺及控 制 施
( ) 工 工 序 安 排 : 程 桩 和 基 坑 围 护 一 施 工
结构 的施工 一 开挖前 的准 备 一第 一层 土 方
开挖至 内支撑底标 高一 冠 梁及 内支撑施工一
见表 1。 )
表 1 各土层分布情 况和主要物理力学指标
三、 深基 坑支 护设 计
( 首先依据地 面荷 载值 及各 土层的物理力学指标 , 用 一) 采 朗肯 土压力 理论 , 计算 出主动土压力 和被 动土压力 。
( ) 用等值 梁法计算支护桩 的锚 固深度及其 内力 , 二 采 即假
2 1 年第 O 01 8期 总第 18期 5
N00 ・2 8 Oll
V0 1・1 8 5
深 基 坑 支 护 工 程 的 设 计 、 工 及 其 监 测 施
叶茂 青
( 福建省建筑科学研 究院
福建福州 3 0 0 ) 50 1
摘
要: 随着深基坑 工程越 来越多, 深度也越 来越 大。 本文结合工程实例 , 阐述 了内支撑式排桩结构形 式的基坑支护工程设计 、 施
福
出
建
K e wo ds De p e c v t n De in Co sr cin M o io ig y r : e xaai o sg n tu to n trn
深基坑围护结构位移变形及内外力监测技术
深基坑围护结构位移变形及内外力监测技术一、深基坑围护结构及其位移变形1.地铁深基坑特点地铁施工中,通常在地铁车站处采用明挖法进行,必然产生比较深的深基坑,对于有多条地铁线路相交的换乘枢纽站来说,其深度更大,。
相对于一般基础工程而言,地铁深基坑工程具有许多特点,概括起来主要有以下几个方面:(1)深度大。
通常在十米以上,对于有线路交叉的换乘车站其深度会更大开挖面积大,长度与宽度有的达数百米给支撑系统的设计、施工和安全保障带来较大的困难。
(2)地铁往往修建在大型城市,而我国绝大部分大型城市位于沿海或滨江地带,这些区域的工程水文地质条件很差,且施工期受地表交通影响非常严重,在软弱的地层、高水位及其它复杂场地条件下开挖深基坑,极有可能会产生土体滑移、深基坑失稳、桩体变位、坑底隆起、支挡结构严重漏水、流土以至破损等病害,对深基坑工程自身及周边建筑物、地卜构筑物、市政设施和地下管线的安全造成很大威胁。
(3)施工周期长,且场地受限制多。
地铁深基坑沿线往往有大量已建或正在建的高层建筑、市政管线等,进行深基坑施工时除保障其本身的工程安全外,还需严格控制变形值,保障周边建构筑物的安全。
(4)因地而异。
不同城市、不同地点的工程及水文地质条件存在较大差别,而且施工环境及气象也各不相同,这些都直接影响深基坑施工方案的选择及安全。
(5)技术要求高,涉及面广。
地铁深基坑工程牵涉到土力学、岩石力学、混凝土结构、钢结构等的设计及施工监测技术,必须选择合理的设计及施工参数、方法来组织施工及安全防护。
(6)施工与设计相互关联。
地铁深基坑工程对技术要求高,施工与设计必须相互协调,在设计时就要对施工工艺、支护方法、支护结构变形及受力情况进行充分考虑,以施工影响设计。
(7)对深基坑的支护技术要求高、方法多,深基坑支护的方法主要有、地下连续墙、预制桩、深层搅拌桩、钢木支撑、拉锚、抗滑桩、注浆、喷锚网支护法、人工挖孔桩、各种桩墙、板、管、撑同锚杆联合支护法和土钉墙法等,如何根据工程实际情况选择施工方法非常关键。
基坑支护结构内力变形监测分析
基坑支护结构内力变形监测分析摘要当前我国各地频繁出现深大基坑工程,为此我们要有效地控制基坑周围地层位移,同时基坑内力变形控制要求越来越严格。
本文首先概述了基坑支护结构内力变形监测要求,论述了基坑支护结构内力变形的控制措施,最后提出了相关配套措施,同时基坑工程的支护体系设计与施工和土方开挖都要因地制宜。
关键词基坑工程;支护结构;内力变形随着现代化城市进程的不断扩张,我国的基坑工作也在不断的增加,同时也伴随着风险和质量的不断增加。
而基坑工作是一项综合性很强的系统工程,它包括了基坑支护体系的设计施工和土方开挖,这就要求各个部门的技术人员之间要进行密切的配合。
同时基坑工程在每个地方表现出来的差异性也不一样,受到各个方面因素的影响,每个基坑的变形情况也不同,而其中一个很大的影响因素就是开挖地区的土体物理性状。
1 基坑支护结构内力变形监测要求基坑的变形现象主要体现在在3个方面,支护墙体的变形、基坑底部的突起以及地表不同程度的沉降。
其中对支护结构变形的预测是作为基坑变形的一项最常见的预测,因为基坑支护墙墙体的变形就会导致墙体的的外侧地面发生变化,促使基坑内的位移和底部土体的拱起。
由于受到地质水以及各方面的影响就使得我们在实验室内而得到的支护机构应力变形等数据域实际测量工作中得到的数据还是有很大的差距的。
为看了让实际检测的数据和实验得要的理论数据相一致,我们就可以从实际的检测到的数据用反分析的方法去修改计算机模型中的一些参数,再根据这些参数,运用正分析的方面从而计算出下一个施工阶段的数据。
2 基坑支护结构内力变形的控制措施2.1 控制要求基坑变形主要控制方法主要为加深、加刚、加固、降水、随挖随撑,增加维护结构和支撑的刚度,增加围护结构的入土深度,加固被动区土体,控制降水减少开挖时间,随挖随撑,缩短暴露。
2.2 控制措施2.2.1 冻结+排桩支护技术地基冻结排装桩伐法顾名思义就是将两种技术互相结合取长补短,是一种大胆的技术创新,将含有水的地基坑的封水结构,利用排桩和内部的支撑系统来作为受力层用来抵抗水土带来的压力。
6基坑监测施工方案
6基坑监测施工方案基坑监测在施工过程中是非常重要的一项工作,可以帮助监测基坑周围的土体变形情况,保障基坑施工的安全和稳定。
为了确保基坑监测的有效性和准确性,需要制定详细的监测施工方案。
一、监测设备的选择1.需要选择高质量的基坑监测设备,如倾斜仪、位移仪、桩身位移仪等,以确保监测数据的准确性和实时性。
2.在选择设备时,需要考虑设备的灵敏度、稳定性和耐用性,以保证设备在基坑施工过程中能够持续稳定运行。
3.可以选择具有实时数据传输功能的监测设备,方便监测人员及时获取监测数据并进行分析。
二、监测方案的编制1.制定详细的监测方案,包括监测人员的职责分工、监测设备的布设位置、监测频率、监测数据的处理方式等内容。
2.在制定监测方案时,需要充分考虑基坑周围环境的影响因素,如地下水位、土体性质、周边建筑物等,以确保监测数据的准确性和可靠性。
3.需要定期对监测方案进行评估和调整,根据实际情况及时调整监测方案,以保证监测工作的顺利进行。
三、监测过程的操作1.在监测过程中,需要确保监测设备的准确性和稳定性,及时维护设备,保证设备正常运行。
2.监测人员需要按照监测方案进行操作,确保监测数据的准确性和一致性。
3.如发现监测数据异常,需要及时进行分析处理,并进行必要的调整和修正。
四、监测数据的处理与分析1.监测数据需要及时传输和存储,确保数据安全和完整性。
2.监测数据的处理需要采用专业的数据处理软件,进行数据分析和比较,得出监测结果。
3.需要定期对监测数据进行分析报告,及时汇总监测结果并向相关部门汇报。
五、监测结果的应用1.监测结果可以为基坑施工提供参考和指导,及时发现基坑变形情况,采取相应的措施保障基坑施工的安全和稳定。
2.监测结果也可以为基坑周边建筑物提供参考,及时发现地基沉降情况,采取相应的补救措施。
3.监测结果可以为基坑施工的后续工程提供参考和指导,保证后续工程的顺利进行。
六、监测工作的总结与改进1.在监测工作结束后,需要对监测工作进行总结和评估,总结经验教训,发现问题并提出改进意见。
深基坑开挖支护方案四:排桩支护—混凝土灌注桩
深基坑开挖支护方案四:排桩支护-混凝土灌注桩支护一、排桩支护-混凝土灌注桩支护的概念排桩支护(图1)是指以某种桩型按队列式布置组成的基坑支护结构,其中包括混凝土灌注桩支护和钢制桩支护两大类型.混凝土灌注桩支护(图2),指在施工现场利用成孔机械(或人工)成孔后,根据工程需要选择是否下钢筋笼,然后灌注混凝土所形成的排桩式支护结构。
根据成孔方式的不同,混凝土灌注桩支护主要分为机械钻孔灌注桩支护和人工挖孔灌注桩支护两大类。
图1 排桩支护图2 混凝土灌注桩支护二、混凝土灌注桩支护的特点1、优点(1)施工设备简单;(2)所需作业场地不大,噪声低,振动小;(3)无挤土现象,对周围环境影响小;(4)成本较低;(5)桩身强度高,刚度大,变形小,支护稳定性好.2、缺点(1)桩间间距较大,易造成水土流失,特别是在高水位松软土质地区,需根据工程条件配合注浆、水泥搅拌桩、旋喷桩等施工措施以解决挡水问题;(2)在砂砾层和卵石中施工困难;(3)桩与桩之间主要通过桩顶冠梁和围檩连成整体,因而相对整体性较差,当在重要地区,特殊工程及开挖深度很大的基坑中应用时需要专项设计。
三、混凝土灌注桩支护的适用范围混凝土灌注桩支护适用于大部分的地质条件,但在砂砾层和卵石中施工较为困难.多用于坑深7~15m 的基坑工程,在我国北方土质较好地区已有8~9m 的悬臂桩围护墙,在软土地区悬臂式灌注桩结构不能超过5m。
四、资源需求计划1、水电需要量计划2、劳动力需要量计划3、施工机械需要量计划4、材料需求量计划五、施工准备(1)技术准备:熟悉、审查施工图纸.(2)施工现场准备工作:地上、地下各种管线及障碍物的勘测定位;地上、地下障碍物的拆除;施工现场的平整;测量放线;临时道路、临时供水、供电等管线的敷设;临时设施的搭设;现场照明设备的安装。
(3)劳动组织准备:建立各施工部的管理组织,集结施工力量、组织劳动力进场,做好施工人员入场教育等工作。
(4)材料、机械准备:根据相关的设计图纸和施工预算,编制详细的材料、机械设备需要量计划;签定材料供应合同;确定材料运输方案和计划;组织材料按计划进场和保管.(5)施工场外协调:由基础施工项目经理部与土方施工部共同对外协调交通、环卫、市容的关系,以及扰民、民扰处理的前期准备工作.六、基坑支护工程一、基础施工措施(一)施工放线根据桩位平面布置图及总包提供的测量基准点,首先由专职测量人员进行放线工作,放线结束后会同建设单位、监理及设计人员共同验线,确认无误并签字认可后方可进行下一步的施工工作。
变形监测
第一章变形、变形(Deformation)是指物体在外来因素作用下产生的形状、大小或者位置的改变。
引起变形的外来因素主要包括外加力和温度。
变形监测,也称为变形测量或变形观测,是指对物体的变形进行监视测量。
变形监测是一项用各种测量仪器(传感器)对所监测物体在荷载和环境变化作用下产生的变形,进行数据采集、数据计算处理、变形分析与预报的测量工作。
变形观测方法一般分为四类:1、地面测量方法2、空间测量技术3、摄影测量和地面激光扫瞄4、专门测量手段变形观测数据分析内容1、几何分析——是分析变形体在空间中和时域中的变形特性;2、物理解释——是分析变形与变形原因之间的关系,用于预报变形,理解变形的机理。
变形的物理解释方法1、统计分析法(或称回归分析法)——回归分析法是通过分析所观测的变形和变形成因之间的相关性来建立2、确定函数法——确定函数模型法是利用荷载、变形体的几何性质和物理性质,以及应力第二章建筑物垂直位移观测应该在基坑开挖之前进行,并且贯穿于整个施工过程中,而且延续到建成后若干年,直至沉降现象基本停止为止。
垂直位移测量通常采用水准测量方法为了减少系统误差的影响,一般考虑采取以下措施:(1)固定观测路线——设置固定的安置仪器点和立尺点(2)固定观测仪器和人员——监测工作中使用固定仪器和水准标尺,有条件时最好固定人员进行观测。
三固定:路线、仪器、人员保证水准基点稳定的措施远离——深埋——成组埋设——如果布设的水准基点与沉陷观测点之间的距离较远,需要在水准基点和沉陷观测点之间布置联系点,称为工作基点,垂直位移观测包括:①基坑回弹观测——②地基土分层沉降观测——③建(构)筑物基础——④建(构)筑物本身的沉降观测——⑤地表沉降观测——目前垂直位移观测最常用的是精密水准测量方法,有的情况下也有应用液体静力水准测量方法观测。
观测点布设有以下要求:(1)在基坑中央和距基坑底边缘约1/4坑底宽度处,以及其他变形特征位置设观测点。
深基坑开挖对周边环境变形影响监测实例
58 汪大龙:深基坑开挖对周边环境变形影响监测实例 2009年第3期(总第89期)深基坑开挖对周边环境变形影响监测实例汪大龙上海岩土工程勘察设计研究院有限公司【提 要】工程建设过程中对施工引起的变形要求越来越严格。
本文以实际工程为研究背景,对基坑施工时周边环境的变形规律进行了详细分析。
以期对今后从事类似工程建设提供参考和积累经验。
【关键词】深基坑 周边环境变形 开挖1 前 言随着城市发展,在有限的城市空间内进行工程建设活动越来越频繁。
工程建设的任何过程都将对周围环境造成变形影响,客观存在的环境条件给工程建设带来了极大的难度,同时对工程建设提出了更高的技术要求。
通过大量工程实践,人们对工程活动中周围地下管线保护、临近建筑物保护、一般地下设施保护等积累了大量的成功经验。
工程建设过程中对施工引起的变形要求越来越严格。
本文以实际工程为研究背景,对基坑施工时周边环境的变形规律进行了详细分析。
以期对今后从事类似工程建设提供参考和积累经验。
2 研究背景2.1 工程概况已建设完成的某高层建筑位于上海中心城区,为地上46层,地下3层钢筋砼结构,建筑基坑面积约8860㎡,基坑开挖深度16.3m。
本工程场地西侧距离基坑较近的有8条管线,最近的供电电缆距离基坑约为13.5m,内环高架路结构柱距基坑开挖面约25.5m;场地东侧电话线距基坑约为18.5m,轻轨结构柱与基坑的距离约为25.5m;北侧有11条地下管线,距基坑最近的给水管距离约为17.5m;场地南侧的西区与南区分别和5层建筑物、3层建筑物为邻,两幢建筑物均无桩基,与基坑相距约5.5m。
基坑平面呈不规则狭长矩形,基坑南北向最大跨度约199m,东西向最大跨度约50m。
本工程基坑围护采用深33~34.5mφ1200钻孔排桩挡土外加深29mφ850三轴水泥土搅拌桩止水,内设四道混凝土支撑的围护形式;在钻孔桩区域设置宽1.9m、深20m的搅拌桩预加固坝体,以确保挡土钻孔桩和坑底加固搅拌桩的可靠内力传递,并形成辅助封闭止水帷幕。
基坑监测实施方案
基坑监测实施方案
随着城市建设的不断发展,基坑的建设和监测成为了一个重要的环节。
基坑监测实施方案是确保基坑施工安全的关键步骤,也是保障周边建筑物和地下管线安全的重要措施。
下面我们来探讨一下基坑监测实施方案的重要性和具体实施步骤。
首先,基坑监测实施方案的重要性不言而喻。
在进行基坑施工之前,必须对周边环境和地下管线进行全面的调查和监测。
只有通过科学的监测手段,才能及时发现潜在的安全隐患,避免发生意外事故。
同时,基坑监测实施方案也是对施工单位的一种监督和管理,可以有效地提高施工质量和安全水平。
其次,基坑监测实施方案的具体实施步骤包括多方面内容。
首先是地质勘察和地下管线调查,通过对基坑周边地质情况和地下管线的调查,可以为后续的监测工作提供重要的基础数据。
其次是监测方案的制定,需要根据实际情况确定监测的具体内容和监测点位,以及监测设备的选择和布置。
最后是监测数据的收集和分析,通过对监测数据的及时收集和分析,可以及时发现问题并采取相应的措施,确保基坑施工的安全和顺利进行。
总之,基坑监测实施方案是基坑施工过程中不可或缺的一环,它的实施不仅可以保障基坑施工的安全,还可以保护周边建筑物和地下管线的安全。
希望各相关单位在进行基坑施工时,能够认真制定和执行基坑监测实施方案,确保施工过程的安全和顺利进行。
12米深基坑支护方案
12米深基坑支护方案咱们现在要搞定这个12米深的基坑支护,就像是给这个大坑穿上一件坚固又靠谱的铠甲,得好好计划一下。
一、工程概况。
这个基坑啊,足足有12米深,就像一个超级深的大陷阱似的。
周围的地质情况呢,咱们得先搞清楚。
比如说是不是有软乎乎的泥土,像那种容易变形的黏土之类的;或者有没有硬邦邦的岩石块。
这就好比打仗之前先了解地形一样重要。
二、支护方式的选择。
1. 排桩支护。
咱们可以考虑用排桩。
就像给基坑周围站一圈坚强的士兵一样。
这些桩可以是混凝土灌注桩,它们扎在地里,一根挨着一根,可结实了。
灌注桩就像在地里种了好多超级粗的树,只不过是混凝土做的树,深深扎根,能挡住旁边的土,不让它们往基坑里挤。
桩的间距呢,不能太宽也不能太窄。
太宽了,土就容易从中间溜进来;太窄了,又有点浪费材料。
咱们就根据计算,大概定个合适的距离,就像给士兵们安排好合适的站位一样。
2. 土钉墙支护。
还有土钉墙这个办法。
这就像是给基坑的土墙上钉满了小钉子。
先在土坡上挖一些小坑,然后把土钉插进去,再灌上混凝土。
这些土钉就像把土坡紧紧拉住的小手,让土坡稳稳当当的。
不过呢,土钉墙不太适合在特别软的土里面用,要是土太软,这些小手可能就拉不住了。
3. 地下连续墙支护。
地下连续墙那可是个厉害的家伙。
就像造一堵地下的长城一样,一堵厚厚的混凝土墙,从地面一直延伸到基坑底。
这堵墙又厚又坚固,能很好地挡住水和土的压力。
不过呢,这成本也比较高,就像造长城一样,要花不少钱和精力。
但是对于那些对变形要求特别严格,或者周围环境很复杂的基坑,它就像一个超级保镖一样靠谱。
三、排水措施。
1. 明沟排水。
在基坑里面呢,咱们要挖一些明沟。
这就像给基坑挖一些小水渠一样。
让那些渗进来的水可以顺着这些沟流出去。
沟的坡度要合适,就像滑梯一样,水才能顺利流到集水坑里。
2. 集水坑降水。
集水坑就是这些水的小“监狱”。
在基坑的角落里挖几个集水坑,把明沟里流过来的水都收集起来,然后用抽水机把水抽出去。
深基坑变形数值模拟结果与监测数据对比分析
深基坑变形数值模拟结果与监测数据对比分析*戴清宝(浙江恒欣设计集团股份有限公司福建勘察分公司福建泉州362000)摘要笔者以泉州市某基坑支护工程为案例,基坑采用土钉墙的支护型式,设计运用迈达斯计算软件对基坑开挖后的变形情况进行数值模拟计算,结合开挖后的基坑位移监测数据,将基坑变形的数值模拟计算数据与监测数据进行了对比分析㊂关键词深基坑土钉墙迈达斯数值模拟监测中图分类号:T U753.1文献标识码:A 文章编号:1002-2872(2023)11-0173-03随着车库的需求量日渐增长,地下室几乎已成为商品住宅楼及办公楼的标配,地下室的开挖,将影响周边建(构)筑物的安全,基坑支护应运而生㊂土钉墙作为一种最常见的基坑支护型式,有着工艺成熟㊁工期短㊁造价省等优点,成为众多基坑工程的首选方案,在基坑支护工程中应用非常广泛㊂G B55003-2021建筑与市政地基基础通用规范于2022年1月1日起正式实施,该规范第7.1.3条[1]将基坑支护结构及基坑周边土体的变形计算列入强制性条文要求,土钉墙支护体系下的周边土体变形理论计算与工程实际变形量是否存在较大差异?这是一个值得我们考证的内容㊂1工程实例概况工程场地位于泉州市惠安县,场地原为旧民房,场地已整平至ʃ0.000(黄海高程32.60m)㊂场地西侧7 m范围外为民房(1-4F㊁浅基㊁石砌㊁砖混或简易民房㊁持力层为粉质黏土或残积砂质粘性土),北侧民房已拆除,仅存旧围墙㊂南东二侧均为现状水泥路㊂建筑物下设一层整体地下室,基础类型为浅基础,地下室面积约4400m2,支护周长约315m,基坑最大支护深度约6.95m,基坑侧壁安全等级为二级,重要性系数γ0=1.0[2]㊂1.1工程地质概况按地貌类型划分,本场地属冲洪积平原,地势较平缓,据本勘资料,场地内除表层人工填土(Q4m l),第四系土层为冲洪积(Q4a l-p l)及残积(Q4e l)成因,基底为花岗岩类岩石(γ53)㊂工程场地地貌属残积台地地貌单元,场地地层分布情况自上而下分别为:杂填土㊁粉质黏土㊁残积砂质粘性土㊁全风化花岗岩等,物理力学参数见表1,相关地层描述如下:1.1.1杂填土灰黄㊁灰褐等杂色,干,松散,为新近回填(年限<1年),未经专门压实处理,均匀性及密实度差,呈欠固结状态,并具湿陷性,本层以粘性土为主,混含建筑垃圾与少量砂㊁碎石,其中硬质物约占15%~25%;该层场地内均有分布,层厚为0.40~2.40m㊂1.1.2粉质黏土浅黄㊁灰黄色,湿,可塑,主要由粘㊁粉粒组成,土质较均匀,粘性较强,切面稍光滑,无摇振反应,干强度高,韧性中等,含铁锰质氧化物;该层场地内均有分布,层厚为0.90~3.80m,层顶埋深0.40~2.40m㊂1.1.3残积砂质粘性土灰黄色,湿,可塑,捻面稍有光泽,无摇震反应,干强度㊁韧性中等,为花岗岩风化残积形成,成分以粘性土为主,有少量的细粒石英颗粒,粒径>2.0mm的含量范围值为5.9%~14.3%,长石及暗色矿物已全部风化成黏土矿物,具有泡水易软化崩解的特性;该层场地内均有分布,层厚为3.90~9.50m,层顶埋深为1.60~ 4.50m㊂1.1.4全风化花岗岩黄褐色㊁饱和,中粗粒花岗结构,散体状构造,风化显著但不均,标贯击数实测值N>30击/30c m,岩芯呈砂土状,遇水易软化,原生矿物清晰,含多量次生矿物,为极软岩,岩体极破碎,岩石基本质量等级V级,质量指标极差,未发现洞穴㊁临空面㊁风化孤石及 软㊃371㊃(紫砂艺术)2023年11月陶瓷C e r a m i c s *作者简介:戴清宝(1984-),本科,工程师;研究方向为岩土工程㊂弱 夹层;该层场地内均有分布,层厚为0.40~4.30m ,层顶埋深为7.50~12.80m ㊂表1 岩土物理力学参数表地层名称饱和重度γ(k N /m 3)固结快剪С(k P a )固结快剪φ(度)极限粘结强度标准值(f r b K )杂填土18.510.012.015粉质黏土18.622.413.835残积砂质粘性土19.016.223.445全风化花岗岩20.525.025.0601.2 水文地质概况杂填土:透水性强,富水性较弱;粉质黏土㊁残积砂质粘性土㊁全风化花岗岩:含水性与透水性较弱(为弱透水性层)㊂地下水赋存特征为:根据本工程勘察资料,地下水类型为孔隙潜水,赋存于杂填土㊁粉质黏土㊁残积砂质粘性土㊁全风化花岗岩中,主要靠大气降水与地表迳流下渗补给故其富水性受季节性制约㊂工程场地勘察期间测得钻孔孔内初见水位埋深距现地表1.50~2.90m (黄海标高为28.74~30.97m ),稳定水位埋深距现地表2.10~3.60m (黄海标高为28.14~30.27m ),据当地民井调查与建设方提供当地气象部门水文资料,本场地地下水变化幅度1.00~2.00m ,工程场地3~5年最高水位黄海标高为31.00m ;历史最高水位黄海标高为32.30m ㊂图1 支护剖面图1.3 基坑支护方案基坑支护的方式较多,近年来福建沿海一带用的比较多的支护型式有土钉墙㊁拉森钢板桩+预应力锚索㊁S MW 工法桩+预应力锚索㊁S MW 工法桩+钢管内支撑㊁排桩+内支撑等㊂结合本工程周边情况㊁地质条件㊁开挖深度等条件,本基坑工程最终采用土钉墙的支护型式㊂此次对比分析选取本工程案例的其中一个支护剖面进行,选取的支护剖面图见图1㊂2 变形数值模拟分析2.1 模型构成采用M i d a sS o i l w o r k s 计算软件,利用有限元分析法,对经土钉墙加固后的基坑侧壁进行数值模拟变形分析㊂计算模型利用基坑结构的对称性,取典型剖面对基坑侧壁土体进行计算分析,计算范围:基坑坑顶外取基坑开挖深度的2.5倍,基坑坑底以下取基坑开挖深度的1.0倍㊂2.2 数值模拟结果图2 水平位移模拟结果图3 竖向位移模拟结果根据M i d a sS o i l w o r k s 软件计算结果,水平位移最大值约1.8mm ,水平位移模拟结果见图2,竖向位表2 监测点累积位移量统计表监测项目水平位移监测点竖向位移监测点深层水平位移监测点监测点P 6P 7P 8S 6S 7S 8X 3X 4累积位移量(mm )4.5513.516.345.899.547.1310.668.12㊃471㊃ 陶瓷 Ce r a m i c s (紫砂艺术)2023年11月移最大值约14.3mm ,竖向位移模拟结果见图3㊂3 基坑监测实测数据该基坑现地下室外围土方已回填完成,基坑安全隐患已排除,基坑暴露总时长约70天,监测单位共出具52份监测简报,该支护剖面段水平位移监测点编号为P 6㊁P 7㊁P 8,竖向位移监测点编号为S 6㊁S 7㊁S 8,深层水位位移监测点编号为X 3㊁X 4,各监测点最终累积位移量见表2㊂4 对比分析本基坑由建设单位委托具有相应资质的第三方对基坑变形情况进行现场布点㊁监测,监测单位根据施工图及‘建筑基坑工程监测技术规范“[3]的要求实施监测工作,本文假设监测数据为基坑变形情况的真实体现㊂根据监测数据,坡顶水平位移累积位移量最大的点为P 7,累积位移量为13.51mm ,坡顶竖向位累积位移量最大的点为S 7,累积位移量为9.54mm ,深层水平位移累积位移量最大的点为X 3,累积位移量为10.66mm ㊂数值模拟计算该剖面段水平位移最大值1.8mm ,竖向位移最大值14.3mm ,不难发现,数值模拟计算结果与基坑实际位移量存在较大差异,说明数值模拟结果参考价值并不高㊂5 结结基坑变形的数值模拟结果与监测测得的实际变形存在较大差异,即理论与实际存在较大差异,归结为以下几点:(1)数值模拟计算,是将岩土层以参数形式量化后进行的模拟分析,而计算所采用的岩土层物理力学参数,是勘察单位根据现场原位测试或室内试验后所取,其中难免存在差异㊂(2)数值模拟计算是选取剖面段范围最具代表性的地层进行模拟,然而实际上不同位置各地层的埋深㊁层厚等是存在一定差异的㊂(3)理论计算是严格按照设计设定的边界条件进行的,施工现场不大可能和设计设定的边界条件完全一致,包括坡顶荷载㊁支护结构的施工质量等㊂参考文献[1] 中国建筑科学研究院.J G J 120-2012建筑基坑支护技术规程[S ].北京:中华人民共和国住房和城乡建设部,2012.[2] 中华人民共和国住房和城乡建设部.G B55003-2021建筑与市政地基基础通用规范[S ].北京:中华人民共和国住房和城乡建设部,2021.[3] 中华人民共和国住房和城乡建设部.G B50497-2009建筑基坑工程监测技术规范[S ].北京:中华人民共和国住房和城乡建设部,2009.㊃571㊃(紫砂艺术)2023年11月 陶瓷 C e r a m i c s。
深基坑-冰冻法
3、结束语深基坑“冻结排桩”围护新技术 在润扬大桥南锚碇基础工程中应用取得圆 满成功,是我国岩土工程基础施工法的一 个技术创新。该方法使结构物深基础嵌岩 问题变得简单易行,这是地下连续墙、沉 井等施工方法难以逾越的。通过工程实践, 仍有一些需要解决的技术难题,例如如何 有效地控制冻结墙体厚度;如何降低冻胀 力对结构的影响;研究新的卸压手段等。
1.1工程地质状况南锚碇位于镇江岸农田内, 距江边大堤540m,距达标大堤270m。地处 下扬子板块前陆褶皱冲断区宁镇冲断带。 锚区地面高程+3.0m(黄海高程系统,以下 同),,第四系覆盖层主要以软塑淤泥质 亚粘土、亚粘土与粉砂互层为主,底层为 3~5m粉细砂,总厚27.80~29.40m。基岩的 岩性为二长风化花岗岩,层面总体上较为 平缓,标高在-24.80~-26.40m之间,但全风 化层和强风化层分布不均匀。在基坑西侧 岩石呈碎裂结构,裂隙发育。
2.2.1排桩结构设计沿基坑四周布置 140φ150cm@170cm(172.5cm)钻孔灌注桩,桩 长35m,嵌岩6m。基坑内设7道钢筋混凝土 水平支撑,并由29根钢格构作为水平支撑 的支承立柱。
2.2.2冻结帷幕设计冻结帷幕布置在排桩外侧,设计 采用单排冻结孔冻结封水,与排桩插花布置,间距 1.70m(1.725m),距离排桩中心线1.4m。冻结孔 数量为144个,孔深40m,冻结帷幕入岩11m。为了 保护冻结帷幕不会因地下水绕流冲刷融化,同时增 加封水深度减少基底的涌水量和扬压力,沿基坑一 周共设置74个注浆孔,在冻结前,对深度37~45m 范围内的基岩裂隙进行地面预注浆封堵。含水地层 经冻结后产生冻胀,当这种冻胀受到约束时,就会 产生冻胀力。为了降低冻胀力对排桩结构不利影响, 设计采取在冻结帷幕外侧覆盖层土体内设置 288φ25cm卸压孔。为了有效地释放冻胀力,卸压孔 内注满优质泥浆。以防孔壁坍塌。
深基坑工程监测方案
深基坑工程监测方案1.监测对象深基坑工程监测的对象主要包括基坑边坡、土体位移、地下水位和地下管道等。
其中,基坑边坡是工程安全的重要因素,需要通过监测来及时掌握其变形情况。
土体位移是判断工程变形和稳定性的重要指标,需要通过监测来评估土体的变形和沉降情况。
地下水位的变化对基坑工程施工和周围建筑物稳定性有直接的影响,需要通过监测来掌握地下水位的变化情况。
地下管道是工程施工过程中需保护的重要设施,需要通过监测来确保其安全。
2.监测方法深基坑工程监测可采用传统的测量方法以及现代化的无线监测系统相结合的方式。
传统测量方法包括全站仪测量、水准测量和位移传感器测量等。
全站仪测量可以实时获取基坑边坡的变形情况;水准测量可以用于监测基坑周围土体的沉降情况;位移传感器测量可以用于监测地下管道的位移情况。
无线监测系统可以实时监测深基坑工程的各种参数,包括土壤应力、地下水位和渗流等。
3.监测措施为确保监测工作能够顺利进行,需要采取一系列措施保障监测设备的正常运行。
首先,选用高质量和可靠性的监测设备,包括高精度的全站仪、精密的水准仪和稳定的位移传感器。
其次,合理布置监测点位,根据深基坑的具体情况和设计要求,确定监测点位的布置位置和数量。
同时,保障监测设备的日常维护和保养工作,定期校准设备并检查设备的工作状态。
最后,及时收集并分析监测数据,建立完整的监测数据库,通过数据分析和模型验证,及时评估工程的安全性和稳定性,并采取相应的措施进行调整和改进。
综上所述,深基坑工程监测方案包括监测对象、监测方法和监测措施三个方面。
通过合理选择监测对象、采用适当的监测方法和实施有效的监测措施,可以确保深基坑工程的安全和稳定,并为深基坑工程的设计和施工提供可靠的数据支持。
基坑变形观测方案和日常巡查方案
基坑变形观测方案和日常巡查方案
1. 监测点设置,在基坑周边和内部设置监测点,以监测基坑周
边土体和支护结构的变形情况。
监测点的设置需要考虑基坑的深度、土质情况、支护结构类型等因素。
2. 监测参数,监测参数包括但不限于地表沉降、支护结构位移、周边建筑物变形等。
这些参数的监测可以通过测量仪器、全站仪、
倾斜仪等设备进行实时或定期监测。
3. 监测频率,根据基坑施工阶段和工程地质条件,确定监测频率,一般包括施工前、施工中和施工后的监测。
4. 监测记录和分析,及时记录监测数据,对监测数据进行分析,及时发现基坑变形趋势,采取相应的措施。
接下来是日常巡查方案:
1. 巡查内容,日常巡查内容包括基坑周边的支护结构、土体稳
定情况、降水排水情况、施工现场秩序等。
2. 巡查频率,根据施工进度和地质条件,确定日常巡查的频率,一般包括每日巡查和每周定期巡查。
3. 巡查记录和处理,及时记录巡查情况,对发现的问题及时处理,必要时及时向相关部门汇报。
4. 巡查人员,确定巡查人员及其职责,确保巡查工作的及时性
和有效性。
综上所述,基坑变形观测方案和日常巡查方案是基坑施工安全
管理的重要组成部分,通过科学合理的方案制定和实施,可以有效
地保障基坑施工的安全和质量。
深基坑开挖支护方案四:排桩支护—混凝土灌注桩
深基坑开挖支护方案四:排桩支护—混凝土灌注桩支护一、排桩支护—混凝土灌注桩支护的概念排桩支护(图1)是指以某种桩型按队列式布置组成的基坑支护结构,其中包括混凝土灌注桩支护和钢制桩支护两大类型。
混凝土灌注桩支护(图2),指在施工现场利用成孔机械(或人工)成孔后,根据工程需要选择是否下钢筋笼,然后灌注混凝土所形成的排桩式支护结构。
根据成孔方式的不同,混凝土灌注桩支护主要分为机械钻孔灌注桩支护和人工挖孔灌注桩支护两大类。
图1 排桩支护图2 混凝土灌注桩支护二、混凝土灌注桩支护的特点1、优点(1)施工设备简单;(2)所需作业场地不大,噪声低,振动小;(3)无挤土现象,对周围环境影响小;(4)成本较低;(5)桩身强度高,刚度大,变形小,支护稳定性好。
2、缺点(1)桩间间距较大,易造成水土流失,特别是在高水位松软土质地区,需根据工程条件配合注浆、水泥搅拌桩、旋喷桩等施工措施以解决挡水问题;(2)在砂砾层和卵石中施工困难;(3)桩与桩之间主要通过桩顶冠梁和围檩连成整体,因而相对整体性较差,当在重要地区,特殊工程及开挖深度很大的基坑中应用时需要专项设计。
三、混凝土灌注桩支护的适用范围混凝土灌注桩支护适用于大部分的地质条件,但在砂砾层和卵石中施工较为困难。
多用于坑深7~15m 的基坑工程,在我国北方土质较好地区已有8~9m 的悬臂桩围护墙,在软土地区悬臂式灌注桩结构不能超过5m。
四、资源需求计划1、水电需要量计划2、劳动力需要量计划3、施工机械需要量计划4、材料需求量计划五、施工准备(1)技术准备:熟悉、审查施工图纸。
(2)施工现场准备工作:地上、地下各种管线及障碍物的勘测定位;地上、地下障碍物的拆除;施工现场的平整;测量放线;临时道路、临时供水、供电等管线的敷设;临时设施的搭设;现场照明设备的安装。
(3)劳动组织准备:建立各施工部的管理组织,集结施工力量、组织劳动力进场,做好施工人员入场教育等工作。
(4)材料、机械准备:根据相关的设计图纸和施工预算,编制详细的材料、机械设备需要量计划;签定材料供应合同;确定材料运输方案和计划;组织材料按计划进场和保管。
地下室深基坑排桩支护与开挖监测施工方案(土钉喷锚)
地下室深基坑排桩支护与开挖监测施工方案(土钉喷锚)目录第一章编制依据及编制说明第二章工程概况第三章施工组织计划第四章施工工期计划及进度保证措施第五章挂网喷射混凝土施工工艺及说明第六章人工挖孔桩方法及措施第七章边坡支护措施第八章脚手架搭设拆除安全技术措施第九章土方开挖施工方案及外运第十章基坑降排水方案第十一章施工监测及应急措施第十二章基坑外围回填土相应措施第十三章质量保证措施第十四章安全生产保证体系与文明施工第十五章劳动组织计划和主要机械设备计划第一章编制依据及编制说明一、施工方案编制依据本施工组织设计根据下列规范或者技术文件编制:1、《岩土工程勘察报告》;2、现场踏勘成果数据,基坑施工参数、基坑四周环境初步取证资料;3、基坑支护的设计施工图4、《建筑基坑支护技术规程》(JGJ120-2012);5、《锚杆喷射混凝土支护技术规范》(GB50086-2001);6、《建筑边坡工程技术规范》(GB50330-2002);7、《基坑土钉支护技术规程》(CECS96:1997);8、《建筑基坑工程监测技术规范》(GB50497-2009)9、《现有国家规范建筑工程质量验收统一标准》;10、《基坑工程手册》;11、《危险性较大的分部分项工程安全管理办法》的通知;12、其它国家和地方有关规范、规程、标准。
第二章工程概况一、总述1、本工程位于XX省XX县XX镇黄桷树坡地块,其西侧为XX河,东侧为XX大道南段,北侧为规划道路,南侧临规划道路。
2、拟建工程场地地势经削坡整平后较平坦,地面标高介于299.56~303.07m之间;场区原始地貌属剥蚀残丘斜坡拟建建(构)筑物由17号楼(14F/吊2F/-3F),18号楼(21F/吊2F/-3F),19号楼(22F/吊2F/-3F)及地下车库组成,该项目建筑总面积98317.44 m2,其中地上建筑面积 63058.68 m2,地下建筑面积35258.76 m2 。
±0.000=314..300,基坑底290.4,周边地面标高300.4~315.4m,基坑开挖深度为10.00~15.00m,基坑开挖面积约12493.19m基坑开挖周长约869m。
深基坑工程变形监测实例分析
深基坑工程变形监测实例分析本文结合工程实例,在介绍深基坑变形监测的主要内容的基础上,从围护结构水平位移监测、周围建筑物沉降监测、锚索应用监测及周围环境监测等方面探讨了深基坑变形监测工作,为类似工程变形监测作参考。
标签:深基坑;变形监测;实例分析隨着我国城市进程的不断加快,建筑行业得到了进一步的发展,许多建筑空间逐渐向地下室发展,基坑的开挖深度越来越大,对深基坑工程的施工技术和施工质量要求也有所提高。
在深基坑工程施工中,由于受到地质条件、周边环境、降水不到位和施工环境等复杂因素的影响,基坑施工必然会影响到周围建筑物、地下设施和周围环境,因此,施工人员有必要加强深基坑工程变形监测工作,通过运行专业的仪器和各种方法对深基坑变形进行监测,能够准确掌握深基坑工程施工情况和预测基坑施工未来发展的趋势,对确保深基坑工程的质量安全具有重要的意义。
1基坑变形监测的内容深基坑监测的主要内容有围护结构的水平位移监测、沉降监测、应力监测,及地下水位监测、护坡监测和周围环境监测等,一般通过设定监测项目的报警值来保障基坑施工和周边环境的安全。
在监测过程中,不仅要提供精确的监测数据,还应加强对基坑水文地质的了解与分析、基坑与周边相邻建筑物关系的分析研究。
2.1围护结构的监测(1)水平位移监测围护结构顶部水平位移是围护结构变形最直观的体现,是整个监测过程的重点。
围护结构变形是由于水平方向上基坑内外土体的原始应力状态改变而引起的地层移动。
(2)沉降监测基坑围护结构的沉降多与地下水活动有关。
地下水位的升降使基底压力产生不同的变化,造成基底的突涌或下陷。
通常使用精密电子水准仪按水准测量方法对围护结构的关键部位进行沉降监测。
(3)应力监测基坑稳定状态下,侧壁受主动土压力,围护结构受被动土压力,主动土压力与被动土压力之间成动态平衡。
随着基坑的开挖,平衡被破坏,基坑将发生变形。
2.2周围环境监测(1)邻近建筑物沉降监测当软土地区开挖深基坑时,基坑周围土体塑性区比较大,土的塑性流动也比较大,土体从围护结构外侧向坑内和基底流动,因此地表产生沉降,这是沉降产生的主要原因。
深基坑支护工程监理实施细则
深基坑支护工程监理实施细则项目总监理工程师: ________________(签字)编制人:__________________________(签字)2007年1月编制一、工程概况 (1)1.编制依据 (1)2.深基坑支护工程的内容 (2)一海其圻守护丁琼域占9三、监理工作的流程 (3)1.人工挖孔桩 (3)2.锚杆 (3)四、监理工作的控制要点 (4)1.复核和确认施工测量放线成果 (4)2.工程质量、构配件、设备的报验 (4)3.隐蔽工程的旁站和报验 (4)4.分部分项工程质量 (5)4.1人工挖孔桩施工 (5)4.2土方开挖及锚杆施工 (7)5.一般质量缺陷................................................... H6.重大质量、安全隐患 (11)五、监理工作的方法及措施: (11)1.实施监理:...................................................... H2.主要措施 (11)六、安全监理细则: (12)1.准备阶段监理控制要点 (12)2.施工阶段监理控制要点 (12)3.安全监理工作依据和方法 (13)七、进度、投资控制 (13)一、工程概况本工程深基坑的范围有加热炉、冲渣沟、设备基础、铁皮坑。
加热炉由***工业炉有限公司设计施工总承包。
基坑为加热炉设备基础,基础为距形,基础长约51m,宽约49M,加热炉外墙1m,东侧外墙[1-1]—[1-5]基础相连,基坑深8.50,(I-I)-(1-5)轴垂直开挖,原中间3个独立基础。
(J-2)位于(1-1),(1-3),(1-5)轴与H轴相交,基坑底标高・3m,上部为钢结构厂房,周边环境严峻,不允许有较大的变形,基坑设计为一级基坑,基坑设计由****公司设计施工,基坑支护采用悬臂排桩+锚杆,人工挖孔桩托换法,基坑支护。
主轧机及配套厂房设备由****公司设计,**总承包,铁皮坑长约60m,宽约10m,开挖深度25m,采用人工挖孔机叶锚杆支护。
[国企]专家论证!危大工程深基坑、高边坡常见支护结构形式及施工监测
悬臂式挡墙
边坡工程
桩板式挡墙:适用于开挖土石方可能危及相邻建筑物或环境安全
支
护
的边坡、填方边坡支档以及工程滑坡治理。按结构形式分为悬臂式桩
结
构
板挡墙、锚拉式桩板挡墙,挡板可采用现浇板或预制板。桩嵌固段土
常
用 形
质较差时不宜采用,当对挡墙变形要求较高时宜采用锚拉式桩板挡墙。
式
——
桩
悬臂式桩板挡墙高度不宜超过12m,锚拉式桩板挡墙高度不宜超
边坡工程
2 专家论证
《建筑边坡工程技术规范》GB50330-2013第3.1.12条规定,下列边坡 工程的设计及施工应进行专门论证:
➢ 高度超过本规范适用范围的边坡工程(土质边坡高度大于15m、 岩质边坡高度大于30m); ➢ 地质和环境条件复杂、稳定性极差的一级边坡工程; ➢ 边坡塌滑区有重要建(构)筑物、稳定性较差的边坡工程; ➢ 采用新结构、新技术的一、二级边坡工程。
边坡工程
特点是不利于控制边坡变形,土方开
支 护
挖后边坡稳定较差时不应采用。采用重力
结
式挡墙时,土质边坡高度不宜大于10m,
构 常
岩质边坡高度不宜大于12m。
用
形
式
重力式挡墙材料可使用浆砌块石、条
——
石、毛石混凝土或素混凝土。施工前应预
重
先设置好排水系统,保持边坡和基坑坡面
力 式
干燥。基坑开挖后,基坑内不应积水,并
护 结
当地质条件良好、土质均匀且无地下水,其放坡的坡度系数应根据当
构
地施工பைடு நூலகம்验确定,无经验时可按下表确定:
常
用
自然放坡的坡率允许值
形
式
坡率允许值(高宽比)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深基坑变形监测方案
(1)主要技术内容
深基坑工程是开挖深度大于5m的基坑工程、深基坑工程的监测与控制则是一种比较复杂的信息反馈与控制。
深基坑工程监测是指在深基坑开挖施工过程中,借助仪器设备和其他一些手段对围护结构、基坑周围的环境(包括土体、建筑物、构筑物、道路、地下管线等)的应力、位移.倾斜、沉降、开裂、地下水位的动态变化,土层孔隙水压力变化等进行综合监测。
深基坑工程控制则是根据前段开挖期间的监测信息,一方面与勘察、设计阶段预测的性状进行比较,对设计方案进行评价,判断施工方案的合理性;另一方面通过反分析方法或经验方法计算与修正岩上的力学参数,预测下阶段施工过程中可能出现问题,为优化和合理组织施工提供依据,并对进一步开挖与施工的方案提出建议,对施工过程中可能出现的险情进行及时的预报.以便采取必要的工程措施。
(2)技术指标
深基坑工程监测与控制技术应符合国家行业标准《建筑基坑支护技术规程》JGJl20-99和中华人民共和国行业标准《建筑基坑工程技术规范》YB9258-97的规定。
⑶深基坑变形监测采用经纬仪测墙顶水平位移,在基坑四面埋设基准点,排桩施工时每一工况进行一次监测,根据位移大小对支护参数进行调整。
排桩施工结束后每周及每次雨后进行一次位移监测,评价边坡安全状况,遇危险情况采取适当应急措施。
⑷监测项目:
①、基坑水平位移监测,每隔20m布置1个位移观测点;
②、基坑土体变形检测,每隔30m布置1个测斜管;
③、对基坑周边50m范围内的建筑物进行沉降和水平位移监
测;
④、地下水位监测,在基坑每侧位置各布置1个,共4个水位观测井。
附:基坑位移观测点布置图。