山东省淄博市部分学校2020届高三数学阶段性诊断考试试题 理(含解析)
2020届山东省淄博市部分学校高三6月阶段性诊断考试(二模)数学试题
参照秘密级管理★启用并使用完毕前部分学校高三阶段性诊断考试试题数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、单项选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合1{|1}A x x=<,{||1|2},B x x =-<则A B =I().1,3A -().1,1B -()()()().1,00,1.1,01,3C D --U U2.设复数z 满足z ()12,i i ⋅-=+则z 的虚部是 A .32 B .32i C .-32 D. -32i3.在正项等比数列{}n a 中,若374,a a =则()52a-= A .16 B .8 C .4 D .24.当5,36ππα⎛⎫∈ ⎪⎝⎭时,方22cos sin 1x y αα+=程表示的轨迹不可能是 A .两条直线 B .圆 C .椭圆 D .双曲线5.已知1123411log 2,,23a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.Aa c b <<.B a b c << .C c a b << .D c b a <<6.在平行四边形ABCD 中,3,DE EC =u u u r u u u r 若AE 交BD 于点M ,则→AM =A .1233AM AB AD =+u u u u r u u u r u u u rB .3477AM AB AD =+u u u u r u u u r u u u r21.33C AM AB AD =+u u u u r u u u r u u u r25.77D AM AB AD =+u u u u r u u u r u u u r7.某学校甲、乙、丙、丁四人竞选校学生会主席职位,在竞选结果出来前,甲、乙、丙、丁四人对竞选结果做了如下预测:甲说:丙或丁竞选成功;乙说:甲和丁均未竞选上: 丙说:丁竞选成功;丁说:丙竞选成功若这四人中有且只有2人说的话正确,则成功竞选学生会主席职位的是 A .甲 B .乙 C .丙 D .丁8.已知函数()f x 是定义在(-π2,π2)上的奇函数.当0,2x π⎡⎫∈⎪⎢⎣⎭时,()()tan 0,f x f x x '+>则不等式()cos sin 02x f x x f x π⎛⎫⋅++⋅-> ⎪⎝⎭的解集为A.(.π4,π2)B .(-.π4,π2)C .,04π⎛⎫- ⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设[x ]表示不小于实数x 的最小整数,则满足关于x 的不等式2120x x []+[-…]的解可以为 A.B .3 C .-4.5 D .-510.已知动点P 在双曲线C :2213y x -=上,双曲线C 的左右焦点分别为21,s F F 下列结论正确的是A .C 的离心率为2B .C的渐近线方程为y x = C .动点P 到两条渐近线的距离之积为定值 D .当动点P 在双曲线C 的左支上时,122||||PF PF 的最大值为1411.华为5G 通信编码的极化码技术方案基于矩阵的乘法,如:()()11212122122b b c c a a b b ⎛⎫=⨯ ⎪⎝⎭,其中11112212112222,c a b a b c a b a b =+=+.已知定义在R 上不恒为0的函数(),f x 对任意,a b R ∈有:()()()12) 11(11b y y f a f b a -+⎛⎫=⨯ ⎪-⎝⎭且满足()12,f ab y y =+则()()().00.11.A f B f C f x =-=是偶函数 ().D f x 是奇函数12.向体积为1的正方体密闭容器内注入体积为()01x x <<的液体,旋转容器,下列说法正确的是 A .当12x =时,容器被液面分割而成的两个几何体完全相同 ().0,1,B x ∀∈液面都可以成正三角形形状C .当液面与正方体的某条对角线垂直时,液面面积的最大值为34 3 D .当液面恰好经过正方体的某条对角线时,液面边界周长的最小值为25 三、填空题:本题共4小题,每小题5分,共20分13.已知()cos 2cos 2πααπ⎛⎫+=- ⎪⎝⎭,则cos2α= ▲14.设随机变量()~4,9,N ζ若实数a 满足()()3221,P a P a ξζ<+=>-则a 的值是 ▲15.已知抛物线C :218y x =的焦点是F ,点M 是其准线l 上一点,线段MF 交抛物线C 于点N .当23MN MF =u u u u r u u u r时,△NOF 的面积是 ▲16.用 M I 表示函数 y = s i n x 在闭区间I 上的最大值.若正实数a [][]0,,22a a a M …则[]0,a M = ▲a 的取值范围是 ▲ (本题第一空2分,第二空3分)四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17.(10分)下面给出有关ABC V 的四个论断:ABC S =V ①222122a b ac a c c +=+=②;③或b =④ 以其中的三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:若 ▲ ,则 ▲ (用序号表示)并给出证明过程: 18.(12分)已知数列{}n a 为“二阶等差数列”,即当()*1n n n a a b n +-=∈N 时,数列{b n }为等差数列15325,67,101.a a a ===(1)求数列{}n b 的通项公式; (2)求数列{}n a 的最大值19.(12分)新生儿某疾病要接种三次疫苗免疫(即0、1、6月龄),假设每次接种之间互不影响,每人每次接种成功的概率相等为了解新生儿该疾病疫苗接种剂量与接种成功之间的关系,现进行了两种接种方案的临床试验: 1 0 μg /次剂量组与 2 0 μg / 次剂量组,试验结果如下:(1)根据数据说明哪种方案接种效果好?并判断能否有99.9%的把握认为该疾病疫苗接种成功与两种接种方案有关? (2)以频率代替概率,若选用接种效果好的方案,参与该试验的1000人的成功人数比此剂量只接种一次的成功人数平均提高多少人. 参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中.n a b c d =+++参考附表:20.(12分)在四棱柱1111ABCD A B C D -中,已知底面ABCD 为等腰梯形,AB ∥CD ,112CD CB AB ===,M,N 分别是棱AB,B 1C 1的中点 (1)证明:直线MN ∥平面11ACC A ;(2)若1D C ⊥平面ABCD ,且13DC =,求经过点A ,M ,N 的平面1A MN 与平面11ACC A 所成二面角的正弦值.21.(12分)已知椭圆E :()222210x y a b a b +=>>的左右焦点分别为F 1,F 2,离心率是32,P 为椭圆上的动点.当12F PF ∠取最大值时12,PF F ∆的面积是 3 (1)求椭圆的方程:(2)若动直线l 与椭圆E 交于A ,B 两点,且恒有0,OA OB ⋅=u u u r u u u r是否存在一个以原点O 为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由 22.(12分)已知函数()2.ln f x x x x ax =+-(1)若函数()f x 在区间[1,)+∞上单调递减,求实数a 的取值范围;(2)当) 2,(*n n ≥∈N 时,求证:222111111;23e n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L(3)若函数()f x 有两个极值点x 1,x 2,求证:212( 1e x x e >为自然对数的底数)。
山东省淄博市部分学校2020届高三6月阶段性诊断考试(二模)数学试题 Word版含答案
参照秘密级管理★启用并使用完毕前部分学校高三阶段性诊断考试试题数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、单项选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合1{|1}A x x=<,{||1|2},B x x =-<则A B =I ().1,3A -().1,1B -()()()().1,00,1.1,01,3C D --U U2.设复数z 满足z ()12,i i ⋅-=+则z 的虚部是A .32B .32iC .-32 D. -32i3.在正项等比数列{}n a 中,若374,a a =则()52a -=A .16B .8C .4D .24.当5,36ππα⎛⎫∈ ⎪⎝⎭时,方22cos sin 1x y αα+=程表示的轨迹不可能是 A .两条直线 B .圆 C .椭圆 D .双曲线 5.已知1123411log 2,,23a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.Aa c b <<.B a b c <<.C c a b <<.D c b a <<6.在平行四边形ABCD 中,3,DE EC =u u u r u u u r 若AE 交BD 于点M ,则→AM =A .1233AM AB AD =+u u u u r u u u r u u u r B .3477AM AB AD =+u u u u r u u u r u u u r 21.33C AM AB AD =+u u u u r u u u r u u u r25.77D AM AB AD =+u u u u r u u u r u u u r 7.某学校甲、乙、丙、丁四人竞选校学生会主席职位,在竞选结果出来前,甲、乙、丙、丁四人对竞选结果做了如下预测:甲说:丙或丁竞选成功;乙说:甲和丁均未竞选上:丙说:丁竞选成功;丁说:丙竞选成功若这四人中有且只有2人说的话正确,则成功竞选学生会主席职位的是A .甲B .乙C .丙D .丁8.已知函数()f x 是定义在(-π2,π2)上的奇函数.当0,2x π⎡⎫∈⎪⎢⎣⎭时,()()tan 0,f x f x x '+>则不等式()cos sin 02x f x x f x π⎛⎫⋅++⋅-> ⎪⎝⎭的解集为 A.(.π4,π2)B .(-.π4,π2)C .,04π⎛⎫- ⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设[x ]表示不小于实数x 的最小整数,则满足关于x 的不等式2120x x []+[-…]的解可以为AB .3C .-4.5D .-510.已知动点P 在双曲线C :2213y x -=上,双曲线C 的左右焦点分别为21,s F F 下列结论正确的是A .C 的离心率为2B .C的渐近线方程为3y x =± C .动点P 到两条渐近线的距离之积为定值D .当动点P 在双曲线C 的左支上时,122||||PF PF 的最大值为1411.华为5G 通信编码的极化码技术方案基于矩阵的乘法,如:()()11212122122b b c c a a b b ⎛⎫=⨯ ⎪⎝⎭,其中11112212112222,c a b a b c a b a b =+=+. 已知定义在R 上不恒为0的函数(),f x 对任意,a b R ∈有:()()()12) 11(11b y y f a f b a -+⎛⎫=⨯ ⎪-⎝⎭且满足()12,f ab y y =+则 ()()().00.11.A f B f C f x =-=是偶函数 ().D f x 是奇函数12.向体积为1的正方体密闭容器内注入体积为()01x x <<的液体,旋转容器,下列说法正确的是A .当12x =时,容器被液面分割而成的两个几何体完全相同 ().0,1,B x ∀∈液面都可以成正三角形形状C .当液面与正方体的某条对角线垂直时,液面面积的最大值为34 3D .当液面恰好经过正方体的某条对角线时,液面边界周长的最小值为2 5三、填空题:本题共4小题,每小题5分,共20分13.已知()cos 2cos 2πααπ⎛⎫+=- ⎪⎝⎭,则cos2α= ▲ 14.设随机变量()~4,9,N ζ若实数a 满足()()3221,P a P a ξζ<+=>-则a 的值是 ▲15.已知抛物线C :218y x =的焦点是F ,点M 是其准线l 上一点,线段MF 交抛物线C 于点N .当23MN MF =u u u u r u u u r 时,△NOF 的面积是 ▲ 16.用 M I 表示函数 y = s i n x 在闭区间I 上的最大值.若正实数a 满足[][]0,,22a a a M …则[]0,a M = ▲a 的取值范围是 ▲ (本题第一空2分,第二空3分)四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17.(10分)下面给出有关ABC V 的四个论断:32ABC S =V ①;222122a b ac a c c +=+=②;③或 3.b =④ 以其中的三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: 若 ▲ ,则 ▲ (用序号表示)并给出证明过程:18.(12分)已知数列{}n a 为“二阶等差数列”,即当()*1n n n a a b n +-=∈N 时,数列{b n }为等差数列15325,67,101.a a a ===(1)求数列{}n b 的通项公式;(2)求数列{}n a 的最大值19.(12分)新生儿某疾病要接种三次疫苗免疫(即0、1、6月龄),假设每次接种之间互不影响,每人每次接种成功的概率相等为了解新生儿该疾病疫苗接种剂量与接种成功之间的关系,现进行了两种接种方案的临床试验: 1 0 μg /次剂量组与 2 0 μg / 次剂量组,试验结果如下:(1)根据数据说明哪种方案接种效果好?并判断能否有99.9%的把握认为该疾病疫苗接种成功与两种接种方案有关?(2)以频率代替概率,若选用接种效果好的方案,参与该试验的1000人的成功人数比此剂量只接种一次的成功人数平均提高多少人.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中.n a b c d =+++参考附表:20.(12分)在四棱柱1111ABCD A B C D -中,已知底面ABCD 为等腰梯形,AB ∥CD ,112CD CB AB ===,M,N 分别是棱AB,B 1C 1的中点 (1)证明:直线MN ∥平面11ACC A ;(2)若1D C ⊥平面ABCD ,且13DC =,求经过点A ,M ,N 的平面1A MN 与平面11ACC A 所成二面角的正弦值.21.(12分)已知椭圆E :()222210x y a b a b+=>>的左右焦点分别为F 1,F 2,离心率是32,P 为椭圆上的动点.当12F PF ∠取最大值时12,PF F ∆的面积是 3(1)求椭圆的方程: (2)若动直线l 与椭圆E 交于A ,B 两点,且恒有0,OA OB ⋅=u u u r u u u r 是否存在一个以原点O 为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由22.(12分)已知函数()2.ln f x x x x ax =+-(1)若函数()f x 在区间[1,)+∞上单调递减,求实数a 的取值范围;(2)当) 2,(*n n ≥∈N 时,求证:222111111;23e n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L (3)若函数()f x 有两个极值点x 1,x 2,求证:212( 1e x x e >为自然对数的底数)。
山东省淄博市部分学校2020届高三6月阶段性诊断考试(二模)数学试题+Word版含答案byde
参照秘密级管理★启用并使用完毕前部分学校高三阶段性诊断考试试题数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、单项选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合1{|1}A x x=<,{||1|2},B x x =-<则A B =().1,3A -().1,1B -()()()().1,00,1.1,01,3C D -- 2.设复数z 满足z ()12,i i ⋅-=+则z 的虚部是A .32B .32iC .-32D.-32i3.在正项等比数列{}n a 中,若374,a a =则()52a-=A .16B .8C .4D .24.当5,36ππα⎛⎫∈ ⎪⎝⎭时,方22cos sin 1x y αα+=程表示的轨迹不可能是A .两条直线B .圆C .椭圆D .双曲线5.已知1123411log 2,,23a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.A a c b <<.B a b c <<.C c a b <<.D c b a<<6.在平行四边形ABCD 中,3,DE EC = 若AE 交BD 于点M ,则→AM =A .1233AM AB AD=+ B .3477AM AB AD=+ 21.33C AM AB AD=+25.77D AM AB AD=+ 7.某学校甲、乙、丙、丁四人竞选校学生会主席职位,在竞选结果出来前,甲、乙、丙、丁四人对竞选结果做了如下预测:甲说:丙或丁竞选成功;乙说:甲和丁均未竞选上:丙说:丁竞选成功;丁说:丙竞选成功若这四人中有且只有2人说的话正确,则成功竞选学生会主席职位的是A .甲B .乙C .丙D .丁8.已知函数()f x 是定义在(-π2,π2)上的奇函数.当0,2x π⎡⎫∈⎪⎢⎣⎭时,()()tan 0,f x f x x '+>则不等式()cos sin 02x f x x f x π⎛⎫⋅++⋅-> ⎪⎝⎭的解集为A.(.π4,π2)B .(-.π4,π2)C .,04π⎛⎫- ⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设[x ]表示不小于实数x 的最小整数,则满足关于x 的不等式2120x x []+[- ]的解可以为AB .3C .-4.5D .-510.已知动点P 在双曲线C :2213y x -=上,双曲线C 的左右焦点分别为21,s F F 下列结论正确的是A .C 的离心率为2B .C的渐近线方程为3y x =±C .动点P 到两条渐近线的距离之积为定值D .当动点P 在双曲线C 的左支上时,122||||PF PF 的最大值为1411.华为5G 通信编码的极化码技术方案基于矩阵的乘法,如:()()11212122122b b c c a a b b ⎛⎫=⨯ ⎪⎝⎭,其中11112212112222,c a b a b c a b a b =+=+.已知定义在R 上不恒为0的函数(),f x 对任意,a b R ∈有:()()()12) 11(11b y y f a f b a -+⎛⎫=⨯ ⎪-⎝⎭且满足()12,f ab y y =+则()()().00.11.A f B f C f x =-=是偶函数().D f x 是奇函数12.向体积为1的正方体密闭容器内注入体积为()01x x <<的液体,旋转容器,下列说法正确的是A .当12x =时,容器被液面分割而成的两个几何体完全相同().0,1,B x ∀∈液面都可以成正三角形形状C .当液面与正方体的某条对角线垂直时,液面面积的最大值为343D .当液面恰好经过正方体的某条对角线时,液面边界周长的最小值为25三、填空题:本题共4小题,每小题5分,共20分13.已知()cos 2cos 2πααπ⎛⎫+=- ⎪⎝⎭,则cos 2α=▲14.设随机变量()~4,9,N ζ若实数a 满足()()3221,P a P a ξζ<+=>-则a 的值是▲15.已知抛物线C :218y x =的焦点是F ,点M 是其准线l 上一点,线段MF 交抛物线C 于点N .当23MN MF =时,△NOF 的面积是▲16.用M I 表示函数y =s i n x在闭区间I 上的最大值.若正实数a 满足[][]0,,22a a a M 则[]0,a M =▲a 的取值范围是▲(本题第一空2分,第二空3分)四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17.(10分)下面给出有关ABC 的四个论断:2ABC S =①222122a b ac a c c +=+=②;③或b =④以其中的三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:若▲,则▲(用序号表示)并给出证明过程:18.(12分)已知数列{}n a 为“二阶等差数列”,即当()*1n n n a a b n +-=∈N 时,数列{b n }为等差数列15325,67,101.a a a ===(1)求数列{}n b 的通项公式;(2)求数列{}n a 的最大值19.(12分)新生儿某疾病要接种三次疫苗免疫(即0、1、6月龄),假设每次接种之间互不影响,每人每次接种成功的概率相等为了解新生儿该疾病疫苗接种剂量与接种成功之间的关系,现进行了两种接种方案的临床试验:10μg /次剂量组与20μg /次剂量组,试验结果如下:(1)根据数据说明哪种方案接种效果好?并判断能否有99.9%的把握认为该疾病疫苗接种成功与两种接种方案有关?(2)以频率代替概率,若选用接种效果好的方案,参与该试验的1000人的成功人数比此剂量只接种一次的成功人数平均提高多少人.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中.n a b c d =+++参考附表:20.(12分)在四棱柱1111ABCD A B C D -中,已知底面ABCD 为等腰梯形,AB ∥CD ,112CD CB AB ===,M,N 分别是棱AB,B 1C 1的中点(1)证明:直线MN ∥平面11ACC A ;(2)若1D C ⊥平面ABCD ,且1D C =,求经过点A ,M ,N 的平面1A MN 与平面11ACC A 所成二面角的正弦值.21.(12分)已知椭圆E :()222210x y a b a b+=>>的左右焦点分别为F 1,F 2,离心率是32,P 为椭圆上的动点.当12F PF ∠取最大值时12,PF F ∆的面积是3(1)求椭圆的方程:(2)若动直线l 与椭圆E 交于A ,B 两点,且恒有0,OA OB ⋅=是否存在一个以原点O为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由22.(12分)已知函数()2.ln f x x x x ax =+-(1)若函数()f x 在区间[1,)+∞上单调递减,求实数a 的取值范围;(2)当) 2,(*n n ≥∈N 时,求证:222111111;23e n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(3)若函数()f x 有两个极值点x 1,x 2,求证:212( 1e x x e >为自然对数的底数)。
山东省淄博实验中学2020届高三数学下学期第一次(4月)教学诊断考试试卷文(含解析)
淄博实验中学高三年级第二学期第一次诊断考试试题数学(文)一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设为虚数单位. 若复数是纯虚数,则复数在复面上对应的点的坐标为()A. B. C. D. 【答案】D【解析】【分析】利用复数是纯虚数求出,化简为,问题得解。
【详解】因为复数是纯虚数,所以,解得:,所以复数可化为,所以复数在复面上对应的点的坐标为. 故选:D【点睛】本题主要考查了复数的有关概念及复数对应点的知识,属于基础题。
2. 已知集合若,则实数的取值范围为()A. B. C. D. 【答案】B【解析】【分析】分别求出集合A,B ,利用列不等式即可求解。
【详解】由得:或.所以集合.由得:.又,所以(舍去)或.故选:B【点睛】本题主要考查了集合的包含关系及对数函数的性质,考查计算能力,属于基础题。
3. 如图是为了求出满足的最小偶数,那么在和两个空白框中,可以分别填入()B. 和A.和C. 和D. 和【答案】D【解析】由题意,因为,且框图中在“否”时输出,所以判定框内不能输入,故填,又要求为偶数且初始值为0,所以矩形框内填,故选D.点睛: 解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义. 本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.4. 已知函数,若,则为()A. B. C. D.【答案】D【解析】由题意可得:解得:.本题选择D选项•5. 函数(且)的图象可能为()【答案】D【解析】因为,故函数是奇函数,所以排除A, B;取,则,故选D.考点:1. 函数的基本性质;2. 函数的图象.【此处有视频,请去附件查看】6. 我国南北朝时期数学家、天文学家——祖暅,提出了著名的祖暅原理:“缘幂势即同,则积不容异也” . “幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两立方体体积相等. 已知某不规则几何体与如图三视图所对应的几何体满足“幂势同”,则该不规则几何体的体积为()A. B. C. D.【答案】B【解析】【分析】本道题结合三视图,还原直观图,利用正方体体积,减去半圆柱体积,即可。
2020届山东省淄博市部分学校高三教学质量检测(二模)数学试题解析
绝密★启用前2020届山东省淄博市部分学校高三教学质量检测(二模)数学试题学校:___________姓名:___________班级:___________考号:___________注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、单选题1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<解:由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .2.已知复数z 满足(12)43i z i +=+,则z 的共轭复数是( ) A .2i -B .2i +C .12i +D .12i -解:由()1243i z i +=+,得43i2i 12iz +==-+,所以2z i =+. 故选:B3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙解:若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .4.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面解:由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .5.已知曲线11(0x y a a -=+>且1)a ≠过定点(),k b ,若m n b +=且0,0m n >>,则41m n+的最小值为( ). A .92B .9C .5D .52解:Q 定点为(1,2),1,2k b ∴==,2m n ∴+=41141()()2m n m n m n +=++∴149(5+)22m n n m =+… 当且仅当4m nn m =时等号成立,即42,33m n ==时取得最小值92. 故选:A点评:本题考查指数型函数的性质,以及基本不等式(1的代换)求最值.6.函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .解:设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B . 7.“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 A 32 B 322 C .1252D .1272解:因为每一个单音与前一个单音频率比为122所以1212(2,)n n a a n n N -+=≥∈, 又1a f =,则1277712812)2a a q f === 故选D.8.已知点1F 是抛物线C :22x py =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F ,2F 为焦点的双曲线上,则双曲线的离心率为( ) A .622B 21C .622D 21答案:D解:根据抛物线的性质,设出直线方程,代入抛物线方程,求得k 的值,设出双曲线方程,求得2a =丨AF 2丨﹣丨AF 1丨=(2-1)p ,利用双曲线的离心率公式求得e . 解:直线F 2A 的直线方程为:y =kx 2p -,F 1(0,2p ),F 2(0,2p -), 代入抛物线C :x 2=2py 方程,整理得:x 2﹣2pkx +p 2=0, ∴△=4k 2p 2﹣4p 2=0,解得:k =±1,∴A (p ,2p ),设双曲线方程为:2222y x a b-=1,丨AF 1丨=p ,丨AF 2丨222p p =+=p ,2a =丨AF 2丨﹣丨AF 1丨=( 2-1)p ,2c =p , ∴离心率e 221ca ===+-1, 二、多选题9.某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图(1)所示)后(如直方图(2)所示)的体重(单位:kg )变化情况:对比数据,关于这20名肥胖者,下面结论正确的是( ) A .他们健身后,体重在区间[)90,100内的人数较健身前增加了2人 B .他们健身后,体重原在区间[)100,110内的人员一定无变化 C .他们健身后,20人的平均体重大约减少了8kgD .他们健身后,原来体重在区间[]110,120内的肥胖者体重都有减少解:体重在区间[)90,100内的肥胖者由健身前的6人增加到健身后的8人,增加了2人,故A 正确;他们健身后,体重在区间[)100,110内的百分比没有变,但人员组成可能改变,故B 错误;他们健身后,20人的平均体重大约减少了()()0.3950.51050.21150.1850.4950.51055kg ⨯+⨯+⨯-⨯+⨯+⨯=,故C 错误;因为图(2)中没有体重在区间[]110,120内的人员,所以原来体重在区间[)110,120内的肥胖者体重都有减少,故D 正确. 故选:AD.点评:本题考查直方图的应用,考查频数以及平均数的计算与应用,考查计算能力,属于基础题.10.已知点P 在双曲线22:1169x y C -=上,1F 、2F 是双曲线C 的左、右焦点,若12PF F ∆的面积为20,则下列说法正确的有( ) A .点P 到x 轴的距离为203B .12503PF PF += C .12PF F ∆为钝角三角形D .123F PF π∠=解:因为双曲线22:1169x y C -=,所以5c ==.又因为12112102022PF F P P S c y y ∆=⋅=⋅⋅=,所以4P y =,所以选项A 错误; 将4P y =代入22:1169x y C -=得2241169x -=,即203P x =. 由对称性,不妨取P 的坐标为20,43⎛⎫ ⎪⎝⎭,可知2133PF ==. 由双曲线定义可知1213372833PF PF a =+=+=, 所以12133750333PF PF +=+=,所以选项B 正确; 由对称性,对于上面点P , 在12PF F ∆中,12371321033PF c PF =>=>=. 且2222121212125cos 0213PF F F PF PF F PF F F +-∠==-<⋅,则21PF F ∠为钝角,所以12PF F ∆为钝角三角形,选项C 正确;由余弦定理得222121212123191cos 22481PF PF F F F PF PF PF +-∠==≠⋅,123F PF π≠∠,所以选项D 错误. 故选:BC.11.如图所示,在四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,CDE ∆是正三角形,M 为线段DE 的中点,点N 为底面ABCD 内的动点,则下列结论正确的是( )A .若BC DE ⊥时,平面CDE ⊥平面ABCDB .若BC DE ⊥时,直线EA 与平面ABCD 所成的角的正弦值为104C .若直线BM 和EN 异面时,点N 不可能为底面ABCD 的中心D .若平面CDE ⊥平面ABCD ,且点N 为底面ABCD 的中心时,BM =EN 解:因为BC CD ⊥,BC DE ⊥,CD DE D =I ,所以BC ⊥平面CDE ,BC ⊂Q 平面ABCD ,所以平面ABCD ⊥平面CDE ,A 项正确;设CD 的中点为F ,连接EF 、AF ,则EF CD ⊥.Q 平面ABCD ⊥平面CDE ,平面ABCD I 平面CDE CD =,EF ⊂平面CDE .EF ∴⊥平面ABCD ,设EA 平面ABCD 所成的角为θ,则EAF θ=∠,223EF CE CF =-=225AF AD FD =+=222AE EF AF =+=则6sin EF EA θ==B 项错误;连接BD ,易知BM ⊂平面BDE ,由B 、M 、E 确定的面即为平面BDE , 当直线BM 和EN 异面时,若点N 为底面ABCD 的中心,则N BD ∈, 又E ∈平面BDE ,则EN 与BM 共面,矛盾,C 项正确;连接FN ,FN ⊂Q 平面ABCD ,EF ⊥平面ABCD ,EF FN ∴⊥,F Q 、N 分别为CD 、BD 的中点,则112FN BC ==, 又3EF=故222EN EF FN =+=,227BM BC CM =+=则BM EN ≠,D 项错误. 故选:AC.12.已知111ln 20x x y --+=,22242ln 20x y +--=,记()()221212M x x y y =-+-,则( ) A .M 255B .当M 最小时,2125x =C .M 的最小值为45D .当M 最小时,265x =解:由111ln 20x x y --+=,得:111ln 2y x x =-+,()()221212x x y y -+-的最小值可转化为函数ln 2y x x =-+图象上的点到直线242ln 20x y +--=上的点的距离的最小值的平方,由ln 2y x x =-+得:11y x'=-, 与直线242ln 20x y +--=平行的直线的斜率为12-, 则令1112x -=-,解得:2x =,∴切点坐标为()2,ln 2, ()2,ln 2∴到直线242ln 20x y +--=的距离22ln 242ln 22514d +--==+即函数ln 2y x x =-+上的点到直线242ln 20x y +--=上的点的距离的最小值为. ()()221212M x x y y ∴=-+-的最小值为245d =, 过()2,ln 2与242ln 20x y +--=垂直的直线为()ln 222y x -=-,即24ln 20x y --+=.由242ln 2024ln 20x y x y +--=⎧⎨--+=⎩,解得:125x =,即当M 最小时,2125x =. 故选:BC.三、填空题13.已知向量a v =(-4,3),b v =(6,m ),且a b ⊥v v,则m =__________.解:向量4,36,a b m a b =-=⊥r r r r(),(),,则•046308a b m m =-⨯+==r r,,.14.在1nx ⎫⎪⎭的展开式中,各项系数之和为64,则展开式中的常数项为__________________.解:1nx ⎫⎪⎭的展开式各项系数和为264n =,得6n =,所以,61x ⎫⎪⎭的展开式通项为63621661rrrrrr T C C x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令6302r-=,得2r =,因此,展开式中的常数项为2615C =. 故答案为:15.15.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .若sin sin b A a C =,1c =,则b =__,ABC ∆面积的最大值为___.解:因为sin sin b A a C =,所以由正弦定理可得ba ac =,所以1b c ==;所以111S 222ABC bcsinA sinA ∆==≤,当1sinA =,即90A =︒时,三角形面积最大. 故答案为(1). 1 (2). 1216.已知函数()f x 的定义域为R ,导函数为()f x ',若()()cos f x x f x =--,且()sin 02xf x '+<,则满足()()0f x f x π++≤的x 的取值范围为______.。
2020届 山东省淄博市部分学校 高三下学期3月教学质量检测数学试题(解析版)
2020届山东省淄博市部分学校高三下学期3月教学质量检测数学试题一、单选题 1.已知全集,集合,集合,则集合( ) A .B .C .D .【答案】B 【解析】,,则,故选B.【考点】本题主要考查集合的交集与补集运算.2.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠- D .(0,)x ∀∉+∞,ln 1x x =-【答案】C【解析】试题分析:特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:(0,)x ∀∈+∞,ln 1x x ≠- 【考点】全称命题与特称命题 3.设1i2i 1iz -=++,则||z = A .0 B .12C .1D 2【答案】C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分. 4.二项式()()1nx n N *+∈的展开式中2x项的系数为15,则n =( ) A .4 B .5C .6D .7【答案】C【解析】二项式()1nx +的展开式的通项是1C r rr n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C .【考点定位】二项式定理.5.ABC ∆是边长为1的等边三角形,点,D E 分别是边,AB BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则·AF BC u u u v u u u v的值为( ) A .58- B .18C .14D .118【答案】B【解析】试题分析:设BA a =u u u r ,BC b u u u r=,∴11()22DE AC b a ==-u u u r u u u r ,33()24DF DE b a ==-u u u r u u u r ,1353()2444AF AD DF a b a a b =+=-+-=-+u u u r u u u r u u u r ,∴25353144848AF BC a b b ⋅=-⋅+=-+=u u u r u u u r .【考点】向量数量积【名师点睛】研究向量的数量积问题,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是将“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是 A .[]26, B .[]48,C.D.⎡⎣【答案】A【解析】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解:Q 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点 ()()A 2,0,B 0,2∴--,则AB =Q 点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d的范围为则[]2212,62ABP S AB d ==∈V 故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.7.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞)C .[–1,+∞)D .[1,+∞)【答案】C【解析】分析:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图像(将(0)x e x >去掉),再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.详解:画出函数()f x 的图像,x y e =在y 轴右侧的去掉, 再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程()f x x a =--有两个解, 也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.8.已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .86π B .46πC .26πD 6π【答案】D【解析】先证得PB ⊥平面PAC ,再求得2PA PB PC ===,从而得P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解. 【详解】解法一:,PA PB PC ABC ==∆Q 为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥I 平面PAC ,PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,22226R =++= 36446662338R V R =∴=π=⨯=ππ,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆Q 为边长为2的等边三角形, 3CF ∴=又90CEF ∠=︒213,2CE x AE PA x ∴=-==AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =Q ,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=, 221221222x x x ∴+=∴==,2PA PB PC ∴===,又===2AB BC AC ,,,PA PB PC ∴两两垂直,22226R ∴=++=6R ∴=,34466633V R ∴=π==π,故选D. 【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、多选题9.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )A .年接待游客量逐年增加B .各年的月接待游客量高峰期大致在8月C .2017年1月至12月月接待游客量的中位数为30D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】ABD【解析】观察折线图,掌握折线图所表达的正确信息,逐一判断各选项. 【详解】由2017年1月至2019年12月期间月接待游客量的折线图得: 在A 中,年接待游客量虽然逐月波动,但总体上逐年增加,故A 正确; 在B 中,各年的月接待游客量高峰期都在8月,故B 正确;在C 中,2017年1月至12月月接待游客量的中位数小于30,故C 错误; 在D 中,各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D 正确. 故选:ABD 【点睛】本题主要考查学生对于折线图的理解能力,考查图表的识图能力,属于基础题. 10.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是( )A .AC BE ⊥B .//EF 平面ABCDC .AEF V 的面积与BEF V 的面积相等D .三棱锥A BEF -的体积为定值 【答案】ABD【解析】对各选项逐一作出正确的判断即可. 【详解】可证AC ⊥平面11D DBB ,从而AC BE ⊥,故A 正确;由11//B D 平面ABCD ,可知//EF 平面ABCD ,B 也正确;连结BD 交AC 于O ,则AO 为三棱锥A BEF -的高,1111224BEF S =⨯⨯=△,三棱锥A BEF -的体积为112234224⨯⨯=D 正确;很显然,点A 和点B 到的EF 距离是不相等的,C 错误. 故选:ABD 【点睛】本题主要考查空间线、面的位置关系及空间几何体的体积与面积,属于中档题.11.已知椭圆22143x y +=的左、右焦点分别为F 、E ,直线x m =(11)m -<<与椭圆相交于点A 、B ,则( ) A .当0m =时,FAB V 3 B .不存在m 使FAB V 为直角三角形 C .存在m 使四边形FBEA 面积最大D .存在m ,使FAB V 的周长最大【答案】AC【解析】对各选项逐一作出正确的判断即可. 【详解】 如图:对于A 选项,经计算显然正确;对于B 选项,0m =时,可以得出3AFE π∠=,当1m =时,4AFE π∠<,根据对称性,存在m 使FAB V 为直角三角形,故B 错误;对于C 选项,根据椭圆对称性可知,当0m =时,四边形FBEA 面积最大,故C 正确; 对于D 选项,由椭圆的定义得:FAB V 的周长(2)(2)4AB AF BF AB a AE a BE a AB AE BE =++=+-+-=+--;∵AE BE AB +≥;∴0AB AE BE --≤,当AB 过点E 时取等号; ∴44AB AF BF a AB AE BE a ++=+--≤; 即直线x m =过椭圆的右焦点E 时,FAB V 的周长最大;此时直线1x m c ===;但11m -<<,所以不存在m ,使FAB V 的周长最大.故D 错误. 故选:AC 【点睛】本题主要考查了椭圆的定义及几何性质,考查学生识图能力,属于中档题. 12.函数()f x 在[,]a b 上有定义,若对任意12,[,]x x a b ∈,有[]12121()()()22x x f f x f x +≤+则称()f x 在[,]a b 上具有性质P .设()f x 在[1,3]上具有性质P ,则下列说法错误的是:( ) A .()f x 在[1,3]上的图像是连续不断的; B .2()f x 在3]上具有性质P ;C .若()f x 在2x =处取得最大值1,则()1f x =,[1,3]x ∈;D .对任意[]1234,,,1,3x x x x ∈,有[]123412341()()()+()+()44x x x x f f x f x f x f x +++≤+【答案】AB【解析】根据题意,对各选项逐一作出正确的判断即可. 【详解】对于A 选项,反例2,13()10,3x x f x x ⎧≤<=⎨=⎩,此函数满足性质P 但不连续,故A 错误;对于B 选项,()f x x =-具有该性质,但是22()f x x =-不具有该性质,故B 错误; 对于C 选项,由性质P 得,()(4)2(2)2f x f x f +-≥=,且()1f x ≤,(4)1f x -≤, 故()1f x =,故C 正确;对于D 选项,121234342314++221()=()()()42222x x x x x x x x x x x x f f f f ++++++⎡⎤≤+⎢⎥⎣⎦ []12341()()()()4f x f x f x f x ≤+++,故D 正确. 故选:AB 【点睛】本题主要考查函数的概念,函数的性质,考查学生分析能力,推理判断能力,属于中档题.三、填空题13.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案) 【答案】16【解析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果. 【详解】根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16. 【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.14.已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________. 【答案】14【解析】由题意首先求得3a b -的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件. 【详解】由360a b -+=可知36a b -=-, 且:312228aa bb -+=+,因为对于任意x ,20x >恒成立,结合均值不等式的结论可得:3122224ab-+≥==.当且仅当32236a b a b -⎧=⎨-=-⎩,即31a b =-⎧⎨=⎩时等号成立.综上可得128ab +的最小值为14. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.15.已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.1 2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中22,m n 关系,即得双曲线N 的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为c +,再根据椭圆定义得2c a =,解得椭圆M 的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为c ,再根据椭圆定义得2c a +=,所以椭圆M 的离心率为1.c a == 双曲线N 的渐近线方程为ny x m=±,由题意得双曲线N 的一条渐近线的倾斜角为222ππtan 333n m ∴==,, 222222234 2.m n m m e e m m ++∴===∴=, 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是_____________.【答案】【解析】分析:首先对函数进行求导,化简求得()()1'4cos 1cos 2f x x x ⎛⎫=+-⎪⎝⎭,从而确定出函数的单调区间,减区间为()52,233k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦,增区间为()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,确定出函数的最小值点,从而求得sin x x ==代入求得函数的最小值. 详解:()()21'2cos 2cos24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫=+=+-=+- ⎪⎝⎭,所以当1cos 2x <时函数单调减,当1cos 2x >时函数单调增,从而得到函数的减区间为()52,233k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦,函数的增区间为()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,所以当2,3x k k Z ππ=-∈时,函数()f x 取得最小值,此时sin x x ==所以()min 2222f x ⎛⎫=⨯--=- ⎪ ⎪⎝⎭,故答案是2-. 点睛:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.四、解答题17.已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+. (1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和. 【答案】(1)见证明;(2)()221141322n n n --- 【解析】(1)利用等比数列的定义可以证明;(2)由(1)可求n b 的通项公式,结合n n b a n =+可得n a ,结合通项公式公式特点选择分组求和法进行求和. 【详解】证明:(1)∵n n b a n =+,∴111n n b a n ++=++. 又∵1431n n a a n +=+-,∴()1143111n n n n n n a n n b a n b a n a n +++-++++==++()44n n a n a n+==+.又∵111112b a =+=+=,∴数列{}n b 是首项为2,公比为4的等比数列.解:(2)由(1)求解知,124n n b -=⨯,∴124n n n a b n n -=-=⨯-,∴()()211221412(1444)(123)142n n n n n n S a a a n --+=++⋯+=++++-++++=--L L ()221141322n n n =---. 【点睛】本题主要考查等比数列的证明和数列求和,一般地,数列求和时要根据数列通项公式的特征来选择合适的方法,侧重考查数学运算的核心素养. 18.已知分别在射线(不含端点)上运动,,在中,角所对的边分别是.(Ⅰ)若依次成等差数列,且公差为2.求的值;(Ⅱ)若,,试用表示的周长,并求周长的最大值【答案】(1)或.(2),【解析】试题分析:(Ⅰ)由题意可得a=c-4、b=c-2.又因∠MCN=π,,可得恒等变形得c2-9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=2sⅠnθ,BC=,△ABC的周长f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函数的定义域和值域,求得f(θ)取得最大值.试题解析:(Ⅰ)∵a、b、c成等差,且公差为2,∴a=c-4、b=c-2.又因∠MCN=π,,可得,恒等变形得c2-9c+14=0,解得c=7,或c=2.又∵c>4,∴c=7.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|=,又,当,即时,f(θ)取得最大值.【考点】1.余弦定理;2.正弦定理19.如图,边长为2的正方形ABCD所在的平面与半圆弧»CD所在平面垂直,M是»CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析 (2)25【解析】(1)先证BC ⊥平面CMD,得BC CM ⊥,再证CM MD ⊥,进而完成证明. (2)先建立空间直角坐标系,然后判断出M 的位置,求出平面MAB 和平面MCD 的法向量,进而求得平面MAB 与平面MCD 所成二面角的正弦值. 【详解】解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD uuu r上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BC I CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA u u u v的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD uuu r的中点.由题设得()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,1,1D A B C M ,()()()2,1,1,0,2,0,2,0,0AM AB DA =-==u u u u v u u u v u u u v设(),,n x y z =是平面MAB 的法向量,则0,0.n AM n AB ⎧⋅=⎨⋅=⎩u u u u vu u uv 即20,20.x y z y -++=⎧⎨=⎩ 可取()1,0,2n =.DA u u u v是平面MCD 的法向量,因此5cos ,5n DA n DAn DA ⋅==u u u vu u u v u u u v ,25sin ,n DA =u u u v , 所以面MAB 与面MCD 所成二面角的正弦值是25. 【点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问主要考查建立空间直角坐标系,利用空间向量求出二面角的平面角,考查数形结合,将几何问题转化为代数问题进行求解,考查学生的计算能力和空间想象能力,属于中档题. 20.如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I )求直线AP 斜率的取值范围; (II )求PA?PQ 的最大值 【答案】(I )(-1,1);(II )2716. 【解析】试题分析:本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.满分15分. (Ⅰ)由斜率公式可得AP 的斜率为12x -,再由1322x -<<,得直线AP 的斜率的取值范围;(Ⅱ)联立直线AP 与BQ 的方程,得Q 的横坐标,进而表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.试题解析:(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA1)2x +1)k +, |PQ|= 2)Q x x -=所以3(1)(1)k k PA PQ ⋅--+=. 令3()(1)(1)f k k k =--+, 因为2'()(42)(1)f k k k =--+,所以 f (k )在区间1(1,)2-上单调递增,1(,1)2上单调递减, 因此当k =12时,||||PA PQ ⋅取得最大值2716. 【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.21.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:,,,≈2.646.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:【答案】(Ⅰ)答案见解析;(Ⅱ)答案见解析.【解析】试题分析:(Ⅰ)根据相关系数的公式求出相关数据后,代入公式即可求得的值,最后根据值的大小回答即可;(Ⅱ)准确求得相关数据,利用最小二乘法建立y关于t的回归方程,然后预测.试题解析:(Ⅰ)由折线图中数据和附注中参考数据得,,,,.因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归模型拟合与的关系.(Ⅱ)由及(Ⅰ)得,.所以,关于的回归方程为:.将2016年对应的代入回归方程得:.所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 【考点】线性相关系数与线性回归方程的求法与应用.【方法点拨】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数公式求出,然后根据的大小进行判断.求线性回归方程时要严格按照公式求解,并一定要注意计算的准确性.22.已知函数2()2ln =-f x x x x ,函数2()(ln )=+-ag x x x x,其中a R ∈,0x 是()g x 的一个极值点,且()02g x =. (1)讨论()f x 的单调性 (2)求实数0x 和a 的值 (3)证明()*211ln(21)241=>+∈-nk n n N k【答案】(1)()f x 在区间()0,∞+单调递增;(2)01,1x a ==;(3)证明见解析. 【解析】(1)求出()'f x ,在定义域内,再次求导,可得在区间()0,∞+上()'0f x ≥恒成立,从而可得结论;(2)由()'0g x =,可得20002ln 0x x x a --=,由()02g x =可得()220000ln 20x x x x a --+=,联立解方程组可得结果;(3)由(1)知()22ln f x x x x =-在区间()0,∞+ln x x x>,取*21,21k x k N k +=∈-2121ln(21)ln(21)2121k k k k k k +->+---+,而=,利用裂项相消法,结合放缩法可得结果.【详解】(1)由已知可得函数()f x 的定义域为()0,∞+,且()22ln 2f x x x '=--, 令()()'h x f x =,则有()21'()x h x x-=,由()'0h x =,可得1x =,可知当x 变化时,()()',h x h x 的变化情况如下表:()()10h x h ∴≥=,即()'0f x ≥,可得()f x 在区间()0,∞+单调递增;(2)由已知可得函数()g x 的定义域为()0,∞+,且22ln ()1a x g x x x'=--, 由已知得()'0g x =,即20002ln 0x x x a --=,①由()02g x =可得,()220000ln 20x x x x a --+=,②联立①②,消去a ,可得()20002ln 2ln 20x x x ---=,③令2()2(ln )2ln 2t x x x x =---,则2ln 22(ln 1)'()2x x x t x x x x--=--=, 由(1)知,ln 10x x --≥,故()'0t x ≥,()t x ∴在区间()0,∞+单调递增, 注意到()10t =,所以方程③有唯一解01x =,代入①,可得1a =,01,1x a ∴==;(3)证明:由(1)知()22ln f x x x x =-在区间()0,∞+单调递增,故当()1,x ∈+∞时,()()11f x f >=,2222ln 1()1()0x x x f x g x x x'---==>, 可得()g x 在区间()1,+∞单调递增, 因此,当1x >时,()()12g x g >=,即21(ln )2x x x+->,亦即22(ln)x>,0,ln0x>>ln x>,取*21,21kx k Nk+=∈-,ln(21)ln(21)k k>+--=,故11(ln(21)ln(21))ln(21)nknkk kπ==>+--=+∑11ln(21)()2nix n N*=∴>+∈.【点睛】本题主要考查利用导数研究函数的单调性以及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.。
山东省淄博市2020届高三高考模拟(二模)数学答案
累加可得:
讨 an = (an − an−1) + (an−1 − an−2 ) ++ (a2 − a1) + a1 = bn−1 + bn−2 ++ b1 + a1
=
(n
−1){22
+ [−2(n 2
−1)
+
24]}
+
25
,
= −n2 + 25n − 24 + 25
研 学
= −n2 + 25n +1
中数 由① SABC =
3 ,得 1 ac sin B = 22
3 ,且 B = 60 ,得 ac = 2 ;………6 分 2
高 由③ a = 2 或 1 ,不仿取 a = 2 ,联立 ac = 2 ,得 a = 2,c =1;………8 分
c
2
c
东 余弦定理: b2 = a2 + c2 − ac = 4 +1− 2 = 3 ,得 b = 3 ,④成立;……10 分
c
2
c
3 2
,即 sin
B
=
3 2c2
;
由④ b = 3 ,且 b2 = a2 + c2 − 2ac cos B , a = 2 ,得 5c2 − 4c2 cos B = 3 , c
从而
cos
B
=
5c2 − 4c2
3
;
讨 同时 sin2 B + cos2 B =1 ,得 3c4 −10c2 + 7 = 0 ,得 c = 1或 7 , 3
研 当
c
= 1时,得
a c
=2 =1
山东省淄博市2020届高三下学期3月高三部分学校教学质量检测(二模)数学试题(word版,含解析)
山东省淄博市2020届高三下学期3月高三部分学校教学质量检测(二模)数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 题目要求的.1. 已知集合M={x|-4<x<2},2{|60},N x x x =--<则M∩N= A. {x|-4<x<3}B. {x|-4<x<-2}C. {x|-2<x<2}D. {x|2<x<3}2.已知复数z 满足(1+2i)z=4+3i,则z 的共轭复数是 A.2-iB.2+IC.1+2iD.1-2i3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙4.设α, β为两个平面,则α//β的充要条件是 A. a 内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α, β平行于同一条直线D. α, β垂直于同一平面5.已知曲线11(0x y aa -=+>且a≠1)过定点(k,b),若m+n=b,且m>0,n>0,则41m n+的最小值为 9.2AB.9C.55.2D 6.函数3222x xx y -=+在[-6,6]的图象大致为7.“十二平均律”是通用的音律体系,明代朱载填最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率3.2A32.2B125.2C127.2D8.已知点1F 是抛物线C:22x py =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以12,F F 为焦点的双曲线上,则双曲线的离心率为62.A -.21B -.21C +62.D + 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图(1)所示)后(如直方图(2)所示)的体重(单位:)kg 变化情况:对比数据,关于这20名肥胖者,下面结论正确的是A.他们健身后,体重在区间[90,100)内的人数较健身前增加了2人B.他们健身后,体重原在区间[100,110)内的人员一定无变化C.他们健身后,20人的平均体重大约减少了8 kgD.他们健身后,原来体重在区间[110,120]内的肥胖者体重都有减少10.已知点P 在双曲线C 22:1169x y -=上,12,F F 是双曲线C 的左、右焦点,若12PF F 的面积为20,则下列说法正确的有A.点P 到x 轴的距离为2031250.||||2B PF PF += 12.c PF F ∆为钝角三角形12.3D F PF π∠=11. 如图所示,在四棱锥E- ABCD 中,底面ABCD 是边长为2的正方形,△CDE 是正三角形,M 为线段DE 的中点,点N 为底面ABCD 内的动点,则下列结论正确的是A.若BC ⊥DE 时,平面CDE ⊥平面ABCDB.若BC ⊥DE 时,直线EA 与平面ABCD 所成的角的正弦值为104C.若直线BM 和EN 异面时,点N 不可能为底面ABCD 的中心D.若平面CDE ⊥平面ABCD,且点N 为底面ABCD 的中心时,BM= EN 12. 已知111220,lnx x y x --+=+2y 2-4-21n2=0.记22212()(),M x x y y =-+-则A. M 255B.当M 最小时,2125x =C.M 的最小值为45D.当M 最小时,265x =第II 卷(非选择题90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知向量(4,3),(6,).a b m =-=r r且,a b ⊥r r 则m=___14.在1()nx x的展开式中;各项系数之和为64,则展开式中的常数项为____15.在△ABC 中,内角A,B, C 所对的边分别是a,b,c.若bsin A=asinC, c=1,则b=____,△ABC 面积的最大值为___. (第一个空2 分,第二个空3分)16. 已知函数f(x)的定义域为R ,导函数为(),f x '若()cos (),f x x f x =--且sin ()0,2xf x '+<则满足f(x+π)+f(x)≤0的x 的取值范围为____四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程成演算步骤. 17. (10分)已知数列{}n a 满足*11131,(2,).222n n n a a a n n N --==+≥∈且 (1)求证:数列{2}nn a 是等差数列,并求出数列{{}n a 的通项公式:(2)求数列{}n a 的前n 项和.n S18. (12分)已知△ABC 的内角A;B,C 的对边分别为 a , b , c ,满足3sin cos 0.A A += 有三个条件:①a=1;(2)3b =3(3).4ABC S ∆=其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题: (1)求c:(2)设D 为BC 边上一点,且AD ⊥AC,求△ABD 的面积.19. (12分)图1是由矩形ADEB 、Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB=1,BE= BF=2,∠ FBC=60°,将其沿AB,BC 折起使得BE 与BF 重合,连结DG,如图2.(1)证明:图2中的A,C, G, D 四点共面,且平面ABC ⊥平面BCGE : (2)求图2中的二面角B CG A --的大小.20. (12分)已知椭圆222:9(0),C x y m m +=>直线l 不过原点O 且不平行于坐标轴, l 与C 有两个交点A,B,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值; (2)若l 过点(,).3mm 延长线段OM 与C 交于点P ,判断四边形OAPB 能否为平行四边行?若能,求此时l 的斜率:若不能,一说明理由.21. (12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量x (单位:亿元)对年销售额y (单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:2(1),(2)x t y x y e αβ+=+=.其中,,,t αβλ均为常数, e 为自然对数的底数.现该公司收集了近12年的年研发资金投入量i x 和年销售额i y 的数据,i=1,2,...12, 并对这些数据作了初步处理,得到了右侧散点图及一些统计量的值.令2,ln (1,2,,12)i i i i u x v y i ===L 经计算得如下数据:(1)设{}i u 和{}i y 的相关系数为r 1,设{}i x 和{}i v 的相关系数为2,r 请从相关系数的角度,选择一个拟合程度更好的模型;(2) (i) 根据(1)的选择及表中数据,建立y 关于x 的回归方程(系数精确到0.01);(ii) 若下一年销售额y 需达到90亿元,预测下一年的研发资金投入量x 是多少亿元?附:①相关系数()()niix x y y r --=∑回归直线ˆy=a+bx 中斜率和截距的最小二乘法估计公式为:121()()ˆˆˆ,.()niii nii x x y y bay bx x x ==--==--∑∑ ②参考数据: 4499830849.4868,90.e=⨯≈≈22. (12分) 设函数2()2ln(1).1x f x x x =+++ (1)讨论函数f(x)的单调性;(2)如果对所有的x≥0,都有f(x)≤ax,求实数a 的最小值;(3)已知数列{}n a 中,11,a =且1(1)(1)1,n n a a +-+=若数列{}n a 的前n 项和为,n S 求证:11ln .2n n n na S a a ++>-。
山东省淄博市部分学校2020届高三6月阶段性诊断考试(二模)数学试题(wd无答案)
山东省淄博市部分学校2020届高三6月阶段性诊断考试(二模)数学试题(wd无答案)一、单选题(★★) 1. 已知集合,,则()A.B.C.D.(★★★) 2. 设复数 z满足,则的虚部是()A.B.C.D.(★★) 3. 在正项等比数列中,若,则()A.B.C.D.(★★) 4. 当,方程表示的轨迹不可能是()A.两条直线B.圆C.椭圆D.双曲线(★★★) 5. 已知,,()A.B.C.D.(★★★) 6. 在平行四边形中,,若交于点 M,则()A.B.C.D.(★★) 7. 某学校甲、乙、丙、丁四人竞选校学生会主席职位,在竞选结果出来前,甲、乙、丙、丁四人对竞选结果做了如下预测:甲说:丙或丁竞选成功;乙说:甲和丁均未竞选上;丙说:丁竞选成功;丁说:丙竞选成功;若这四人中有且只有2人说的话正确,则成功竞选学生会主席职位的是()A.甲B.乙C.丙D.丁(★★★)8. 已知函数是定义在上的奇函数.当时,,则不等式的解集为()A.B.C.D.二、多选题(★★) 9. 设表示不小于实数的最小整数,则满足关于的不等式的解可以为()A.B.C.D.(★★★) 10. 已知动点在双曲线上,双曲线的左、右焦点分别为、,下列结论正确的是()A.的离心率为B.的渐近线方程为C.动点到两条渐近线的距离之积为定值D.当动点在双曲线的左支上时,的最大值为(★★★) 11. 华为5 G通信编码的极化码技术方案基于矩阵的乘法,如:,其中,.已知定义在 R上不恒为0的函数,对任意有:且满足,则()A.B.C.是偶函数D.是奇函数(★★★★) 12. 向体积为1的正方体密闭容器内注入体积为的液体,旋转容器,下列说法正确的是()A.当时,容器被液面分割而成的两个几何体完全相同B.,液面都可以成正三角形形状C.当液面与正方体的某条体对角线垂直时,液面面积的最大值为D.当液面恰好经过正方体的某条体对角线时,液面边界周长的最小值为三、填空题(★) 13. 已知,则______(★) 14. 设随机变量,若实数 a满足,则 a的值是______ (★★★) 15. 已知抛物线的焦点是 F,点 M是其准线 l上一点,线段交抛物线 C 于点 N.当时,的面积是______四、双空题(★★★★) 16. 用表示函数在闭区间 I上的最大值.若正实数 a满足则______ a的取值范围是______五、解答题(★★★) 17. 下面给出有关的四个论断:① ;② ;③ 或;④ .以其中的三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:若______,则_______(用序号表示)并给出证明过程:(★★★) 18. 已知数列为“二阶等差数列”,即当时,数列 为等差数列,,.(1)求数列 的通项公式; (2)求数列的最大值(★★★) 19. 新生儿某疾病要接种三次疫苗免疫(即0、1、6月龄),假设每次接种之间互不影响,每人每次接种成功的概率相等为了解新生儿该疾病疫苗接种剂量与接种成功之间的关系,现进行了两种接种方案的临床试验:10μg /次剂量组与20μg/次剂量组,试验结果如下:接种成功接种不成功总计(人)10μg/次剂量组900100100020μg/次剂量组973271000总计(人)18731272000(1)根据数据说明哪种方案接种效果好?并判断能否有99.9%的把握认为该疾病疫苗接种成功与两种接种方案有关? (2)以频率代替概率,若选用接种效果好的方案,参与该试验的1000人的成功人数比此剂量只接种一次的成功人数平均提高多少人.参考公式:,其中 参考附表:0.0500.0100.0013.8416.63510.828(★★★★) 20. 在四棱柱中,已知底面为等腰梯形,,, M, N分别是棱,的中点(1)证明:直线平面;(2)若平面,且,求经过点 A, M, N的平面与平面所成二面角的正弦值.(★★★★) 21. 已知椭圆的左右焦点分别为,,离心率是, P为椭圆上的动点.当取最大值时,的面积是(1)求椭圆的方程:(2)若动直线 l与椭圆 E交于 A, B两点,且恒有,是否存在一个以原点 O为圆心的定圆 C,使得动直线 l始终与定圆 C相切?若存在,求圆 C的方程,若不存在,请说明理由(★★★★) 22. 已知函数(1)若函数在区间上单调递减,求实数 a的取值范围;(2)当,()时,求证:;(3)若函数有两个极值点,,求证:( e为自然对数的底数)。
山东省淄博市2020届高三阶段性诊断考试试题数学(含答案)2020.6
A.两条直线
B.圆
C.椭圆
D.双曲线
5.已知
a
log4
2,
b
(
1 2
)
1 2
,
c
(
1) 3
1 3
,则
A. a c b
B. a b c
C. c a b
D. c b a
6.在平行四边形 ABCD 中, DE 3EC ,若 AE 交 BD 于点 M ,则 AM
A. AM 1 AB 2 AD 33
B. AM 3 AB 4 AD 77
C. AM 2 AB 1 AD 33
D. AM 2 AB 5 AD 77
高三数学试题 第 1 页(共 6 页)
7.某学校甲、乙、丙、丁四人竞选校学生会主席职位,在竞选结果出来前,甲、乙、
丙、丁四人对竞选结果做了如下预测:
甲说:丙或丁竞选成功; 乙说:甲和丁均未竞选上;
解可以为
A. 10
B. 3
C. 4.5
D. 5
10.已知动点 P 在双曲线 C :
x2
y2 3
1上,双曲线 C 的左右焦点分别为 F1, F2 ,
下列结论正确的是
A. C 的离心率为 2
B. C 的渐近线方程为 y 3 x 3
C.动点 P 到两条渐近线的距离之积为定值
D.当动点
P
在双曲线 C
的左支上时,
C. (1,0) (0,1) D. (1,0) (1,3)
2.设复数 z 满足 z (1 i) 2 i ,则 z 的虚部是
A. 3 2
B. 3 i 2
C. 3 2
D. 3 i 2
3.在正项等比数列{an}中,若 a3a7 4 ,则 (2)a5
山东省淄博市部分学校2020届高三数学阶段性诊断考试试题理(含解析)
2020届高三数学阶段性诊断考试试题理(含解析)一、选择题. 在每小题给出的四个选项中,只有一项是符合题目要求的1.已知复数(是虚数单位)是纯虚数,则实数()A. B. C.【答案】 A【解析】【分析】化简复数,根据纯虚数的定义即可求出实数的值。
【详解】要使复数(是虚数单位)是纯虚数,则,解得:,故答案选A。
【点睛】本题主要考查复数的化简以及纯虚数的定义,属于基础题。
2.已知集合,则()A. B. C.【答案】 C【解析】【分析】利用一元二次不等式解出集合,利用补集的运算即可求出。
【详解】由集合,解得:,故答案选C。
【点睛】本题考查一元二次不等式的求解以及集合补集的运算,属于基础题。
3.已知非零向量,,若,,则向量和夹角的余弦值为()A. B. C. D.D.D.【答案】 B【解析】【分析】直接利用平面向量数量积的运算律即可求解。
【详解】设向量与向量的夹角为,,由可得:,化简即可得到:,故答案选B。
【点睛】本题主要考查向量数量积的运算,向量夹角余弦值的求法,属于基础题。
4.展开式的常数项为()A. B. C. D. 【答案】 D【解析】【分析】写出展开式的通项,整理可知当时为常数项,代入通项求解结果。
【详解】展开式的通项公式为,当,即时,常数项为:,故答案选D。
【点睛】本题考查二项式定理中求解指定项系数的问题,属于基础题。
5.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D. 【答案】 C【解析】【分析】先由三视图确定几何体形状,再由简单几何体的体积公式计算即可.【点睛】本题主要考查由几何体的三视图求简单组合体的体积问题,只需先由三视图确定几【详解】由三视图可知,该几何体由半个圆锥与一个圆柱体拼接而成,所以该几何体的体积故选C【点睛】本题主要考查由几何体的三视图求简单组合体的体积问题,只需先由三何体的形状,再根据体积公式即可求解,属于常考题型6.在中,角对边分别是,满足,则的面积为()A. B. C. D.【答案】 B【解析】【分析】化简,再利用余弦定理即可求出的值,代入三角形面积公式即可。
2020年12月山东省淄博市高三教学质量摸底检测数学试题及答案
13. 0.2 ;14. 7 2 ;15. 1, 84 ;16. 5 .
10
四、解答题:本题共 6 小题,共 70 分.
17.(10 分)解:(1)时间的平均数为 x 1 2 3 4 5 3 ,……………1 分 5
报名人数的平均数为 y 3+6+10+13+18 10 , …………………………2 分 5
A.样本在区间 [500, 700] 内的频数为18 B.如果规定年收入在 300 万元以内的企业才能享受减免税政策,估计有 30% 的当地
中小型企业能享受到减免税政策
C.样本的中位数小于 350 万元 D.可估计当地的中小型企业年收入的平均数超过 400 万元(同一组中的数据用该组
区间的中点值为代表)
围.
高三数学试题 第 6 页(共 6 页)
普通高中高三教学质量摸底检测考试 2020.12 数学参考答案
一、单项选择题: 1.C;2.B;3.A;4.C;5.C;6.D;7.A;8.B; 二、多项选择题:
9.BC;10.AB;11.ACD;12.ABD;
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
(1)按照“规则一”,求一名顾客摸球获奖励金额的数学期望; (2)请问顾客选择哪种规则进行抽奖更有利,并请说明理由.
22.(12 分)已知函数 f (x) xex e ( e 是自然对数的底数). (1)求函数 f (x) 的最小值; (2)若函数 g(x) f (x) k ln x 有且仅有两个不同的零点,求实数 k 的取值范
数是_________(用数字作答,第1空 2 分,第 2 空 3 分).
高三数学试题 第 3 页(共 6 页)
16.已知数列an 为等差数列,数列bn 为等比数列.若集合 A a1, a2 , a3,集
山东省淄博市部分学校2020届高三数学6月阶段性诊断考试二模试题
山东省淄博市部分学校2020届高三数学6月阶段性诊断考试(二模)试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、单项选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合1{|1}A x x=<,{||1|2},B x x =-<则A B = ().1,3A -().1,1B -()()()().1,00,1.1,01,3C D --2.设复数z 满足z ()12,i i ⋅-=+则z 的虚部是 A .32 B .32i C .-32 D. -32i 3.在正项等比数列{}n a 中,若374,a a =则()52a -=A .16B .8C .4D .2 4.当5,36ππα⎛⎫∈⎪⎝⎭时,方22cos sin 1x y αα+=程表示的轨迹不可能是 A .两条直线 B .圆 C .椭圆 D .双曲线 5.已知1123411log 2,,23a b c ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭.Aa c b <<.B a b c << .C c a b << .D c b a <<6.在平行四边形ABCD 中,3,DE EC =若AE 交BD 于点M ,则→AM =A .1233AM AB AD =+ B .3477AM AB AD =+21.33C AM AB AD =+25.77D AM AB AD =+7.某学校甲、乙、丙、丁四人竞选校学生会主席职位,在竞选结果出来前,甲、乙、丙、丁四人对竞选结果做了如下预测:甲说:丙或丁竞选成功;乙说:甲和丁均未竞选上: 丙说:丁竞选成功;丁说:丙竞选成功若这四人中有且只有2人说的话正确,则成功竞选学生会主席职位的是 A .甲 B .乙 C .丙 D .丁8.已知函数()f x 是定义在(-π2,π2)上的奇函数.当0,2x π⎡⎫∈⎪⎢⎣⎭时,()()tan 0,f x f x x '+>则不等式()cos sin 02x f x x f x π⎛⎫⋅++⋅-> ⎪⎝⎭的解集为 A.(.π4,π2)B .(-.π4,π2)C .,04π⎛⎫- ⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设[x ]表示不小于实数x 的最小整数,则满足关于x 的不等式2120x x []+[-]的解可以为 AB .3C .-4.5D .-510.已知动点P 在双曲线C :2213y x -=上,双曲线C 的左右焦点分别为21,s F F 下列结论正确的是A .C 的离心率为2B .C的渐近线方程为y x = C .动点P 到两条渐近线的距离之积为定值 D .当动点P 在双曲线C 的左支上时,122||||PF PF 的最大值为1411.华为5G 通信编码的极化码技术方案基于矩阵的乘法,如:()()11212122122b b c c a a b b ⎛⎫=⨯ ⎪⎝⎭,其中11112212112222,c a b a b c a b a b =+=+.已知定义在R 上不恒为0的函数(),f x 对任意,a b R ∈有:()()()12) 11(11b y y f a f b a -+⎛⎫=⨯ ⎪-⎝⎭且满足()12,f ab y y =+则()()().00.11.A f B f C f x =-=是偶函数 ().D f x 是奇函数12.向体积为1的正方体密闭容器内注入体积为()01x x <<的液体,旋转容器,下列说法正确的是 A .当12x =时,容器被液面分割而成的两个几何体完全相同 ().0,1,B x ∀∈液面都可以成正三角形形状C .当液面与正方体的某条对角线垂直时,液面面积的最大值为34 3D .当液面恰好经过正方体的某条对角线时,液面边界周长的最小值为2 5 三、填空题:本题共4小题,每小题5分,共20分 13.已知()cos 2cos 2πααπ⎛⎫+=-⎪⎝⎭,则cos2α= ▲ 14.设随机变量()~4,9,N ζ若实数a 满足()()3221,P a P a ξζ<+=>-则a 的值是 ▲15.已知抛物线C :218y x =的焦点是F ,点M 是其准线l 上一点,线段MF 交抛物线C 于点N .当23MN MF =时,△NOF 的面积是 ▲ 16.用 M I 表示函数 y = s i n x 在闭区间I 上的最大值.若正实数a [][]0,,22a a a M 则[]0,a M = ▲a 的取值范围是 ▲ (本题第一空2分,第二空3分)四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤 17.(10分)下面给出有关ABC 的四个论断:32ABCS=①;222122a b ac a c c +=+=②;③或 3.b =④ 以其中的三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: 若 ▲ ,则 ▲ (用序号表示)并给出证明过程: 18.(12分)已知数列{}n a 为“二阶等差数列”,即当()*1n n n a a b n +-=∈N 时,数列{b n }为等差数列15325,67,101.a a a ===(1)求数列{}n b 的通项公式; (2)求数列{}n a 的最大值19.(12分)新生儿某疾病要接种三次疫苗免疫(即0、1、6月龄),假设每次接种之间互不影响,每人每次接种成功的概率相等为了解新生儿该疾病疫苗接种剂量与接种成功之间的关系,现进行了两种接种方案的临床试验: 1 0 μg /次剂量组与 2 0 μg / 次剂量组,试验结果如下:(1)根据数据说明哪种方案接种效果好?并判断能否有99.9%的把握认为该疾病疫苗接种成功与两种接种方案有关?(2)以频率代替概率,若选用接种效果好的方案,参与该试验的1000人的成功人数比此剂量只接种一次的成功人数平均提高多少人. 参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中.n a b c d =+++参考附表:20.(12分)在四棱柱1111ABCD A B C D -中,已知底面ABCD 为等腰梯形,AB ∥CD ,112CD CB AB ===,M,N 分别是棱AB,B 1C 1的中点 (1)证明:直线MN ∥平面11ACC A ;(2)若1D C ⊥平面ABCD ,且13DC =,求经过点A ,M ,N 的平面1A MN 与平面11ACC A 所成二面角的正弦值.21.(12分)已知椭圆E :()222210x y a b a b+=>>的左右焦点分别为F 1,F 2,离心率是32,P 为椭圆上的动点.当12F PF ∠取最大值时12,PF F ∆的面积是 3 (1)求椭圆的方程:(2)若动直线l 与椭圆E 交于A ,B 两点,且恒有0,OA OB ⋅=是否存在一个以原点O 为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由22.(12分)已知函数()2.ln f x x x x ax =+-(1)若函数()f x 在区间[1,)+∞上单调递减,求实数a 的取值范围; (2)当) 2,(*n n ≥∈N 时,求证:222111111;23e n ⎛⎫⎛⎫⎛⎫+++<⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(3)若函数()f x 有两个极值点x 1,x 2,求证:212( 1e x x e >为自然对数的底数)。
2020届山东省淄博市部分学校高三教学质量检测(二模)数学试题(带答案解析)
16.已知函数 的定义域为R,导函数为 ,若 ,且 ,则满足 的x的取值范围为______.
评卷人
得分
四、解答题
17.已知数列 满足 ,且 .
(1)求证:数列 是等差数列,并求出数列 的通项公式;
(2)求数列 的前 项和 .
A.甲、乙、丙B.乙、甲、丙
C.丙、乙、甲D.甲、丙、乙
4.设α,β为两个平面,则α∥β的充要条件是
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
5.已知曲线 且 过定点 ,若 且 ,则 的最小值为().
A. B.9C.5D.
6.函数 在 的图像大致为
21.某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量 (单位:亿元)对年销售额 (单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:① ,② ,其中 均为常数, 为自然对数的底数.
现该公司收集了近12年的年研发资金投入量 和年销售额 的数据, ,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令 ,经计算得如下数据:
1.已知集合 ,则 =
A. B. C. D.
2.已知复数 满足 ,则 的共轭复数是()
A. B. C. D.
3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
丙:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
【精品解析】山东省淄博一中2020届高三数学教学质量检测(四)试题解析 理(教师版)
精品解析:山东省淄博一中2020届高三教学质量检测(四)数学(理)试题解析(教师版)【试题总体说明】本套试题立足考纲,紧贴教材;所涉及知识涵盖高考考点,体现高考对高中数学所学知识即基本能力与解题技巧,较好地对复习情况作出反馈。
试题覆盖面广,知识跨度大,题型新颖,难度不大,可较好地考查学生对高中数学的内容掌握情况,是难得的一套好题。
第Ⅰ卷(共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设i 是虚数单位,则复数i1i-+的虚部是( ) A.i 2 B.-i 2 C.12 D.- 12【答案】D 【解析】i i(1i)11i (1i)(1i)2i---==-+-+--,故虚部是12-。
2.设全集U={n ∈N*| x ≤a},集合P={1,2,3},Q={4,5,6},则a ∈[6,7)是Q P C U =的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 【答案】C【解析】当a ∈[6,7)时,U={1,2,3,4,5,6},此时U C P ={4,5,6},∴a ∈[6,7)是Q P C U =的充要条件。
【解析】由图像可知N (1μ,21σ)(01>σ)对应的图像比N (2μ,22σ)(02>σ)矮胖,且对称轴在左侧,故2121,σσμμ><。
4.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为{a n }的前n 项和,则3253S S S S --的值为( )A.2B.3C.15D.不存在 【答案】A6.a α,αα απ4π)ab 25(α+π4A.13 B.27 C.17D.23【答案】C【解析】22cos 22sin sin 1sin 5a b αααα=+-=-=r r g ,∴3sin 5α=,又α∈(π4,π),∴sin 3tan cos 4ααα==-,tan(α+π4)=31tan 11431tan 714αα-+==-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省淄博市部分学校2020届高三数学阶段性诊断考试试题理(含解析)一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数(是虚数单位)是纯虚数,则实数()A. B. C. D.【答案】A【解析】【分析】化简复数,根据纯虚数的定义即可求出实数的值。
【详解】要使复数(是虚数单位)是纯虚数,则,解得:,故答案选A。
【点睛】本题主要考查复数的化简以及纯虚数的定义,属于基础题。
2.已知集合,则()A. B. C. D.【答案】C【解析】【分析】利用一元二次不等式解出集合,利用补集的运算即可求出。
【详解】由集合,解得:,故答案选C。
【点睛】本题考查一元二次不等式的求解以及集合补集的运算,属于基础题。
3.已知非零向量,,若,,则向量和夹角的余弦值为()A. B. C. D.【答案】B【解析】【分析】直接利用平面向量数量积的运算律即可求解。
【详解】设向量与向量的夹角为,,由可得:,化简即可得到:,故答案选B。
【点睛】本题主要考查向量数量积的运算,向量夹角余弦值的求法,属于基础题。
4.展开式的常数项为()A. B. C. D.【答案】D【解析】【分析】写出展开式的通项,整理可知当时为常数项,代入通项求解结果。
【详解】展开式的通项公式为,当,即时,常数项为:,故答案选D。
【点睛】本题考查二项式定理中求解指定项系数的问题,属于基础题。
5.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】C【解析】【分析】先由三视图确定几何体形状,再由简单几何体的体积公式计算即可.【详解】由三视图可知,该几何体由半个圆锥与一个圆柱体拼接而成,所以该几何体的体积.故选C【点睛】本题主要考查由几何体的三视图求简单组合体的体积问题,只需先由三视图确定几何体的形状,再根据体积公式即可求解,属于常考题型.6.在中,角对边分别是,满足,则的面积为()A. B. C. D.【答案】B【解析】【分析】化简,再利用余弦定理即可求出的值,代入三角形面积公式即可。
【详解】,,又,由余弦定理可得:,解得:,由三角形面积公式可得故答案选B。
【点睛】本题考查余弦定理、三角形的面积公式,考查学生化简、变形的能力,属于中档题。
7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为:有一个人要走里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天恰好到达目的地,请问第三天走了()A.里B.里C.里D.里【答案】B【解析】【分析】由题意可知此人每天走的步数构成公比为的等比数列,利用等比数列求和公式可得首项,由此可得第三天走的步数。
【详解】由题意可知此人每天走的步数构成公比为的等比数列,由等比数列的求和公式可得:,解得:,,故答案选B。
【点睛】本题主要考查等比数列的求和公式,求出数列的首项是解决问题的关键,属于基础题。
8.函数的图像可能是()A. B.C. D.【答案】A【解析】【分析】分析四个图像的不同,从而判断函数的性质,利用排除法求解。
【详解】当时,,故排除D;由于函数的定义域为,且在上连续,故排除B;由,由于,,所以,故排除C;故答案为A。
【点睛】本题考查了函数的性质的判断与数形结合的思想方法的应用,属于中档题。
9.椭圆与双曲线的离心率之积为,则双曲线的两条渐近线的倾斜角分别为()A. B. C. D.【答案】C【解析】【分析】运用椭圆和双曲线的离心率公式,可得关于a,b的方程,再由双曲线的渐近线方程,即可得到结论.【详解】椭圆中:a=2,b=1,所以,c=,离心率为,设双曲线的离心率为e则,得,双曲线中,即,又,所以,得,双曲线的渐近线为:,所以两条渐近线的倾率为倾斜角分别为,.故选C.【点睛】本题考查椭圆和双曲线的方程和性质,主要考查离心率和渐近线方程的求法,考查运算能力,属于易错题.10.执行如图所示的程序框图,输出的值为()A. B. C. D.【答案】B【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,即可得出结论.【详解】解:第1步:S=2,x=4,m=2;第2步:S=8,x=6,m=;第3步:S=48,x=8,m=,退出循环,故选B【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.11.若在上是减函数,则的最大值是()A. B. C. D.【答案】D【解析】【分析】根据辅助角公式,化简函数的解析式,再根据余弦函数单调减区间求得单调减区间,进而求得的最大值。
【详解】,由辅助角公式可得:令,解得:,则函数的单调减区间为,又在上是减函数,则,当时,函数的单调减区间为,,解得:,故答案选D。
【点睛】本题主要考查辅助角公式用法,余弦函数的单调区间的求法,属于中档题12.已知,若点是抛物线上任意一点,点是圆上任意一点,则的最小值为()A. B. C. D.【答案】A【解析】【分析】设点,要使的值最小,则的值要最大,即点到圆心的距离加上圆的半径为的最大值,然后表示出关于的方程,利用基本不等式即可求出的最小值。
【详解】设点,由于点是抛物线上任意一点,则,点,则,由于点是圆上任意一点,所以要使的值最小,则的值要最大,即点到圆心的距离加上圆的半径为的最大值,则,,,经检验满足条件,的最小值为,故答案选A。
【点睛】本题考查圆与抛物线的综合应用,以及基本不等式求最值问题,属于中档题。
二、填空题(将答案填在答题纸上)13.某高中学校三个年级共有团干部名,采用分层抽样的方法从中抽取人进行睡眠时间调查.其中从高一年级抽取了人,则高一年级团干部的人数为________.【答案】【解析】【分析】利用分层抽样的定义即可得到结论。
【详解】某高中学校三个年级共有团干部名,采用分层抽样的方法从中抽取人进行睡眠时间调查.其中从高一年级抽取了人,高一年级团干部的人数为:,故答案为24。
【点睛】本题主要考查分层抽样的定义,属于基础题14.已知,且,则的最小值为_______.【答案】【解析】【分析】画出约束条件所表示的可行域,结合图像确定目标函数的最优解,代入即可求解。
【详解】画出约束条件所表示的可行域,如图(阴影部分)所示:则目标函数所表示的直线过点时,取最小值,又,解得,故答案为-4。
【点睛】本题考查简单线性规划求最值问题,画出不等式组表示的可行域,利用:一画、二移、三求,确定目标函数的最优解,着重考查数形结合思想,及推理与计算能力,属于基础题15.已知函数定义域为,满足,当时,则______.【答案】【解析】【分析】由题可得函数为周期函数,根据函数周期的性质以及分段函数的解析式,即可求解。
【详解】函数定义域为,满足,则为周期函数,由,可得:,,故答案为。
【点睛】本题主要考查周期函数以及分段函数的函数值的计算,着重考查运算与求解能力,属于基础题。
16.如图,直角三角形所在平面与平面交于,平面平面,为直角,,为的中点,且,平面内一动点满足,则的取值范围是________.【答案】【解析】【分析】根据题意建立空间直角坐标系,表示出各点坐标,利用向量的数量积化简可得到关于的二次函数,求出二次函数在某区间上求值域即可。
【详解】在直角三角形中,过点作边上的高交于,直角三角形所在平面与平面交于,平面平面,平面,在平面内过点作边的垂线,所以,,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,如图所示:为直角,,为的中点,且,, , , ,,,,,,,,,,又,则,即,化简即可得到:,由于,则,所以,,把代入即可得到:,当,的范围为,所以的取值范围是,故答案为。
【点睛】本题主要考查空间向量在立体几何中的应用,解题的关键是建立空间直角坐标系,求出各点坐标,表示出题目所求即可。
三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知等比数列的前项和为成等差数列,且.(1)求数列的通项公式;(2)若,求数列的前项和.【答案】(1) (2)【解析】【分析】(1)根据等比数列的性质以及等差中项可求得公比,代入中,求出q,即可求得数列的通项公式;(2)把数列的通项公式代入中化简,代入求得,再利用裂项相消求得。
【详解】(1)设等比数列的公比为,由成等差数列知,,所以,即.又,所以,所以,所以等差数列的通项公式.(2)由(1)知,所以所以数列的前项和:所以数列的前项和【点睛】本题考查数列的知识,掌握等差等比数列的性质、通项是解题的关键,同时也需要掌握好数列求和的方法:分组求和、裂项相消、错位相减等,属于中档题。
18.已知六面体如图所示,平面,,,,,,,,分别是棱,上的点,且满足.(1)求证:平面平面;(2)若平面与平面所成的二面角的大小为,求.【答案】(1)见证明;(2)【解析】【分析】解法一:(1)连接,设,根据相似三角形以及等分线段性质,即可证明,连接,证明是平行四边形,得到,由两平面平行判定定理即可得到平面平面。
解法二:(1)由题意可得,以为原点,为轴,为轴,为轴,建立空间直角坐标系,求出平面的法向量,分别与平面中两个相交向量相乘等于0,即可证明平面平面;(2)由(1)可得平面的法向量,再求出平面的法向量,进而求得平面与平面所成的二面角的余弦值,由此求出。
【详解】解:(1)证法一:连接,设,连接,,因为,所以,所以,在中,因为,所以,且平面,故平面,在中,因为,所以,且,所以,因为,所以,所以是平行四边形,所以,且平面,所以平面,因为,所以平面平面.证法二:因为,,,,,所以,因为,平面,所以平面,所以,,取所在直线为轴,取所在直线为轴,取所在直线为轴,建立如图所示的空间直角坐标系,由已知可得,,,,所以,因为,所以,所以点的坐标为,同理可求点的坐标为,所以,,设为平面的法向量,则,令,解得,,所以,因为,,所以,且,所以平面平面(2)为平面的法向量.,可求平面的一个法向量为所以,所以【点睛】本题主要考查面面平行的证明,空间向量在立体几何中的应用,考查学生的空间想象能力和计算能力,属于中档题。
19.已知椭圆的左右焦点分别为,离心率为,是椭圆上的一个动点,且面积的最大值为. (1)求椭圆的方程;(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.【答案】(1) (2)见解析【解析】【分析】(1)由题可得当为的短轴顶点时,的面积有最大值,根据椭圆的性质得到、、的方程,解方程即可得到椭圆的方程;(2)设出直线的方程,与椭圆方程联立消去,得到关于的一元二次方程,表示出根与系数的关系,即可得到的中点坐标,要使,则直线为线段的垂直平分线,利用直线垂直的关系即可得到关于的式子,再利用基本不等式即可求出的取值范围。