XXXX口智能综合保护器-风机智能控制

XXXX口智能综合保护器-风机智能控制
XXXX口智能综合保护器-风机智能控制

智能控制器在风机及水泵中的应用

凌晓杰1 陆伟青2 (1.浙江省超维建筑设计院浙江杭州 310011 ) (2.安科瑞电气股份有限公司上海嘉定 201801) 摘要:随着建筑行业快速发展,BA设备监控系统,通过联网,对分布于监控现场的区域智能分站(即DDC)与各种特定的末端设备进行连接,对建筑内的各种用电设备(如送排风风机、给排水、电梯、照明等)进行实时集中监视和管理的专业楼宇自动化控制。本文以风机、水泵为对象,结合建筑行业应用标准,介绍了风机水泵的工作原理和控制要求,最后结合智能控制器给出专业化解决方案。 关键词:BA设备监控系统消防风机水泵智能控制器 一、引言 风机、水泵是一种通用类机械,广泛应用于工业、农业及生活等各个领域,同时各类设计规范对于风机、水泵在建筑领域不同场合下的控制保护也有相应的具体要求。随着建筑行业快速发展,楼宇自动监控系统(BAS,Build Automatic Monitor System)也普遍应用于楼宇和大型公共建筑建设项目中。 二、智能控制器 智能控制器采用Freescale公司推出的32位ColdFire V1 内核 MCF51EM256的处理器作为控制核心,4路16位SAR型ADC,3个SPI、3个SCI和1个I2C接口,3个定时模块硬件,独立的RTC时钟和两个安全的FLASH内存,丰富的GPIO口,丰富的CPU片山资源保证了模块的可靠性和先进性。 控制器集测量、保护、控制、总线通讯为一体,取代了原有用分列元件配置的各种保护继电器、电测仪表、转换开关、按钮及信号指示灯,集成了直接启动、星三角启动等多种控制方式。同时提供操作次数、运行时间、跳闸事件等重要管理信息的记录,总线通信功能可以同管理系统进行数据交换和远程控制,提高了楼宇智能化水平,简化了传统的控制柜设计。

【CN209943064U】一种智能水泵控制系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920588990.3 (22)申请日 2019.04.27 (73)专利权人 广州市赛科自动化控制设备有限 公司 地址 510000 广东省广州市白云区太和镇 田心路28号之一一楼 (72)发明人 李金根 唐伟灵  (74)专利代理机构 广州市深研专利事务所 44229 代理人 张喜安 (51)Int.Cl. F04B 49/06(2006.01) (54)实用新型名称一种智能水泵控制系统(57)摘要一种智能水泵控制系统,涉及一种水泵控制系统,包括控制器、液位监测模块、断路器、电流互感器、交流接触器及水泵,控制器通过导线与液位监测模块连接,控制器通过导线与电源连接,控制器通过导线与电流互感器连接,控制器通过导线与交流接触器连接,所述的断路器的第一端与电源连接,断路器的第二端与电流互感器的第一端连接,电流互感器的第二端与交流接触器的第一端连接,交流接触器的第二端与水泵连接。该控制系统可以实现远程操控水泵,通过液位监测模块监测水位,根据水位的情况使用移动终端控制水泵启闭,便于远程控制和集中管理水 泵。权利要求书1页 说明书2页 附图1页CN 209943064 U 2020.01.14 C N 209943064 U

权 利 要 求 书1/1页CN 209943064 U 1.一种智能水泵控制系统,其特征在于:包括控制器、液位监测模块、断路器、电流互感器、交流接触器及水泵,控制器通过导线与液位监测模块连接,控制器通过导线与电源连接,控制器通过导线与电流互感器连接,控制器通过导线与交流接触器连接,所述的断路器的第一端与电源连接,断路器的第二端与电流互感器的第一端连接,电流互感器的第二端与交流接触器的第一端连接,交流接触器的第二端与水泵连接。 2.根据权利要求1所述的智能水泵控制系统,其特征在于:所述的液位监测模块包括液位检测器。 3.根据权利要求2所述的智能水泵控制系统,其特征在于:所述的液位检测器为浮球式液位检测器、干簧式液位传感器或液位变送器。 4.根据权利要求1所述的智能水泵控制系统,其特征在于:所述的控制器通过RS485接口与GPRS-RTU进行通信,GPRS-RTU通过无线网与监控中心进行通信,GPRS-RTU通过无线网或移动网与移动终端进行通信。 5.根据权利要求4所述的智能水泵控制系统,其特征在于:所述的移动终端为智能手机。 6.根据权利要求1所述的智能水泵控制系统,其特征在于:所述的控制器为ARDP智能水泵控制器。 2

矿井通风设计-毕业论文

辽源职业技术学院 毕业综合实训报告 题目:矿井通风设计 专业班级: 设计人: 指导人: 20XX年X月XX日

目录一、矿井通风设计的内容与要求 5 (一)矿井基建时期的通风 5 (二)矿井生产时期的通风 5 (三)矿井通风设计的内容 6 (四)矿井通风设计的要求7 二、优选矿井通风系统7 (一)矿井通风系统的要求7 (二)确定矿井通风系统8 三、矿井风量计算8 (一)矿井风量计算原则8 (二)矿井需风量的计算8 1.采煤工作面需风量的计算8 2.掘进工作面需风量的计算11 3.硐室需风量计算13 4.其他用风巷道的需风量计算机14 四、矿井通风总阻力计算15 (一)矿井通风总阻力计算原则15 (二)矿井通风总阻力计算15 五、矿井通风设备的选择16

(一)主要通风机的选择17 六、概算矿井通风费用21

前言 通风是关系到煤矿生产安全的重要环节。确保通风系统的稳定可靠,要做到随矿井生产变化即时进行通风系统改造与协调,严格控制串联通风,强化局部通风管理,杜绝局部通风机无计划断电,做到通风系统正规合理、可靠、稳定.

矿井通风设计是整个矿井设计内容的重要组成部分,是保证安全生产的重要环节。因此,必须周密考虑,精心设计,力求实现预期效果。 第一章矿井通风设计的内容与要求 矿井通风设计的基本任务是建立一个安全可靠、技术先进经济的矿井通

风系统。矿井通风设计分为新建或扩建矿井通风设计。对于新建矿井的通风设计,既要考虑当前的需要,又要考虑长远发展的可能。对于改建或扩建矿井的通风设计,必须对矿井原有的生产与通风情况做出详细的调查,分析通风存在的问题,考虑矿井生产的特点和发展规划,充分利用原有的井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。无论新建、改建或扩建矿井的通风设计,都必须贯彻党的技术经济政策,遵照国家颁布的矿山安全规程、技术规程、设计规范和有关的规定。 矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计计算。 第一节矿井基建时期的通风 矿井基建时期的通风指建井过程中掘进井巷时的通风,即开凿井筒(或平硐)、井底车场、井下硐室、第一水平的运输巷道和通风巷道时的通风。此时期多用局部通风机对独头巷道进行局部通风。当两个井筒贯通后,主要通风机安装完毕,便可用主要通风机对已开凿的井巷实行全压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。 第二节矿井生产时期的通风 矿井生产时期的通风是指矿井投产后,包括全矿开拓、采准和采煤工作面以及其他井巷的通风。这时期的通风设计,根据矿井生产年限的长短,又可分为两种情况: (1)矿井服务年限不长时(大约15至20年),只做一次通风设计。矿井达产后通风阻力最小时为矿井通风容易时期;矿井通风阻力最大时为困难时期。依据这两个时期的生产情况进行设计计算,并选出对此两个时期的通风皆为适宜的通风设备。 (2)矿井服务年限较长时,考虑到通风机设备选型,矿井所需风量和风压的变化等因素,又需分为两个时期进行通风设计。第一水平为第一期,对该时期内通风容易和困难两种情况详细地进行设计计算。第二期的通风设计只做一般的原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,作出全面的考虑,以使确定的通风系统既可适应现实生产的要求,又能照顾长远的生产发展与变化情况。 矿井通风设计所需要的基础资料如下:

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

正压送风系统(知识)

正压送风系统 一、正压送风的概述 1、什么是正压送风阀 就和打气筒原理一样!与止回阀是同理!假设此阀将空间分为A空间与B空间!当A 空间与B空间分别在不同时间受压,但只能有一面的气体可以进入另一面!而另一面再受压力气体是回不到原空间的!能释放压力的空间为A空间!当A受压时那么此时正压送风!当B空间气体增多,此时对A空间而言处于负压空间!不过此时由于阀的正向送风,B空间的气体始终回不到A空间! 2、什么是正压送风机? 向逃生楼道里送风的风机,在意外发生的时候向逃生楼道里送风,利于逃生,同时送风时楼道内处于正压,也就是说楼道的气压比别的地方高,烟雾不会渗进来而引起人员窒息, 以保证安全。 3、什么是排烟风机? 意外发生时候用来将建筑物内烟雾抽走的风机,以提高建筑物内视野,驱除烟雾,便于灭火。 4、、正压送风口的作用 当发生火灾时,其内部的电机会打开风口,温感烟感或者是手动火灾报警会开启,塔楼顶正压风机自动打开,对送风竖井进行加压送风,楼梯的前室通过正压送风口会源源不断的对前室进行送风,使前室维持正压,保证烟气不会再这个区域蔓延,而给人逃生的空间。当温度高于280°C时人已无逃生可能性,其内部熔断器会熔断,风口自动关闭,防止火势蔓延。 4、正压送风口是不是必须设置在疏散楼梯前室?

楼梯前室是不是必须设正压送风?这个工程由于楼梯一层前室位置和上面几层不对照,现一层的正压送风设在房间内了,规范允不允许啊?哪个规范上规定的? 正压送风口是不是必须设置在疏散楼梯前室?---按规范要求,送风口应设于楼梯间、前室、封闭避难层。 楼梯前室是不是必须设正压送风?---不具备自然排烟条件的消防电梯间前室可合用前室必须设置。 这个工程由于楼梯一层前室位置和上面几层不对照,现一层的正压送风设在房间内了,规范允不允许啊?---不允许。这样的情况下,只能增设一段风管,引到前室。 哪个规范上规定的?---《建筑设计防火规范》和《高层民用建筑设计防火规范》。 5、补风机和正压送风机的区别是什么? ●补风机:尤其在多层的地下室(如:-2、-3层),越靠下层与外界连通的空气 通道就越较少,单独使用排烟机,造成较大负压,降低了排烟效率,烟排出的比 较慢。采用补风机把外面的空气送进来,减小负压,从而使烟气更容易排出。 ●加压风机:一般用在楼梯间和电梯前室,使有毒烟气不能进入。楼梯间因为是 上下联通的,所以加压送风口可以同时开启,只要送风均匀即可,所以一般隔2 或者3层做自垂百叶送风。而前室却是不联通的,所以火灾时为了利于逃生,是 考虑打开着火层和相邻层的风口,所以要做成电动风口。一般用280度防火阀代 替,280度时熔断关闭。与消防系统的联动就是,发现火灾信号----打开加压风机 ---打开着火层及相邻层前室的风口。 二、正压送风与新风 1、正压送风与新风的区别

KQ1000水泵智能控制器

KQ1000 A/B型智能控制器使用说明 南京科蓝水务工程设备有限公司 2014年

一、产品概述 KQ1000型智能控制器(简称控制器)主要针对潜水泵的使用工况的特殊性,结合潜水泵内部安装的检测元件(油水探头、浮子开关、热敏开关以及PT100),对潜水泵进行综合保护。主要原理将泵内的检测元件作为取样信号,经控制器对取样信号进行过滤放大,输入到控制器中单片机系统,并和其程序中设定的参数进行比较计算,根据运算结果发出指令,控制执行元件及通过面板LED灯指示运行状态。 二、工作条件 控制器在下列条件下正常工作: 1、安装地点的海拔高度≤2000米。 2、环境温度<+40℃。 3、环境无爆炸危险的介质,无足以腐蚀金属和破坏绝缘的潮湿气体及尘埃,月平均最大湿度≤90%(25℃时)。 4、垂直安装斜度≤5度。 5、控制器工作电源为AC220V±10% 三、操作面板说明 控制器盘面设有四个操作按键,四个LED信号灯以及四位数码管显示屏 1、四个操作按键:“菜单(AT)”键,“设置(SET)”键,“向上(△)”键,“向下(▽)”键; 2、四个LED指示灯 R1—油室内油水探头(下探头)报警或PT100报警温度,故障时(闪烁); R2—电机上端盖探头(上探头)报警或PT100停机温度,故障时(常亮); K3—电机绕组热敏开关或PTC热敏电阻(超热),故障时(常亮); K4—电机接线腔渗漏(浮子或油水探头)或PTC热敏电阻,故障时(常亮); 3、故障声报警 内含一报警蜂鸣器,在正常状态与报警时不蜂鸣,在故障时蜂鸣, 蜂鸣时长由E01值决定, 0:关闭蜂鸣器; 1~9998;蜂鸣器时长(秒) 9999:一直蜂鸣。 在报警蜂鸣中,按“设置”键能消除报警蜂鸣。 4、四位数码管显示屏:

风机偏航毕业设计

酒泉职业技术学院 毕业设计 题目:风力发电机组偏航系统的控制学院:酒泉职业技术学院 班级: 10级风电(1)班 姓名:李世辉 指导教师:赵玉丽 完成日期: 2012 年 12 月 20 日

摘要 随着社会经济的发展,人们对电的需求日益提高。以石油、煤炭、天然气为的常规能源,不仅资源有限,而且还会在使用中造成严重的环境污染。在我们进入21世纪的今天,世界能源结构正在孕育着重大的转变,即由矿物能源系统向以可再生能源为基础的可持续能源系统转变。风能作为取之不尽,用之不竭的绿色清洁能源己受到全世界的重视,而风力机的偏航系统能使风能得到更好的利用,所以偏航系统的设计非常的重要。 本设计首先分析了偏航系统的工作原理,然后以三菱PLC作为控制器,触摸屏为监控器,设计了硬件系统模块,整个硬件系统采用了闭环控制,并说明了开环控制的缺点。根据偏航控制要求,设计了自动对风控制算法,自动解缆控制算法,90°背风控制算法,不仅提高了风能利用率,增大了发电效率,而且还保证了整个系统的安全性、稳定性,让风力发电机更好的运行。 关键词:偏航系统硬件设计自动对风自动解缆

目录 摘要 (1) 第一章概述.......................................................错误!未定义书签。 1.1 设计背景 (2) 1.2 设计研究意义 (2) 1.3 国内外风力发电概况 (2) 1.3.1 世界风电发展 (2) 1.3.2 我国风电发展 (3) 第二章偏航控制系统功能简介和原理 (3) 2.1 偏航控制系统的功能............................................错误!未定义书签。 2.2 风力发电机组偏航控制原理......................................错误!未定义书签。 第三章偏航系统的控制过程.........................................错误!未定义书签。 3.1 自动偏航控制..................................................错误!未定义书签。 3.1.1 自动偏航传感器ASS状态...................................错误!未定义书签。 3.1.2 参数说明和电机运行状态...................................错误!未定义书签。 3.1.3 偏航控制流程图..........................................错误!未定义书签。 3.1.4 偏航电机电气连接原理图..................................错误!未定义书签。 3.1.5 偏航对风控制PLC程序....................................错误!未定义书签。 3.2 90°侧风控制................................................错误!未定义书签。 3.3 人工偏航控制.................................................错误!未定义书签。 3.4 自动解缆控制.................................................错误!未定义书签。 第四章总结 (5) 参考文献 (12) 致谢 (13)

双速电机控制电路图

双速电机控制电路图 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p =1。 ∴转速比=2/1=2 控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、 W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开, 防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM 2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入K M2线圈回路,也形成互锁控制。

正压送风系统(知识)

正压送风系统 ?一、???????正压送风的概述 1、什么是正压送风阀 就和打气筒原理一样!与止回阀是同理!假设此阀将空间分为A空间与B空间!当A 空间与B空间分别在不同时间受压,但只能有一面的气体可以进入另一面!而另一面再受压力气体是回不到原空间的!能释放压力的空间为A空间!当A受压时那么此时正压送风!当B空间气体增多,此时对A空间而言处于负压空间!不过此时由于阀的正向送风,B空间的气体始终回不到A空间! ?2、什么是正压送风机? ?向逃生楼道里送风的风机,在意外发生的时候向逃生楼道里送风,利于逃生,同时送风时楼道内处于正压,也就是说楼道的气压比别的地方高,烟雾不会渗进来而引起人员窒息, 以保证安全。 ?3、什么是排烟风机? 意外发生时候用来将建筑物内烟雾抽走的风机,以提高建筑物内视野,驱除烟雾,便于灭火。 ?4、、正压送风口的作用 当发生火灾时,其内部的电机会打开风口,温感烟感或者是手动火灾报警会开启,塔楼顶正压风机自动打开,对送风竖井进行加压送风,楼梯的前室通过正压送风口会源源不断的对前室进行送风,使前室维持正压,保证烟气不会再这个区域蔓延,而给人逃生的空间。当温度高于280°C时人已无逃生可能性,其内部熔断器会熔断,风口自动关闭,防止火势蔓延。 ?4、正压送风口是不是必须设置在疏散楼梯前室?

楼梯前室是不是必须设正压送风?这个工程由于楼梯一层前室位置和上面几层不对照,现一层的正压送风设在房间内了,规范允不允许啊?哪个规范上规定的? 正压送风口是不是必须设置在疏散楼梯前室?---按规范要求,送风口应设于楼梯间、前室、封闭避难层。 楼梯前室是不是必须设正压送风?---不具备自然排烟条件的消防电梯间前室可合用前室必须设置。 这个工程由于楼梯一层前室位置和上面几层不对照,现一层的正压送风设在房间内了,规范允不允许啊?---不允许。这样的情况下,只能增设一段风管,引到前室。 哪个规范上规定的?---《建筑设计防火规范》和《高层民用建筑设计防火规范》。 ?5、补风机和正压送风机的区别是什么? ?????????补风机:尤其在多层的地下室(如:-2、-3层),越靠下层与外界连通的空气通道就越较少,单独使用排烟机,造成较大负压,降低了排烟效率,烟排出的 比较慢。采用补风机把外面的空气送进来,减小负压,从而使烟气更容易排出。 ?????????加压风机:一般用在楼梯间和电梯前室,使有毒烟气不能进入。楼梯间因为是上下联通的,所以加压送风口可以同时开启,只要送风均匀即可,所以一般隔 2或者3层做自垂百叶送风。而前室却是不联通的,所以火灾时为了利于逃生, 是考虑打开着火层和相邻层的风口,所以要做成电动风口。一般用280度防火阀 代替,280度时熔断关闭。与消防系统的联动就是,发现火灾信号----打开加压风 机---打开着火层及相邻层前室的风口。 二、???????正压送风与新风 1、正压送风与新风的区别

正压送风机与风口联动

一、前室及合用前室以及消防电梯前室,加压送风口都是电动常闭风口。手动或电动开启,都会连锁开启风机。 二、楼梯间要是安装的电动常闭风口的话,应该也会设置连锁开启风机,如果是自垂百叶应该就不会了。这个时候的风机就需要控制室远程电动控制开启或是手动开启 三、正压送风机一般安装在楼顶,每一个常闭远控风口都需要模块来控制。 四、自垂式百叶风口通常情况下考风口的百叶自重而自然下垂,隔绝室内外的空气交换,当室内的气压大于室外的气压时,气流将百叶吹开而向外排气,反之室内气压小于室外气压时,气流不能反向流向室内,该风口有单向止回作用。

五、1、由于正压送风系统的多样性,正压送风口的形式也是多样的。通常有: ①自垂式或常开式百叶风口,它们是没有手动控制与自动控制功能的,一般这用于特指说明的正压送风口;--这种常开送风口与电气消防没有任何关系,电气不管。 ②泛指的正压送风口中,我们习惯指的是“烟感控制、电讯号开启,可手动或远控开启的,可设280℃温度熔断器重新关闭装置、输出动作电信号、联动正压送风机动作的,用于正压送风系统的风口。” 六、对于自垂式百叶风口的正压送风系统的消防联动逻辑:着火层烟感报警→正压送风机启动;消控中心→正压送风机关闭。 对于常闭式正压送风口的正压送风系统的消防联动逻辑:着火层烟感报警→着火及关联层常闭式正压送风口开启→正压送风机启动;着火及关联层常闭式正压送风口熔断器熔断(或消控中心强切)→正压送风机关闭。 七、一般的,由于整个楼梯间是贯通的,要求着火时整个楼梯间都是正压的,故一般楼梯间使用自垂百叶风口,但也有例外,如29、30、33、34号楼的通往地下室的楼梯间则是采用的常闭远控的正压送风口,隔层设置。而电梯前室的正压送风口均为常闭远控型,平时常闭,着火时三层开启。

离心通风机设计毕业论文

本科毕业设计(论文) 题目SFF型离心通风机设计 学院机械工程学院 年级专业 班级学号 学生 校导师职称 校外导师职称 论文提交日期

本科毕业设计(论文)诚信承诺书 本人重声明:所呈交的本科毕业设计(论文),是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本人签名:日期: 本科毕业设计(论文)使用授权说明 本人完全了解常熟理工学院有关收集、保留和使用毕业设计(论文)的规定,即:本科生在校期间进行毕业设计(论文)工作的知识产权单位属常熟理工学院。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许毕业设计(论文)被查阅和借阅;学校可以将毕业设计(论文)的全部或部分容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业设计(论文),并且本人电子文档和纸质论文的容相一致。 的毕业设计(论文)在解密后遵守此规定。 本人签名:日期: 导师签名:日期:

SFF型离心通风机设计论文 摘要 伴随着社会快速发展的需要,风机在国民经济中的应用越来越广泛,因此风机的设计和制造不仅对风机领域的发展和技术的提高有着深远影响,而且风机设计中节能减排减震等的思想方案可以推广至各个生产领域。 根据通风机气体流动方向的不同,通风机可以分为离心式、轴流式、斜流式和横流式等类型。其中按应用围广泛程度来说,离心通风机因在矿井、锅炉、纺织、建筑物通风等众多场合均有涉及,所以应用远超其他类型通风机。本文献综述了在纺织机械中以三角胶带为传动方式的SFF型离心通风机的设计,该设计主要涵盖了离心通风机的工作原理、适用场合、发展现状、机械部分的组成等,以及分析了圆弧形前弯叶片的设计和小正方形法蜗壳型线的绘制等。考虑到通风机速度不高且伴有冲击,轴承座采用脂润滑结构,且整体设计中采取了加装整体减震支架的措施。 关键字:离心通风机三角胶带前弯叶片

双速电机接线图及控制原理分析

双速电机接线图及控制原理分析 一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。 下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析(双速电机接线图如下图)

1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 4、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的

正压送风原理

1、关于正压送风防烟系统的正压度问题 不论国内或国外的防火规范,都有一致的加压要求,即应使在火灾时,楼梯间压力>前室压力>走廊或室内压力。 所谓正压度,指防烟楼梯间的防火门、前室与走廊间的防火门两侧的压力差值。而正压度又可分为最大允许压差值与最小压差值。所谓最大允许压差值,是指所有防火门在关闭状态下防火门两侧允许的一般人力能推开的最大压差值,关于最大允许压差值,各国的取值不完全一致,多数国家均把50pa作为最大允许压差。所谓最小压差值,是指火灾时人员进行疏散。防火门一旦打开,楼梯间及开门前室的压力将瞬时下降,为了防止烟气侵入,要保持门洞处具有一定的反吹风速应有的最小的压力差值。关于火灾时防烟要求的最小压差值(或最小门洞风速),各国也有不同的规定与要求。 我国原《高规》对防烟的最小压差(或最小门洞风速)未提出明确的数值要求,仅指出“应保持正压,且楼梯间的压力应略高于前室的压力”。而新《高规》第8.3.2条中提出了开门时的门洞风速要求,即“开启门时,通过门风速不宜小于0.7m/s.”还在第8.3.7条中提出了防烟楼梯间与前室的余压要求,即其余压值应符合下列要求:防烟楼梯间为50pa;前室、全用前室、消防电梯前室、封闭避难层(间)为25pa。 2、关于加压送风口的形式问题 2.1楼梯间的加压送风口一般每2-3层设1个,均为常开百叶风口,具体形式可为单层百叶或双层百叶,双层百叶对送风量的调节与平衡更为有利些。 2.2前室的加压送风口一般每层设1个,而对送风口的形式,则有不同的选择与做法。2.2.1一般做法把前室(合用前室)的加压送风口选为常闭式(静电接点)。当发生火灾时立即启动加压送风机,同时仅打开着火层、着火层相邻层的前室之送风口。这种做法,把前室的送风量集中用于加压这3层(或4层)上,这些层的送风量基本不受其它层前室开门与否的影响,当然这对保证这3层(或4层)的防烟效果是有利的,但也存一定问题: 如果疏散人员尚未打开楼梯间、前室的防火门,则这些送风层前室内的压力将会急骤上升,出现这些层前室压力高于楼梯间压力(楼梯间压力一般不开门时可通过余压阀保持在50pa)的情况,如不采用足够的泄压措施,将影响走廊至前室门的开启,显然是非常危险的。因此这种做法要求每层前室均设泄压阀,若向室内泄压则还需接防火阀,以确保防火隔断。 常闭送风口一般都有一定的规格要求,在阀体的土建留洞受限制的情况下较难采用,另外,电气控制上也要求较高。常闭阀动作件多,控制较为复杂,长期不用,易生锈失灵。如果日常维护管理不善,要用是反而可能无法打开,影响使用,常闭阀及其电气控制 新市场营销法则助推企业成长电子商务营销食品餐饮营销建筑房产营销消费品营销 系统投资较高。> 2.2.2另一种做法,前室送风口与楼梯间一样也采用常开百叶风口(一般可采用双层百叶),这种做法有以下特点: 在楼梯间与前室(合用前室)的防火门全闭的情况下,前室送风量较均匀地分配在所有层,每个前室送风量不大(一般为600-1000m3/h),一般只要设计恰当,不会出现前室(合用前室)与走廊(或室内)的压差值超过最高允许压差值的情况。 在楼梯间及前开门的情况下,开门层前室的压力将迅速下降,楼梯间的送风量将基本流向

智能风机控制器

第一章绪论 1.1课题背景 目前对于电器产品中冷却风扇的要求越来越高,电机作为冷却风扇的驱动源既要高效节能,又要静音。传统上广泛使用的是交流电机(如:罩极式电机、电容式启动电机等),虽然其结构简单,成本低。但其所固有的体积大,效率低等缺点,已越来越不适应家电产品小型化和高效化的要求。因此,效率高、体积小的直流无刷电机在冷却风扇系统中得到了应用。但是,目前在使用无刷风扇电机作为冷却风扇驱动源的系统中,电动机的转速是恒定的,而不是根据热负荷的大小相应的调整电机转速,因而造成了电能的无用消耗[1]。投影仪、大功率电源、数据通讯交换机和路由器等设备的散热是一个值得考虑的问题。这些应用功耗极大,使设计人员在设计时要用风扇来冷却电子元件。如果吹向元器件的气流等于或小于每分钟六到七立方英尺即可满足冷却要求。那么直流无刷风扇是一个不错的选择目前已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小,像模拟/数字转换器(ADC)、脉冲宽度调制(PWM)等。单片机在检测和控制系统中得到了广泛的应用。温度检测、电机转速控制等方面,都有单片机的应用。温度控制集成电路的迅速发展,也使温度检测技术越来越智能化了,这促使了冷却散热电子产品技术有了长足的发展。 1.2 研究的目的和意义 随着电子技术的飞速发展,当今的电子设备如不考虑热设计,通常会产生过热现象。强迫空气冷却作为比较经济方便的冷却手段在电子设备热设计中得到了普遍应用。而运用强迫空气冷却电子设备的首要任务是选择合适的风扇来提供足够的冷却空气。大多数风扇的使用寿命都在几千小时左右,多数功率设备都存在负荷变化的特点,在停止工作或负荷较轻时可能并不需要风扇,而仅靠散热片的被动散热就能满足散热需求;是否满足散热需求的标准就是温度,在工作温度高于一定程度时,风机开始工作,提供主动散

供水泵智能控制器

目录 1.研究背景 (2) 2.国内外研究现状 (3) 3.供水泵运行基本原理 (4) 3.1泵站供水系统的组成 (4) 3.2供水泵自动化运行的实现方法 (4) 4.供水泵智能控制器总体设计方案 (5) 4.1供水泵控制器设计应遵循的原则 (5) 4.2供水泵控制器的功能需求 (5) 4.2.1参数显示功能 (5) 4.2.2智能控制功能 (6) 4.2.3电机保护功能 (6) 4.3系统的基本结构设计 (6) 4.4 STM32系列芯片优势 (6) 5.供水泵智能控制器硬件电路设计 (9) 5.1微处理器的选型 (9) 5.2系统方案设计 (9) 5.3核心处理单元电路 (10) 5.4电源模块电路 (11) 5.5电量采集电路 (12) 5.6时钟芯片电路 (13) 5.7 LCD接口电路 (14) 5.8键盘管理电路 (15) 5.9 RS485通信单元电路 (16) 5.10数据存储单元电路 (17) 5.11数字量采集和继电器控制电路 (18) 5.12系统可靠性设计 (18) 5.13 本章小结 (20) 附录 (21)

1.研究背景 我国是农业大国,也是水利大国,水利在国民经济发展中占有举足轻重的地位。然而,目前我国农村供水设施普遍简陋、规模较小,以传统、落后的分散式供水为主,自来水普及率低,管理落后。为了彻底解决广大人民群众的用水难题,国家在“十二五”规划中提出要建设新农村,加强农村饮水安全工程建设,大力推进农村集中式供水。 集中式供水工程具有水源可靠、管理方便等方面的优势,有利于改善农村的生活条件,促进农村工农业生产发展,促进农村产业结构调整,保持农村社会稳定,保护农业生态环境。 在我国广大地区,特别是西部山区,由于受地理位置限制,泵房与水池相隔较远,经常出现停水现象,使山区人民群众无法达到城镇化供水标准。众多的集中式供水泵房运行效率低,仍处于较落后的管理状态,主要依赖于人工操作和已有的操作规程。特别是对于以离心式水泵工作特性为基础的泵站,广泛存在着以下的问题:对人的依赖性太大,不适应泵站现代化的要求;操作流程较为繁琐,工人的劳动强度过高;实时性差,不能及时对水泵进行启停操作;某些部件容易被损坏,存在安全隐患;检修、调试维护设备麻烦,工人要逐个检查每个设备的运行工状;资源浪费严重,不利于降低泵站的运行成本。随着自动控制技术与通信技术的不断发展,各种水泵控制器孕育而生,将会对泵站的自动化运行与节能生产产生积极的推动作用。 嵌入式系统(Embedded Systems)是以应用为中心,以计算技术为基础,软件硬件可剪裁,适应应用系统对功能、可靠性、功耗、成本、体积等严格综合性要求的专用计算机系统;它是一个技术密集、资金密集、高度分散、不断创新的基于硅片的知识集成系统。随着嵌入式的飞跃发展,已广泛应用于国防电子、汽车电子、工业控制、智能家居、医学科技、数字消费、网络通信、电力系统等国民经济的主要行业。在不久的将来,嵌入式将更为广泛地服务于人类生活的方方面面。 目前常用的数据远程传输方式有:数据专线、有线拨号、光缆传输和无线数传电台,但这些方式普遍存在着建设费用大、建设周期长、受环境因素影响大、运行费用高及数据传输质量不稳定的缺点,难以为中小型集中式供水泵站的数据远程传输系统所采用。然而基于GSM/GPRS 的无线数据传输却具有接入范围广,传输速率高,接入时间短,提供实时在线,按流量计费等优势。

风机毕业论文

酒泉职业技术学院 毕业论文 2012 级风能与动力技术专业 题目:风电机组振动监测与减振、 减噪措施分析 毕业时间:二〇一五年六月 学生姓名:马立东 指导教师:甄亮 班级:12级风能与动力技术(2)班 2014 年10月10日

目录 摘要 (1) 一、风力发电概述 (1) (一)风力发电的现状 (1) (二)风力发电机组存在的问题 (2) (三)风力发电机组振动监测的意义 (4) 二、风力发电机组齿轮箱振动测试与分析 (4) (一)齿轮箱振动测试 (4) (二)齿轮箱中主要故障及其原因分析 (5) (三)小结 (7) 三、风力发电机的减振、减噪措施 (8) (一)风力发电机组发电机减振器的研究 (8) (二)大功率风力发电机组齿轮箱减振支撑的结构特点与应用 (8) 四、总结 (11) 参考文献: (12) 致谢 (13)

风电机组振动监测与减振、减噪措施分析摘要:我国的风能资源丰富,储量居世界首位,为此我们应该大力开发,充分利用可再生能源。为改善我们的生活,更应该对新能源技术不断改进来大大提高能源的利用效率。本文重点分析了振动诊断和监测技术在风力发电机组状态监测,完成以下工作。由风力发电机组所受外部激振力及其自身结构特点,主要分析了风力发电机组整机系统与齿轮箱的振动特征。根据风力发电机组的振动特征,总结了几种风力发电机组振动诊断方法。通过对材料和其他技术的改进,来对风力发电机组进行减振、减噪处理。 关键词:风力发电机组;振动诊断;振动状态监测;减噪、减振 一、风力发电概述 (一)风力发电的现状 目前世界能源主要来自不可再生的能源,如:煤、石油、天然气和核能。这样的能源结构不仅导致能源的短缺,而且造成严重的环境问题。风能作为一种可再生清洁能源已越来越受到全世界各国政府的欢迎和重视。图1为各国的风机装机容量,全球的风能资源约为2.74x1012Kw,其中可利用的风能为2x1010KW,比地球上可开发利用的水能总量还要多10倍。2005年2月旨在限制温室气体排放量的《京都议定书》也已正式生效,这对世界风电行业的发展将会带来重大的影响。随着风电各项技术的成熟,风力发电在抑制二氧化碳排放可大大降低,稳定石油价格波动等能源问题上的优势将会越来越明显,在世界范围内风电行业正蓄势待发。

空调系统毕业论文

南京铁道职业技术学院毕业论文 题目:苏州大学实训楼中央空调系统 作者:尹啸东学号: 421111146 系部:建筑设备工程系 专业:楼宇智能化工程技术 班级: 11宁系统维检301 指导者:刘光平讲师 评阅者: 2013 年 10 月

毕业设计中文摘要

毕业设计外文摘要

目录 1 引言 (5) 2 设计概况 (6) 2.1 概况 (6) 2.2 本毕业设计课题任务的要求 (7) 2.3 设计原始资料 (7) 3 空调系统 (8) 3.1 空调系统的基本定义 (8) 3.2 空调系统方案的确定 (9) 3.3 新风系统的监视与控制 (10) 4 新风系统 (14) 4.1 新风机组的设计要求.............................................. - 14 - 4.2 风机盘管机组的选型.. (14) 4.3 新风系统的监视与控制 (16) 5 空调水系统设计 (17) 5.1 选择水系统形式 (17) 5.2 选择管材和管道直径 (17) 5.3 水系统管路的布置 (18) 5.4 空调水量计算及泵扬程 (19) 6 空调冷热源系统 (20) 6.1 冷源系统 (20) 6.2 热源系统 (24) 7 ......................................................................... 7 ........................................................................ 结论....................................................................... 致谢....................................................................... 参考文献................................................................... 附录A 各房间最大热湿负荷汇总............................................................................................

智能风机是什么

从哪里来到哪里去,又能创造哪些客户价值,这两个问题因为智能风机的到来将成为行业话题。 记者:远景是最早提出智能风机概念的公司,也因此吸引了一批汽车和航空领域的国际顶尖研发人才。您怎么看汽车和航空工业百年积累的工业技术在风电行业的应用以及智能风机未来的演化? 刘曙源:我们会问,再过10年、30年,风机会是什么样子?未来不好预测,但从昨天和今天的汽车比较中不难发现,不管从工作原理,还是设计的概念结构上,汽车的本质没变,但在其智能化水平上,今天的汽车却有了质的飞跃,它已搭乘了几十甚至上百个控制单元,有上千万行的软件代码在上面运行,这使得今天的汽车驾驶者不需要像几十年前的驾驶者那样,在学开车的同时,一定要学会修车。因为,今天的汽车给驾乘者带来的安全和舒适体验已和几十年前的汽车不可同日而语。 从汽车工业的发展变化看,当前的风电工业水平可能类似半个世纪前的汽车工业,尽管近年来风机在单机功率和扫风面积增大方面发展迅速,但其智能化水平却与当年600-800kW 的小风机相当,并没有显著提升。所以,要预言未来的风机演化,我们可以推断半个世纪后的风机在原理和概念结构上与今天的风机不会有本质的不同,但风机的智能化演化则会呈现无止境的态势。这一点,是由客户日益增长的对风机的风能转化效率要求所决定的。 在一种提升效率的极致追求下,我们看到了行业不断放大的风轮直径,115米和121米风轮都已在市场出现,但一味单方面放大风轮直径真的能满足客户大幅提升风能转换效率的需求吗?看看汽车的历程,当驾乘者追求驾驶速度和动力性能时,最直接的方法是增大发动机的排量。可是,人人都知道如果用30年前的化油器技术来控制发动机的进油和进气,即使提升到4.0的排量,所增加的输出动力也有限,且很不经济。所以,今天我们看到了智能化的电子喷射技术控制的发动机和涡轮增压的发动机,排量并不是一味的提升。相反,1.4T 的发动机成为经济型轿车受欢迎的配置。 具体到远景智能风机,我要提到远景全球研发团队中的孙博士,之前他是波音公司的翼型设计专家,他认为从高速飞机到低速飞机的变化不仅仅是简单增大机翼和机身的比例,而是主要依靠低速高升力翼型的设计,以及空气动力学和智能控制的集成。低风速风机的设计同样如此,简单增大叶轮直径并非最经济有效的设计方法,适合低风速的高升力翼型设计和智能控制的集成才是低风速风机成功的关键。 远景风机不仅有先进的硬件传感器,更有大量的软件传感器和在航空航天以及汽车行业成功应用的先进控制算法,相比传统风机几万行的控制软件代码,远景智能风机控制系统搭载的软件系统代码超过200万行。 当客户在追求风轮直径增大来提升风能转换效率时,因风轮增大而急剧增加的风机安全性风险被显著放大。目前,叶片安装导致的桨距角对零误差还停留在过去的水平上,正负1到2度的误差在目前的制造和安装工艺中不可避免,这对于100米以下风轮直径的风机问题不大,但对直径超过105米的风轮,叶片不对称所产生的疲劳载荷会急剧增加,远景在110风轮风机上做过载荷测量,数据表明1度以上的桨距角对零误差导致的疲劳载荷增加已显著超出设计标准,这对风机的长期安全性运行带来巨大风险。这不难理解远景智能风机控制软件中仅桨距角误差补偿算法的软件代码量就超过1万行。 记者:业内提及远景大多与低风速技术有关,但对远景智能风机也只是个概念。在您看来,远景智能风机在低风速风电场有何优势? 刘曙源:在我看来,与其说低风速技术,不如说智能风机有更高的能量可利用率更合适。低风速风场风能量小,远景智能风机领先行业的风能转换效率成为业主在低风速风电场得以盈利的决定性因素。对于低风速风能的转换,行业内还存在一些误解:面对年风频分布图分析低风速风电场风资源时,我们会发现低于6米/秒风速的时间超过50%,不足4米/秒风速

相关文档
最新文档