北师大版高中数学必修第一章数列数列在日常经济生活中的应用习题
北师版高中数学选择性必修第二册精品课件 第一章 §4 数列在日常经济生活中的应用

P(1+r)n.( × )
(4)分期付款问题一定可转化为数列问题求解.( × )
合作探究 释疑解惑
探究一
与等差数列有关的应用题
【例1】 从4月1日开始,有一新款服装投入某商场销售.4月1日该款服装售
出10件,第二天售出25件,第三天售出40件,以后每一天售出的服装都比前
一天多15件,直到4月12日销售量达到最大,其后每一天售出的服装都比前
据:1.00711≈1.080,1.00712≈1.087,1.0711≈2.105,1.0712≈2.252.精确到1元)
解:设每期应付款x元,第n期付款后欠款An元,则A1=2 000(1+0.007)-x
=2 000×1.007-x,
A2=(2 000×1.007-x)×1.007-x=2 000×1.0072-1.007x-x,
10%的复利计算,试比较两方案的优劣.(计算时,精确到0.01万元,取
1.110≈2.594,1.310≈13.79)
10
1-1.3
解:甲方案 10 年共获利 1+(1+30%)+…+(1+30%)9=
≈42.63.
1-1.3
到期时,银行贷款本息为10×(1+10%)10≈25.94.
所以按甲方案扣除贷款本息后,净收益为42.63-25.94=16.69(万元).
所以an=166+(n-13)×(-9)=-9n+283(13≤n≤30,且n∈N+).
综上,an=
15-5(1 ≤ ≤ 12,且∈N+),
-9 + 283(13 ≤ ≤ 30,且∈N+).
12(1 +12 )
北师大版高中数学必修五第一章《数列》测试题(答案解析)

一、选择题1.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51012.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .43.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品.计划从2020年开始每年比上一年获利增加20%,则从( )年开始这家加工厂年获利超过60万元.(已知lg 20.3010=,lg30.4771=) A .2024年B .2025年C .2026年D .2027年4.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12B .22C .34D .325.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .13296.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .27.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ).A .12B .11C .10D .98.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1niii x y =+=∑( )A .0B .nC .2nD .3n9.已知椭圆2222x y a b +=1(a>b>0)与双曲线2222x y m n-=1(m>0,n>0)有相同的焦点(-c ,0)和(c ,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是 ( ) ABC .14D .1210.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,下列说法错误的是( ) A .0d <B .110S >C .120S <D .67a a >11.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-212.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log ||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②二、填空题13.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.14.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 15.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.16.设n S 是数列{}n a 的前n 项和,且112a =,110n n n a S S +++=,则2020S =______. 17.在数列{}n a 中,11a =()*1n =∈N;等比数列{}nb 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.18.若数列}{n a2*3()n n n N =+∈,则n a =_______.19.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值;(2)求{}n b 的通项公式.22.已知{}n a 是公差不为0的等差数列,若1313,,a a a 是等比数列{}n b 的连续三项. (1)求数列{}n b 的公比; (2)若11a =,数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 和为n S 且99200nS >,求n 的最小值. 23.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (1)求数列{}n a 的通项公式; (2)若0d <,93n n na b -=,求数列{}n b 的前n 项和n S . 24.已知数列n A :1a ,2a ,…,()2n a n ≥满足:①11a =;②()121,2,,1k ka k n a +==-.记()12n n S A a a a =+++.(1)直接写出()3S A 的所有可能值; (2)证明:()0n S A >的充要条件是0n a >; (3)若()0n S A >,求()n S A 的所有可能值的和.25.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.26.已知n S 为等差数列{}n a 的前n 项和,59a =,13169S =. (1)求数列{}n a 的通项公式; (2)设3nn na b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.2.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.3.C解析:C 【分析】本题根据题意各年获利构成一个等比数列,然后得到通项公式,根据题意可得出关于n 的不等式,解出n 的值,注意其中对数式的计算. 【详解】由题意,设从2019年开始,第n 年的获利为()n a n *∈N 万元,则数列{}n a 为等比数列,其中2019年的获利为首项,即120a =.2020年的获利为()2620120%205a =⋅+=⋅万元,2021年的获利为()223620120%205a ⎛⎫=⋅+=⋅ ⎪⎝⎭万元,∴数列{}n a 的通项公式为()16205n n n N a *-⎛⎫⋅⎪⎝⎭∈= ,由题意可得1620605n n a -⎛⎫=⋅> ⎪⎝⎭,即1635n -⎛⎫> ⎪⎝⎭,()65lg3lg3lg3lg30.47711log 3610lg6lg52lg 2lg3120.30100.47711lg lg 23lg 52n ∴->=====-+-⨯+-⨯-6.03166=>,8n ∴≥,∴从2026年开始这家加工厂年获利超过60万元.故选:C . 【点评】本题主要考查等比数列在实际生活中的应用,考查了等比数列的通项公式,不等式的计算,对数运算.属于中档题.4.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.5.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 6.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =,且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.7.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.8.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.9.D解析:D 【解析】由题意可知2n 2=2m 2+c 2. 又m 2+n 2=c 2, ∴m=2c . ∵c 是a ,m 的等比中项, ∴2c am =,∴22ac c =, ∴12c e a ==.选D . 10.C解析:C 【分析】根据{}n a 是等差数列,且675S S S >>,变形为7666555567,,a a S S S S S a S a ++>++>>判断即可.【详解】数列{}n a 是等差数列675S S S >>,7666555567,,a a S S S S S a S a ++>++>>, 76670,0,0a a a a <>+>,所以0d <,()111116111102a a S a +==>, ()()11267121212022a S a a a ++==>,67a a >,故选:C 【点睛】本题主要考查等差数列的通项与前n 项和的关系及应用,还考查了转化求解问题的能力,属于中档题.11.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.12.D解析:D 【分析】 设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】 设11n n a a q-=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列;③,11112111211222=2,222n nn n n n n n a a q a a q a q a q a a q-------==不是一个常数,所以数列{}2n a 不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列.故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题13.【分析】根据已知条件推导出数列从第三项开始奇数项成等差数列且公差为然后利用等差数列的求和公式可求得的值【详解】当且时由可得即可得①所以②②①得所以则则所以数列从第三项开始奇数项成等差数列且公差为故答 解析:9901【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值. 【详解】当2n ≥且*n ∈N 时,0n a ≠, 由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=, 可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②, ②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠, 所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.14.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】 由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711ab b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.15.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2, ∴()()22119220101002n n n S n n n n -=-+⨯=-=--,∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.16.【分析】代入再证明为等差数列继而求得的通项公式再计算即可【详解】因为所以两边同除以得:所以数列是以为首项1为公差的等差数列所以所以所以故答案为:【点睛】本题主要考查了根据递推公式证明等差数列的方法属 解析:12021【分析】代入11n n n a S S ++=-,再证明1n S ⎧⎫⎨⎬⎩⎭为等差数列,继而求得1n S ⎧⎫⎨⎬⎩⎭的通项公式再计算2020S 即可.【详解】因为110n n n a S S +++=,所以,11n n n n S S S S ++-=-, 两边同除以1n n S S +-得:1111n nS S +-=, 所以数列1n S ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列, 所以()1211n n n S =+-=+,所以11n S n =+, 所以202012021S = 故答案为:12021【点睛】本题主要考查了根据递推公式证明等差数列的方法,属于中档题.17.【分析】分别求出的通项再构建新数列求出最大项后可得实数的最小值【详解】因为故是以1为首项以1为公差的等差数列所以当时是等比数列也适合故即又恒成立等价于恒成立令则当时当时故【点睛】方法点睛:含参数的数解析:94【分析】分别求出{}n a 、{}n b 的通项,再构建新数列212n n n c -=,求出{}n c 最大项后可得实数λ的最小值. 【详解】()*1n=∈N,故是以1为首项,以1为公差的等差数列,()11n n=-⨯=,2*()na n n N∴=∈.当2n≥时,111(2)(2)2n n nn n nb S S m m---=-=---=,{}nb是等比数列,112b S m∴==-也适合12nnb-=,故21m-=即1m=,1*2()nnb n N-∴=∈.又n nb aλ≥恒成立等价于212nnλ-≥恒成立,2max max1()()2nnna nbλ-∴≥=,令212n nnc-=,则()2221121142222n n n n nnn n nc c--------=-=,当23n≤≤时,1-->n nc c,当4n≥时,1n nc c--<,故max39()4nc c==,94λ∴≥.【点睛】方法点睛:含参数的数列不等式的恒成立,可利用参变分离将参数的取值范围问题转化新数列的最值问题,后者可利用数列的单调性来处理.18.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题解析:()241n+【分析】有已知条件可得出116a=,2n≥时()()2*131()n n n N⋅⋅⋅=-+-∈,与题中的递推关系式相减即可得出()241na n=+,且当1n=时也成立.【详解】数列}{na2*3()n n n N=+∈4=,即116a=2n≥()()2*131()n n n N⋅⋅⋅+=-+-∈22n=+,所以()241na n=+(2n≥)当1n=时,116a=适合上式,所以()241na n=+【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.19.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a c b a c ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c=⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+,当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠, 故①错误;②:数列{}n a 的前n 项和21n n S =-,当1n =时,111211a S ==-=, 当2n ≥时,111(21)(21)2nn n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列,所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题 解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+. 故答案为:1m + 【点睛】本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩ 解得2q 或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥, ()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式, 故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法. 22.(1)5;(2)50. 【分析】(1)利用基本量代换,求出12d a =,直接求出公比; (2)裂项相消法求出n S ,解不等式即可. 【详解】(1)设等差数列{}n a 的公差为d ,由1313,,a a a 是等比数列{}n b 的连续三项,得23113a a a =⋅,即()()2111212a d a a d +=⋅+,化简得2148d a d =.10,2d d a ≠∴=.设数列{}n b 的公比的公比为q ,则3111111245a a d a a q a a a ++====. (2)若11a =,则1111112,21,(21)(21)22121n n n d a n a a n n n n +⎛⎫==-==- ⎪-+-+⎝⎭,111112133557(21)(21)n S n n ⎫⎛=++++⎪ ⨯⨯⨯-⨯+⎝⎭111111111111233557212122121nn n n n ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 由99200n S >,得9999,212002n n n >∴>+,故n 的最小值为50.【点睛】(1)等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法.23.(1) 11n a n =-+或46,n a n n N *=+∈;(2)51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【分析】(1)由123,22,5a a a +成等比数列求得公差后可得通项公式n a ; (2)对23n b b b +++用错位相减法求和.【详解】解:(1)∵123,22,5a a a +成等比数列,∴()2231225a a a +=⋅,整理得2340d d --=,解得1d =-或4d =,当1d =-时,10(1)11n a n n =--=-+; 当4d =时,104(1)46n a n n =+-=+.所以11n a n =-+或46,n a n n N *=+∈.(2)设数列{}n a 前n 项和为n S , ∵0d <,∴1d =-,11n a n =-+23n nnb -=当1n =时,13n S =, 当2n ≥时,2341012233333n n n S -=++++⋅⋅⋅+ 令34122333n n T -=+++,则45111223333n n T +-=+++ 两式相减可得32345111112111122331333333313n n n n n n T -++⎛⎫- ⎪--⎝⎭=+++⋯+-=--整理可得11112423nn T ⎛⎫=+-⨯ ⎪⎝⎭, 则511,212423n n n S n ⎛⎫=+-⨯≥ ⎪⎝⎭ 且113S =满足上式, 综上所述:51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【点睛】本题考查求等差数列的通项公式,分组(并项)求和法,错位相减法.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.24.(1)所有可能值是7-,5-,3-,1-,1,3,5,7;(2)证明见解析;(3)222n -.【分析】(1)根据递推关系式以及求和式子即可得出结果.(2)充分性:求出数列的通项公式,再利用等比数列的前n 和公式可证;必要性:利用反证法即可证明.(3)列出n A 中的项,得出数列的规律:每一个数列前1n -项与之对应项是相反数的数列,即可求解. 【详解】解:(1)()3S A 的所有可能值是7-,5-,3-,1-,1,3,5,7. (2)充分性:若0n a >,即12n n a .所以满足12n na ,且前n 项和最小的数列是1-,2-,4-,…,22n --,12n -.所以()211212422n n n a a a --++⋅⋅⋅+≥-+++⋅⋅⋅++211222112n n ---⋅=-+=-.所以()0n S A >.必要性:若()0n S A >,即120n a a a ++⋅⋅⋅+>.假设0n a <,即12n n a -=-.所以()()21121242210n n n n S A a a a --=++⋅⋅⋅+≤+++⋅⋅⋅+-=-<, 与已知()0n S A >矛盾. 所以()0n S A >.综上所述,()0n S A >的充要条件是0n a >.(3)由(2)知,()0n S A >可得0n a >.所以12n na .因为数列n A :1a ,2a ,…,()2n a n ≥中1a 有1-,1两种,2a 有2-,2两种,3a 有4-,4两种,…,1n a -有22n --,22n -两种,n a 有12n -一种,所以数列n A :1a ,2a ,…,()2n a n ≥有12n -个,且在这12n -个数列中,每一个数列都可以找到前1n -项与之对应项是相反数的数列. 所以这样的两数列的前n 项和是122n -⨯. 所以这12n -个数列的前n 项和是1122122222n n n ---⨯⨯⨯=. 所以()n S A 的所有可能值的和是222n -. 【点睛】关键点点睛:本题考查了等比数列的通项公式、求和公式,解题的关键是根据递推关系式得出数列n A 的通项公式,注意讨论,此题也考查了数列不等式、反证法在数列中的应用. 25.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】 (1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212ab a ==,3313a b a ==, (2)设1n a k +=,nn nA bB =, 若n k B ≤,则+1nn n n nk A A b b B =≥=, 若n n B k A <<,则+1nn nn A b b B ==, 若n k A ≥,则+1n n n nn A kb b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=;(3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n nn A b q B -==, 由(2)可得1n n b b +≥,则1q ≥, 当1q =时,1nnA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列;当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =,此时01n n nn n n A a b q B a -===,即01n n n a a q -=,故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列.【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.26.(1)21n a n =-;(2)113n nn T +=-. 【分析】(1)根据59a =,13169S =,利用等差数列的通项公式以及前n 项和公式求解. (2)由(1)得到2133n n n n a n b -==,利用数列求和的错位相减法求解. 【详解】 (1)因为()11313713131692a a S a +===,所以77513,24a d a a ==-=, 解得2d =,所以9(5)221n a n n =+-⋅=-. (2)由(1)得213n nn b -=, 则()231111135213333n nT n =⋅+⋅+⋅++-⋅, ()()23411111111352321333333n n n T n n +=⋅+⋅+⋅++-⋅+-, 两式相减得:()231211111221333333n nn T n +⎛⎫=++++-- ⎪⎝⎭,1111112193213313n n n -+⎛⎫- ⎪-⎝⎭=+--, 122233n n ++=-, 所以113n n n T +=-. 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。
高中数学第一章数列 数列在日常经济生活中的应用学案含解析北师大版必修5

§4数列在日常经济生活中的应用知识点一零存整取模型[填一填](1)单利:单利的计算是仅在原有本金上计算利息,对本金所产生的利息不再计算利息,其公式为利息=本金×利率×存期.若以P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有S=P(1+nr).(2)复利:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的.复利的计算公式是S=P(1+r)n.[答一答]1.简单总结一下本节课中几种模型的规律方法.提示:(1)银行存款中的单利是等差数列模型,本息和公式为S=P(1+nr).(2)银行存款中的复利是等比数列模型,本利和公式为S=P(1+r)n.(3)产值模型:原来产值的基础数为N,平均增长率为P,对于时间x的总产值y=N(1+P)x.(4)分期付款模型:a为贷款总额,r为年利率,b为等额还款数,则b=r(1+r)n a (1+r)n-1.知识点二数列知识的实际应用及解决问题的步骤[填一填](1)数列知识有着广泛的应用,特别是等差数列和等比数列.例如银行中的利息计算,计算单利时用等差数列,计算复利时用等比数列,分期付款要综合运用等差、等比数列的知识.(2)解决数列应用题的基本步骤为:①仔细阅读题目,认真审题,将实际问题转化为数列模型;②挖掘题目的条件,分析该数列是等差数列,还是等比数列,分清所求的是项的问题,还是求和问题;③检验结果,写出答案.[答一答]2.数列应用题中常见模型是哪些? 提示:等差模型和等比模型.1.数列实际应用题的解题策略解等差、等比数列应用题时,首先要认真审题,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差、等比数列问题,然后求解.2.处理分期付款问题的注意事项(1)准确计算出在贷款全部付清时,各期所付款额及利息(注:最后一次付款没有利息). (2)明确各期所付的款以及各期所付款到最后一次付款时所产生的利息之和等于商品售价及从购买到最后一次付款时的利息之和,只有掌握了这一点,才可以顺利建立等量关系.类型一 单利计算问题【例1】 有一种零存整取的储蓄项目,它是每月某日存入一笔相同的金额,这是零存;到约定日期,可以提出全部本金及利息,这是整取.它的本利和公式如下:本利和=每期存入金额×⎣⎡⎦⎤存期+12存期×(存期+1)×利率. (1)试解释这个本利和公式;(2)若每月初存入100元,月利率5.1‰,到第12个月底的本利和是多少?(3)若每月初存入一笔金额,月利率是5.1‰,希望到第12个月底取得本利和2 000元,那么每月应存入多少金额?【思路探究】 存款储蓄是单利计息,若存入金额为A ,月利率为P ,则n 个月后的利息是nAP .【解】 (1)设每期存入金额A ,每期利率P ,存入期数为n ,则各期利息之和为 AP +2AP +3AP +…+nAP =12n (n +1)AP .连同本金,就得:本利和=nA +12n (n +1)AP =A ⎣⎡⎦⎤n +12n (n +1)P . (2)当A =100,P =5.1‰,n =12时,本利和=100×⎝⎛⎭⎫12+12×12×13×5.1‰=1 239.78(元). (3)将(1)中公式变形得 A =本利和n +12n (n +1)P= 2 00012+12×12×13×5.1‰≈161.32(元).即每月应存入161.32元.规律方法 单利的计算问题,是等差数列模型的应用.王先生为今年上高中的女儿办理了“教育储蓄”,已知当年“教育储蓄”存款的月利率是2.7‰.(1)欲在3年后一次支取本息合计2万元,王先生每月大约存入多少元?(2)若教育储蓄存款总额不超过2万元,零存整取3年期教育储蓄每月至多存入多少元?此时3年后本息合计约为多少元?(精确到1元)解:(1)设王先生每月存入A 元,则有A (1+2.7‰)+A (1+2×2.7‰)+…+A (1+36×2.7‰)=20 000,利用等差数列前n 项和公式,得A ⎝⎛⎭⎫36+36×2.7‰+36×352×2.7‰=20 000,解得A ≈529元.(2)由于教育储蓄的存款总额不超过2万元,所以3年期教育储蓄每月至多存入20 00036≈555(元),这样,3年后的本息和为:555(1+2.7‰)+555(1+2×2.7‰)+…+555(1+36×2.7‰)=555⎝⎛⎭⎫36+36×2.7‰+36×352×2.7‰≈20 978(元).类型二 关于复利模型问题【例2】 小张为实现“去上海,看世博”的梦想,于2005年起,每年2月1日到银行新存入a 元(一年定期),若年利率r 保持不变,且每年到期存款自动转为新的一年定期,到2010年2月1日,将所有存款及利息全部取回,试求他可以得到的总钱数.【思路探究】 由题意知,本题为定期自动转存问题,应为等比数列前n 项和的模型. 【解】 依题意每一年的本息和构成数列{a n },则2005年2月1日存入的a 元钱到2006年1月31日所得本息和为a 1=a (1+r ).同理,到2007年1月31日所得本息和为 a 2=[a (1+r )+a ](1+r )=a (1+r )2+a (1+r ), 到2008年1月31日所得本息和为[a (1+r )2+a (1+r )+a ](1+r )=a (1+r )3+a (1+r )2+a (1+r ), 到2009年1月31日所得本息和为[a (1+r )3+a (1+r )2+a (1+r )+a ](1+r )=a (1+r )4+a (1+r )3+a (1+r )2+a (1+r ), 到2010年1月31日所得本息和为[a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )+a ](1+r )=a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r ),所以2010年2月1日他可取回的钱数为a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )=a ·(1+r )[1-(1+r )5]1-(1+r )=ar [(1+r )6-(1+r )](元).规律方法 本例主要考查阅读理解能力,这里关键是每年2月1日又新存入a 元,因此每年到期时所得钱的本息和组成一个等比数列前n 项和模型.某牛奶厂2013年初有资金1 000万元,由于引进了先进生产设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金后,余下的资金投入再生产.这家牛奶厂每年应扣除多少消费基金,才能实现经过5年资金达到2 000万元的目标?解:设这家牛奶厂每年应扣除x 万元消费基金. 2013年底剩余资金是1 000(1+50%)-x ;2014年底剩余资金是[1 000(1+50%)-x ]·(1+50%)-x =1 000(1+50%)2-(1+50%)x -x ;……5年后达到资金1 000(1+50%)5-(1+50%)4x -(1+50%)3x -(1+50%)2x -(1+50%)x =2 000, 解得x =459(万元). 类型三 分期付款模型【例3】 用分期付款的方式购买一件家用电器,其价格为1 150元.购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%,分20次付完.若交付150元以后的第1个月开始算分期付款的第1个月,问:分期付款的第10个月需交付多少钱?全部贷款付清后,买这件家电实际花了多少钱?【思路探究】 构建等差数列模型,利用等差数列的前n 项和公式求解.【解】 购买时付款150元,欠1 000元,以后每月付款50元,分20次付清.设每月付款数顺次构成数列{a n },则a 1=50+1 000×1%=60,a 2=50+(1 000-50)×1%=59.5=60-0.5×1, a 3=50+(1 000-50×2)×1%=59=60-0.5×2, ……a 10=50+(1 000-50×9)×1%=55.5=60-0.5×9, 则a n =60-0.5(n -1)=-0.5n +60.5(1≤n ≤20). 所以数列{a n }是以60为首项,-0.5为公差的等差数列,所以付款总数为S 20+150=20×60+20×192×(-0.5)+150=1 255(元).所以第10个月需交55.5元,全部付清实际花了1 255元.规律方法 解题时务必要注意第一次付款的利息是1 000元欠款的利息,而不是950元的利息,而最后一次付款的利息是50元欠款的利息.某人在2015年年初向银行申请个人住房公积金贷款20万元购买住房,月利率为3.375‰,按复利计算,每月等额还贷一次,并从贷款后的次月初开始还贷.如果10年还清,那么每月应还贷多少元?(参考数据:1.003 375120≈1.498 28)解:方法一:由题意知借款总额a =200 000(元),还款次数n =12×10=120, 还款期限m =10(年)=120(个月), 月利率r =3.375‰ .代入公式得,每月还款数额为: 200 000×0.003 375×(1+0.003 375)120(1+0.003 375)120-1≈2 029.66.故如果10年还清,每月应还贷约2 029.66元.方法二:设每月应还贷x 元,共付款12×10=120(次),则有x [1+(1+0.003 375)+(1+0.003 375)2+…+(1+0.003 375)119]=200 000×(1+0.003 375)120,解方程得x ≈2 029.66.故每月应还贷约2 029.66元. 类型四 增长率问题【例4】 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游业.根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年旅游业的总收入才能超过总投入?【思路探究】 (1)由题设知各年的投入费用及旅游业收入分别构成等比数列,利用等比数列的前n 项和公式易得a n 与b n ;(2)建立a n 与b n 的不等关系,解不等式即得.【解】 (1)第一年投入为800万元,第二年投入为800⎝⎛⎭⎫1-15万元,…,第n 年投入为800⎝⎛⎭⎫1-15n -1万元,各年投入依次构成以800为首项,1-15=45为公比的等比数列,所以n 年内的总投入为a n =800⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=4 000-4 000·⎝⎛⎭⎫45n . 第一年旅游业收入为400万元,第二年旅游业收入为400⎝⎛⎭⎫1+14万元,…,第n 年旅游业收入为400⎝⎛⎭⎫1+14n -1万元,各年旅游业收入依次构成以400为首项,1+14=54为公比的等比数列,所以n 年内的旅游业总收入为b n =400⎣⎡⎦⎤1-⎝⎛⎭⎫54n 1-54=1 600⎝⎛⎭⎫54n -1 600. (2)设经过n 年旅游业的总收入才能超过总投入,则b n -a n >0,即1 600⎝⎛⎭⎫54n-1 600-4 000+4 000⎝⎛⎭⎫45n>0,化简得2⎝⎛⎭⎫54n +5⎝⎛⎭⎫45n-7>0.设⎝⎛⎭⎫45n=x ,代入上式得5x 2-7x +2>0,根据二次函数y =5x 2-7x +2的图像解此不等式, 得x <25或x >1(舍去),即⎝⎛⎭⎫45n <25,由此得n ≥5.故至少经过5年旅游业的总收入才能超过总投入.规律方法 当问题中涉及的各量依次以相同的倍数变化时,则考虑构建等比数列模型.其解题步骤为:(1)由题意构建等比数列模型(有时需要从特殊情况入手,归纳总结出一般规律,进而构建等比数列模型);(2)确定其首项a 1与公比q ,分清是求第n 项a n ,还是求前n 项和S n ; (3)利用等比数列的通项公式及前n 项和公式求解; (4)经过检验得出实际问题的答案.某商场出售甲、乙两种不同价格的笔记本电脑,其中甲商品因供不应求,连续两次提价10%,而乙商品由于外观过时而滞销,只得连续两次降价10%,最后甲、乙两种电脑均以9 801元售出.若商场同时售出甲、乙电脑各一台,与价格不升不降比较,商场赢利情况是少赚598元.解析:设甲原价是m 元,则m (1+10%)2=9 801⇒m =9 8011.21,设乙原价是n 元,则n (1-10%)2=9 801⇒n =9 8010.81.(m +n )-2×9 801=9 801×⎝⎛⎭⎫11.21+10.81-19 602=9 801× 2.021.21×0.81-19 602=20 200-19 602=598.——多维探究系列——数列中的探索性问题探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备,要求考生自己去探索,结合已知条件,进行观察、分析、比较和概括.它对考生的数学思想、数学意识及综合运用数学方法解决问题的能力提出了较高的要求.这类问题不仅考查考生的探索能力,而且给考生提供了创新思维的空间,所以备受高考的青睐,是高考重点考查的内容.探索性问题一般可以分为:条件探索性问题、规律探索性问题、结论探索性问题、存在探索性问题等.【例5】 已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.【思路分析】 (1)根据已知条件得出关于a 1,q 的方程组,求解即可;(2)只需表示出前n 项和,解指数不等式.【规范解答】 (1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013, 即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.【名师点评】 求解此类题需要同学们熟练运用公式和相关概念来构建方程(组),进而求得数列的通项.本例题的难点在于对不等式2n ≥2 012的求解及对n 的奇偶性的讨论.建议熟记2的1~10次幂的值.已知数列{a n }中,a 1=1,且点P (a n ,a n +1)(n ∈N +)在直线x -y +1=0上. (1)求数列{a n }的通项公式;(2)设b n =1a n,S n 表示数列{b n }的前n 项和,试问:是否存在关于n 的关系式g (n ),使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立?若存在,写出g (n )的解析式,并加以证明;若不存在,试说明理由.解:(1)由点P (a n ,a n +1)在直线x -y +1=0上, 即a n +1-a n =1,且a 1=1,即数列{a n }是以1为首项,1为公差的等差数列. 则a n =1+(n -1)×1=n (n ∈N +).(2)假设存在满足条件的g (n ), 由b n =1n ,可得S n =1+12+13+…+1n ,S n -S n -1=1n (n ≥2),nS n -(n -1)S n -1=S n -1+1, (n -1)S n -1-(n -2)S n -2=S n -2+1, …2S 2-S 1=S 1+1.以上(n -1)个等式等号两端分别相加得 nS n -S 1=S 1+S 2+S 3+…+S n -1+n -1,即S 1+S 2+S 3+…+S n -1=nS n -n =n (S n -1),n ≥2.令g (n )=n ,故存在关于n 的关系式g (n )=n ,使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立.一、选择题1.有一种细菌和一种病毒,每个细菌在每秒钟末能在杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要( B )A .6秒钟B .7秒钟C .8秒钟D .9秒钟解析:依题意,得1+21+22+…+2n -1≥100, ∴1-2n 1-2≥100,∴2n ≥101,∴n ≥7, 则所求为7秒钟.2.某林厂年初有森林木材存量S 立方米,木材以每年25%的增长率生长,而每年末都砍伐固定的木材量x 立方米,为实现经过两次砍伐后的木材的存量增加50%,则x 的值是( C )A.S 32B.S 34C.S 36D.S 38解析:一次砍伐后木材的存量为S (1+25%)-x ; 二次砍伐后木材存量为[S (1+25%)-x ](1+25%)-x =2516S -54x -x =S (1+50%),解得x =S 36. 3.某工厂2013年年底制订生产计划,要使工厂的年总产值到2023年年底在原有基础上翻两番,则年总产值的平均增长率为( A )A .4110-1B .5110-1C .3110-1D .4111-1二、填空题4.一个工厂的生产总值月平均增长率是p ,那么年平均增长率为(1+p )12-1.解析:一年12个月,故1月至12月产值构成公比为1+p 的等比数列,设去年年底产值为a ,∴a 12=a (1+p )12,∴年平均增长率为a (1+p )12-aa=(1+p )12-1.5.今年,某公司投入资金500万元,由于坚持改革、大胆创新,以后每年投入资金比上一年增加30%,那么7年后该公司共投入资金5 0003(1.37-1)万元.解析:设第n 年投入的资金为a n 万元, 则a n +1=a n +a n ×30%=1.3a n ,则a n +1a n=1.3,所以数列{a n }是首项为500,公比为1.3的等比数列,所以7年后该公司共投入资金S 7=a 1(1-q 7)1-q =500×(1-1.37)1-1.3=5 0003(1.37-1)(万元).。
数列在日常经济生活中的应用

跟踪训练3 解:(1)设林区原有的树木量为a,调整计划后, 第n年的树木量为an (n = 1,2,3, L), 则a1 = a (1 + 200 0 0 ) = 3a, a2 = a1 (1 + 100 0 0 ) = 2a1 = 6a, 1 a3 = a2 (1 + ) = 2 1 a4 = a3 (1 + ) = 4 3 a2 = 9a, 2 5 45 a3 = a. 4 4
例1、购买时先付5万元,余款20万元按题意分10次分期还清,每次 付款数组成数列{an }, 则a1 = 2 + (25 − 5) ⋅10 0 0 = (万元); 4 a2 = 2 + (25 − 5 − 2) ⋅10 0 0 = 3.8(万元) a3 = 2 + (25 − 5 − 2 × 2) ⋅10 0 0 = 3.6(万元) LL, n −1 an = 2 + [25 − 5 − (n − 1) ⋅ 2]⋅10 0 = (4 − )(万元)n = 1,2, L,10) ( 5 1 因而数列{an }是首项为4,公差为 - 的等差数列. 5 5 −1 a5 = 4 − = 3.2(万元) . 5 1 10 × (10 − 1) × (− ) 5 = 31(万元) S10 = 10 × 4 + 2 31 + 5 = 36(万元),
例2、设每年应付款x元,那么到最后一次付款时 (即购房十年后), 第一年付款及所生利息之和为x ×1.075 元,
9
第二年付款及所生利息之和为x ×1.0758 元, L 第九年付款及所生利息之和为x ×1.075元, 第十年付款为x元,而所购房余款的现价及
] 其利息之和为[1000 × 92 (28800 + 14400)×1.07510 (元) = 48800 ×1.07510 因此有x(1 + 1.075 + 1.0752 + L + 1.0759 ) = 48800 ×1.07510 , 1.075 − 1 ≈ 48800 × 2.061× 0.071 ∴ x = 48800 ×1.075 × 10 1.075 − 1 ≈ 7141(元) .故每年需交款7141元。
《数列在日常经济生活中的应用》

100×12 + 0.5×12×13×0.165%×100
= 1212.87(元 ) 答:他可取出1212.87元。
一般地,设每月月初存入银行金额A,连存 n 次,每月的利率 都是 p , 那么到第 n 个月月末
本金共有:
各月的利息是
___ 差 数 列
期 次
1 2 …
0.36% 则日利率: 0.001% 360
计息公式:利息=本金×存期×日利率
整存整取定期储蓄
这是指一次存入本金,完成约定存期后一次取出本金 及其利息的一种储蓄。中国邮政银行在近期内规定的这 种储蓄的年利率如下.
存
期
1年
2.25
2年
2.79
3年
3.33
5年
3.6
年利率(%)
计息公式:利息=本金×存期×年利率
整存整取 年利率
分期储蓄
这是指一种分期存入相同金额一次取出的 储蓄方式(即零存整取的储蓄)。现在的 分期储蓄通常指按月存入相同金额。
-----------------------------------------------------------------
例1、某人从一月起,每月第一天存入银行 100元,到12月最后一天取出全部本金及其利 息。已知月利率是0.165%,他可取得多少钱? 解:实际取出 :
数 列 在日常经济生活中的应用
储 蓄 问 题
计息公式:利息=本金×存期×利率
月利率=年利率/12 日利率=年利率/360
本 利 和= 本 金 + 利 息
活期储蓄
这是指存期不定,可以随时存取的一种储蓄。计息时, 按日利率算存期为天数(一年按360天,一个月按30天 计算)。 若活期年利率:0.36 %
数列在日常经济生活中的应用

元;第 2 期付款以及到最后一次付款时所生利息为 x(1+0.008)10 元;……;第 12 期付款(无
利息)为 x 元,所以各期付款连同利息之和为 x(1+0.008)11+x(1+0.008)10+…+x=
11.0.0008812--11x(元).
又所购电器的现价及其利息之和为
2000×1.00812
元
,
于
是
有
1.00812-1 1.008-1
x
=
2000×1.00812. 解得 x=116.0×081.102-08112≈175(元).即每期应付款 175 元.
递推关系型数列应用题 【例 3】 某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为 a1,以后每年交纳的数目均比上一年增加 d(d>0),因此,历年所交纳的储备金数目 a1,a2,… 是一个公差为 d 的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而 且计算复利.这就是说,如果固定年利率为 r(r>0),那么,在第 n 年末,第一年所交纳的储 备金就变为 a1(1+r)n-1,第二年所交纳的储备金就变为 a2(1+r)n-2,…,以 Tn 表示到第 n 年 末所累计的储备金总额. (1)写出 Tn 与 Tn-1(n≥2)的递推关系式; (2)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.
链接一:等差数列{an}的通项公式 an=a1+(n-1)d 或 an=am+(n-m)d;前 n 项和公式 Sn=a1n+nn-2 1d 或 Sn=na1+ 2 an.
链接二:等比数列{an}的通项公式 an=a1qn-1 或 an=amqn-m;当 q=1 时,前 n 项和 Sn =na1,当 q≠1 时,前 n 项和 Sn=a111--qqn或 Sn=a11--aqnq.
北师版高中同步学案数学选择性必修第二册精品课件 第1章 数列在日常经济生活中的应用——分层作业

2016年5月1日到银行存入a元,则一年后存款及利息是a(1+p),
则到2019年5月1日存款及利息是a(1+p)3,
2017年5月1日到银行存入a元,则一年后存款及利息是a(1+p),
则到2019年5月1日存款及利息是a(1+p)2,
2018年5月1日到银行存入a元,则一年后存款及利息是a(1+p),
4
1
D.公司持股较多的2位股东所持股份之和可以超过总股份的 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
解析 不妨设 10 名股东所持股份为 a1≤a2≤…≤a10,总股份为 1,
因为
1
1
1
1
6a6≥a1+a2+…+a6≥2,a6≥12,a6 的最小值为12,若 a6=12,此时
≈
2.[2023江西吉安三中阶段练习]某公司有10名股东,其中任何六名股东所
持股份之和不少于总股份的一半,则下列选项错误的是( D )
5
A.公司持股最少的5位股东所持股份之和可以等于总股份的 12
1
B.公司持股较多的5位股东所持股份均不少于总股份的 12
1
C.公司持股最大的股东所持股份不超过总股份的
所以到2033年1月1日将之前所有存款及利息全部取回,
他可取回的钱数约为
10
1.02×(1.02
-1)
10
9
2(1+0.02) +2(1+0.02) +…+2(1+0.02)=2×
1.02-1
2.04×(1.219-1)
≈22.3(万元),
新教材高中数学第一章数列综合训练北师大版选择性

第一章综合训练一、选择题:本题共8小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个首项为23,公差为整数的等差数列,从第7项开始为负数,则它的公差是()A.2B.3C.4D.62.[2023甘肃金昌第一高级中学统考模拟预测]设S n为数列{a n}的前n项和,若a1=2,S n+13S n=2,则下列各选项中正确的是()A.a n=2·B.a n=3n1C.S n=2×3n4D.S n=3n13.[2023江西鹰潭贵溪实验中学校考模拟预测]数列{a n}是等差数列,若a3a9=8,,则a6=()C. D.4.[2023北京海淀101中学校考期中]设等比数列{a n}的前n项和为S n,则“a1<0”是“S2 023<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要的条件5.数列{(1)n·n}的前2 023项的和S2 023为()A.2 017B.1 012C.2 017D.1 0126.数列{a n}满足a1=,a n+1=2a n,设数列的前n项积为T n,则T5=()A. B.C. D.7.[2023广东佛山一中阶段练习]已知等差数列{a n}和{b n}的前n项和分别为S n,T n(S n,T n≠0),且(n+1)S n=(7n+23)T n,则的值为()A. B. C. D.8.记[x]表示不超过实数x的最大整数,记a n=[log8n],则a i的值为()A.5 479B.5 485C.5 475D.5 482二、选择题:本题共4小题.在每小题给出的选项中,有多项符合题目要求.9.已知数列1,0,1,0,1,0,…,则这个数列的通项公式可能是()A.a n=B.a n=C.a n=D.a n=cos10.等差数列{a n}的前n项和为S n,a1+5a3=S8,则下列结论一定正确的是()A.a10=0B.当n=9或10时,S n取最大值C.|a9|<|a11|D.S6=S1311.已知数列{a n}的前n项和为S n(S n≠0),且满足a n+4S n1S n=0(n≥2),a1=,则下列说法正确的是()A.数列{a n}的前n项和为S n=B.数列{a n}的通项公式为a n=C.数列{a n}为递增数列D.数列为递增数列12.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,<0,则下列结论正确的是()<q<1<a6a8<1C.S n的最大值为S7D.T n的最大值为T6三、填空题13.若数列{a n}满足a n=,则数列{a n}的前15项的和S15= .14.已知数列{a n}是等差数列,且a6=0,a1+a4+a7=6,将a2,a3,a4,a5去掉一项后,剩下三项依次为等比数列{b n}的前三项,则b n= .15.若数列{a n}满足=d(n∈N+,d为常数),则称数列{a n}为“调和数列”.已知正项数列为“调和数列”,且b1+b2+…+b2 024=20 240,则b2b2 023的最大值是.16.已知数列{a n}的前n项和为S n,a1=1,a n+1+2S n+1S n=0,则a3= ,S n= .四、解答题:本题共6小题.解答应写出文字说明、证明过程或演算步骤.17.[2023海南中学阶段练习]已知S n为数列{a n}的前n项和,满足a1=1,a n>0,.(1)求数列{a n}的通项公式;(2)设b n=S n cos nπ,求数列{b n}的前(2n1)项和T2n1.18.已知等差数列{a n}前三项的和为3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.19.已知等差数列{a n}的前n项和为S n,{b n}是各项均为正数的等比数列,a1=b4,,b2=8,b13b3=4,是否存在正整数k,使得数列的前k项和T k>?若存在,求出k 的最小值;若不存在,请说明理由.从①S4=20,②S3=2a3,③3a3a4=b2这三个条件中任选一个,补充到上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.20.[2023广东佛山荣山中学校考期中]已知数列{a n}满足a1=,a n+1=.(1)设b n=,证明:{b n}是等差数列;(2)设数列的前n项和为S n,求S n.21.已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N+)中的项的个数,求数列{b m}的前100项和S100.22.已知数列{a n}的前n项和为S n,且满足a1=3,a n=xa n1+n2(n≥2),其中x∈R.(1)若x=1,求出a n.(2)是否存在实数x,y,使{a n+yn}为等比数列?若存在,求出S n;若不存在,说明理由.参考答案第一章综合训练1.C由题意,知a6≥0,a7<0.∴∴≤d<.∵d∈Z,∴d=4.2.D由a1=2,S n+13S n=2,得S23S1=2,即2+a26=2,解得a2=6.因为S n+13S n=2,所以S n3S n1=2(n≥2),两式相减得a n+13a n=0,即=3(n≥2).又因为a1=2,a2=6,所以=3(n∈N+),所以{a n}是首项为2,公比为3的等比数列,所以a n=2·3n1,S n=2×=3n1.故选D.3.C,故a6=.故选C.4.C若公比q=1,则当a1<0时,S2023=2023a1<0成立,当S2023=2023a1<0时,则a1<0,若q≠1,则S2023=,因为1q与1q2023同号,所以当a1<0时,S2023<0成立,当S2023<0时,a1<0成立,所以“a1<0”是“S2023<0”的充要条件.故选C.5.B S2023=1+23+45+…+20222023=(1)+(23)+(45)+…+(20222023)=(1)+(1)×1011=1012.6.C因为数列{a n}满足a1=,a n+1=2a n,所以数列{a n}是首项为,公比为2的等比数列,所以数列是以2为首项,为公比的等比数列,所以=2×=22n,所以T5=2×1×.故选C.7.B由(n+1)S n=(7n+23)T n,得,.故选B.8.B当1≤n≤7时,a1=a2=…=a7=0,一共有7个0;当8≤n≤63时,a8=a9=…=a63=1,一共有56个1;当64≤n≤511时,a64=a65=…=a511=2,一共有448个2;当512≤n≤2022时,a512=a513=…=a2022=3,一共有1511个3.故a i=(a1+…+a7)+(a8+…+a63)+(a64+…+a511)+(a512+…+a2022)=7×0+56×1+448×2+1511×3=5485.故选B.9.BC对于选项A,当n为奇数时,a n=0,当n为偶数时,a n=1,故不符合题意;对于选项B,当n为奇数时,a n=1,当n为偶数时,a n=0,故符合题意;对于选项C,当n为奇数时,a n=1,当n为偶数时,a n=0,故符合题意;对于选项D,当n为奇数时,a n=1或a n=1,当n为偶数时,a n=0,故不符合题意.故选BC.10.AD设等差数列{a n}的公差为d,∵a1+5a3=S8,∴a1+5(a1+2d)=8a1+d,∴a1=9d,故a10=a1+9d=0,故A正确;该数列的前n项和S n=na1+d=n2dn,它的最值跟d有关,不能推出当n=9或10时,S n取最大值,故B错误;∵|a9|=|a1+8d|=|d|=|d|,|a11|=|a1+10d|=|d|,∴|a9|=|a11|,故C错误;由于S6=6a1+d=39d,S13=13a1+d=39d,故S6=S13,故D正确.故选AD.11.AD∵a n+4S n1S n=0(n≥2),∴S n S n1+4S n1S n=0(n≥2),∵S n≠0,∴=4(n≥2),∴数列是以=4为首项,4为公差的等差数列,也是递增数列,即D正确;∴=4+4(n1)=4n,∴S n=,即A正确;当n≥2时,a n=S n S n1==,经检验,当n=1时上式不成立.所以a n=即BC不正确.故选AD.12.ABD∵a1>1,a6a7>1,<0,∴1<a6,0<a7<1.∴=q∈(0,1),a6a8=∈(0,1),S n没有最大值,T n的最大值为T6.故选ABD.13.3由题意,可得a n=,故S15=a1+a2+…+a15=+…+=41=3.14.23n在等差数列{a n}中,3a4=a1+a4+a7=6,解得a4=2,而a6=0,即有公差d==1,等差数列{a n}的通项公式a n=a4+(n4)d=6n,则a2=4,a3=3,a4=2,a5=1,显然去掉a3,则a2,a4,a5成等比数列,则数列{b n}的首项为b1=a2=4,公比q=,所以b n=b1q n1=4×=23n.15.100因为正项数列为“调和数列”,所以b n+1b n=d,数列{b n}是等差数列.则b1+b2+…+b2024==20240,解得b2+b2023=20,故2≤b2+b2023=20,即b2b2023≤100,当且仅当b2=b2023=10时,等号成立,故b2b2023的最大值是100.16.数列{a n}的前n项和为S n,a1=1,a n+1+2S n+1S n=0,则S n+1S n=2S n S n+1(n∈N+),可得=2,所以是等差数列,首项为1,公差为2,所以=1+2(n1)=2n1,S n=,n∈N+,a3=S3S2==.17.解(1)因为,故,所以,故数列是常数列,所以=2,故a n=2n1.(2)由(1)知a n=2n1,所以S n==n2,故b n=n2cos nπ=(1)n n2,对任意的k∈N+,b2k1+b2k=(2k1)2+4k2=4k1,所以T2n为数列(k∈N+)的前n项和,因为[4(k+1)1](4k1)=4,故数列(k∈N+)为等差数列,所以T2n1=T2n b2n=4n2=n2n2.18.解(1)设等差数列{a n}的公差为d,则a2=a1+d,a3=a1+2d,由题意得解得所以等差数列的通项公式为a n=23(n1)=3n+5或a n=4+3(n1)=3n7.故数列{a n}的通项公式为a n=3n+5或a n=3n7.(2)当a n=3n+5时,a2,a3,a1分别为1,4,2,不成等比数列;当a n=3n7时,a2,a3,a1分别为1,2,4,成等比数列,满足条件.故|a n|=|3n7|=记数列{|a n|}的前n项和为S n.当n=1时,S1=|a1|=4;当n=2时,S2=|a1|+|a2|=5;当n≥3时,S n=S2+|a3|+|a4|+…+|a n|=5+(3×37)+(3×47)+…+(3n7)=5+n2n+10.当n=2时,满足上式;当n=1时,不满足上式.综上,S n=19.解设等比数列{b n}的公比为q(q>0),等差数列{a n}的公差为d,因为b2=8,所以b1=,b3=8q,又因为b13b3=4,所以3×8q=4,即6q2+q2=0,解得q=或q=(舍去).所以b n=8·.若选①,则a1=b4=2,S4=4a1+d=20,解得d=2,所以S n=2n+×2=n2+n,,故T k=+…+=1++…+=1,令1,解得k>15,因为k为正整数,所以k的最小值为16.若选②,则a1=b4=2,S3=3a1+d=2(a1+2d),解得d=a1=2.所以S n=2n+×2=n2+n,,故T k=+…+++…+=1,令1,解得k>15,因为k为正整数,所以k的最小值为16.若选③,则a1=b4=2,3(a1+2d)(a1+3d)=8,解得d=,所以S n=2n+n2+n,,故T k=1++…++=1+=, 令T k>,得,因为k为正整数,所以k≥7,所以k的最小值为7.20.(1)证明因为b n+1b n==1,所以数列{b n}是以1为公差的等差数列. (2)解因为b1==2,所以b n=2+(n1)×1=n+1,由=n+1得a n=,故,所以S n=+…+=1+…+=1.21.解(1)设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q=(舍去),q=2.因为a1q2=8,所以a1=2.所以{a n}的通项公式为a n=2n.(2)由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+…+(b32+b33+…+b63)+(b64+b65+…+b100)=0+1×2+2×22+3×23+4×24+5×25 +6×(10063)=480.22.解(1)由题可知,当x=1时,a n a n1=n2(n≥2),所以a n=a1+(a2a1)+(a3a2)+…+(a n a n1)=3+0+1+2+…+(n2)=3+(n≥2).又a1=3满足上式,故a n=3+.(2)存在.S n=2n+24.假设存在实数x,y满足题意.设{a n+yn}的公比为q(q≠0),则当n≥2时,a n+yn=q[a n1+y(n1)],即a n=qa n1+(qyy)nqy,与题设a n=xa n1+n2对比系数可得解得所以a1+y=3+1=4,故存在x=2,y=1使得{a n+yn}是首项为4,公比为2的等比数列.从而a n+n=2n+1⇒a n=2n+1n⇒S n=a1+a2+…+a n=4,所以S n=2n+24.。
2020年高中数学北师大版必修五达标练习:第1章 §4 数列在日常经济生活中的应用 Word版含解析.doc

[A 基础达标]1.某工厂总产值月平均增长率为p ,则年平均增长率为( ) A .p B .12p C .(1+p )12D .(1+p )12-1解析:选D.设原有总产值为a ,年平均增长率为r ,则a (1+p )12=a (1+r ),解得r =(1+p )12-1,故选D.2.某种产品计划每年降低成本q %,若三年后的成本是a 元,则现在的成本是( ) A .a 3q % B .a ·(q %)3 C .a (1-q %)3D .a(1-q %)3解析:选D.设现在的成本为x 元,则x (1-q %)3=a ,所以x =a(1-q %)3,故选D.3.某工厂2012年年底制订生产计划,要使工厂的总产值到2020年年底在原有基础上翻两番,则总产值年平均增长率为( ) A .214-1 B .215-1 C .314-1D .315-1解析:选A.设2012年年底总产值为a ,年平均增长率为x ,则a (1+x )8=4a ,得x =214-1,故选A.4.某企业2015年12月份产值是这年1月份产值的p 倍,则该企业2015年度的产值月平均增长率为( ) A.12p B .12p -1 C.11p -1D .11p解析:选C.设2015年1月份产值为a ,则12月份的产值为pa ,假设月平均增长率为r ,则a (1+r )11=pa ,所以r =11p -1.故选C.5.某人为了观看2014世界杯,从2007年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2014年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( ) A .a (1+p )7 B .a (1+p )8 C.ap[(1+p )7-(1+p )] D.ap[(1+p )8-(1+p )]解析:选D.2007年存入的a 元到2014年所得的本息和为a (1+p )7,2008年存入的a 元到2014年所得的本息和为a (1+p )6,依次类推,则2013年存入的a 元到2014年的本息和为a (1+p ),每年所得的本息和构成一个以a (1+p )为首项,1+p 为公比的等比数列,则到2014年取回的总额为a (1+p )+a (1+p )2+…+a (1+p )7=a (1+p )[1-(1+p )7]1-(1+p )=ap [(1+p )8-(1+p )].6.小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本金和利息.假设一年期零存整取的月利率为r ,每期存款按单利计息.那么,小王存款到期利息为________元. 解析:由题意知,小王存款到期利息为12ar +11ar +10ar +…+2ar +ar =12(12+1)2ar =78ar . 答案:78ar7.某人买了一辆价值10万元的新车,专家预测这种车每年按10%的速度折旧,n 年后这辆车的价值为a n 元,则a n =________,若他打算用满4年时卖掉这辆车,他大约能得到________元.解析:n 年后这辆车的价值构成等比数列{a n },其中,a 1=100 000×(1-10%),q =1-10%,所以a n =100 000×(1-10%)n ,所以a 4=100 000×(1-10%)4=65 610(元). 答案:100 000×(1-10%)n 65 6108.有这样一首诗:“有个学生资性好,一部《孟子》三日了,每日添增一倍多,问君每日读多少?”(注:《孟子》全书约34 685字,“一倍多”指一倍),由此诗知该君第二日读了________字.解析:设第一日读的字数为a ,由“每日添增一倍多”得此数列是以a 为首项,公比为2的等比数列,可求得三日共读的字数为a (1-23)1-2=7a =34 685,解得a =4 955,则2a =9 910,即该君第二日读的字数为9 910. 答案:9 9109.某银行设立了教育助学贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果贷款10 000元,两年还清,月利率为0.457 5%,那么每月应还多少钱呢? 解:贷款10 000元两年到期时本金与利息之和为:10 000×(1+0.457 5%)24 =10 000×1.004 57524(元). 设每月还x 元,则到期时总共还 x +1.004 575x +…+1.004 57523x =x ·1-1.004 575241-1.004 575.于是x ·1-1.004 575241-1.004 575=10 000×1.004 57524. 所以x ≈440.91(元). 即每月应还440.91元.10.甲、乙两超市同时开业,第一年的全年销售额为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多a ⎝⎛⎭⎫23n -1万元.(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年? 解:(1)设甲、乙两超市第n 年的销售额分别为a n ,b n .则有a 1=a ,当n ≥2时, a n =a 2(n 2-n +2)-a2[(n -1)2-(n -1)+2]=(n -1)a ,所以a n =⎩⎪⎨⎪⎧a ,n =1,(n -1)a ,n ≥2.b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a (n ∈N +).(2)易知b n <3a ,所以乙超市将被甲超市收购, 由b n <12a n ,得⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a <12(n -1)a .所以n +4⎝⎛⎭⎫23n -1>7,所以n ≥7,即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.[B 能力提升]11.某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约多少年可以使总销售量达到30 000台?(结果保留到个位)(参考数据:lg 1.1≈0.041,lg 1.6≈0.204)( ) A .3年 B .4年 C .5年D .6年解析:选C.设大约n 年可使总销售量达到30 000台,由题意知:每年销售量构成一个等比数列,首项为a 1=5 000台,公比q =1.1,S n =30 000,所以由30 000=5 000(1-1.1n )1-1.1⇒1.1n=1.6⇒n =lg 1.6lg 1.1≈5,故选C.12.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x 的值等于________.解析:由已知(c -a )是(b -c )和(b -a )的等比中项,即(c -a )2=(b -c )(b -a ),把c =a +x (b -a )代入上式,得x 2(b -a )2=[b -a -x (b -a )](b -a ),即x 2(b -a )2=(1-x )(b -a )2,因为b >a ,b -a ≠0,所以x 2=1-x ,即x 2+x -1=0,解得x =-1±52,因为0<x <1,所以最佳乐观系数x 的值等于 -1+52.答案: -1+5213.祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元,设f (n )表示前n 年的纯收入.求从第几年开始获取纯利润?(f (n )=前n 年的总收入-前n 年的总支出-投资额) 解:由题意,知每年的经费是以12为首项,4为公差的等差数列.设纯利润与年数的关系为f (n ),则f (n )=50n -⎣⎡⎦⎤12n +n (n -1)2×4-72=-2n 2+40n -72.获取纯利润就是要求f (n )>0,故有-2n 2+40n -72>0,解得2<n <18. 又n ∈N +,知从第三年开始获利.14.(选做题)某林场为了保护生态环境,制定了植树造林的两个五年计划,第一年植树16a 亩,以后每年植树面积都比上一年增加50%,但从第六年开始,每年植树面积都比上一年减少a 亩.(1)求该林场第六年植树的面积;(2)设前n (1≤n ≤10且n ∈N +)年林场植树的总面积为S n 亩,求S n 的表达式.解:(1)该林场前五年的植树面积分别为16a ,24a ,36a ,54a ,81a .所以该林场第六年植树面积为80a 亩.(2)设第n 年林场植树的面积为a n 亩, 则a n =⎩⎪⎨⎪⎧⎝⎛⎭⎫32n -1×16a ,1≤n ≤5,n ∈N +,(86-n )a ,6≤n ≤10,n ∈N +.所以当1≤n ≤5时,S n =16a +24a +…+⎝⎛⎭⎫32n -1×16a=16a ⎣⎡⎦⎤1-⎝⎛⎭⎫32n1-32=32a ⎣⎡⎦⎤⎝⎛⎭⎫32n-1.当6≤n ≤10时,S n =16a +24a +36a +54a +81a +80a +…+(86-n )a =211a +80a +…+(86-n )a =211a +[80a +(86-n )a ](n -5)2=211a +(166a -na )(n -5)2.所以所求S n 的表达式为S n =⎩⎨⎧⎣⎡⎦⎤⎝⎛⎭⎫32n-1×32a ,1≤n ≤5,n ∈N +,211a +(166a -na )(n -5)2,6≤n ≤10,n ∈N +.。
数列在日常经济生活中的应用

分数时,该模型是等比模型,增加(或减少)的百分数就是公
比,其一般形式是:an+a1-n an×100%=q(常数).
【例3】 (本题满分12分)假设某市2012年新建住房400万 m2, 其中有250万 m2是中、低价房.预计在今后的若干年内, 该市每年新建住房面积平均比上年增长8%.另外,每年新 建住房中,中、低价房的面积均比上一年增加50万 m2.那 么,到哪一年底, (1)该市历年所建中、低价房的累计面积(以2012年为累计 的第一年)将首次不少于4 750万 m2? (2)到哪年,当年建造的中、低价房的面积占该年建造住房 面积的比例首次大于85%? 审题指导 第(1)问是等差数列求和问题;第(2)问由等比数 列通项公式求出bn表达式,解不等式an>0.85bn,求得n的最 小正整数解.
2. 数列应用问题的常见模型 (1)等差模型:一般地,如果增加(或减少)的量是一个固定 的具体量时,该模型是等差模型,增加(或减少)的量就是 公差,其一般形式是:an+1-an=d(常数). 例如:银行储蓄单利公式 利息按单利计算,本金为a元,每期利率为r,存期为x,则 本利和y=a(1+xr).
(2)根据上式,5年后本利和为 a5=1×(1+0.027 9)5 ≈1.148(万元).
答:5年后得本利和约为1.148万元.
解题方法
1.解答数列应用题的基本步骤 (1)审题——仔细阅读材料,认真理解题意. (2)建模——将已知条件翻译成数学(数列)语言,将实际问 题转化成数学问题,弄清该数列的特征,要求什么. (3)求解——求出该问题的数学解. (4)还原——将所求结果还原到原实际问题中. 具体解题步骤为下框图:
10).因而数列{an}是首项为 4.公差为-15的等差数列.a5=4
(常考题)北师大版高中数学必修五第一章《数列》测试卷(含答案解析)(3)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.在等比数列{}n a 中,有31598a a a =,数列{}n b 是等差数列,且99b a =,则711b b +等于( ) A .4B .8C .16D .243.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .7664.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N*-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .175.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20206.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51017.已知数列1a ,21a a ,…1nn a a -,…是首项为1,公比为2的等比数列,则2log n a =( )A . (1)n n +B .(1)4n n - C .(1)2n n + D .(1)2n n -8.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .99.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .1210.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4511.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-12.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-二、填空题13.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.14.数列{}n a 中,16a =,29a =,且{}1n n a a +-是以2为公差的等差数列,则n a =______.15.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n N ∈),则2020a =__.16.已知等差数列{}n a 的前n 项和为n S ,1a 为整数,213a =-,8n S S ≥,则数列{}n a 的通项公式为n a =________.17.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.18.已知n S 为数列{}n a 的前n 项和,若112a =,且122n n a a +=-,则100S =________. 19.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____.20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .22.在①119n n a a +-=-,②113n n a a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分23.已知数列{}n a 的前n 项和为n S ,且11a =,()121n n a S n N *+=+∈,等差数列{}n b 满足39b =,15272b b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 的前n 项和为n T ,且n n n c a b =⋅,求n T . 24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式;(2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.26.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n n n n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.C解析:C 【分析】根据等比数列性质求得9a ,再由等差数列性质求解. 【详解】∵{}n a 是等比数列,∴2931598a a a a ==,90a ≠,所以98a =,即998b a ==,∵{}n b 是等差数列,所以7119216b b b +==. 故选:C . 【点睛】关键点点睛:本题考查等差数列和等比数列的性质,掌握等差数列和等比数列的性质是解题关键,设,,,m n p l 是正整数,m n p l +=+,若{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =.p l =时,上述结论也成立.3.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.4.C解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.5.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.6.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.7.D解析:D 【分析】根据题意,求得1nn a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果.【详解】由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.8.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.9.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==.故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.10.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ===1n n =-+. 12n n S a a a ∴=++⋯+122=-+1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.11.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.12.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.二、填空题13.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.14.【分析】由是以2为公差的等差数列可得:再利用累加求和方法等差数列的求和公式即可得出【详解】∵是以2为公差的等差数列∴∴故答案为:【点睛】本题考查了等差数列的通项公式与求和公式累加求和方法考查了推理能 解析:25n +【分析】由{}1n n a a +-是以2为公差的等差数列,可得:121n n a a n --=-,再利用累加求和方法、等差数列的求和公式即可得出. 【详解】∵{}1n n a a +-是以2为公差的等差数列, ∴()()1212221n n a a a a n n --=-+-=-,∴()()()12116321n n n a a a a a a n -=+-+⋯⋯+-=++⋯⋯+-()2121552n n n +-=+=+, 故答案为:25n +. 【点睛】本题考查了等差数列的通项公式与求和公式、累加求和方法,考查了推理能力与计算能力,属于中档题.15.2020【分析】当n 为偶数时可得出故偶数项是以2为首项公差为2的等差数列求出通项公式代值计算即可得解【详解】当n 为偶数时即故数列的偶数项是以2为首项公差为2的等差数列所以所以故答案为:2020【点睛解析:2020 【分析】当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解. 【详解】 当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭, 即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列, 所以2122n n a n ⎛⎫=+-⨯=⎪⎝⎭, 所以20202020a =. 故答案为:2020. 【点睛】本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.16.【分析】设等差数列的公差为由等差数列的性质及前n 项和公式可得再由二次函数的图象与性质可得求得后再由等差数列的通项公式即可得解【详解】设等差数列的公差为则为整数所以由结合二次函数的图象与性质可得解得所 解析:217n -【分析】设等差数列{}n a 的公差为d ,由等差数列的性质及前n 项和公式可得231322n n d d S n ⎛⎫+ ⎝-⎪⎭=,再由二次函数的图象与性质可得313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,求得d 后再由等差数列的通项公式即可得解. 【详解】设等差数列{}n a 的公差为d ,则1213a a d d =-=--,d 为整数, 所以()()()2131313112222n d S d n n n n d a n d d n n n --=+⎛⎫--++ ⎪⎝=⎭=-, 由8n S S ≥,结合二次函数的图象与性质可得0d >,313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯, 解得131376d ≤≤, 所以2d =,所以1215a a d =-=-,所以()()111521217n a a n d n n =+-=-+-=-. 故答案为:217n -. 【点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了利用二次函数的图象与性质解决等差数列前n 项和最值的问题,属于中档题.17.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题 解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】因为()*2142n n S n n N T n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++,191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.18.【分析】由递推公式依次计算出数列的前几项得出数列是周期数列从而可求和【详解】由题意∴数列是周期数列且周期为4故答案为:【点睛】本题考查数列的周期性考查求周期数列的和解题时可根据递推公式依次计算数列的解析:4256【分析】 由递推公式依次计算出数列的前几项,得出数列是周期数列,从而可求和. 【详解】 由题意2241322a ==-,33a =,42a =-,512a =, ∴数列{}n a 是周期数列,且周期为4.10012341442525()2532236S a a a a ⎛⎫=+++=⨯++-= ⎪⎝⎭.故答案为:4256. 【点睛】本题考查数列的周期性,考查求周期数列的和,解题时可根据递推公式依次计算数列的项,然后归纳出周期性.19.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数.7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)21n a n =-;(2)2332n nn S +=-. 【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n n a 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩,所以21n a n =-. (2)由(1)得n n n a 2n 122-=, 所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭, 所以2332n nn S +=-.易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 22.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】 选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭. 由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选② 因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列. 所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =;2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值. 【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大. 23.(1)13-=n n a ,3n b n =;(2)1321344n n n T +-=+⋅. 【分析】(1)由数列的递推关系式求出等比数列{}n a 的通项公式,利用等差数列的基本量运算得出{}n b 的通项公式; (2)利用错位相减法求出n T . 【详解】(1)1211n n a S n +=+≥①1212n n a S n -=+≥②①-②得:13n n a a +=,2n ≥ 又因为11a =,23a =所以数列{}n a 是以1为首项,3为公比的等比数列所以13-=n n a因为{}n b 为等差数列且39b =,15272b b +=所以有:()111292724b d b b d +=⎧⎨+=+⎩解得:13b =,3d =,所以3n b n =(2)由(1)知3nn c n =⋅213233n n T n =⋅+⋅+⋅①()23131323133n n n T n n +=⋅+⋅+-⋅+⋅②①-②得:2312333...33n n n T n +-=++++-⋅()11131********2n n n n n T n n +++---=-⋅=-⋅-1321344n n n T +-=+⋅【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,数列求和的方法总结如下: 1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)()*1(1)2n n a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21nn a n N =-∈,化简可得11212222n n nn a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,nn a n ⎧=⎨⎩为奇数为偶数).(2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+, 即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21nn a n N=-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 26.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦,当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k S dS a a S a S S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算.。
1.4数列在日常经济生活中的应用(讲义+典型例题+小练)(原卷版)

1.4数列在日常经济生活中的应用(讲义+典型例题+小练)一、例述数列在生活中的应用数学不仅仅是我们生活中的工具,更大程度上是我们生活中的必需品,并影响着人们的生活。
以生活中的一个常见问题为例:例1:1.为了防止某种新冠病毒感染,某地居民需服用一种药物预防.规定每人每天定时服用一次,每次服用m毫克.已知人的肾脏每24小时可以从体内滤除这种药物的80%,设第n=).次服药后(滤除之前)这种药物在人体内的含量是n a毫克,(即1a mm=,求2a、3a;(1)已知12(2)该药物在人体的含量超过25毫克会产生毒副作用,若人需要长期服用这种药物,求m的最大值.举一反三:1.顾客采用分期付款的方式购买一件5000元的商品,在购买一个月后第一次付款,且每月等额付款一次,在购买后的第12个月将货款全部付清,月利率0.5%.按复利计算,该顾客每月应付款多少元(精确到1元)?二、银行储蓄与分期付款中的数列应用储蓄与贷款与国计民生、社会生活发展息息相关,大到支援国家建设,小到个人家庭的财政支出管理,处处都嵌套着数列的应用。
在人们日常的生活规划中,为未来进行资金储备的零存整取的存储模式是银行储蓄中常见的一种金融计算方式。
下面将以某一常见模式为例,进行数列在储蓄领域应用的解析。
(1)储蓄业务种类①活期储蓄②定期储蓄(整存整取定期储蓄、零存整取定期储蓄、整存零取定期储蓄、存本取息定期储蓄、定活两便储蓄)③教育储蓄④个人通知存款⑤单位协定存款(2)银行存款计息方式:①单利单利的计算是仅在原有本金上计算利息,对本金所产生的利息不再计算利息.其公式为:利息=本金×利率×存期以符号P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有②复利把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的.复利的计算公式是(3)零存整取模型例1:1.复利是指一笔资金产生利息外,在下一个计息周期内,以前各计息周期内产生的利息也计算利息的计息方法,单利是指一笔资金只有本金计取利息,而以前各计息周期内产生的利息在下一个计息周期内不计算利息的计息方法.小闯同学一月初在某网贷平台贷款10000元,约定月利率为1.5%,按复利计算,从一月开始每月月底等额本息还款,共还款12次,直到十二月月底还清贷款,把还款总额记为x元.如果前十一个月因故不还贷款,到十二月月底一次还清,则每月按照贷款金额的1.525%,并且按照单利计算利息,这样的还款总额记为y元.则y-x的值为()(参考数据:1.01512≈1.2)A.0B.1200C.1030D.9002.银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利(暂不考虑利息税).(1)若每月存入金额为x元,月利率r保持不变,存期为n个月,试推导出到期整取是本利和的公式;(2)若每月初存入500元,月利率为0.3%,到第36个月末整取时的本利和是多少?(3)若每月初存入一定金额,月利率为0.3%,希望到第12个月末整取时取得本利和2000元.那么每月初应存入的金额是多少?举一反三:1.某企业在2013年年初贷款M万元,年利率为m,从该年年末开始,每年偿还的金额都是a万元,并恰好在10年间还清,则a的值为()A.()()1010111M mm++-B.()101Mmm+C.()()1010111Mm mm++-D.()()1010111Mm mm+++2.银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利.银行按国家规定到期扣除20﹪的利息税(应纳税额=应纳税利息额×税率).(1)若每月存入金额为x 元,月利率r 保持不变,存期为n 个月,试推导出到期整取时本利和的公式;(2)若每月初存入500元,月利率为0.3%,到第36个月末整取时的本利和是多少?三、 环境资源利用中的数列应用进入21世纪以来,能源的短缺成为困扰人类社会发展的主要问题之一,尤其是不可再生资源的合理有效利用问题,更是人类社会进一步发展需要解决的首要问题。
北师版高中数学选择性必修第二册课后习题 第一章 §4 数列在日常经济生活中的应用

§4 数列在日常经济生活中的应用课后训练巩固提升1.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( ). A.1升 B.6766升C.4744升D.3733升{a n }的公差为d, 则有{a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即{4a 1+6d =3,3a 1+21d =4.解得{a 1=1322,d =766.则a 5=a 1+4d=6766,故第5节的容积为6766升.2.中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图1是某古建筑物中的举架结构,AA',BB',CC',DD'是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图.其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步的比分别为DD1OD1=0.5,CC1DC1=k1,BB1CB1=k2,AA1BA1=k3,若k1,k2,k3是公差为0.1的等差数列,直线OA的斜率为0.725,则k3=( ).图1图2(第2题)A.0.75B.0.8C.0.85D.0.9OD1=DC1=CB1=BA1=1,则DD1=0.5,CC1=k1,BB1=k2,AA1=k3.由题意得DD1+CC1+BB1+AA1OD1+DC1+CB1+BA1=0.725,即0.5+k1+k2+k34=0.725.∵k1=k3-0.2,k2=k3-0.1,∴0.5+k3-0.2+k3-0.1+k34=0.725.解得k3=0.9.故选D.3.《孙子算经》中“物不知数”问题的解法,西方称之为“中国剩余定理”,这是一个关于整除的问题.现有这样一个整除问题:将1至2 022这2 022个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n},则此数列共有项,这些项的和为.3除余1且被7除余1的数就只能是被21除余1的数,故a n=21n-20,.由1≤a n≤得1≤n≤97521=97873.又n∈N+,故此数列共有97项,这些项的和为(1+)×97297 8734.一卷卷筒纸,其内圆直径为4 cm,外圆直径为12 cm,一共卷60层.若把各层都视为同心圆,π取3.14,则这个卷筒纸的长度约为m.(结果精确到个位),=480π≈1507.2(cm)≈15m.所以l=πd1+πd2+…+πd60=60π×4+1225.某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……以T n表示到第n年末所累计的储备金总额.(1)写出T n与T n-1(n≥2)的递推关系式;(2)求证:T n=A n+B n,其中{A n}是一个等比数列,{B n}是一个等差数列.T n=T n-1(1+r)+a n(n≥2).,对n≥2反复使用上述关系式,得1=a1T n=T n-1(1+r)+a n=T n-2(1+r)2+a n-1(1+r)+a n=…=a1(1+r)n-1+a2(1+r)n-2+…+a n-1(1+ r)+a n,①在①式两端同乘1+r,得(1+r)T n=a1(1+r)n+a2(1+r)n-1+…+a n-1(1+r)2+a n(1+r),②②-①,得rT n=a1(1+r)n+d[(1+r)n-1+(1+r)n-2+…+(1+r)]-a n=d[(1+r)n-1-r]+a1(1+r)n-ra n.即T n=a1r+dr2(1+r)n-drn-a1r+dr2.记A n=a1r+dr2(1+r)n,B n=-a1r+dr2−drn,则T n=A n+B n.其中{A n}是以a1r+dr2(1+r)为首项,以1+r(r>0)为公比的等比数列;{B n}是以-a1r+dr2−dr为首项,-dr为公差的等差数列.。
最新北师大版高中数学必修必修课后习题答案(精品)优秀名师资料

北师大版高中数学必修必修课后习题答案(精品)第一章算法初步1(1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数. r2第二步,计算以为半径的圆的面积. Sr,,rS第三步,得到圆的面积.2、算法步骤:第一步,给定一个大于1的正整数. ni,1第二步,令.i第三步,用除,等到余数. nrr,0ii第四步,判断“”是否成立. 若是,则是的因数;否则,不是的因数. nn ii第五步,使的值增加1,仍用表示.in,第六步,判断“”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)di,1算法步骤:第一步,给定精确度,令.i第二步,取出的到小数点后第位的不足近似值,赋给;取出的到小数点22abi后第位的过剩近似值,赋给.ba第三步,计算m,,55.2amd,ii第四步,若,则得到的近似值为;否则,将的值增加1,仍用表示.55 返回第二步.a第五步,输出5.程序框图:习题1.1 A组(P20)1、下面是关于城市居民生活用水收费的问题.3为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m的部分,每立方收费1.5元,并加收0.4元的城市污水处理费. 3设某户每月用水量为 m,应交纳水费元, yx1.2,07xx ,,,那么与之间的函数关系为 yxy,,1.94.9,7xx,, ,我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量. x第二步:判断输入的是否不超过7. 若是,则计算; xyx,1.2 若不是,则计算. yx,,1.94.9第三步:输出用户应交纳的水费. y程序框图: 2、算法步骤:第一步,令i=1,S=0.第二步:若i?100成立,则执行第三步;否则输出S.2第三步:计算S=S+i.第四步:i= i+1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x,设收取的卫生费为m元.第二步:判断x与3的大小. 若x>3,则费用为; mx,,,,5(3)1.2 m,5若x?3,则费用为.第三步:输出. m程序框图:B组 1、算法步骤:第一步,输入.. abcabc,,,,,111222 bcbc,2112. 第二步:计算x,abab,1221acac,1221第三步:计算. y,abab,1221第四步:输出xy,.程序框图:2、算法步骤:第一步,令n=1?6.8,则执行下一步; 第二步:输入一个成绩r,判断r与6.8的大小. 若r 若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n表示.第四步:判断n与成绩个数9的大小. 若n?9,则返回第二步;若n>9,则结束算法.程序框图: 说明:本题在循环结构的循环体中包含了一个条件结构.1(2基本算法语句练习(P24)、程序:、程序:1 2 INPUT “a,b=”;a,b INPUT “F=”;Fsum=a+b C=(F,32)*5/9diff=a,b PRINT “C=”;Cpro=a*b ENDquo=a/bPRINT sum,diff,pro,quo END 、程序:3 INPUT “a,b,c=”;a,b,c 、程序:4 p=(a+b+c)/2 INPUT “a,b,c=”;a,b,cs=SQR(p*(p,a) *(p,b) *(p,c)) sum=10.4*a+15.6*b+25.2*cPRINT “s=”;s PRINT “sum =”;sumEND END 练习(P29)、程序:1 INPUT “a,b,c=”;a,b,cIF a+b>c AND a+c>b AND b+c>a THENPRINT “Yes.”ELSEPRINT “No.”END IFEND、本程序的运行过程为:输入整数若是满足的两位整数,则先取出的十位,记2x. x9<x<100x作,再取出的个位,记作,把,调换位置,分别作两位数的个位数与十位数,然后输出新axbab的两位数如输入,则输出. 2552.、程序:3 INPUT “Please input an integer:”;aIF a MOD 2=0 THENPRINT “Even.”ELSEPRINT “Odd.”END IFEND、程序:4 INPUT “Please input a year:”;yb=y MOD 4c=y MOD 100d=y MOD 400IF b=0 AND c<>0 THENPRINT “Leap year.”ELSEIF d=0 THENPRINT “Leap year.”ELSEPRINT “Not leap year.”END IFEND IFEND练习(P32)、程序:、程序:1 2 INPUT “n=”;n INPUT “n=”;n i=2 i=1DO f=1r=n MOD i WHILE i<=ni=i+1 f=f*iLOOP UNTIL i>n,1 OR r=0 i=i+1IF r=0 THEN WENDPRINT “n is not a prime number.” PRINT f ELSE ENDPRINT “n is a prime number.”END IFEND习题1.2 A组(P33),,,xx1(0) ,,yx,,0(0) 1、 ,,xx,,1(0) ,、程序:、程序:2 3 INPUT “n=”;n INPUT “a,b,h=”;a,b,h i=1 p=a+bsum=0 S=p*h/2WHILE i<=n PRINT “S=”;Ssum=sum+(i+1)/i ENDi=i+1WENDPRIN T“sum=”;sumEND 习题1.2 B组(P33)、程序:、程序:1 2 INPUT “a,b,c=”;a,b,c n=1INPUT “r,s,t=”;r,s,t p=1000d=a*s,r*b WHILE n<=7IF d?0 THEN p=p*(1+0.5)x=(s*c,b*t)/d n=n+1y=(a*t,r*c)/d WENDPRINT “x,y=”;x,y PRINT pELSE ENDPRINT “Please input again.”END IFEND、程序:、程序:3 4 INPUT “x=”;x INPUT “a=”;a INPUT “n=”;n IF x<1 THENy=x tn=0ELSE sn=0IF x<10 THEN i=1y=2*x,1 WHILE i<=nELSE tn=tn+ay=3*x,11 sn=sn+tnEND IF a=a*10END IF i=i+1PRINT “y=”;y WENDEND PRINT snEND 1(3算法案例练习(P45)1、(1)45; (2)98; (3)24; (4)17.2、2881.75., 20083730,3、, ()2()8习题1.3 A组(P48)1、(1)57; (2)55.2、21324.2123153、(1)104; (2) (3)1278; (4). ()7()6、4习题1.3 B组(P48)n,45i,1a,0b,0c,01、算法步骤:第一步,令,,,,.第二步,输入. ai()aa,,1第三步,判断是否. 若是,则,并执行第六步. 0()60,,ai bb,,1第四步,判断是否. 若是,则,并执行第六步. 60()80,,aicc,,1第五步,判断是否80()100,,ai. 若是,则,并执行第六步.ii,,1i,45第六步,. 判断是否. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]abc,,的人数. 2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)、()程序框图:程序:11 INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y END、()程序框图:程序:12 INPUT “x=”;x IF x<0 THENy=(x,2),2 ELSEIF x=0 THENy=4ELSEy=(x,2),2 END IFEND IFPRINT “y=”;y END2、见习题1.2 B组第1题解答.3、INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.” ELSE IF t>0 AND t<=180 THEN y=0.2 ELSE IF (t,180) MOD 60,0 THEN y=0.2,0.1*(t-180),60 ELSE y=0.2,0.1*((t-180),60,1) END IF END IF PRINT “y=”;y END IF END、程序框图:程序:4 INPUT “n=”;ni=1S=0WHILE i<=nS=S+1,ii=i+1WENDPRINT “S=”;SEND5、 (1)向下的运动共经过约199.805 m i=100(2)第10次着地后反弹约0.098 m sum=0(3)全程共经过约299.609 m k=1WHILE k<=10sum=sum+ii=i,2k=k+1WENDPRINT “(1)”;sumPRINT “(2)”;iPRINT “(3)”;2*sum,100 END第二章复习参考题B组(P35) 、、1 2 INPUT “n=”;nIF n MOD 7=0 THENPRIN T “Sunday”END IFIF n MOD 7=1 THENPRINT “Monday”END IFIF n MOD 7=2 THENPRINT “Tuesday”END IFIF n MOD 7=3 THENPRINT “Wednesday”END IFIF n MOD 7=4 THENPRINT “Thursday”END IFIF n MOD 7=5 THENPRINT “Friday”END IFIF n MOD 7=6 THENPRINT “Saturday”END IFEND3xn、算法步骤:第一步,输入一个正整数和它的位数.n,1nm,m,nnn 第二步,判断是不是偶数,如果是偶数,令;如果是奇数,令.22i,1 第三步,令iix 第四步,判断(1)ni,,的第位与第位上的数字是否相等. 若是,则使的值增加1,ix仍用表示;否则,不是回文数,结束算法.im,n 第五步,判断“”是否成立. 若是,则是回文数,结束算法;否则,返回第四步.第二章统计2(1随机抽样练习(P57)1、.抽样调查和普查的比较见下表:抽样调查普查节省人力、物力和财力需要大量的人力、物力和财力可以用于带有破坏性的检查不能用于带有破坏性的检查结果与实际情况之间有误差在操作正确的情况下,能得到准确结果抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6,10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;118kk,,7.375 (2)计算间隔,由于不是一个整数,我们从总体中随机剔除6个样16本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余k,7的112位教师进行编号,计算间隔;(3)在1,7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性. 练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0,364天用简单随机抽样设计方案:制作365个号签,依次标上0,364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0,349. 制作7个分别标有0,7的号签,放在容器中充a分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为,则编号为akk,,,7(050)所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.2564298,,5、田径队运动员的总人数是(人),要得到28人的样本,占总体的比例为.72281612,,于是,应该在男运动员中随机抽取(人),在女运动员中随机抽取(人).5616,,7这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1,10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案.习题2.1 B组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成.例如:(1)你最喜欢哪一门课程, (2)你每月的零花钱平均是多少,(3)你最喜欢看《新闻联播》吗, (4)你每天早上几点起床,(5)你每天晚上几点睡觉,要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案.2(2用样本估计总体练习(P71)364.41362.511.90,,0.191、说明:由于样本的极差为,取组距为,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为: 茎叶10 7 811 0 2 2 2 3 6 6 6 7 7 8 12 0 0 1 2 2 3 4 4 6 6 7 8 8 13 0 2 3 4由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74) 这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.s,6.55x,496.862、(1)平均重量,标准差.66.67 (2)重量位于之间有14袋白糖,所占的百分比约为,. (,)xsxs,,15.2s,12.50x,19.253、(1)略. (2)平均分,中位数为,标准差.这些数据表明这x,15.2些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,说明存在大的异常数据,值得关注. 这些异常数据使标准差增大.习题2.2 A组(P81)1、(1)茎叶图为:茎叶 (2)汞含量分布偏向于大于1.00 ppm的方向,即多数鱼的汞含量分布在大于1.00 ppm的区域. 0.0 7(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和0.2 4这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能0.3 9为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. 0.5 40.6 1 s,0.45 (4)样本平均数,样本标准差. x,1.080.7 2 (5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的0.8 1 2 4 范围内. 0.9 15 8 81.0 2 2 81.1 41.2 0 0 6 91.3 1 71.4 0 41.5 81.6 2 81.8 52.1 02、作图略. 从图形分析,发现这批棉花的纤维长度不是特别均匀,有一部分的纤维长度比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断.4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在x,100已知知道至少有一个人的收入为万元,那么其他员工的收入之和为 5049(万元) x,,,,3.55010075,i,i1每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低.(2)不能,要看中位数是多少.7525(3)能,可以确定有,的员工工资在1万元以上,其中,的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.x=1.5y,1.26、甲机床的平均数,标准差;乙机床的平均数,标准差s=1.2845甲z甲. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比s,0.8718z甲机床少,而且更为稳定,所以乙机床的性能较好.7、(1)总体平均数为199.75,总体标准差为95.26.(2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3) (4)略习题2.2 B组(P82)1、(1)由于测试的标准差小,所以测试结果更稳定,所以该测试做得更好一些. TT11(2)由于测出的值偏高,有利于增强队员的信心,所以应该选择测试. TT22(3)将10名运动员的测试成绩标准化,得到如下的数据:A B C D E F G H I J(20)2T,,0.00 1.50 2.00 -1.00 -1.50 -2.00 2.50 2.00 0.50 -0.50 1-1.33 1.33 1.33 -2 -2.33 -1.33 1.67 -1.67 -1.33 -1.67 (35)3T,,2从两次测试的标准化成绩来看,运动员G的平均体能最强,运动员E的平均体能最弱.2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2(3变量间的相关关系练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同.练习(P92),x,01、当时,,这个值与实际卖出的热饮杯数150不符,原因是:线性回y,147.767归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果,的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x,预报值能y,ye够等于实际值. 事实上:ybxae,,,. (这里是随机变量,是引起预报值与真实值yye之间的误差的原因之一,其大小取决于的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、 (2)回归直线如下图所示: (1)散点图如下:(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好.3、(1)散点图如下:,(2)回归方程为:. yx,,0.66954.933(3)加工零件的个数与所花费的时间呈正线性相关关系.4、(1)散点图为:, (2)回归方程为:. yx,,0.546876.425(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高.习题2.3 B组(P95)1、(1)散点图如下:,(2)回归方程为:. yx,,1.44715.843,(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为(万元). y,42.0372、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可. 第二章复习参考题A组(P100)A1、.nm2、(1)该组的数据个数,该组的频数除以全体数据总数; (2). NA3、(1)这个结果只能说明城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖A啡色,因为光顾连锁店的人使一种方便样本,不能代表城市其他人群的想法.A (2)这两种调查的差异是由样本的代表性所引起的. 因为城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高.(2)组的样本标准差为,组的样本标准差为. 由于专业裁ABS,3.730S,11.789AB判给分更符合专业规则,相似程度应该高,因此组更像是由专业人士组成的. A7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好.8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42,.(3)城市的大学入学率年增长最快.说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章复习参考题B组(P101)1、频率分布如下表: 分组频数频率累计频率[12.34,13.62]2 0.04 0.04(13.62,14.9]4 0.08 0.12(14.9,16.18]3 0.06 0.18(16.18,17.46]8 0.16 0.34(17.46,18.74]13 0.26 0.6(18.74,20.02]11 0.22 0.82(20.02,21.3]3 0.06 0.88 从表中看出当把指标定为17.46千元 (21.3,22.58]3 0.06 0.94 时,月65,的推销员经过努力才能完成销 (22.58,23.86] 1 0.02 0.96 售指标.(23.86,25.14] 2 0.04 12、(1)数据的散点图如下:, (2)用表示身高,表示年龄,则数据的回归方程为. yxyx,,6.31771.984(3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3,16岁的身高年均增长约为6.323 cm.(5)斜率与每年平均增长的身高之间之间近似相等.第三章概率3(1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1,1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)DB1、0.7 2、0.615 3、0.4 4、 5、习题3.1 A组(P123)D1、. 2、(1)0; (2)0.2; (3)1.439070,0.067,0.14010.891,,3、(1); (2); (3). 6456456454、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到11红球的概率为,在第二种下也为. 第4次摸到红球的频率与第1次摸到红球的频率应10101该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是. 10习题3.1 B组(P124)1、. D2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3(2古典概率练习(P130)1111、. 2、. 3、. 1076练习(P133)331、,. 88112132、(1); (2); (3); (4); 1313413210(5); (6); (7); (8)1. 132说明:模拟的方法有两种.(1)把1,52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1,4的随机数,代表4个花色;第二次产生1,13的随机数,代表牌号.43、(1)不可能事件,概率为0; (2)随机事件,概率为; (3)必然事件,概率为91;(4)让计算机产生1,9的随机数,1,4代表白球,5,9代表黑球.14、(1); (2)略; 6(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)11、游戏1:取红球与取白球的概率都为,因此规则是公平的. 2。
数列在日常经济生活中的应用

增长率公式:C A(1+ x )n
A表示第一年的量,C表示n年后的量,x表示年增长率。
某人选择存期为1年的“零存整取”,若每月存入金额为100 元,月利率0.3%保持不变,到期能取出多少钱? 第一月存入的100元到期有多少利息? 到期为: 100× 0.3%× 12=3.6 第二月存入的100元到期有多少利息? 到期为: 100× 0.3%× 11=3.3
你会如何选择呢?
如果你有1000元钱存入 银行,年利率为1%, 一年后你有多少钱? 二年后呢? …… Nhomakorabea年后呢?
这与利息的计算方式有关!
1、单利:单利的计算是仅在原有本金上 计算利息,对本金所产生的利息不再计算 利息.以符号P代表本金,n代表存期,r 代表利率,S代表本金与利息和,则有
S = p(1+nr)
• 1.某钢厂的年产值由1998年的40万吨,增加 到2008年的50万吨,经历了10年的时间,如果 按此年增长率计算,该钢厂2018年的年产值将 接近( ) • A.60万吨 B.61万吨 • C.62.5万吨 D.63.5万吨
解析: 设年增长率为 x,则 2008 年为: 5 40(1+x) =50,则(1+x) =4.
3.据某校环保小组调查,某区垃圾量的年增 长率为b,2010年产生的垃圾量为a吨,由此预 测,该区2011年的垃圾量为______吨,2015 年的垃圾量为______吨. 解析:由于2010年的垃圾量为a吨,年增 长率为b,故下一年的垃圾量为 a+ab=a(1+b) 吨, 同理可知2012年垃圾量为 a(1+b)2 吨,„, 2015年的垃圾量为a(1+b)5 吨. 答案: a(1+b) a(1+b)5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
差数列.
所以数列{an}的前n项和 Sn=
=256
,ห้องสมุดไป่ตู้
数列{bn}的前 n 项和Tn=400n+ a. 所以经过n年,该市更换的公交车总数
S(n)=Sn+Tn=256
+400n+ a.
(2)若用 7 年的时间完成全部更换, 则S(7)≥10 000,
解析:由题意可得每 3 分病毒占的内存容量构成一个等比数列,设病毒占据 64 MB 时自身复制
了n次,即2×2n=64×210=216,解得 n=15,从而复制的时间为 15×3=45(分).
答案:45
7.甲、乙两人于同一天分别携款 1 万元到银行储蓄,甲存 5 年定期储蓄,年利率为2.88%,乙
存一年定期储蓄,年利率为 2.25%,并在每年到期时将本息续存一年期定期储蓄,按规定每次
9.
导学号33194026为了加强环保建设,提高社会效益和经济效益,长沙市计
划用若干年更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力 型车和混合动力型车.今年年初投入了电力型公交车 128 辆,混合动力型公交车 400 辆,计划 以后电力型车每年的投入量比上一年增加 50%,混合动力型车每年比上一年多投入 a 辆. (1)求经过 n 年,该市被更换的公交车总数 S(n); (2)若该市计划用 7 年的时间完成全部更换,求 a 的最小值. 解(1)设an,bn 分别为第 n 年投入的电力型公交车、混合动力型公交车的数量,依题意知,数
A.9ﻩB.10 C.19
D.29
解析:∵ <200,而满足 <200 时,n 可取的最大值为 19.当 n=19 时,
=190,∴2
00-190=10. 答案:B 2.银行一年定期的年利率为r,三年定期的年利率为 q,为吸引长期资金,鼓励储户存三年定 期存款,则 q 的值应略大于( )
A.
ﻩB. [(1+r)3-1]
计息时,储户须交纳20%作为利息税.若存满五年后两人同时从银行中取出存款,则甲、乙所
得利息之差为
元.
解析:由已知甲所得本息和 a=10 000+10 000×2.88%×5×80%,而乙实际上年利率在
去掉利息税后为 ×2.25%,故乙所得本息和应为 b=10 000×
,经计算 a-b≈2
19.01(元). 答案:219.01 8.某地区有荒山 2 200 亩,从 2015年开始每年年初在荒山上植树造林,第一年植树 100 亩, 以后每一年比上一年多植树 50 亩(假定全部成活).则至少需要几年可将荒山全部绿化? 解设第 n 年植树造林 an 亩,数列{an}的前 n 项和为 Sn,
C.(1+r)3-1ﻩD.r 解析:设储户存 a 元,存一年定期并自动转存,三年后的本利和为 a(1+r)3 元.三年定期的本利和
为 a(1+3q)元.为鼓励储户存三年定期,则a(1+3q)>a(1+r)3,即 q> [(1+r)3-1].
答案:B 3.某运输卡车从材料工地运送电线杆到 500 m以外的公路,沿公路一侧每隔50 m 埋一根电 线杆,又知每次最多只能运 3 根,要完成运载 20 根电线杆的任务,最佳方案是使运输卡车运行 () A.11 700 m B.14 600 m C.14 500 m D.14 000 m 解析:由近往远运送,第一次运两根,以后每次运三根,这种运法最佳,由近往远运送,每次来 回行走的米数构成一个等差数列,记为{an},则 a1=1 100,d=300,n=7,
故S7=7×1 100+ ×300=14 000.
答案:D 4.某林厂现在的森林木材存量是 1 800万立方米,木材以每年 25%的增长率生长,而每年 要砍伐固定的木材量为x万立方米,为达到经两次砍伐后木材存量增加50%的目标,则 x 的值 是( ) A.40ﻩB.45ﻩC.50ﻩD.55 解析:经过一次砍伐后,木材存量为 1 800(1+25%)-x=2 250-x;
m(精确到个位).
解析:∵纸的厚度相同,∴各层同心圆直径成等差数列.
∴l=πd1+πd2+…+πd60=60π· =480π=1 507.2(cm)≈15(m).
答案:15
6.一种专门占据内存的计算机病毒开始时占据内存 2 kB,然后每3分钟自身复制一次,复制
后所占内存是原来的 2 倍,那么开机后
分,该病毒占据 64 MB(1 MB=210 kB).
即256
+400×7+ a≥10 000,
即 21a≥3 082,所以a≥ .
又 a∈N+,所以a的最小值为 147.
B组
1.通过测量知道,温度每降低 6 ℃,某电子元件的电子数目就减少一半.已知在零下 34 ℃时,
该电子元件的电子数目为 3 个,则在室温 27 ℃时,该元件的电子数目接近) (ﻩ
北师大版高中数学必修第一章数列数列在日常经济生活中的 应用习题
———————————————————————————————— 作者: ———————————————————————————————— 日期:
ﻩ
§4 数列在日常经济生活中的应用
课后篇巩固探究 A组
1.现有 200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,则剩余钢管的 根数为( )
则数列{an}为等差数列,其中 a1=100,d=50, ∴an=100+50×(n-1)=50(n+1),
∴Sn=na1+ d=100n+ ×50
=25(n2+3n),
要将荒山全部绿化,只要 Sn≥2 200, 即 25(n2+3n)≥2 200,
∴n2+3n-8×11≥0,得 n≥8,
故至少需要 8 年可将荒山全部绿化.
A.860 个
经过两次砍伐后,木材存量为(2 250-x)×(1+25%)-x=2 812.5-2.25x.
由题意应有 2 812.5-2.25x=1 800×(1+50%),
解得x=50.
答案:C
5.一个卷筒纸,其内圆直径为 4 cm,外圆直径为 12 cm,一共卷了 60 层,若把各层都视为一个
同心圆,π 取3.14,则这个卷筒纸的长度约为