北师大版数学七年级上册第二章回顾与思考(课时一)

合集下载

北师大版七年级上册数学第二章有理数及其运算回顾与思考课件

北师大版七年级上册数学第二章有理数及其运算回顾与思考课件
(2)运算律:①交换律:a+b=__b_+__a__;②结合律:(a+b) +c=___a_+__(b__+__c_).
6.有理数的减法 (1)法则:减去一个数等于加上这个数的__相__反__数____; (2)字母表示:a-b=a+__(_-__b_)____.
数学·新课标(BS)
第二章 |过关测试
第二章 有理数及其运算 (回顾与思考)
第二章 |过关测试
知识归类
1.有理数
(1)有理数
整数
正零整数 负整数
分数
正分数
负分数
正有理数
正整数 正分数
(2)有理数 零
负有理数
负整数
负分数
数学·新课标(BS)
第二章 |过关测试
2. 数轴 : (1)数 轴的概念:规 定了 __原__点___、 _正__方__向__、 __单__位__长__度____的直线,叫数轴;
则下列说法错误的是( ) A.高于正常水位3米记作+3米 B.低于正常水位5米记作-5米 C.+6米表示水深为6米 D.-1米表示比正常水位低1米
[答案] C 数学·新课标(BS)
第二章 |过关测试
数学·新课标(BS)
第二章 |过关测试
►考点二 有理数及其分类
例2 把下列各数分别填在相应的括号内.
数学·新课标(BS)
第二章 |过关测试
数学·新课标(BS)
第二章 |过关测试 ►考点七 有理数的混合运算
例 8 (1)-22×34÷13-23; (2)(-6)×(-4)-(-32)÷(-8)-3; (3)5×25-2+12÷12―13―14.
数学·新课标(BS)
第二章 |过关测试
解:(1)-22×34÷13-23=-4×34×3-8=-9-8=-17; (2)(-6)×(-4)-(-32)÷(-8)-3=24-4-3=17; (3)5×25-2+12÷12―13―14=5×25-5×2+12÷-112=2-10 -144=-152.

北师大版七年级数学上册第二章有理数及其运算回顾与思考教学设计

北师大版七年级数学上册第二章有理数及其运算回顾与思考教学设计
1.学生对负数概念的理解可能存在困难,需要通过具体的实例和操作活动,帮助学生建立正确的负数概念。
2.学生在运用有理数进行混合运算时,可能会出现运算顺序混乱、符号处理不当等问题,教师需要耐心指导,引导学生发现和纠正错误。
3.学生的逻辑思维能力正在逐步形成,需要通过有理数性质的探究,培养学生的逻辑思维和推理能力。
3.阐述有理数的四则运算规则,特别是加减乘除运算的法则,并通过典型例题进行讲解。
4.强调有理数在实际问题中的应用,如购物找零、温度变化等,让学生明白学习有理数的实际意义。
(三)学生小组讨论
在学生小组讨论环节,我将鼓励学生积极参与,发挥团队协作精神,共同探讨有理数的性质和运算规律。
1.分组讨论有理数的性质,如相反数的概念、绝对值的性质等,引导学生从多个角度理解和掌握。
设想:设计递进式的练习题,从基础性质的理解到复杂运算的运用,逐步提升学生的运算能力。
3.解决实际问题时,将有理数运算与情境结合,是本章的另一个难点。学生需要学会将实际问题转化为数学模型,并运用有理数运算求解。
设想:引入多样化的实际问题,如购物找零、比赛计分等,指导学生如何抽取问题中的数学信息,建立数学模型。
4.学生在情感态度上可能存在对数学学科的畏难情绪,教师需要关注学生的心理变化,激发学生的学习兴趣,增强学生的自信心。
在教学过程中,教师要充分了解学生的实际情况,因材施教,注重启发式教学,引导学生主动探究、积极思考,使学生在掌握知识的同时,提高自身能力,培养良好的情感态度。
三、教学重难点和教学设想
(一)教学重难点
4.学会总结、反思学习过程中的经验和教训,培养学生自我评价和自我调节的能力。
(三)情感态度与价值观
1.培养学生对待数学学科的积极态度,激发学生的学习兴趣,使学生乐于探究、勤于思考。

北师大版数学七年级上册《回顾与思考》教案3

北师大版数学七年级上册《回顾与思考》教案3

北师大版数学七年级上册《回顾与思考》教案3一. 教材分析《回顾与思考》是北师大版数学七年级上册的一章内容,本章主要目的是帮助学生回顾和巩固已学的知识,提高学生的综合运用能力。

本教案主要针对本章的第三节内容,通过本节课的学习,学生需要掌握的知识点有:算术平方根、立方根、平方差公式、完全平方公式等。

二. 学情分析面对七年级的学生,他们在之前的学习中已经接触过一些代数知识,对于算术平方根、立方根等概念有一定的了解。

但学生的数学基础参差不齐,部分学生对于平方差公式、完全平方公式等知识点的理解和运用还存在困难。

因此,在教学过程中,需要关注学生的个体差异,有针对性地进行教学。

三. 教学目标1.知识与技能:使学生掌握算术平方根、立方根的概念,以及平方差公式、完全平方公式的运用。

2.过程与方法:通过回顾和思考,提高学生的自主学习能力,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:算术平方根、立方根的概念,平方差公式、完全平方公式的运用。

2.难点:平方差公式、完全平方公式的灵活运用。

五. 教学方法采用问题驱动法、案例分析法、小组讨论法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。

六. 教学准备1.教师准备:对本章内容进行深入研究,了解学生的学情,准备好相关的教学案例和问题。

2.学生准备:复习前两节课的内容,对算术平方根、立方根等概念有一定的了解。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾前两节课的内容,如:“什么是算术平方根?什么是立方根?”等。

通过复习,帮助学生回忆起相关知识点。

2.呈现(10分钟)教师展示本节课的主要内容,包括平方差公式、完全平方公式等,并通过例题的方式呈现这些公式的应用。

3.操练(10分钟)学生独立完成教师提供的练习题,巩固所学知识。

教师在课堂上巡回指导,解答学生的疑问。

4.巩固(10分钟)教师学生进行小组讨论,共同解决一些综合性的问题。

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。

北师大版数学七年级上册《回顾与思考》说课稿

北师大版数学七年级上册《回顾与思考》说课稿

北师大版数学七年级上册《回顾与思考》说课稿一. 教材分析《回顾与思考》是北师大版数学七年级上册的一章内容,主要目的是让学生在学习了本章内容后,能够对本章的知识点有一个全面的回顾和思考。

这一章节主要包括了本章的知识点概述,重点知识的讲解,以及本章内容的拓展与提高。

在教材中,通过问题导入,引导学生回顾所学知识,并通过例题和练习题,帮助学生巩固所学知识,提高解题能力。

二. 学情分析面对七年级的学生,他们已经具备了一定的数学基础,对于本章的内容,他们可能已经掌握了一部分,但是也可能存在一些疑惑和困难。

对于这部分内容,学生可能存在以下问题:1. 对于本章的知识点,可能存在记忆不准确,理解不深刻的问题;2. 在解题过程中,可能存在思路不清晰,解题方法不灵活的问题;3. 对于本章的拓展与提高内容,可能存在理解困难,解题能力不足的问题。

三. 说教学目标根据教材内容和学情分析,本节课的教学目标如下:1. 让学生回顾本章所学知识,加深对知识点的理解和记忆;2. 通过例题和练习题,帮助学生巩固所学知识,提高解题能力;3. 通过拓展与提高内容的学习,提高学生的思维能力和创新能力。

四. 说教学重难点本节课的教学重难点如下:1. 本章知识点的回顾和记忆;2. 解题方法和思路的清晰和灵活;3. 对于拓展与提高内容的理解和掌握。

五. 说教学方法与手段为了达到本节课的教学目标,我将会采用以下教学方法和手段:1. 问题导入,引导学生回顾所学知识;2. 通过例题和练习题,帮助学生巩固所学知识;3. 通过讨论和小组合作,激发学生的思维和创新能力;4. 使用多媒体教学手段,帮助学生更直观地理解知识点。

六. 说教学过程本节课的教学过程分为以下几个环节:1. 问题导入:通过提问,引导学生回顾本章所学知识;2. 知识点讲解:通过讲解,帮助学生理解和记忆本章知识点;3. 例题讲解:通过例题,帮助学生巩固所学知识,并提高解题能力;4. 练习题讲解:通过练习题,帮助学生巩固所学知识,并提高解题能力;5. 拓展与提高:通过讨论和小组合作,引导学生思考和探索,提高学生的思维能力和创新能力;6. 总结与反思:通过总结,帮助学生对所学知识有一个全面的理解和记忆,并通过反思,提高学生的学习效果。

北师大版七年级数学(上册)教学计划

北师大版七年级数学(上册)教学计划

北师大版七年级数学(上册)教学计划北师大版七年级数学上册教学计划XXX——七一班,七二班一、教学目标:本期教材知识内容包括“丰富的图形世界”、“有理数及其运算”、“字母表示数”、“平面图形及其位置关系”、“一元一次方程”、“生活中的数据“和”可能性”。

学生将通过研究这些知识,掌握必要的有理数和代数式的运算技能,并能运用它们来探索具体问题中的数量关系和变化规律。

二、教材分析:第一章“丰富的图形世界”是本学期的主要内容之一,它将通过生活中熟悉的图形展开研究。

学生将研究图形的形状、构成、性质、展开与折叠、截面以及方向视图等。

三、教学方法:本教学计划将采用多种教学方法,包括讲解、演示、练和探究等,以帮助学生全面掌握所学知识和技能。

同时,我们还将注重培养学生的数学思维能力和解决问题的能力,以及增强他们对数学的兴趣和信心。

四、教学评价:本教学计划将采用多种评价方法,包括作业、测试和课堂表现等,以全面、客观地评价学生的研究成果和教学效果。

同时,我们还将注重及时反馈和指导,帮助学生发现和纠正问题,提高他们的研究效果和成绩。

本章从生活中常见的立体图形入手,通过展开与折叠等数学活动,让学生认识常见几何体及点、线、面的一些性质。

同时,通过切截和从不同方向观察等活动,发展学生的空间观念。

最后,让学生认识一些平面图形的简单性质,从而实现从立体图形到平面图形的转换。

在研究过程中,学生需要亲自去展开与折叠、切截,并与同伴交流,从而积累有关图形的经验。

第二章介绍有理数的概念及其加减法、乘除法、和乘方运算,同时使用计算器作简单的有理数运算。

本章的设计从实际问题情境和小学数学知识基础着手,引导学生自主地发现新的有理数概念,探索有理数的数量关系及其规律。

通过由具体特殊的现象发现一般规律的方法,让学生初步体验从实际问题抽象出数学模型的思想方法,初步学会表示数量关系的一些数学工具以及解决一些简单问题的方法。

同时,适当控制练和题的难度,引入计算器,避免不必要的烦琐计算。

北师大版七年级上册数学第二章有理数及其运算趣味数学之探寻神奇的幻方教学设计

北师大版七年级上册数学第二章有理数及其运算趣味数学之探寻神奇的幻方教学设计
3.拓展作业:请学生自行查找并研究4×4、5×5等更复杂幻方的构造方法和性质,撰写一篇小论文,分享自己的发现和心得。
(此作业旨在激发学生的探究兴趣,培养学生的自主学习能力和创新精神。)
4.合作作业:以小组为单位,共同探讨幻方在其他领域的应用,如计算机编程、艺术创作等,并将研究成果以PPT或展板的形式展示。
二、学情分析
七年级学生对有理数的概念和运算已有了初步的认识,具备了一定的数学基础。但在实际运用中,对有理数运算的熟练程度和问题解决能力仍有待提高。此外,学生对幻方这一数学游戏充满好奇,但对其内在规律和构造方法了解不足。因此,在本章节的教学中,教师应关注以下几点:
1.注重对学生有理数运算能力的巩固和提升,引导学生在实际问题中灵活运用。
4.通过导入环节,激发学生的好奇心和求知欲,为新课的学习打下基础。
(二)讲授新知,500字
1.教师简要介绍幻方的定义和基本性质,如幻方的行、列、对角线之和相等等。
2.教师示范构造一个3×3幻方,并讲解构造过程,强调有理数运算的运用。
3.教师引导学生通过观察、猜想、验证等方法,探索幻方的构造规律。
4.教师讲解幻方中涉及的有理数运算,如加减乘除、括号运用等,帮助学生巩固有理数运算知识。
4.各小组展示讨论成果,教师点评并总结幻方的构造方法和性质。
5.通过小组讨论,培养学生的合作精神、交流能力和解决问题的能力。
(四)课堂练习,500字
1.教师布置课堂练习题,包括基础题和提高题,涵盖幻方的构造、性质和有理数运算等方面。
2.学生独立完成练习题,教师巡回指导,关注学生的解题过程和方法。
3.教师选取部分学生的解答进行展示,分析解题思路和技巧,强调有理数运算的运算趣味数学之探寻神奇的幻方教学设计

七年级数学上册 第二章 回顾与思考 漫谈算术数与有理数 (新版)北师大版

七年级数学上册 第二章 回顾与思考 漫谈算术数与有理数 (新版)北师大版

七年级数学上册第二章回顾与思考漫谈算术数与有理数(新版)北师大版——漫谈算术数与有理数学习了负数之后,所研究的数的范围,就由算术数(正整数、正分数和零)扩充到了有理数.那么随着数的集合的扩充,数的性质是否也随着发生变化了呢?这是一个值得大家认真思考的问题.同学们可能已经发现,算术数的有些性质,在有理数集合内被“完整”地保留下来.如数0和1的运算性质:“任何数同0相加仍得这个数;任何数同1相乘仍得这个数”,在有理数集合中仍然成立;加法和乘法的运算律在有理数中也仍然使用,并且有理数的四则运算的法则都是通过算术数的四则运算的法则加以规定的.但是大家一定要注意到,并不是算术数集合的所有性质都可以原封不动地搬到有理数集合中使用.也就是说,有些算术数所具备的性质,在有理数集合中不一定成立;反之,算术数所不具备的性质,在有理数集合中却能够成立.下面我们从几个具体的方面加以说明.1.零的意义不再表示“没有”.在小学学习自然数时,曾经学过,自然数是数物体的个数而得到的.如从一只羊,两个苹果,三棵树,…,十个手指头等数具体物体的过程中,逐渐抽象产生出自然数1,2,3,…,10,….后来为了计算的需要和表示没有物体,就想出了用“零”来代替,记作0,这是在小学算术中,我们对“零”的认识.在生活语言中,也常有类似的情况,如有人说:“张三的话等于零”,意思是指张三说了不起作用,和没说一个样.但是在有理数集合中,“0”不再表示“没有”了.例如,某地海拔高度是0米,是指这一地点与海平面的高度一样高,而不是指这个地点没有高度.类似的例子,同学们自己也能够举出一些!2.零不再是最小的数了.在算术数中,0是最小的一个数,0以外的其它数都比0大.而在有理数集合中,却既没有最大的数,也没有最小的数. 0不再是最小的有理数,比0小的有理数有无数多个,所有的负数都小于0.3.关于减法运算的封闭性.在算术数中,我们知道,任意两个算术数的和、积、商(除数不得为0)仍然还是算术数.因此,我们就说算术数关于加法、乘法和除法具有封闭性.然而,算术数关于减法却不具有封闭性.如2-3,小学同学都会说,这“不够减的”或“减不着”.原因就是,被减数2小于减数3,在算术数中找不到这样一个数,它与3的和等于2.因此,在算术数中,进行减法运算有一个限定:被减数一定要不小于减数,这时差才存在(是个算术数),否则减法将无法进行.在有理数集合中,这个限定被取消了,任何两个有理数都能相减,并且差还是一个有理数,当被减数大于减数时,差是正数;当被减数等于减数时,差是0;当被减数小于减数时,差是负数.有理数关于加法、减法、乘法、除法(除数不得为零)和乘方运算都具有封闭性.4.减法统一为加法.对于算术数而言,加法与减法是相互对立的:加法和减法互为逆运算,二者有各自不同的运算法则.在有理数集合中,加法和减法也互为逆运算,但根据有理数减法法则,便把有理数的减法转化为加法进行,从而使加、减这两种运算统一为一种运算.有理数加法和减法二者之间的这种既相互对立又相互统一的关系,正是数学中充满辩证法的一个生动事例.。

初中数学北师大版七年级上册回顾与思考

初中数学北师大版七年级上册回顾与思考
4
(B) 由5 2 x,移项得x 5 2
(C) 由 x 1 2x 3 1,去分母得4(x 1) 3(2x 3) 1 68
(D) 由3x (2 4x) 5,去括号得3x 4x 2 5
解一元一次方程的一般步骤以及注意事项
变形名称 去分母
去括号 移项 合并同类 项 系数化成1
注意事项 防止漏乘(尤其整数项),注意分子为多项式 时要添括号 防止漏乘及去括号后符号的变化 移项要变号 计算要仔细,不要出差错
计算要仔细,分子分母不要颠倒
(1)1 2y 3 (2)3 1( 2 4 x)
(3) 1 x 3 5x 1 (4)x 1 x 2 1
2
4
36
解一元一次方程的一般步骤以及注意事项
变形名称 去分母
去括号 移项 合并同类 项 系数化成1
注意事项 防止漏乘(尤其整数项),注意分子为多项式 时要添括号 防止漏乘及去括号后符号的变化 移项要变号 计算要仔细,不要出差错
计算要仔细,分子分母不要颠倒
分层作业,第1、2、3、4题以及11 (1)、11(2)、11(3)题全班完成, 其余题目根据自己掌握知识程度选择 习题单上作业适量完成
贵阳四十中 司荣娟
一元一次方程的引入与概 念
等式的母 去括号 移项、合并同类项
未知数的系数化为1
应用一元一次方程
水箱变高了 打折销售 “希望工程”义演 未知数的系数化为1
1.下列四个方程中,一元一次方程是( D ) (A)x2 -1 0 (B)x y 1 (C)1 5 6 (D)x 5
x
2.下列方程中,以4为解的方程是( D ) (A)2x 5 10 (B)-3x -8 4(C)1 3 2x 3 (D)2x - 2 3x 6

七年级数学上册 第二章 回顾与思考(课时二)教学设计 (新版)北师大版

七年级数学上册 第二章 回顾与思考(课时二)教学设计 (新版)北师大版

七年级数学上册第二章回顾与思考(课时二)教学设计(新版)北师大版回顾与思考(二)一、学生起点分析学生的知识技能基础:学生通过本章的学习,已经掌握了有理数的有关概念。

能运用正、负数表示生活中具有相反意义的量,能用数轴上的点表示有理数,能借助数轴认识相反数的概念及互为相反数的一对数在数轴上的位置关系,能利用数轴比较有理数的大小.对绝对值的概念以及如何求一个数的绝对值也有了一定的理解,会利用绝对值比较两个负数的大小.此外,通过本章的学习,还掌握了有理数的加、减、乘、除、乘方的运算法则及运算律,并利用其解决了一些问题,具备了利用运算解决一些简单实际问题的经验.学生活动经验基础:在本章的学习过程中,学生已经经历了一些观察、猜想、探索、发现、比较、分析、综合等数学活动,积累了比较丰富的活动经验。

在学习新知的同时发展了一定的抽象、概括能力;在解决问题的同时提高了一定的探究能力;在独立思考的基础上,体验到了合作交流的重要性.同时在本章的学习过程中,学生的语言表达以及发表见解方面都已获得了一些成功的感受,具备了学习本节课所需要的活动经验基础.二、教学任务分析本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分主要内容是有理数的有关概念;第二部分主要内容是学习有理数的加减法运算;第三部分主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.本节课主要是针对第三部分的内容进行知识梳理和复习.本节课的教学目标是:1、复习有理数的乘、除、乘方的运算法则;2、复习有理数的混合运算的运算律;3、运用有理数及其运算解决实际问题.三、教学过程设计本节课设计了六个教学环节:第一环节:说一说;第二环节:比一比;第三环节:想一想;第四环节:做一做;第五环节:课堂小结;第六环节:拓展延伸.第一环节:说一说活动内容:引导学生回顾上一节课的知识点.教师问:同学们还记得我们上节课复习的知识点吗?看看谁记得牢,说得多?活动目的:让学生在抢答中巩固本章知识点,培养学生温故知新的习惯.活动的实际效果:由于上节课已经帮助学生建构了本章的知识结构图,因此根据此框架图能很容易回忆起本章的主要知识点,有助于学生更好地从整体理解全章的知识.第二环节:比一比活动内容:巩固练习1、若|x|-|y|=0,则()A. x=yB. x=-yC. x=y=0D. x=y或x=-y2、有理数a,b 在数轴上对应位置如图所示,则a+b的值为()A. 大于0B. 小于0C. 等于0D. 大于a3、若 | 2a |= —2a,则a一定是()A.负数B.正数C.非正数D.非负数4、已知|2a+4 |+ | 3—b |=0,则a+b= .5、已知a、b在数轴上如图所示,请比较a、b、-a、-b的大小。

新北师大版七年级数学上册第二章《有理数及其运算》全章各课时课件

新北师大版七年级数学上册第二章《有理数及其运算》全章各课时课件

现在,你能解决前面提出的问题了吗?
零上5º C 零下5º C



5º C
-5º C
2013年12月1日星期日 14:39:03
现在,你能解决前面提出的问题了吗?

吐鲁番海拔 -155米


2013年12月1日星期日 14:39:03
现在,你能解决前面提出的问题了吗?
如果答对题所得的分用正数表示,那么每 个代表队答题得分的情况如下表:
分数
负分数
2013年12月1日星期日 14:39:03
把下列各数填入相应的集合中:
2 1 1 3,7, ,. 6, 0,8 , 15, - - 5 3 4 9

巩 固 练 习
1 正数集合:{ 3,. 6, 15, 5 9 1 2 负数集合:{ - 7, ,8 3 4

…} …} …}
…}
- 0 15 整数集合:{ 3,7,, ,
你能举出生活中一些具 有相反意义的量吗?
2013年12月1日星期日 14:39:03
在正数前面加上“—”号的数叫做负
探 索 新 知
数.如-3,-8,-2.5等.负数都比0小.
带有“—”的数一定是负数吗?
不一定
0既不是正数也不是负数.它是正数和 负数的分界.
2013年12月1日星期日 14:39:03


+8
-3

0 0
2013年12月1日星期日 14:39:03
例 题 讲 解
2013年12月1日星期日 14:39:03
1、(1)在知识竞赛中如果用“+10”表示 加10分,那么扣20分记作什么?
巩 固 练 习

北师大版七年级数学上册教学案 第二章回顾与思考(课时一)教学设计(周静)

北师大版七年级数学上册教学案 第二章回顾与思考(课时一)教学设计(周静)
1、整理本章知识网络; 2、复习正数与负数,有理数、相反数、绝对值、数轴等概念; 3、复习有理数的加、减运算法则; 4、复习有理数的加减混合运算的运算律; 5、运用有理数及其运算解决实际问题.
三、教学过程设计
1
本节课设计了六个教学环节: 第一环节:建构知识网络;第二环节:梳理重点知识;
第三环节:剖析典型例题;第四环节:综合应用;第五环节:课堂小结; 第六环节: 拓
4、绝对值:(1)从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.
(2)数 a 的绝对值记为 | a |.
(3)正数的绝对值是它本身;0 的绝对值是 0;负数的绝对值是它的相反数.
5、有理数的大小比较:(1)在数轴上,右边的数总是大于左边的数.
2
(2)正数都大于零,负数都小于零,正数大于一切负数;
利用其解决了一些问题,具备了利用运算解决一些简单实际问题的经验. 学生活动经验基础:在本章的学习过程中,学生已经经历了一些观察、猜想、探索、发 现、比较、分析、综合等数学活动,积累了比较丰富的活动经验。在学习新知的同时发展了 一定的抽象、概括能力;在解决问题的同时提高了一定的探究能力;在独立思考的基础上, 体验到了合作交流的重要性.同时在本章的学习过程中,学生的语言表达以及发表见解方面 都已获得了一些成功的感受,具备了学习本节课所需要的活动经验基础.
活动的实际效果: 学生对全章知识能形成更全面的理解,对本章的知识脉络也能形成更 清晰的认识.
第二环节:梳理重点知识
活动内容: 学生以小组竞赛的形式回顾知识点,教师根据学生的回顾将主要知识点罗列
在框架图后.
正整数 整数 0
{ { 1、有理数的两种分类; 有理数
负整数
{ 正分数
分数

北师大版数学七年级上册《回顾与思考》教案1

北师大版数学七年级上册《回顾与思考》教案1

北师大版数学七年级上册《回顾与思考》教案1一. 教材分析《回顾与思考》是北师大版数学七年级上册的一章总结性内容,本章主要目的是帮助学生复习和巩固前面所学知识,提高学生的综合运用能力。

本章内容涵盖了整数、实数、代数式、方程、不等式等基础知识,以及简单的几何知识。

通过本章的学习,学生能够对前面的知识有一个全面、系统的认识,为后续的学习打下坚实的基础。

二. 学情分析学生在进入七年级之前,已经初步掌握了小学数学的基本知识,但存在着知识掌握不扎实、运用不灵活的问题。

此外,学生的学习习惯、学习方法、学习态度等方面也存在一定的问题。

因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的实际情况进行有针对性的教学。

三. 教学目标1.知识与技能:使学生对七年级上册所学知识有一个全面、系统的认识,提高学生的综合运用能力。

2.过程与方法:通过复习和巩固,培养学生自主学习、合作学习、探究学习的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的魅力。

四. 教学重难点1.重点:七年级上册所学知识的全面回顾和巩固。

2.难点:如何引导学生自主复习,提高学生的综合运用能力。

五. 教学方法1.自主学习法:引导学生自主复习,培养学生独立思考的能力。

2.合作学习法:小组讨论,共同解决问题,提高学生的团队协作能力。

3.探究学习法:引导学生深入探究,发现知识之间的联系,提高学生的创新能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,制定合理的教学计划。

2.学生准备:带上笔记本,准备好七年级上册的数学课本。

七. 教学过程1.导入(5分钟)教师通过简单的提问,引导学生回顾七年级上册所学知识,激发学生的学习兴趣。

2.呈现(10分钟)教师呈现本节课的主要内容,包括整数、实数、代数式、方程、不等式等基础知识,以及简单的几何知识。

3.操练(10分钟)学生自主复习,对照教材,梳理和巩固所学知识。

北师大版数学七年级上册《回顾与思考》教案

北师大版数学七年级上册《回顾与思考》教案

北师大版数学七年级上册《回顾与思考》教案一. 教材分析北师大版数学七年级上册《回顾与思考》教案主要是对前面所学知识进行回顾和思考,通过复习和总结,使学生对前面的知识有一个更加深入的理解和掌握。

本节课的内容包括有理数的乘方、整式的加减、分式的加减、函数的性质等,这些都是七年级数学的重要内容。

通过本节课的学习,学生可以对前面的知识有一个全面的回顾和思考,为接下来的学习打下坚实的基础。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方、整式的加减、分式的加减、函数的性质等知识。

他们对这些知识有一定的理解和掌握,但可能存在一些疑问和困惑。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的疑问和困惑进行解答和引导。

三. 教学目标1.回顾和总结前面的知识,使学生对前面的知识有一个更加深入的理解和掌握。

2.提高学生的复习和总结能力,培养学生的自主学习能力。

3.通过对前面的知识的回顾和思考,为学生接下来的学习打下坚实的基础。

四. 教学重难点1.有理数的乘方、整式的加减、分式的加减、函数的性质等知识的回顾和总结。

2.学生对前面知识的疑问和困惑的解答和引导。

五. 教学方法1.讲解法:教师通过讲解,引导学生回顾和总结前面的知识。

2.问答法:教师通过提问,引导学生思考和解答问题。

3.讨论法:学生之间进行讨论,共同解决问题。

六. 教学准备1.教材:北师大版数学七年级上册。

2.教案:教师根据自己的教学目标和重难点,编写详细的教案。

3.课件:教师根据教案,制作相应的课件。

七. 教学过程1.导入(5分钟)教师通过提问,引导学生回顾和思考前面的知识,激发学生的学习兴趣。

2.呈现(10分钟)教师通过课件,呈现本节课的内容,包括有理数的乘方、整式的加减、分式的加减、函数的性质等。

引导学生对这些知识进行回顾和总结。

3.操练(10分钟)教师通过提问和解答,引导学生对前面的知识进行巩固。

可以设置一些题目,让学生进行解答,然后教师进行讲解和解析。

北师大版初中数学七年级上册全册教案

北师大版初中数学七年级上册全册教案

第一章丰富的图形世界第一课时介绍单元整体说明本章在小学数学和中学数学的联系中起着承上启下的作用。

编写本章的目的在于:(1)帮助学生梳理小学的数学知识和数学方法。

(2)为学生学习中学数学作必要的准备。

本章较充分地体现了课程标准的基本理论,学习本章将为其他各章的学习提供了一个示范。

本章体现的数学思想方法、数学人文精神、数学应用意识、数学价值观等都应该在其他各章的学习中得到贯彻。

本章按照如下线索展开内容:数学伴我成长——人类离不开数学——人人都能学会数学——让我们来做数学贯穿于内容的始终。

课程内容标准使学生初步认识到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识。

使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。

使学生对数学产生一定的兴趣,获得学好数学的自信心。

使学生学会与他人合作,养成独立思考与合作交流的习惯。

使学生在数学活动中获得对数学良好的感性认识,初步体验到什么是“做数学”。

结构体系单元教学建议鉴于本章承上启下的特点,故教材内容只是给教师提供一个教学思路,教师可根据教学目标,结合学生的具体情况,补充适当的素材,灵活安排教学内容,调节课时数。

教学的总要求是以学生为主体,使学生在活动中主动构建对数学的认识,具体应注意以下几点:1.适当补充一些能引起学生学习兴趣的素材。

2.注意引导学生通过实验得出结论。

如第3页的练习第2题、第5页的练习第2题、习题1.1的第3题与第4题、第11页的练习第1题以及习题1.2的第6题都应该让学生通过实验,主动探索得出结论。

3.通过多媒体演示,帮助学生理解。

如第3页的练习第2题、第5页的练习第2题、习题1.1的第3题与第4题以及第11页的练习第1题等都可以通过多媒体的演示来帮助学生理解。

4.给学生提供实地考察、调查的机会。

有条件的话,应给让学生实地考察一些生产、生活中应用数学的例子。

5.给学生提供合作、讨论与自我展示的机会。

本章应尽可能多地采用小组学习形式。

初中数学《北师大版》教材目录

初中数学《北师大版》教材目录

初中数学《北师大版》教材目录七年级上册:第一章丰富的图形世界⑴生活中的立体图形(2)⑵展开与折叠(8)⑶截一个几何体(13)⑷从不同方向看(15)⑸生活中的平面图形(22)回顾与思考(27)复习题(27)第二章有理数及其运算⑴数怎么不够用了(31)⑵数轴(36)⑶绝对值()⑷有理数的加法(41)⑸有理数的减法(44)⑹有理数的加减混合运算(52)⑺水位的变化(62)⑻有理数的乘法(64)⑼有理数的除法(69)⑽有理数的乘方(72)⑾有理数的混合运算(77)⑿计算器的使用(80)回顾与思考(84)复习题(84)第三章字母表示数⑴字母能表示什么(90)⑵代数式(93)⑶代数式的值(98)⑷合并同类项(102)⑸去括号(108)⑹探索规律(111)回顾与思考(114)复习题(115)第四章平面图形及其位置关系⑴线段、射线、直线(120)⑵比较线段的长短(123)⑶角的度量与表示(126)⑷角的比较(131)⑸平行(135)⑹垂直(138)⑺有趣的七巧板(142)⑻图案设计(144)回顾与思考(146)复习题(146)第五章一元一次方程⑴你今年几岁了(149)⑵解方程(154)⑶日历中方程(161)⑷我变胖了(163)⑸打折销售(168)⑹“希望工程”义演(170)⑺能追上小明吗(172)⑻教育储蓄(174)回顾与思考(176)复习题(176)第六章生活中的数据⑴100万有多大(179)⑵科学计数法(181)⑶扇形统计图(185)⑷月球上有水吗(189)⑸统计图的选择(192)回顾与思考(196)复习题(197)课题学习制作一个尽可能大的无盖长方体(212)总复习(214)第七章平面图形的认识⑴整式(2)⑵整式的加减(6)⑶同底数幂的乘法(12)⑷幂的乘方与积的乘方(15)⑸同底数幂的除法(19)⑹整式的乘法(22)⑺平方差公式(29)⑻完全平方公式(33)⑼整式的除法(39)回顾与思考(44)复习题(44)第八章平行线与相交线⑴台球桌面上角(50)⑵探索直线平行的条件(53)⑶平行线的特征(59)⑷用尺规作线段和角(63)回顾与思考(69)复习题(69)第九章生活中的数据⑴认识百万分之一(74)⑵近似数和有效数字(78)⑶世界新生儿图(84)回顾与思考(90)复习题(90)课题学习制作“人口图”(94)第十章概率⑴游戏公平吗(98)⑵摸到红球的概率(105)⑶停留在黑砖上概率(109)回顾与思考(113)复习题(113)第十一章三角形⑴认识三角形(117)⑵图形的全等(128)⑶图案设计(132)⑷全等三角形(135)⑸探索三角形全等的条件(138)⑹作三角形(147)⑺利用三角形全等测距离(150)⑻探索直角三角形全等的条件(153)回顾与思考(157)复习题(157)第十二章变量之间的关系⑴小车下滑的时间(163)⑵变化中的三角形(167)⑶温度的变化(171)⑷速度的变化(176)回顾与思考(180)复习题(180)第十三章生活中的轴对称⑴轴对称现象(186)⑵简单的轴对称图形(191)⑶探索轴对称的性质(197)⑷利用轴对称设计图案(200)⑸镜子改变了什么(203)⑹镶边与剪纸(207)回顾与思考(210)复习题(210)总复习(215)第一章勾股定理⑴探索勾股定理(2)⑵能得到直角三角形吗(9)⑶蚂蚁怎样走最近(13)回顾与思考(16)复习题(16)课题学习拼图与勾股定理(19)第二章实数⑴数怎么不够用了(25)⑵平方根(31)⑶立方根(36)⑷公园有多宽(39)⑸用计算器开方(41)⑹实数(44)回顾与思考(52)复习题(52)第三章图形的平稳与旋转⑴生活中平移(57)⑵简单的平移作图(61)⑶生活中旋转(66)⑷简单的旋转作图(69)⑸它们是怎样变化过来的(71)⑹简单的图案设计(74)回顾与思考(78)复习题(78)第四章四边形性质探索⑴不行四边形的性质(83)⑵不行四边形的判别(88)⑶菱形(92)⑷矩形、正方形(95)⑸梯形(101)⑹探索多边形的内角和与外角和(106)⑺平面图形的密铺(111)⑻中心对称图形(114)回顾与思考(117)复习题(117)第五章位置的确定⑴确定位置(122)⑵平面直角坐标系(130)⑶变化的鱼(138)回顾与思考(145)复习题(145)第六章一次函数⑴函数(150)⑵一次函数(154)⑶一次函数的图象(159)⑷确定一次函数的表达式(163)⑸一次函数图象的应用(166)回顾与思考(175)复习题(175)第七章二元一次方程组⑴谁的包裹多(181)⑵解二元一次方程组(186)⑶鸡兔同笼(194)⑷增收节支(196)⑸里程碑上的数(199)⑹元一次方程组与一次函数(202)回顾与思考(208)复习题(208)第八章数据的代表⑴平均数(213)⑵中位数与众数(220)⑶利用计算器求平均数(224)回顾与思考(227)复习题(227)总复习(230)第一章一元一次不等式和一元一次不等式组⑴不等关系(2)⑵不等式的基本性质(7)⑶不等式的解集(10)⑷一元一次不等式(13)⑸一元一次不等式与一次函数(18)⑹一元一次不等式组(24)回顾与思考(33)复习题(33)第二章分解因式⑴分解因式(38)⑵提公因式法(42)⑶运用公式法(47)回顾与思考(54)复习题(54)第三章分式⑴分式(58)⑵分式的乘除法(66)⑶分式的加减法(70)⑷分式方程(77)回顾与思考(85)复习题(85)第四章相似图形⑴线段的比(90)⑵黄金分割(97)⑶形状相同的图形(102)⑷相似多边形(107)⑸相似三角形(113)⑹探索三角形相似的条件(117)⑺测量旗杆的高度(124)⑻相似多边形的性质(128)⑼图形的放大与缩小(135)回顾与思考(142)复习题(142)课题学习制作视力表(147)第五章数据的收集与处理⑴每周干家务活的时间(152)⑵数据的收集(155)⑶频数与频率(159)⑷数据的波动(168)回顾与思考(177)复习题(177)课题学习吸烟的危害(181)第六章证明(一)⑴你能肯定吗(184)⑵定义与命题(188)⑶为什么它们平行(198)⑷如果两条直线平行(202)⑸三角形内角和定理的证明(205)⑹关注三角形的外角(210)回顾与思考(214)复习题(214)总复习(218)附:标准对数视力表中的“E”形图(228)第一章证明(二)⑴你能证明它们吗(2)⑵直角三角形(15)⑶线段的垂直平分线(24)⑷角平分线(31)回顾与思考(38)复习题(38)第二章一元二次方程⑴花边有多宽(42)⑵配方法(48)⑶公式法(57)⑷分解因式法(60)⑸为什么是0.618()回顾与思考(69)复习题(69)第三章证明(三)⑴平行四边形(74)⑵特殊的平行四边形(86)回顾与思考(94)复习题(94)第四章视图与投影⑴视图(98)⑵太阳光与影子(109)⑶灯光与影子(115)回顾与思考(125)复习题(125)第五章反比例函数⑴反比例函数(131)⑵反比例函数的图象与性质(134)⑶反比例函数的应用(143)回顾与思考(147)复习题(147)课题学习猜想、证明与拓广(150)第六章频率与概率⑴频率与概率(157)⑵投针试验(169)⑶生日相同的概率(172)⑷池塘里有多少条鱼(176)回顾与思考(180)复习题(180)总复习(183)第一章直角三角形的边角关系⑴从梯子的倾斜程度谈起(2)⑵30o、45o、60o角的三角函数值(10)⑶三角函数的有关计算(14)⑷船有触礁的危险吗(21)⑸测量物体的高度(25)回顾与思考(29)复习题(29)第二章二次函数⑴二次函数所描述的关系(34)⑵结识抛物线(38)⑶刹车距离与二次函数(42)⑷二次函数y=ax2+bx+c的图象(46)⑸用三种方法表示二次函数(56)⑹何时获得最大利润(59)⑺最大面积是多少(62)⑻二次函数与一元二次方程(64)回顾与思考(73)复习题(73)课题学习拱桥设计(79)第三章圆⑴车轮为什么做成圆形(83)⑵圆的对称性(88)⑶圆周角与圆心角的关系(100)⑷确定圆的条件(109)⑸直线和圆的位置关系(113)⑹圆和圆的位置关系(122)⑺弧长及扇形的面积(129)⑻圆锥的侧面积(133)回顾与思考(136)复习题(136)课题学习设计遮阳篷(144)第四章统计与概率⑴50年的变化(149)⑵哪种方式更合算(165)⑶游戏公平吗(170)回顾与思考(175)复习题(175)总复习(182)。

第二章有理数及其运算回顾与思考北师大版数学七年级上册

第二章有理数及其运算回顾与思考北师大版数学七年级上册

第二章 有理数及其运算 回顾与思考主备人: 审定人: 一、知识网络:注意:不能将 相反数、绝对值、倒数 弄混淆了。

【问题导思】1、将下列各数进行分类,并填在相应的横线上:-15,320,4.23,-141,-20%,0,6,-(-2),-︱-3︱。

正整数: ;负整数: ; 正数: ;负数: ; 整数: ;分数: ;2、—451的相反数是 ,绝对值是 ,倒数是 ; 3、若x =5,那么x=_____ ; 2-的相反数是 ;4、若,162=a 则a = , 若=-=x x 则,273加法交换律、结合律:按性质符号分:有理数 分类 按定义分: 有理数有理数 有关概念:正数、负数、有理数、数轴、相反数、绝对值、倒数、乘方 有理数的大小比较:① ②乘法法则 、除法法则 ? 运算 运算法则 运算律 混合运算顺序:加法法则、减法法则 ? 乘方(符号规则)? 乘法交换律、结合律、分配律:回思:(1)做3、4题时,要注意什么问题? ; (2)绝对值及平方等于正数的数有 个?什么关系: 5、已知p 是数轴上的一点4-,把p 点向左移动2个单位后再向右移1个单位长度,那么p 点表示的数是______________。

6、数轴上与表示-3的点距离5个单位的点所表示的数为_____7、 比较大小:65- 76-;-3.14 |-π| 8、 某地某日中午的温度为6℃,而夜间温度为–1℃,则中午比夜间温度高 ℃。

9、( )+15=-17 ; ( )-(-56)=36 ; 18-( )=57 10、例2. 计算:回思:(1)应按怎样的运算顺序进行?(2)此题中哪里容易出错?(3)()的区别是什么?与4411-- 【反馈导练】计算:(1)1032)65()43(21---+---(2)()8-)02.0()25.0(-⨯-⨯回思:(1)遇到“绝对值”应怎样做?(2)加减混合运算时,可以将式子化成 ,再计算。

()()[]3433315.011--⨯⨯-+- 一些基本知 相信自己!(3))(81436524-+-⨯- (4)()1-⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷3114310 (5) )()()(964592-÷---⨯+-(6)[-212(61121197+-)×36]÷5反思:你有哪些地方出错了?可要记住了,下次不要再错了!1. 已知a 、b 、c 在数轴上位置如图,化简:∣a +c ∣-∣a ∣+∣﹣b ∣+∣b -1∣。

七年级数学下册:第二章 回顾与思考教案(1) 北师大版

七年级数学下册:第二章 回顾与思考教案(1) 北师大版

第二章回顾与思考一、教学目标:知识与技能目标:1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化。

2.在丰富的情景中,抽象出平行线、相交线等基本几何模型,从而进一步熟悉和掌握几何语言,能用语言说明几何图形。

过程与方法目标:1.经历把现实物体抽象成几何对象(点、线、面等)的数学化过程.2.在探究说理过程中,锻炼学生的语言表达能力以及逻辑思维能力。

3.通过多个角度去思考问题,既提高学生的识图能力,又可以开阔思维,提高分析问题、解决问题的能力。

情感态度价值观:1. 感受数学来源于生活又服务于生活,激发学习数学的乐趣.2.通过一题多变,一题多解,多解归一的练习,让学生学会挖掘题目资源,用发展的眼光看问题,观察运动中的异同,揭示知识间内在联系。

二、教学过程分析本节课设计了六个教学环节:第一环节:创设情境;第二环节:归纳总结;第三环节:知识应用;第四环节:拓展升华;第五环节:纵向延伸;第六小节:查缺补漏。

第一环节:创设情境活动内容:教师提出问题:同学们认识这个标志么?生:(反应异常激烈)认识,是大众汽车的标志。

师:你们知道它的含义么?(同学陷入了思考。

)一个同学举手,有些迟疑地说:“我看它象由三个V组成,是不是表示他们这个品牌必胜、必胜、必胜?老师高兴地赞扬:你真棒,跟设计师想的一样!(另一名同学小声说):真的假的?我还觉得上面是V,下面是W呢!老师:哎呀,你也很厉害。

V和W是当时德国大众汽车公司名称的字母缩写。

是标志的另一重含义。

歪打正着的同学得意地笑了。

其他同学也跟着笑了。

BD EBC 老师乘胜追击:看到这个标志还想到什么?同学有些不知所云,老师再问:你们不觉得这个设计师几何学得特别棒么?他用几何中最简单、最基本的图形,就完成了汽车史上赫赫有名的设计。

同学恍然大悟,频频点头。

活动目的:兴趣是最好的老师,而复习课却往往比较枯燥无味。

在这里,以同学们几乎天天见的大众标志为数学情境引入,是为了让同学感受到数学就在我们身边,她不神秘,却应用广泛。

北师大版七年级数学上册《回顾与思考(一)__丰富的图形世界》分点突破

北师大版七年级数学上册《回顾与思考(一)__丰富的图形世界》分点突破

《回顾与思考(一)丰富的图形世界》分点突破知识点1 集合体的组成
1.按组成面的平或曲划分,与圆柱为同一类的几何体是()
A.长方体
B.正方体
C.棱柱
D.圆锥
2.硬币在桌面上快速地转动时,看上去像球,这说明了______.
3.观察图中的圆柱和棱柱,通过想象回答下列问题:
(1)该圆柱和棱柱各由几个面组成?这些面是平的还是曲的?
(2)该圆柱的侧面与底面相交成几条线?这些线是直线还是曲线?(3)该棱柱的侧面与下底面相交成几条线?
(4)该棱柱共有几个顶点?经过一个顶点有几条棱?
知识点2 立体图形的展开与折叠
4.(绍兴中考)如图是一个正方体,则它的表面展开可以是()
5.(运城月考)指出下列平面图形各是什么几何体的展开图
知识点3 截一个几何体
6.用一个平面按如图所示的方法去截一个正方体,则截面是( )
7.(西安蓝田县期末)用一个平面去截下列几何体,其截面可能是长方形的有( )
知识点4 从三个方向看物体的形状
8.(济南中考)如图所示的几何体,从上面看得到的形状图是( )
9.(山西中考)如图是由几个大小相同的小正方体搭成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,则该几何体从左面看到的图形是( )
参考答案
1.D
2.面动成体.
3.解:(1)该圆柱有3个面,上、下底面是平的,侧面是曲的;该棱柱有8个面,都是平的.(2)该圆柱的侧面与底面相交成2条线,是曲线.
(3)该棱柱的侧面与下底面相交成6条线.(4)该棱柱共有12个顶点,经过一个顶点有3条棱.
4.B
5.解:(1)圆柱;(2)圆锥;(3)三棱柱;(4)长方体.
6.B
7.C
8.D
9.A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2、 (1)写出在数轴上和原点距离等于4.3个 单位的点所表示的数;
答:4.3和-4.3
(2)写出在数轴上和表示-5的点距离等于 4个单位的点所表示的数;
答:-1和-9
(3)若将第2题中所得到的左边的点向右移 动1.5个单位,右边的点向左移动2.5个单位, 则各表示什么数?
答:各表示-7.5和-3.5
解:∵a + b <0,b+c>0,c—a>0 ∴原式= -(a+b)+(b+c)-(c-a) = -a-b+b+c-c+a =0
例5、计算:
3 1 2 1 (1) 4 4 3 3 ( 2) 40 28 ( 19 ) ( 24 ) ( 32 ) 4 1 1 2 (3) 0.5 5 2 3 3
3、已知有理数a、b、c在数轴上的位置 如图,化简 |a|— | a+b | + | c-a | + | b + c |.
b a0 c
4、已知a、b为有理数,且a>0,b<0, a+b<0,将四个数a,b,—a,—b按从 小到大的顺序排列.
5、计算:
(1)-(-12)-(-25)-18+(-10)
1 ( 2 ) 8 ( ) 5 ( 0.25) 4
③完成下表
星期 本周每日与上周股票市值的差 一 +5
2 1 0 日 一 二 三 四 五


四 +6.5
五 +4
+8.5 +7.5
④以上周六买进27元为0元,用折线统计图表示出该周 数填在相应的大括号内: 6 1,-0.1,-789,25,0,-20,-3.14, 7
(2)
(3)0.5
1 2 2 3 2 1 3 3 4 1 5 4 1 5

2 4 1 1 3 5 2 3 4 1 1 5 2 3 4 5
小结
加法四结合: 1.凑整结合法 ; 2.同号结合法; 3.两个相反数结合法;
解: (1)
2 1 3 1 3 3 4 4 2 1 3 1 3 3 4 4 1 1 2 1 1 2
40 28 (19) ( 24) ( 32) 40 28 19 24 32 40 28 24 19 32 92 51 41
一、建构知识网络
数怎么不够用了 有 理 数 及 其 运 算 数轴 绝对值
有理数的加法
有理数的减法 有理数的乘法 有理数的除法
有理数的加 减混合运算
水位的变化 有理数的混合运算
有理数的乘方
计算器的使用
二、梳理重点知识
1、有理数的两种分类:
正整数 0 负整数 正分数 负分数
有理数
{ {
整数 分数
有理数
4.同分母或易通分的分数结合法.
例6、 小明父亲上星期买进某公司股票1000股,每股 27元,下表为本周每日该股票的涨跌情况(单位:元)
星期 一 二 三 四 五
市值涨跌
+5
+3.5
-1
-1
-2.5
注: ①正数表示股市比前一天上升,负数表示比前 一天下降。 ②周六、周日休市。10 9 8 ①周三收盘时,每股 34.5 元。 7 6 ②本周内最高价每股 35.5 元, 5 4 最低价值每股 31 元。 3
三、剖析典型例题
例1、给出下列各数:
1 1 , 2 6, 3.75, 1.5, 0, 4, 15 . 4
(1)在这些数中,整数有 3 个,负分数有 2 个, 绝对值最小的数是 0 . (2)3.75的相反数是 -3.75 ,绝对值是 3.75 ,倒数 是 . (3)这些数用数轴上的点表示后,与原点距离最远的 -6 数是_____. (4)这些数从小到大,用“<”号连接起来: .
例3、
已知|x|=3,|y|=2,且x<y,则x+y=____.
解:∵|x|=3,|y|=2 ∴x=±3,y=±2
∵ x<y
∴x不能为3 ∴x=-3,y=2 或 x=-3,y=-2 ∴x+y=-3+2=-1 或 x+y=-3-2=-5.
例4、 数a,b,c在数轴上对应位置如图,
a b
0
c
化简:| a + b | + | b + c | — | c – a |.
a a(a 0) a a(a 0)
5、有理数的大小比较:
总则:在数轴上,右边的数总是大于左边的数
(1) 正数都大于零,负数都小于零, 正数大于一切负数; (2) 两个正数,绝对值大的大; (3) 两个负数,绝对值大的反而小.
6、有理数的运算:
(1)加法: 同号两数相加,取相同的符号,并把绝对值相 加。 异号两数相加,取绝对值大的数的符号,并用 较 大的绝对值减去较小的绝对值。 一个数同0相加,仍得这个数。 (2)减法: 减去一个数,等于加上这个数的相反数。
{
{
正有理数
0 负有理数
{
正整数 正分数 负整数 负分数
{
2、数轴:
规定了原点、正方向、单位长度的直线叫做数轴. 任何一个有理数都可以用数轴上的一个点来表示.
3、相反数: 只有符号不同的两个数互为相反数. 0的相反数是0. a的相反数是 -a. 如果a与b互为相反数,那么a+b=0.
4、绝对值: 从数轴上看,一个数的绝对值就是表示这个数 的点离开原点的距离. 数 a 的绝对值记为 | a |. 正数的绝对值是它本身; 0的绝对值是0; 负数的绝对值是它的相反数.
正整数集{ 负整数集{ 正分数集{ 负分数集{ 正有理数集{ 负有理数集 { …} …} …}
…} …}
…}
2、填一填: 1)绝对值小于2的整数有________;
2)绝对值等于它本身的数有___________; 3)绝对值不大于3的负整数有__________; 4)数a和b的绝对值分别为2和5,且在数轴上 表示a的点在表示b的点左侧,则b的值为 .
相关文档
最新文档