SIFT算法C语言逐步实现详解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SIFT算法C语言逐步实现详解(上)
引言:
在我写的关于sift算法的前倆篇文章里头,已经对sift算法有了初步的介绍:九、图像特征提取与匹配之SIFT算法,而后在:九(续)、sift算法的编译与实现里,我也简单记录下了如何利用opencv,gsl等库编译运行sift程序。
但据一朋友表示,是否能用c语言实现sift算法,同时,尽量不用到opencv,gsl等第三方库之类的东西。而且,Rob Hess维护的sift 库,也不好懂,有的人根本搞不懂是怎么一回事。
那么本文,就教你如何利用c语言一步一步实现sift算法,同时,你也就能真正明白sift算法到底是怎么一回事了。
ok,先看一下,本程序最终运行的效果图,sift 算法分为五个步骤(下文详述),对应以下第二--第六幅图:
sift算法的步骤
要实现一个算法,首先要完全理解这个算法的原理或思想。咱们先来简单了解下,什么叫sift算法:
sift,尺度不变特征转换,是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由David Lowe 在1999年所发表,2004年完善总结。
所谓,Sift算法就是用不同尺度(标准差)的高斯函数对图像进行平滑,然后比较平滑后图像的差别,
差别大的像素就是特征明显的点。
以下是sift算法的五个步骤:
一、建立图像尺度空间(或高斯金字塔),并检测极值点
首先建立尺度空间,要使得图像具有尺度空间不变形,就要建立尺度空间,sift算法采用了高斯函数来建立尺度空间,高斯函数公式为:
上述公式G(x,y,e),即为尺度可变高斯函数。
而,一个图像的尺度空间L(x,y,e) ,定义为原始图像I(x,y)与上述的一个可变尺度的2维高斯函数G(x,y,e) 卷积运算。
即,原始影像I(x,y)在不同的尺度e下,与高斯函数G(x,y,e)进行卷积,得到L(x,y,e),如下:
以上的(x,y)是空间坐标,e,是尺度坐标,或尺度空间因子,e的大小决定平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。大的e值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。
尺度,受e这个参数控制的表示。而不同的L(x,y,e)就构成了尺度空间,具体计算的时候,即使连续的高斯函数,都被离散为(一般为奇数大小)(2*k+1) *(2*k+1)矩阵,来和数字图像进行卷积运算。
随着e的变化,建立起不同的尺度空间,或称之为建立起图像的高斯金字塔。
但,像上述L(x,y,e) = G(x,y,e)*I(x,y)的操作,在进行高斯卷积时,整个图像就要遍历所有的像素进行卷积(边界点除外),于此,就造成了时间和空间上的很大浪费。
为了更有效的在尺度空间检测到稳定的关键点,也为了缩小时间和空间复杂度,对上述的操作作了一个改建:即,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分与原始图像I(x,y)相乘,卷积生成。
DOG算子计算简单,是尺度归一化的LOG算子的近似。
ok,耐心点,咱们再来总结一下上述内容:
1、高斯卷积
在组建一组尺度空间后,再组建下一组尺度空间,对上一组尺度空间的最后一幅图像进行二分之一采样,得到下一组尺度空间的第一幅图像,然后进行像建立第一组尺度空间那样的操作,得到第二组尺度空间,公式定义为
L(x,y,e) = G(x,y,e)*I(x,y)
图像金字塔的构建:图像金字塔共O组,每组有S层,下一组的图像由上一组图像降采样得到,效果图,图A如下(左为上一组,右为下一组):
2、高斯差分
在尺度空间建立完毕后,为了能够找到稳定的关键点,采用高斯差分的方法来检测那些在局部位置的极值点,即采用俩个相邻的尺度中的图像相减,即公式定义为:
D(x,y,e) = ((G(x,y,ke) - G(x,y,e)) * I(x,y)
= L(x,y,ke) - L(x,y,e)
效果图,图B:
SIFT的精妙之处在于采用图像金字塔的方法解决这一问题,我们可以把两幅图像想象成是连续的,分别以它们作为底面作四棱锥,就像金字塔,那么每一个截面与原图像相似,那
么两个金字塔中必然会有包含大小一致的物体的无穷个截面,但应用只能是离散的,所以我们只能构造有限层,层数越多当然越好,但处理时间会相应增加,层数太少不行,因为向下采样的截面中可能找不到尺寸大小一致的两个物体的图像。
咱们再来具体阐述下构造D(x,y,e)的详细步骤:
1、首先采用不同尺度因子的高斯核对图像进行卷积以得到图像的不同尺度空间,将这一组图像作为金子塔图像的第一层。
2、接着对第一层图像中的2倍尺度图像(相对于该层第一幅图像的2倍尺度)以2倍像素距离进行下采样来得到金子塔图像的第二层中的第一幅图像,对该图像采用不同尺度因子的高斯核进行卷积,以获得金字塔图像中第二层的一组图像。
3、再以金字塔图像中第二层中的2倍尺度图像(相对于该层第一幅图像的2倍尺度)以2倍像素距离进行下采样来得到金字塔图像的第三层中的第一幅图像,对该图像采用不同尺度因子的高斯核进行卷积,以获得金字塔图像中第三层的一组图像。这样依次类推,从而获得了金字塔图像的每一层中的一组图像,如下图所示:
4、对上图得到的每一层相邻的高斯图像相减,就得到了高斯差分图像,如下述第一幅图所示。下述第二幅图中的右列显示了将每组中相邻图像相减所生成的高斯差分图像的结果,限于篇幅,图中只给出了第一层和第二层高斯差分图像的计算(下述俩幅图统称为图2):
图像金字塔的建立:对于一幅图像I,建立其在不同尺度(scale)的图像,也成为子八度(octave),这是为了scale-invariant,也就是在任何尺度都能够有对应的特征点,第一个子八度的scale为原图大小,后面每个octave为上一个octave降采样的结果,即原图的1/4(长宽分别减半),构成下一个子八度(高
一层金字塔)。
5、因为高斯差分函数是归一化的高斯拉普拉斯函数的近似,所以可以从高斯差分金字塔分层结构提取出图像中的极值点作为候选的特征点。对DOG 尺度空间每个点与相邻尺度和相邻位置的点逐个进行比较,得到的局部极值位置即为特征点所处的位置和对应的尺度。
二、检测关键点
为了寻找尺度空间的极值点,每一个采样点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如下图,图3所示,中间的检测点和它同尺度的8个相邻