SIFT 特征提取算法详解

合集下载

SIFT特征提取算法总结

SIFT特征提取算法总结

SIFT特征提取算法总结⼀、综述Scale-invariant feature transform(简称SIFT)是⼀种图像特征提取与匹配算法。

SIFT算法由David.G.Lowe于1999年提出,2004年完善总结,后来Y.Ke(2004)将其描述⼦部分⽤PCA代替直⽅图的⽅式,对其进⾏改进。

SIFT算法可以处理两幅图像之间发⽣平移、旋转、尺度变化、光照变化情况下的特征匹配问题,并能在⼀定程度上对视⾓变化、仿射变化也具备较为稳定的特征匹配能⼒。

⼆、SIFT特征提取算法SIFT算法⾸先在尺度空间进⾏特征检测,并确定关键点的位置和关键点所处的尺度,然后使⽤关键点邻域梯度的主⽅向作为该点的⽅向特征,以实现算⼦对尺度和⽅向的⽆关性。

SIFT算法提取的SIFT特征向量具有如下特性:a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视⾓变化、仿射变换、噪声也保持⼀定程度的稳定性。

b) 独特性好,信息量丰富,适⽤于在海量特征数据库中进⾏快速、准确的匹配。

c) 多量性,即使少数的⼏个物体也可以产⽣⼤量SIFT特征向量。

d) ⾼速性,经优化的SIFT匹配算法甚⾄可以达到实时的要求。

e) 可扩展性,可以很⽅便的与其他形式的特征向量进⾏联合。

⼀幅图像SIFT特征向量的⽣成算法总共包括4步:尺度空间极值检测、关键点位置及尺度确定、关键点⽅向确定、特征向量⽣成。

最后通过特征向量完成特征点的匹配。

2.1尺度空间极值检测机器⼈在环境中⾛动时,摄像机和环境中物体的相对位置会发⽣变化,导致图像上物体的特征的尺度发⽣变换。

我们希望特征具有尺度不变性,即当特征尺度变化时,特征点检测器仍然能够准确的检测出特征点及其尺度。

为满⾜以上条件,特征检测需要在多尺度空间的框架下进⾏。

尺度空间理论是检测不变特征的基础。

Witkin(1983)提出了尺度空间理论,他主要讨论了⼀维信号平滑处理的问题。

Koenderink(1984)把这种理论扩展到⼆维图像,并证明⾼斯卷积核是实现尺度变换的唯⼀变换核。

sift算法的原理和步骤

sift算法的原理和步骤

sift算法的原理和步骤SIFT算法的原理和步骤SIFT算法是一种用于图像特征提取的算法,它能够从图像中提取出具有独特性、稳定性和可重复性的关键点,用于图像匹配、目标跟踪等任务。

本文将介绍SIFT算法的原理和步骤。

一、原理1. 尺度空间尺度空间是指同一物体在不同尺度下的表现形式。

SIFT算法采用高斯金字塔来实现尺度空间的构建,即将原始图像不断缩小并平滑处理,得到一系列模糊程度不同的图像。

2. 关键点检测在尺度空间中,SIFT算法采用DoG(Difference of Gaussian)来检测关键点。

DoG是指两个不同尺寸的高斯滤波器之间的差值,可以有效地提取出具有高斯拉普拉斯变换极值点(LoG)特征的区域。

3. 方向确定对于每个关键点,在其周围区域内计算梯度幅值和方向,并统计梯度直方图。

最终确定该关键点最显著的梯度方向作为其主方向。

4. 描述子生成以关键点为中心,生成一个16x16的方形区域,并将其分为4x4的小块。

对于每个小块,计算其内部像素的梯度方向直方图,并将其串联成一个128维的向量,作为该关键点的描述子。

5. 匹配通过计算不同图像之间的关键点描述子之间的距离来进行匹配。

采用最近邻法(Nearest Neighbor)和次近邻法(Second Nearest Neighbor)来进行筛选,从而得到最终的匹配结果。

二、步骤1. 构建高斯金字塔对于原始图像,采用高斯滤波器进行平滑处理,并将其缩小一定比例后再次平滑处理,得到一系列不同尺度下的图像。

这些图像构成了高斯金字塔。

2. 构建DoG金字塔在高斯金字塔中,相邻两层之间做差得到一组DoG金字塔。

通过在DoG金字塔上寻找局部极值点来检测关键点。

3. 确定关键点主方向对于每个关键点,在其周围区域内计算梯度幅值和方向,并统计梯度直方图。

最终确定该关键点最显著的梯度方向作为其主方向。

4. 生成描述子以关键点为中心,生成一个16x16的方形区域,并将其分为4x4的小块。

SIFT算法提取特征总结

SIFT算法提取特征总结

SIFT算法提取特征总结SIFT(Scale-Invariant Feature Transform)算法是一种用于图像特征提取的算法,它能够从图像中提取出具有尺度不变性的关键点,并计算出这些关键点的描述子,从而实现图像的匹配、识别等任务。

下面将对SIFT算法进行总结。

一、SIFT算法的基本思想1.构建高斯金字塔:通过不同尺度的高斯滤波器对原始图像进行平滑,得到一系列不同尺度的图像。

2.构建高斯差分金字塔:对高斯金字塔进行相邻层之间的差分,得到一系列不同尺度的差分图像。

3.寻找关键点:在每个尺度的差分图像中,通过比较一个像素与其周围的26个像素,判断是否为极值点,这些极值点即为关键点。

4.精确定位关键点位置:通过插值计算关键点的亚像素位置。

5.确定关键点的尺度和方向:根据关键点的尺度和梯度方向,构建关键点的方向直方图,找到主方向。

6.计算关键点的描述子:根据关键点周围的图像局部梯度,构建特征向量,得到关键点的描述子。

二、SIFT算法的特点1.尺度不变性:SIFT算法通过高斯金字塔和高斯差分金字塔的构建,使得算法对图像的尺度变化具有不变性,能够在不同尺度上检测到相同的关键点。

2.旋转不变性:SIFT算法通过确定关键点的主方向,将关键点的描述子旋转到相同的方向,使得算法对图像的旋转变化具有不变性。

3.具有唯一性:SIFT算法通过极值点检测和亚像素插值,能够找到图像中稳定的关键点,并且能够通过描述子计算,使得关键点具有唯一性。

4.强鲁棒性:SIFT算法通过对图像局部梯度的计算,能够对光照、噪声等变化具有鲁棒性,使得算法具有较好的稳定性。

三、SIFT算法的应用1.图像匹配:通过提取图像的关键点和描述子,将两幅图像进行特征点的匹配,从而实现图像的对齐、拼接等任务。

2.物体识别:通过提取物体图像的SIFT特征,并建立特征数据库,可以对未知图像进行特征的匹配和识别,实现物体的检测和识别。

3.目标跟踪:将目标物体的SIFT特征提取出来,并通过匹配目标特征和图像中的特征点,可以进行目标的跟踪和定位。

sift特征计算

sift特征计算

sift特征计算SIFT(Scale-Invariant Feature Transform)是一种用于计算图像中关键点的特征点描述符的算法。

它最早由David Lowe在1999年提出,被广泛应用于计算机视觉和图像处理领域。

SIFT算法的主要目标是能够提取图像中具有尺度、旋转和光照不变性的关键点。

它通过以下步骤来计算SIFT特征:1. 尺度空间极值检测(Scale-space Extrema Detection):-首先,使用高斯滤波器对原始图像进行多次平滑处理,得到不同尺度空间的图像金字塔。

-然后,在每个尺度空间中,通过比较像素值与其周围像素值来检测图像的极值点。

-这些极值点被认为是图像中可能的关键点。

2. 关键点定位(Key Point Localization):-对于每个检测到的极值点,通过计算尺度空间的高斯差分图像来确定其精确位置。

-使用泰勒级数展开来拟合极值点周围像素的曲线,找到更精确的关键点位置。

-根据曲线的响应值和临近像素点的梯度幅值,筛选掉低对比度和边缘响应的关键点。

3. 方向分配(Orientation Assignment):-对于每个关键点,计算其周围像素点的梯度幅值和方向。

-将周围像素点的梯度方向分布转换为直方图,并找到主导方向。

-在主导方向和周围方向上进行插值,获得关键点的特征方向。

4. 关键点描述(Descriptor Representation):-在关键点周围的邻域内,根据关键点的尺度和方向构建一个相对于尺度和旋转不变的描述子。

-将关键点周围的图像区域划分为若干个子区域,并计算每个子区域内像素的梯度方向和幅值。

-将梯度方向转换为16个方向的直方图,得到长度为128的特征向量。

-对特征向量进行归一化,去除光照变化的影响。

5. 特征匹配(Feature Matching):-使用特征点的描述子来计算两幅图像中的特征点之间的距离。

-对于每个特征点,选择与其特征向量距离最近的特征点作为匹配点。

图像特征提取与匹配之SIFT算法

图像特征提取与匹配之SIFT算法

图像特征提取与匹配之SIFT算法尺度不变特征转换(Scale-invariant feature transform 或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由David Lowe 在1999年所发表,2004年完善总结。

Sift算法就是用不同尺度(标准差)的高斯函数对图像进行平滑,然后比较平滑后图像的差别,差别大的像素就是特征明显的点。

一、Sift算法的步骤Sift ( Scale In varia nt Feature Tran sform )是一个很好的图像匹配算法,同时能处理亮度、平移、旋转、尺度的变化,利用特征点来提取特征描述符,最后在特征描述符之间寻找匹配。

该算法主要包括5个步骤进行匹配:1、构建尺度空间,检测极值点,获得尺度不变性;2、特征点过滤并进行精确定位,剔除不稳定的特征点;3、在特征点处提取特征描述符,为特征点分配方向值;4、生成特征描述子,利用特征描述符寻找匹配点;以特征点为中心取16*16的邻域作为采样窗口,将采样点与特征点的相对方向通过高斯加权后归入包含最后获得4*4*8的128维特征描述子。

8个bin的方向直方图, 示意图如下:5、计算变换参数。

当两幅图像的Sift特征向量生成以后,下一步就可以采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。

取图1的某个关键点,通过遍历找到图像2中的距离最近的两个关键点。

在这两个关键点中,如果次近距离除以最近距离小于某个阙值,则判定为一对匹配点。

最后,看下Sift算法效果图:F图左边部分Sift算法匹配结果,右边部分是其它算法匹配结果:二、Sift算法的描述在上述的Sift算法步骤一中,提到了尺度空间,那么什么是尺度和尺度空间呢? 尺度就是受delta这个参数控制的表示。

而不同的L (x,y,delta) 就构成了尺度空间,实际上,具体计算的时候,即使连续的高斯函数,都要被离散为(一般为奇数大小) (2*k+1) *(2*k+1) 矩阵,来和数字图像进行卷积运算。

SIFT特征提取算法

SIFT特征提取算法

SIFT特征提取算法SIFT(Scale-Invariant Feature Transform)特征提取算法是一种用于图像的局部特征分析的算法。

它能够提取出图像中的关键点,并对这些关键点进行描述,从而可以用于图像匹配、物体识别等应用领域。

本文将详细介绍SIFT算法的原理和过程。

1.尺度空间构建SIFT算法首先通过使用高斯滤波器来构建图像的尺度空间,以便在不同尺度下检测关键点。

高斯滤波器可以通过一系列的高斯卷积操作实现,每次卷积之后对图像进行下采样(降低分辨率),得到不同尺度的图像。

2.关键点检测在尺度空间构建完成后,SIFT算法使用差分运算来检测关键点。

差分运算可以通过对图像进行高斯平滑操作来实现,然后计算相邻尺度之间的差分图像。

对差分图像进行极值检测,即寻找局部最大和最小值的像素点,这些像素点就是图像中的关键点。

3.关键点精确定位关键点的精确定位是通过拟合关键点周围的局部图像来实现的。

SIFT算法使用了一种高度鲁棒的方法,即利用关键点周围梯度的方向和大小来进行拟合。

具体来说,SIFT算法在关键点周围计算图像的梯度幅值和方向,并构建梯度直方图。

然后通过在梯度直方图中寻找局部极值来确定关键点的方向。

4.关键点描述关键点的描述是为了提取关键点周围的特征向量,用于后续的匹配和识别。

SIFT算法使用了一种局部特征描述算法,即将关键点周围的图像区域划分为小的子区域,并计算每个子区域的梯度方向直方图。

然后将这些直方图组合起来,构成一个维度较高的特征向量。

5.特征向量匹配在完成关键点描述之后,SIFT算法使用一种近似的最近邻方法来进行特征向量的匹配。

具体来说,使用KD树或者暴力匹配的方法来寻找两幅图像中最相似的特征向量。

通过计算特征向量之间的距离,可以找到最相似的匹配对。

6.尺度不变性SIFT算法具有尺度不变性的特点,即对于图像的缩放、旋转和视角变化等变换具有较好的鲁棒性。

这是因为在特征提取的过程中,SIFT算法对图像进行了多尺度的分析,并利用了关键点周围的梯度信息进行描述。

s i f t 算 法 原 理 解 析

s i f t 算 法 原 理 解 析

SIFT特征提取原理SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果。

2.算法分析SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果。

整个算法分为以下几个部分:2.1?构建尺度空间这是一个初始化操作,尺度空间理论目的是模拟图像数据的多尺度特征。

高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为:其中 G(x,y,σ) 是尺度可变高斯函数:(x,y)是空间坐标,也是尺度坐标。

σ大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。

大的σ值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。

为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOGscale-space)。

利用不同尺度的高斯差分核与图像卷积生成。

下图所示不同σ下图像尺度空间:关于尺度空间的理解说明:2kσ中的2是必须的,尺度空间是连续的。

在 ?Lowe的论文中,将第0层的初始尺度定为1.6(最模糊),图片的初始尺度定为0.5(最清晰). 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以 Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。

尺度越大图像越模糊。

图像金字塔的建立:对于一幅图像I,建立其在不同尺度(scale)的图像,也成为子八度(octave),这是为了scale-invariant,也就是在任何尺度都能够有对应的特征点,第一个子八度的scale为原图大小,后面每个octave为上一个octave降采样的结果,即原图的1-4(长宽分别减半),构成下一个子八度(高一层金字塔)。

sift特征提取与匹配原理

sift特征提取与匹配原理

SIFT特征提取与匹配原理的深入解析一、引言在图像处理和计算机视觉领域,尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)是一种被广泛应用的算法。

SIFT特征提取与匹配原理是图像处理中的重要一环,对于图像识别、图像配准、3D建模、物体跟踪等应用具有重要意义。

本文将深入解析SIFT特征提取与匹配原理,包括其基本概念、算法流程、优缺点以及应用场景。

二、SIFT特征提取原理1. 尺度空间极值检测SIFT算法首先通过构建尺度空间,在不同尺度下搜索所有可能的特征点。

这个过程是通过高斯差分(Difference of Gaussians,DoG)来实现的,它可以有效地检测出图像中的局部极值点,这些点具有尺度不变性,即无论图像被放大或缩小,这些点都能被检测到。

2. 特征点定位在检测到局部极值点后,SIFT算法会进行精确的定位。

这个过程包括去除低对比度的点和边缘点,因为这些点不稳定且对噪声敏感。

通过拟合三维二次函数来精确确定特征点的位置和尺度。

3. 方向分配为了使描述符具有旋转不变性,SIFT算法会为每个特征点分配一个主方向。

这是通过计算特征点周围像素的梯度方向和大小来实现的。

主方向是通过直方图统计梯度方向并找到最大的峰值来确定的。

4. 描述符生成最后,SIFT算法会生成一个描述符,用于描述特征点周围的图像信息。

描述符是通过将特征点周围的区域划分为4x4的子区域,并计算每个子区域的梯度方向和大小直方图来生成的。

描述符是一个128维的向量,具有对尺度、旋转和光照变化的不变性。

三、SIFT特征匹配原理在生成了SIFT描述符后,就可以进行特征匹配了。

这个过程是通过计算两个描述符之间的欧氏距离来实现的。

距离越小,表示两个特征点越相似。

为了提高效率,通常会使用K-D树等数据结构来加速匹配过程。

此外,还可以使用RANSAC等算法来消除误匹配,提高匹配的准确性。

四、优缺点分析SIFT算法的优点主要体现在以下几个方面:1. 尺度、旋转和光照不变性:SIFT描述符具有对尺度、旋转和光照变化的不变性,这使得它在各种场景下都能取得较好的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SIFT 特征提取算法总结
主要步骤
1)、尺度空间的生成;
2)、检测尺度空间极值点;
3)、精确定位极值点;
4)、为每个关键点指定方向参数;
5)、关键点描述子的生成。

L(x,y,σ), σ= 1.6 a good tradeoff
D(x,y,σ), σ= 1.6 a good tradeoff
关于尺度空间的理解说明:图中的2是必须的,尺度空间是连续的。

在 Lowe 的论文中,
将第0层的初始尺度定为1.6,图片的初始尺度定为0.5. 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。

尺度越大图像越模糊。

next octave 是由first octave 降采样得到(如2)

尺度空间的所有取值,s为每组层数,一般为3~5
在DOG尺度空间下的极值点
同一组中的相邻尺度(由于k的取值关系,肯定是上下层)之间进行寻找
在极值比较的过程中,每一组图像的首末两层是无法进行极值比较的,为了满足尺度
变化的连续性,我们在每一组图像的顶层继续用高斯模糊生成了 3 幅图像,
高斯金字塔有每组S+3层图像。

DOG金字塔每组有S+2层图像.
If ratio > (r+1)2/(r), throw it out (SIFT uses r=10)
表示DOG金字塔中某一尺度的图像x方向求导两次
通过拟和三维二次函数以精确确定关键点的位置和尺度(达到亚像素精度)?
直方图中的峰值就是主方向,其他的达到最大值80%的方向可作为辅助方向
Identify peak and assign orientation and sum of magnitude to key point The user may choose a threshold to exclude key points based on their
assigned sum of magnitudes.
利用关键点邻域像素的梯度方向分布特性为每个关键点指定方向参数,使算子具备
旋转不变性。

以关键点为中心的邻域窗口内采样,并用直方图统计邻域像素的梯度
方向。

梯度直方图的范围是0~360度,其中每10度一个柱,总共36个柱。

随着距中心点越远的领域其对直方图的贡献也响应减小.Lowe论文中还提到要使用高斯函
数对直方图进行平滑,减少突变的影响。

关键点描述子的生成步骤
通过对关键点周围图像区域分块,计算块内梯度直方图,生成具有独特性
的向量,这个向量是该区域图像信息的一种抽象,具有唯一性。

每一个小格都代表了特征点邻域所在的尺度空间的一个像素,箭头方向代表了像素梯度方向,箭头长度代表该像素的幅值。

然后在4×4的窗口内计算8个方向的梯度方向直方图。

绘制每个梯度方向的累加可形成一个种子点。

每个直方图有8方向的梯度方向,每一个描述符包含一个位于关键点附近的四个直方图数组.这就导致了SIFT的特征向量有128维.(先是一个4×4的来计算出一个直方图,每个直方图有8个方向。

所以是4×4×8=128维)将这个向量归一化之后,就进一步
去除了光照的影响。

旋转为主方向
基本概念及一些补充
什么是局部特征?
•局部特征从总体上说是图像或在视觉领域中一些有别于其周围的地方
•局部特征通常是描述一块区域,使其能具有高可区分度
•局部特征的好坏直接会决定着后面分类、识别是否会得到一个好的结果
局部特征需具备的特性
•重复性
•可区分性
•准确性
•数量以及效率
•不变性
局部特征提取算法-sift
•SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。

后来Y.Ke将其描述子部分用PCA代替直方图的方式,对其进行改进。

•SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量
•SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。

•独特性好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配。

•多量性,即使少数的几个物体也可以产生大量SIFT特征向量。

•可扩展性,可以很方便的与其他形式的特征向量进行联合。

尺度空间理论
•尺度空间理论目的是模拟图像数据的多尺度特征
•其基本思想是在视觉信息图像信息处理模型中引入一个被视为尺度的参数, 通过连续变化尺度参数获得不同尺度下的视觉处理信息, 然后综合这些信息以深入地挖掘图像的本质特征。

描述子生成的细节
•以极值点为中心点,并且以此点所处于的高斯尺度sigma值作为半径因子。

对于远离中心点的梯度值降低对其所处区域的直方图的贡献,防止一些突变的影响。

•每个极值点对其进行三线性插值,这样可以把此极值点的贡献均衡的分到直方图中相邻的柱子上
归一化处理
•在求出4*4*8的128维特征向量后,此时SIFT特征向量已经去除了尺度变化、旋转等几何变形因素的影响。

而图像的对比度变化相当于每个像素点乘上一个因子,光照变化是每个像素点加上一个值,但这些对图像归一化的梯度没有影响。

因此将特征向量的长度归一化,则可以进一步去除光照变化的影响。

•对于一些非线性的光照变化,SIFT并不具备不变性,但由于这类变化影响的主要是梯度的幅值变化,对梯度的方向影响较小,因此作者通过限制梯度幅值的值来减少这类变化造成的影响。

PCA-SIFT算法
•PCA-SIFT与标准SIFT有相同的亚像素位置,尺度和主方向。

但在第4步计算描述子的设计,采用的主成分分析的技术。

•下面介绍一下其特征描述子计算的部分:
•用特征点周围的41×41的像斑计算它的主元,并用PCA-SIFT将原来的2×39×39维的向量降成20维,以达到更精确的表示方式。

•它的主要步骤为,对每一个关键点:在关键点周围提取一个41×41的像斑于给定的尺度,旋转到它的主方向;计算39×39水平和垂直的梯度,形成一个大小为3042的矢量;用预先计算好的投影矩阵n×3042与此矢量相乘;这样生成一个大小为n的PCA-SIFT描述子。

分类: 图像处理&机器视觉基础, 图像处理
标签: sift, 尺度空间, 特征, 图像处理。

相关文档
最新文档