SIFT特征点提取与匹配算法

合集下载

sfit特征提取和匹配的具体步骤

sfit特征提取和匹配的具体步骤

sfit特征提取和匹配的具体步骤
SIFT(尺度不变特征变换)是一种用于图像处理和计算机视觉的特征提取和匹配算法。

它能够在不同尺度和旋转下提取出稳定的特征点,并且对光照变化和噪声有一定的鲁棒性。

SIFT特征提取的具体步骤包括:
1. 尺度空间极值检测,在不同尺度下使用高斯差分函数来检测图像中的极值点,用来确定关键点的位置和尺度。

2. 关键点定位,通过对尺度空间的极值点进行精确定位,使用Hessian矩阵来确定关键点的位置和尺度。

3. 方向分配,对关键点周围的梯度方向进行统计,确定关键点的主方向,使得特征具有旋转不变性。

4. 关键点描述,以关键点为中心,划分周围的区域为小区块,计算每个区块内的梯度方向直方图,构建特征向量。

SIFT特征匹配的具体步骤包括:
1. 特征点匹配,使用特征向量的距离来进行特征点的匹配,通常使用欧氏距离或者近邻算法进行匹配。

2. 鲁棒性检验,对匹配点进行鲁棒性检验,例如RANSAC算法可以剔除错误匹配点,提高匹配的准确性。

3. 匹配结果筛选,根据匹配点的特征向量距离或一致性进行筛选,得到最终的匹配结果。

总的来说,SIFT特征提取和匹配的具体步骤包括特征点检测、定位、描述以及匹配过程。

这些步骤能够帮助我们在图像处理和计算机视觉中提取出稳定的特征并进行准确的匹配,从而实现目标识别、图像配准等应用。

图像特征点提取及匹配算法研究论文

图像特征点提取及匹配算法研究论文

图像特征点提取及匹配算法研究论文1.SIFT算法:SIFT(Scale-Invariant Feature Transform)算法是一种经典的图像特征点提取算法。

该算法首先使用高斯滤波器对图像进行多尺度的平滑处理,然后使用差分算子来检测图像中的关键点,最后计算关键点的主方向和描述符。

SIFT算法具有尺度不变性和旋转不变性,对于图像中存在较大尺度和角度变化的情况下仍能提取出稳定的特征点。

2.SURF算法:SURF(Speeded Up Robust Features)算法是一种快速的特征点提取算法,它在SIFT算法的基础上进行了优化。

SURF算法使用Haar小波响应来检测图像中的特征点,并使用积分图像来加速计算过程。

此外,SURF算法还使用了一种基于方向直方图的特征描述方法,能够提取出具有旋转不变性和尺度不变性的特征点。

3.ORB算法:ORB(Oriented FAST and Rotated BRIEF)算法是一种快速的特征点提取和匹配算法。

该算法结合了FAST角点检测算法和BRIEF描述符算法,并对其进行了改进。

ORB算法利用灰度值的转折点来检测图像中的角点,并使用二进制字符串来描述关键点,以提高特征点的匹配速度。

ORB算法具有较快的计算速度和较高的匹配精度,适用于实时应用。

4.BRISK算法:BRISK(Binary Robust Invariant Scalable Keypoints)算法是一种基于二进制描述符的特征点提取和匹配算法。

该算法首先使用田字形格点采样方法检测关键点,然后使用直方图来描述关键点的方向和纹理特征。

最后,BRISK算法使用二进制字符串来表示关键点的描述符,并使用汉明距离来进行特征点的匹配。

BRISK算法具有较快的计算速度和较高的鲁棒性,适用于大规模图像匹配任务。

总结起来,图像特征点提取及匹配算法是计算机视觉领域中的重要研究方向。

本文介绍了一些常用的特征点提取及匹配算法,并对其进行了讨论。

基于特征点提取和匹配的点云配准算法

基于特征点提取和匹配的点云配准算法

基于特征点提取和匹配的点云配准算法点云配准是指将多个点云数据组合成一个全局一致的点云模型的过程。

在点云数据的配准中,特征点提取和匹配是关键步骤之一、本文将介绍基于特征点提取和匹配的点云配准算法。

点云配准算法的目标是找到两个或多个点云之间的关系,以实现它们的对齐。

特征点提取是为了从点云数据中提取出具有代表性的特征点,以便进行后续的匹配操作。

特征点应具有独特性、具有代表性和稳定性。

常见的特征点提取方法包括SIFT(尺度不变特征变换)、SURF(快速无误匹配)和ORB(Oriented FAST and Rotated BRIEF)等。

在点云数据中,特征点可以通过计算点的尺度、法向量、曲率等属性来提取。

特征点提取后,接下来需要进行匹配操作,即将两个或多个点云之间的相似特征点进行对应。

匹配是通过计算特征点之间的距离或相似性度量来实现的。

常见的匹配方法有最近邻匹配、迭代最近点匹配以及RANSAC (随机一致性采样算法)等。

最近邻匹配是指通过计算两个特征点之间的欧氏距离来找到最相似的特征点对。

迭代最近点匹配算法是利用最近邻匹配进行粗略的配准,然后通过迭代的方式逐步优化匹配精度。

RANSAC算法则是通过随机选择最小集合进行匹配,并通过模型评估函数来判断匹配的一致性。

在进行特征点提取和匹配的过程中,可能会出现误匹配或多重匹配的情况。

为了解决这个问题,可以引入一些筛选机制,例如剔除孤立的点、限制匹配距离和确定相似性阈值等。

总结而言,基于特征点提取和匹配的点云配准算法是点云配准的关键步骤之一、通过提取具有代表性的特征点,并进行匹配操作,可以找到两个或多个点云之间的对应关系,最终实现点云数据的配准。

在实际应用中,特征点提取和匹配算法可以配合其他配准算法使用,以提高点云数据的配准精度和效率。

掌握图像处理中的特征提取与匹配方法

掌握图像处理中的特征提取与匹配方法

掌握图像处理中的特征提取与匹配方法引言图像处理是计算机视觉中的重要领域之一,它涵盖了从采集到处理再到分析整个图像处理流程。

特征提取和匹配是图像处理中的重要环节,它们有助于图像分类、图像识别、目标跟踪等应用场景中的实现。

本文将介绍图像处理中的特征提取与匹配方法。

一、特征提取特征提取是指从图像中提取一些基本特征的过程,这些特征能够描述或表示图像中的某些重要属性。

一般来说,特征提取要求提取出的特征应具有以下特点:可重复性、可靠性、特异性、鲁棒性、计算效率等。

在实际应用中,常用的特征提取方法包括SIFT、SURF、HOG、LBP等。

1. SIFT尺度不变特征转换(Scale-invariant feature transform,SIFT)是一种常用的特征提取算法。

它通过在各个尺度上检测图像的关键点,然后对每个关键点周围的像素进行梯度计算,再把梯度信息转换为特征向量,最终得到具有尺度不变性的特征描述子,用于匹配和分类。

SIFT算法具有较好的鲁棒性和旋转不变性,在目标跟踪、图像检索等领域具有广泛的应用。

2. SURF加速稳健特征(Speeded Up Robust Features,SURF)是一种基于尺度空间的特征提取算法。

它采用了快速哈尔小波变换来加速特征计算,并引入了Hessian矩阵来描述图像的局部特征,加强了图像的鲁棒性和抗干扰性。

SURF算法与SIFT算法相比,具有更快的计算速度和更好的抗噪性,适合于大规模图像数据的特征提取。

3. HOG方向梯度直方图(Histogram of Oriented Gradients, HOG)是一种基于图像梯度方向和强度的特征描述方法。

HOG算法通过计算图像中每个像素点的梯度幅值和梯度方向,并将其汇总为几个方向的直方图,最终得到具有方向和梯度信息的特征向量。

HOG算法具有较好的抗变形和旋转不变性,适合于人体检测、模式识别等领域。

4. LBP局部二值模式(Local Binary Pattern, LBP)是一种基于纹理分析的特征提取算法。

图像处理中的特征提取和匹配算法

图像处理中的特征提取和匹配算法

图像处理中的特征提取和匹配算法图像处理在日益热门的人工智能技术中扮演着一种重要的角色。

在图像处理中,特征提取和匹配算法是两个至关重要的步骤。

特征提取是通过分析图像的局部特点来创建描述图像内容的向量,而匹配是将不同图像的特征或特征向量进行比较,以确定它们是否相似。

本文将介绍几种常用的特征提取和匹配算法。

一、特征提取算法1.尺度不变特征变换(SIFT)SIFT是一种特征提取算法,它能够从不同的尺度和方向上提取图像的局部特征。

这种算法在检索和匹配图像中特别有用。

SIFT算法的基本思想是通过高斯差分算子得到一组尺度空间图像,通过高斯图像之间的差异来确定关键点,然后计算每个关键点的局部梯度的幅值和方向,最后形成一个基于梯度方向的特征描述符。

2.速度增强型稀疏编码(SLEEC)SLEEC是一种新型的高效特征提取算法。

与其他算法不同的是,SLEEC只需扫描一次训练数据即可获得最具代表性的特征。

该算法通过运用具有多个分辨率的降采样、随机稀疏和加速度分析三种技术提取特征,从而实现了比其他算法更高的准确性和速度。

二、特征匹配算法1.暴力匹配算法暴力匹配算法是一种基本的匹配算法,它实现了图像特征之间的精确匹配。

该算法通过比较两个图像之间的每个可能的匹配,来确定匹配的好坏。

虽然该算法的准确性很高,但是它非常耗时,因此只适用于小图像匹配。

2.基于Flann树的匹配算法基于Flann树的匹配算法通过对特征向量进行一系列分割和聚类,以快速找到大量数据中的相似匹配。

该算法不仅适用于大规模数据集,而且具有高效和稳定性。

3.随机抽样一致性算法(RANSAC)随机抽样一致性算法是一种常见的特征匹配算法。

该算法通过随机采样一对点来确定匹配,在这个过程中,通过迭代重复采样和检测结果,不断提高匹配模型的准确度。

结论:在图像处理和计算机视觉中,特征提取和匹配是核心算法。

不同的特征提取和匹配算法适用于不同的应用场合。

在实际应用中,为了达到对图像的快速识别和匹配,我们需要根据具体的需求,选择合适的特征提取和匹配算法。

基于SIFT_特征点提取的ICP_配准算法

基于SIFT_特征点提取的ICP_配准算法
效率ꎮ
1 传统 ICP 算法机理和特性分析
传统 ICP 算法机理框图如图 1 所示ꎮ 通过分
抽样一致性算法ꎬ随机选择四对局内点进行多次
析源点云与目标点云之间的对应关系ꎬ求解最优
迭代ꎬ计算出最佳变换矩阵ꎬ该方法具有较好的鲁
刚体变换矩阵ꎬ 使用该矩阵更新源点云的位置ꎮ
棒性ꎬ能够处理含有异常值的点云数据ꎬ但耗时较
为最优刚体变换矩阵中的旋转矩阵和平移矩阵ꎮ
令 Rk = R(q Rk )ꎬR 表示矩阵旋转操作ꎬt k = q tk ꎮ
3) 求得最优 R k 和 t k ꎬ按照 S k + 1 = R k S0 + t k 更
新位置ꎬS0 表示初次迭代的源点云集ꎮ 计算距离
均方误差值 d k ꎬ计算式为
dk =

∑ ‖x iꎬk - S iꎬk +1 ‖2
N i =1

(1)
式中:S iꎬk +1 和 x iꎬk 分别为源点云集和对应点集合
中的第 i 个点ꎻN 为对应点个数ꎮ
沈 阳 理 工 大 学 学 报
50
图 1
第 43 卷
传统 ICP 算法机理框图
Fig. 1 Block diagram of the mechanism of traditional ICP algorithm
Key words: point cloud registrationꎻ the iterative closest point algorithmꎻ scale invariant feature
transformꎻfeature pointsꎻfast point feature histogram
点云配准通常分为两个步骤:初始配准和精

SIFT特征点提取与匹配

SIFT特征点提取与匹配

SIFT特征点提取与匹配SIFT(Scale-Invariant Feature Transform)特征点提取与匹配是一种在计算机视觉领域广泛使用的图像特征提取和匹配算法。

它由David G. Lowe于1999年提出,并在后续的研究中得到了改进和优化。

关键点检测的目标是找到一些具有局部极值的图像点。

这里的局部极值是指该点所在位置的像素值在周围邻域中达到最大或最小值。

为了实现尺度不变性,SIFT算法使用了高斯金字塔来检测不同尺度下的关键点。

高斯金字塔是通过对原始图像进行多次平滑操作得到的一系列图像,每一层图像的尺度比上一层的尺度大约减少一半。

在每一层中,使用DoG (Difference of Gaussians)来寻找关键点。

DoG是通过对两个邻近的高斯平滑图像进行差分操作得到的,它可以提供图像中的边缘和角点等信息。

通过在每一层的DoG图像中找到局部极值点,即可得到关键点的粗略位置。

为了进一步提高关键点的准确性,还需要对这些粗略位置进行精细的插值。

最终得到的关键点具有尺度和旋转不变性,并且能够抵抗光照变化的影响。

描述子的计算是对关键点周围区域的图像内容进行编码,生成一个具有较高区分度的特征向量。

首先,将关键点周围的邻域划分为若干个子区域,每个子区域内的像素值作为一个特征向量的元素。

然后,对每个子区域内的像素值进行高斯加权,以减小光照变化对特征描述子的影响。

最后,对加权后的像素值进行方向直方图统计,得到一个具有旋转不变性的特征描述子。

对于每个关键点,都会得到一个128维的特征向量。

这些特征向量可以通过比较欧式距离来进行匹配。

SIFT特征点匹配是通过在两个图像中的特征描述子之间进行比较,找到最佳匹配的特征点对。

常用的匹配方法是计算两个特征向量之间的欧式距离,并将距离最小的两个特征点视为匹配点。

为了提高匹配的准确性和鲁棒性,还可以采用诸如RANSAC(RANdom SAmple Consensus)的算法来剔除错误匹配。

sift特征提取与匹配原理

sift特征提取与匹配原理

SIFT特征提取与匹配原理的深入解析一、引言在图像处理和计算机视觉领域,尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)是一种被广泛应用的算法。

SIFT特征提取与匹配原理是图像处理中的重要一环,对于图像识别、图像配准、3D建模、物体跟踪等应用具有重要意义。

本文将深入解析SIFT特征提取与匹配原理,包括其基本概念、算法流程、优缺点以及应用场景。

二、SIFT特征提取原理1. 尺度空间极值检测SIFT算法首先通过构建尺度空间,在不同尺度下搜索所有可能的特征点。

这个过程是通过高斯差分(Difference of Gaussians,DoG)来实现的,它可以有效地检测出图像中的局部极值点,这些点具有尺度不变性,即无论图像被放大或缩小,这些点都能被检测到。

2. 特征点定位在检测到局部极值点后,SIFT算法会进行精确的定位。

这个过程包括去除低对比度的点和边缘点,因为这些点不稳定且对噪声敏感。

通过拟合三维二次函数来精确确定特征点的位置和尺度。

3. 方向分配为了使描述符具有旋转不变性,SIFT算法会为每个特征点分配一个主方向。

这是通过计算特征点周围像素的梯度方向和大小来实现的。

主方向是通过直方图统计梯度方向并找到最大的峰值来确定的。

4. 描述符生成最后,SIFT算法会生成一个描述符,用于描述特征点周围的图像信息。

描述符是通过将特征点周围的区域划分为4x4的子区域,并计算每个子区域的梯度方向和大小直方图来生成的。

描述符是一个128维的向量,具有对尺度、旋转和光照变化的不变性。

三、SIFT特征匹配原理在生成了SIFT描述符后,就可以进行特征匹配了。

这个过程是通过计算两个描述符之间的欧氏距离来实现的。

距离越小,表示两个特征点越相似。

为了提高效率,通常会使用K-D树等数据结构来加速匹配过程。

此外,还可以使用RANSAC等算法来消除误匹配,提高匹配的准确性。

四、优缺点分析SIFT算法的优点主要体现在以下几个方面:1. 尺度、旋转和光照不变性:SIFT描述符具有对尺度、旋转和光照变化的不变性,这使得它在各种场景下都能取得较好的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SIFT 特征点匹配算法基于SIFT 方法的图像特征匹配可分为特征提取和特征匹配两个部分,可细化分为五个部分: ① 尺度空间极值检测(Scale-space extrema detection );② 精确关键点定位(Keypoint localization )③ 关键点主方向分配(Orientation assignment )④ 关键点描述子生成(Keypoint descriptor generation )⑤ 比较描述子间欧氏距离进行匹配(Comparing the Euclidean distance of the descriptors for matching )1.1 尺度空间极值检测特征关键点的性质之一就是对于尺度的变化保持不变性。

因此我们所要寻找的特征点必须具备的性质之一,就是在不同尺度下都能被检测出来。

要达到这个目的,我们可以在尺度空间内寻找某种稳定不变的特性。

Koenderink 和Lindeberg 已经证明,变换到尺度空间唯一的核函数是高斯函数。

因此一个图像的尺度空间定义为:(,,)L x y σ,是由可变尺度的高斯函数(,,)G x y σ与输入图像(,)I x y 卷积得到,即:),(),,(),,(y x I y x G y x L *=σσ (1.1) 其中:2222/)(221),,(σπσσy x e y x G +-=在实际应用中,为了能相对高效地计算出关键点的位置,建议使用的是差分高斯函数(difference of Gaussian )(,,)D x y σ。

其定义如下:),,(),,(),()),,(),,((),,(σσσσσy x L k y x L y x I y x G k y x G y x D -=*-= (1.2)如上式,D 即是两个相邻的尺度的差(两个相邻的尺度在尺度上相差一个相乘系数k )。

图 1.1图1.1所展示的是建立DOG 的一种实用的方法。

初始图像与不同σ值的高斯函数卷积,得到一垛模糊后的图像,然后将这一垛模糊图像临近两两相减即得所对应的DOG 。

这些模糊后的图像以k 为系数在尺度空间里被分隔开,并且该垛内最高的尺度应是最低尺度的2倍。

为了能开展后续工作(与尺度空间极值检测相关,将在后续文章中作出解释)并满足上述要求,每垛需要通过卷积得到s+3个模糊后的图像,并且s 和k 需要具有关系s k /12 。

在一垛图像建立完毕后,还需要降采样得到下一垛图像的DOG 。

在实际操作中首先用2倍于第一垛图像的σ值建立出模糊图像,然后再将此垛图像降采样,即每2个像素抽出一个像素,就可以得到下一垛图像的DOG 。

在上述工作完成后,所要完成的就是尺度空间的极值检测。

DOG 上的某个像素要和本尺度的8个相邻像素以及上下相邻尺度各9个相邻像素比较。

这样做的目的是为了确保图像在尺度空间和二维图像空间均检测到极值点。

如果该像素点在这所有参与比较的点中有最大值或者最小值,则认为该像素点是尺度空间的极值点之一。

图1.2表示这种极值检测的原理。

图1.2另外需要注意的是,上述的尺度空间极值点检测在每一个垛中都要进行。

最后获得的极值点总和是所有垛中所检测到的极值点的集合。

那么如果这个极值点处在降采样后的垛中,则需要在找出他后将其坐标变换到原始大小的原图上。

容易写出这个变换公式为:0min 0002,[0,...1],[0,...1][0,...1]o x x o o O x N M =∈+-∈-⨯- (1.3)其中0x 是原始大小图像即原始图像上的坐标,经采样变换后变为x ;o 是处于垛的阶数(即处于第几个垛中);m in o =0或者-1,当第一垛图像为原图经过尺寸加倍后的图像生成时值为-1,不经过加倍则为0。

另外在建立尺度空间的过程中有两个较为重要的参数要确定。

可以将之描述为尺度空间抽样频率和空间域抽样频率。

尺度空间抽样频率表现为每个DOG 垛所含有的DOG 数目。

由于每个DOG 垛中最大尺度已经确定是最小尺度的2倍,则在这个范围内的DOG 数目越多,抽样频率就越高。

这个频率影响着特征提取的效果。

Lowe 教授在其文章中论述了对于该参数所做的实验。

图 1.3实验表明在每个垛中有3个抽样时特征点提取效果是最好的(从图1.3左图可以看出,无论是变化过的图像中能取到与原图中相同的特征点的比例,还是所取到的特征点与数据库内特征点匹配上的比例都是最高)。

而之所以更高的抽样频率不能带来更好的匹配效果,是因为抽样频率越高,虽然提取的特征点越多,但这样的特征点大多是不稳定的,因此无法提高匹配的成功率,这从图1.3右图可以看出。

另外一个参数是空间域抽样频率。

表现为σ的数值。

由于图像与高斯函数的卷积可以看作是空间滤波,则σ与滤波的截止频率有很大的关系。

σ越大,截止频率就越小,能够看到的抽样值频率也越小。

图 1.4Lowe 教授在文章中也对σ的取值做了相关实验,实验结果表明当σ取1.6时所得到的匹配效果最好,这从图1.4中可以看出(同样的,在变化过的图像中能取到与原图中相同的特征点的比例,还是所取到的特征点与数据库内特征点匹配上的比例都是最高)。

另外他还证明,在建立尺度空间的第一垛图像时,先将原始图像的尺寸加倍,则可以使稳定的特征点的数目达到原来的4倍。

1.2精确关键点定位极值点确定之后,必须进行有效的后续工作对这些点进行筛选;因为此时往往会有可观数量的极值点具有很低的对比度或者处于不理想的边缘。

我们把这些极值点称为备选关键点,而后续工作的目的就是去掉那些对比度低的以及处于不理想边缘处的备选关键点(keypoint candidate ),以得到最终参与匹配的特征关键点(keypoint )。

1.2.1更精确的关键点位置描述目前所采用较多的方法是由Brown 教授所提出的三维二次曲线(3D quadratic function )展开。

该方法将DOG 在所关注的像素点处用三维泰勒级数展开(展开到2次方项),然后再精确定位极值的位置至亚像素级。

展开式如下:x xD x x x D D x D T T T 2221)(∂∂+∂∂+= (1.4)其中:(,,),T D x D D X x y X y D σσ⎡⎤∂⎢⎥∂⎢⎥∂∂⎢⎥==⎢⎥∂∂⎢⎥∂⎢⎥⎢⎥∂⎣⎦ ,22222222222222D D D x xy x D D D D X yx y y D D D x y σσσσσ⎡⎤∂∂∂⎢⎥∂∂∂⎢⎥⎢⎥∂∂∂∂=⎢⎥∂∂∂∂⎢⎥⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎣⎦ ,,,,2112()()4x y x y x y x y k k k k D D D D D σ+----∂=∂,( k 指当前k 层,k-1指k 的下层,k+1指上一层) 1,1,1,1,21111()()4x y x y x y x y k k k k D D D D D x σ+-+-++-----∂=∂··· 可以看到,所有的偏导数值都由像素值的差分来近似;后面会涉及到的Hessian 算子中的相关计算也是由像素值的差分来近似的。

按照泰勒级数的定义,其中D 和D 的偏导数都是在展开点所计算的值,而x 是估计点到展开点的偏移量,即:),,(000σσ---=y y x x x其中被减值是估计点的坐标,减数为展开点的坐标。

那么要求得D 的极值,则自然想到对这样展开后的D 对x 求导,然后使导数为0,即求得了局部的极值。

在这种理念下,则极值点对于展开点的偏移量x ˆ 满足:x D x D x ∂∂∂∂-=-122)(ˆ (1.5)则容易由此得到极值点的坐标。

容易想到,如果三维向量x ˆ 在任何一个维度的值大于0.5,那么这个极值点会更接近另外一个像素点,而不是本身的这个展开点。

那么此时就将展开点换做更接近的那个点,然后再次展开计算偏移量x ˆ 。

最后偏移量的值被加到展开点上以得到关键点的最终位置。

当然这个最终位置的坐标不一定是整数,所以这个关键点的位置是一种修正过的,或说插值过(interpolated )的估计值。

需要注意的是,SIFT 特征匹配最终也不需要有一个整数的坐标值。

在生成了关键点描述子之后,在匹配时与具体的坐标就不相关了。

1.2.2去除对比度低的不稳定关键点在精确定位了特征关键点之后,该特征关键点的DOG 函数可以由其临近的像素点的DOG展开获得,即式(1.1)。

研究表明,特征关键点的DOG 函数值)ˆ(xD 可以用来去除那些因为对比度偏低而不稳定的关键点。

其值越低,则越不稳定越应该忽略。

在实际操作中,用来求)ˆ(x D 的函数并不是(1.1),而是在此基础上继续忽略2阶项后所得:x xD D x D T ˆ21)ˆ( ∂∂+= (1.6) 在Lowe 教授的研究中,这个阈值为0.03,亦即所有03.0)ˆ(<xD的点全部去除。

1.2.3 去除由边缘响应所带来的不稳定关键点为了增强特征点的稳定性,仅仅去除低对比的点是不够的。

DOG 函数有着较强的边缘响应,如果关键点被定位在边缘,那么这个关键点很有可能是不稳定的,尤其容易受到噪声的影响,即是是少量的噪声也会影响匹配的稳定性。

一个定义不好的高斯差分算子的极值在横跨边缘的地方有较大的主曲率,而在垂直边缘的方向有较小的主曲率。

那么我们只需要求出关键点主曲率便可以决定是否因其处于边缘而舍去他。

主曲率可以通过2×2的Hessian 矩阵H 来计算,其中: Dxx Dxy H Dxy Dyy ⎡⎤=⎢⎥⎣⎦该点的两个主曲率是与Hessian 矩阵的两个特征值成比例的。

而在实际应用中并不用计算出H 的特征值,因为我们可以只考虑他们中较大的特征值比较小的特征值的比例r 便可以确定该点是不是处于边缘(因为在横跨边缘的地方有较大的主曲率,对应一个大特征值;而在垂直边缘的方向有较小的主曲率,对应一个较小特征值,比例只要足够大,就可以认为该点满足处于边缘的性质)。

设α为较大的特征值,β为较小的特征值,则=r αβ。

由于()xx yy Tr H D D αβ=+=+ (1.7)2()()xx yy xy Det H D D D αβ=-= (1.8)我们构建 222()()(1)()()Tr H r ratio Det H rαβαβ++=== (1.9) 则如果我们考虑0r r >时则认为该点处于边缘,那在具体判定时,我们可以不用计算出其具体特征值,而是只用等效判断是否有020)1(r r ratio +>即可。

计算一个二阶矩阵的迹以及其行列式,要比计算其特征值的代价小得多,只用进行20次不到的浮点操作即可。

一般情况下,阈值0r 取为10。

1.3 关键点主方向分配给一个关键点分配主方向,并将主方向纳入关键点的描述子特性之中,那么这个关键点就具有了旋转不变性。

相关文档
最新文档