初一 平行线单元检测
初一平行线单元检测
5D 1C B A F E G H 4324321l l l l 51432济宁学院附中李涛一、选择题1.在同一平面内,两条直线可能的位置关系是 ( )(A) 平行. (B) 相交. (C) 相交或平行. (D) 垂直.2.判定两角相等,不正确的是 ( )(A ) 对顶角相等.(B ) 两直线平行,同位角相等.(C ) ∵∠1=∠2,∠2=∠3,∴∠1=∠3.(D ) 两条直线被第三条直线所截,内错角相等.3.两个角的两边分别平行,其中一个角是60°,则另一个角是 ( )(A )60°. (B )120°.(C ) 60°或120°. (D ) 无法确定.4.下列语句中正确的是( )(A )不相交的两条直线叫做平行线.(B )过一点有且只有一条直线与已知直线平行.(C )两直线平行,同旁内角相等.(D )两条直线被第三条直线所截,同位角相等.5.下列说法正确的是( )(A )垂直于同一直线的两条直线互相垂直.(B )平行于同一条直线的两条直线互相平行.(C )平面内两个角相等,则他们的两边分别平行.(D )两条直线被第三条直线所截,那么有两对同位角相等.6.已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD ,那么图中与∠AGE 相等的角有( )(A )5个. (B )4个. (C )3个. (D )2个. 二、填空题7. 如果a ∥b ,b ∥c ,则______∥______,因为________.8.在同一平面内,如果a ⊥b ,b ⊥c ,则a c ,因为 .9.填注理由: 如图,已知:直线AB ,CD 被直线EF ,GH 所截,且∠1=∠2,试说明:∠3+∠4=180°. 解:∵∠1=∠2 ( ) 又∵∠2=∠5 ( )∴∠1=∠5 ( )∴AB ∥CD ( ) ∴∠3+∠4=180° ( ) 10.已知:如图,∠1=∠4,∠2=∠3,求证:1l // 2l .11.已知:如图AD ∥BE ,∠1=∠2,求证:∠A =∠E .D 1CB A E32。
人教版数学七年级第五章《相交线与平行线》单元同步检测试题 (附答案)
第五章《相交线与平行线》单元检测题题号一二三总分192021222324分数1.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补2.如图,将△ABC沿BC方向平移得到△DEF,若△ABC的周长为12cm,四边形ABFD的周长为18cm,则平移的距离为()A.2cm B.3cm C.4cm D.6cm3.如图所示,下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角4.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1 个B.2个C.3 个D.4个10.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°二、填空题(每题3分,共24分)11.把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式是.12.如图所示,DE∥BF,∠D=53°,∠B=30°,DC平分∠BCE,则∠DCE的度数为.13.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上.若∠1=35°,则∠2等于.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,已知直线AB,CD相交于点O,EO⊥AB于O,若∠1=32°,则∠2=°,∠3=°,∠4=°.18.已知:如图,CD平分∠ACB,∠1+∠2=180°,∠3=∠A,∠4=35°,则∠CED=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.20.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数.24.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.参考答案一、选择题:题号12345678910答案D B B C C D A D B B二、填空题:11.解:把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式,是“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”,故答案为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”.12.解:∵DE∥BF,∠D=53°,∴∠F AC=∠D=53°,∵∠B=30°,∴∠ACB=23°,∵DC平分∠BCE,∴∠DCE=23°.故答案为:23°.13.解:∵a∥b∥c,∴∠1=∠3,∠2=∠4,∵∠1=35°,∴∠3=30°,∵∠4+∠3=90°,∴∠4=55°,∴∠2=55°,故答案为:55°.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵EO⊥AB于O,∴∠AOE=90°,∵∠1=32°,∴∠3=58°,∴∠2=58°,∴∠4=180°﹣58°=122°,故答案为:58;58;122.18.解:∵∠1+∠2=180°,∠1+∠BDC=180°∴∠2=∠BDC∴EF∥AB∴∠3=∠BDE∵∠3=∠A∴∠A=∠BDE∴AC∥DE∴∠ACB+∠CED=180°∵CD平分∠ACB,∠4=35°∴∠ACB=2∠4=2×35°=70°∴∠CED=180°﹣∠ACB=180°﹣70°=110°故答案为:110°.三.解答题:19.解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.20.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23.解:(1)由平移得,∠ONM=30°∠DCN=45°在△CEN中,∠CEN=180°﹣∠ONM﹣∠DCN=180°﹣30°﹣45°=105°;(2)由旋转知,∠N=30°,∵∠BON=30°∴∠BON=∠N=30°,∴MN∥BC∴∠CEN=180°﹣∠DCO=180°﹣45°=135°.24.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.。
第一单元《平行线》单元测试卷(困难)(含答案)
浙教版初中数学七年级下册第一单元《平行线》单元测试卷(困难)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A. 2个B. 3个C. 4个D. 5个2. 下列说法错误的是( )A. 在同一平面内,不相交的两条线段必然平行B. 在同一平面内,不相交的两条直线必然平行C. 在同一平面内,垂直于同一条直线的两条直线互相平行D. 过直线外一点,有且仅有一条直线与这条直线平行3. 给出下列判断:①两条不相交的直线叫做平行线;②不相等的两个角一定不是对顶角;③若两个角的一边在同一直线上,另一对边互相平行,则这两个角相等;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,其中正确的有( )A. 1个B. 2个C. 3个D. 4个4. 如图所示,与∠α构成同位角的角的个数为( )A. 1B. 2C. 3D. 45. 如图所示的四个图形中,∠1和∠2是同位角的是( )A. ②③B. ①②③C. ①②④D. ①④6. 以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )A. 如图1所示,展开后测得∠1=∠2B. 如图2所示,展开后测得∠1=∠2且∠3=∠4C. 如图3所示,测得∠1=∠2D. 如图4所示,展开后再沿CD折叠,两条折痕的交点为点O,测得OA=OB,OC=OD7. 下列说法中正确的个数有()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A. 4个B. 3个C. 2个D. 1个8. 如图,已知∠1=∠2,那么( )A. AB//CD,根据两直线平行,内错角相等B. AD//BC,根据两直线平行,内错角相等C. AB//CD,根据内错角相等,两直线平行D. AD//BC,根据内错角相等,两直线平行9. 如图1是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是( )A. 165°B. 150°C. 135°D. 120°10. 如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=1CD.点E,F分别在2边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF//AB,则CM的长为( )A.2√33B. 3√34C. 5√36D. √311. 如图,AB//CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°,②OF平分∠BOD,③∠POE=∠BOF,④∠POB=2∠DOF.其中正确的个数为( )A. 4B. 3C. 2D. 112. 如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将△ABC沿直线BC向右平移2个单位得到△DEF,连接AD,则下列结论:①AC//DF,AC=DF②ED⊥DF③四边形ABFD的周长是16④点B到线段DF的距离是4.2其中正确的个数有( )A. 1B. 2C. 3D. 4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 平面上不重合的四条直线,可能产生交点的个数为______个.14. 如图,△ABC为等腰直角三角形,∠C=90°,将△ABC按如图方式进行折叠,使点A与BC 边上的点F重合,折痕分别与AC、AB交于点D、点E.下列结论:①∠1=∠2;②∠1+∠2=90°;③∠3+∠B=90°;④DF//AB.其中一定正确的结论有______.(填序号)15. 已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为______.16. 如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道条边的边长.三、解答题(本大题共9小题,共72分。
浙教版七年级数学《单元精练》检测(一)七(下)第一章《平行线》测试卷
《平行线》检测题一、填空题:1、⑴在同一平面内,______的两条直线叫做平行线.若直线_____ 与直线_______平行,则记作______.⑵在同一平面内,两条直线的位置关系只有______、______.⑶平行公理是:___________________________________________________________.⑷平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b ∥c,则______.⑸已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.⑴∵∠B=∠3(已知),∴______∥______.(______,______)⑵∵∠1=∠D (已知),∴______∥______.(______,______)⑶∵∠2=∠A (已知),∴______∥______.(______,______)⑷∵∠B+∠BCE=180°(已知),∴______∥______.(______,______) 2、如图(1)(1) 如果∠1=∠4,根据_________________,可得AB∥CD;(2) 如果∠1=∠2,根据_________________,可得AB∥CD;(3) 如果∠1+∠3=180º,根据______________,可得AB∥CD .3、如图(2)(1) 如果∠1=∠D,那么______∥________;(2) 如果∠1=∠B,那么______∥________;(3) 如果∠A+∠B=180º,那么______∥________;(4) 如果∠A+∠D=180º,那么______∥________;4、已知:如图,∠1=∠2,求证:AB∥CD∵ ∠1=∠2,(已知) 又∠3=∠2,( ) ∴∠1=______.( )∴ AB ∥CD .(______,______) 三.解答题 1. 如图:已知∠2+∠D=180°,∠1=∠B,试说明:AB ∥EF.21CFBDE A2.如图,∠1=∠3,∠1=∠2,那么DE 与BC 有怎样的位置关系?为什么?3.如图所示,∠ABC=∠ACB,BD 平分∠ABC,CE 平分∠ACB,∠DBF=∠F,问CE 与DF 的位置关系?试说明理由。
相交线与平行线》单元测试题及答案
相交线与平行线》单元测试题及答案初一下学期数学相交线与平行线单元质量检测姓名。
学号:本次考试为90分钟,共100分。
一、填空题:(每小题3分,共30分)1、空间内两条直线的位置关系可能是相交或平行。
2、“两直线平行,同位角相等”的题设是前提条件,结论是同位角相等。
3、已知∠A和∠B是邻补角,且∠A比∠B大20,则∠A=110度,∠B=70度。
4、如图1,O是直线AB上的点,OD是∠COB的平分线,若∠AOC=40,则∠BOD=70度。
5、如图2,如果AB∥CD,那么∠B+∠F+∠E+∠D=360度。
6、如图3,图中ABCD-A B C D是一个正方体,则图中与BC所在的直线平行的直线有3条,与A B所在的直线成异面直线的直线有2条。
7、如图4,直线a∥b,且∠1=28度,∠2=50度,则∠ACB=102度。
8、如图5,若A是直线DE上一点,且BC∥DE,则∠2+∠4+∠5=180度。
9、在同一平面内,如果直线l1∥l2,l2∥l3,则l1与l3的位置关系是平行。
10、如图6,∠ABC=120度,∠BCD=85度,AB∥ED,则∠CDE=15度。
二、选择题:(每小题3分,共30分)11、已知:如图7,∠1=60度,∠2=120度,∠3=70度,则∠4的度数是(B)A、70 B、60 C、50 D、4012、已知:如图8,下列条件中,不能判断直线l1∥l2的是(E)A、∠1=∠3 B、∠2=∠3 C、∠4=∠5 D、∠2+∠4=180 E、无法判断13、如图9,已知AB∥CD,HI∥FG,EF⊥CD于F,∠1=40度,那么∠EHI=(D)A、40 B、45 C、50 D、5514、一个角的两边分别平行于另一个角的两边,则这两个角(B)A、相等 B、相等或互补 C、互补 D、不能确定15、在正方体的六个面中,和其中一条棱平行的面有(B)A、5个B、4个C、3个D、2个16、两条直线被第三条直线所截,则(B)A、同位角相等 B、内错角相等 C、同旁内角互补 D、以上结论都不对17、如图10,AB∥CD,则∠ACD=∠BDC。
7年级数学平行线单元测试
7年级数学平行线单元测试
7年级数学平行线单元测试
本次数学单元测试主要考察7年级学生对于平行线相关知识点的掌握程度。
以下是测试内容和解析:
1. 两条直线若互相垂直,则它们的斜率互为倒数。
(T/F)
解析:F。
垂直的两条直线斜率的乘积为-1.
2. 若两条直线平行,则它们的斜率相等。
(T/F)
解析:T。
两条平行直线的斜率相等。
3. 已知一直线的斜率为1,过点(2,5),则该直线的解析式为y=x+3。
(T/F)
解析:F。
过点(2,5)的解析式应该是 y=x+3。
4. 已知平面上两条直线的斜率分别为1和2,则它们的夹角为45度。
(T/F)
解析:F。
其夹角的大小可以用斜率的反正切来计算,在此例子中夹角大小为 arctan(1)-arctan(2),约等于 -0.22.
5. 如图,线段DE与线段AB平行,则∠ACF=60°
A———————B
| |
C ————D
| |
F ————E
解析:F。
因为DE与AB平行,则∠ECD=∠FAC,而∠ACF已知等于60度,所以应该是∠ECD=60度。
综合以上五个知识点,相信大家都已经掌握了如何正确理解和应用平行线相关知识。
如果不够熟练,可以再多练习一段时间,加深对相关知识点的认识和掌握。
七年级数学下册平行线单元测试
七年级数学下册平行线单元测试(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列选项中,过点P画AB的垂线,三角板放法正确的是()A.B.C.D.2.若直线a∥b,b∥c,则a∥c的依据是().A.平行的性质B.等量代换C.平行于同一直线的两条直线平行.D.以上都不对3.下图给出了过直线外一点作已知直线的平行线的一种方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一直线的两条直线平行4.下列命题中,真命题的个数为()个.∥一个角的补角可以是锐角;∥两条平行线上的任意一点到另一条平行线的距离是这两条平行线间的距离;∥平面内,过一点有且只有一条直线与已知直线垂直;∥平面内,过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个5.命题:∥对顶角相等;∥过一点有且只有一条直线与已知直线平行;∥相等的角是对顶角;∥同位角相等.其中错误的有()A.∥∥B.∥∥C.∥∥D.∥∥∥6.下列说法中,正确的是()A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B.平面内,互相垂直的两条直线不一定相交C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD.过一点有且只有一条直线垂直于已知直线二、填空题7.在同一平面内的三条直线,它们的交点个数可能是________.8.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是_____.9.如图,AE∥BC,AF∥BC,则A,E,F三点________,理由是__________________.10.已知a,b是在同一个平面内的两条直线,根据以下的条件写出a,b的位置关系.(1)若它们没有交点,则_________;(2)若它们都平行于直线c,则_________;(3)若它们有且仅有一个公共点,则__________;(4)若a∥c,b∥d,且c不平行于d,则________.11.如图是一个长方体,用符号表示下列两棱的位置关系:AB________BC;AB________EF;AB________CD.12.在同一平面内,三条直线两两相交,最多有3个交点,那么8条直线两两相交,最多有_____个交点.三、解答题13.如图:点C是∥AOB的边OB上的一点,按下列要求画图并回答问题.(1)过C点画OB的垂线,交OA于点D;(2)过C点画OA的垂线,垂足为E;(3)比较线段CE,OD,CD的大小(请直接写出结论);(4)请写出第(3)小题图中与∥AOB互余的角(不增添其它字母).14.按要求作图.不写作法,但要保留作图痕迹.如图,已知点P,Q分别在AOB的边OA,OB上,∥作直线PQ;∥过点P作OB的垂线,垂足为点D;∥过点Q作OA的平行线QH.15.平面上有6条直线,共有12个不同的交点,画出它们可能的位置关系(画三种图形).16.如图,根据要求填空:(1)过点A作AE∥BC,交______于点E;(2)过点B作BF∥AD,交______于点F;(3)过点C作CG∥AD,交______________________;(4)过点D作DH∥BC,交BA的___________于点H.17.如图,AD∥BC,E为AB上一点,过E点作EF∥AD交DC于F,问EF与BC的位置关系,并说明理由.18.根据语句画图,并填空∥画80AOB ∠=︒;∥画AOB ∠的平分线OC ;∥在OC 上任取一点P ,画PD OA ⊥于D ,PE OB ⊥于E ;∥画//PF OB 交OA 于F ;∥通过度量比较,PE PD 的大小________;∥OPF ∠=________.参考答案:1.C【详解】解:A.直角三角板的直角边不在AB 上,所以三角板画法不正确;B.点P 不在直角三角板的直角边上,所以三角板放法不正确;C.直角三角板的一条直角边再AB 上,点P 在另一直角边上,所以三角板放法正确;D.直角三角板的直角边不在AB 上,所以三角板放法不正确.故选C.2.C【分析】根据平行公理的推论进行判断即可.【详解】解:直线a ∥b ,b ∥c ,则a ∥c 的依据是平行于同一直线的两条直线平行,故选:C .【点睛】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.3.A【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【详解】图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选:A.【点睛】本题主要考查了平行线的判定方法.这是以后做题的基础.要求学生熟练掌握.4.C【分析】根据补角的定义、平行公理、平行线的性质、点到直线的距离的定义、垂线的性质定理判断即可,【详解】∥一个角的补角可以是锐角,理由:钝角的补角是锐角,故∥正确.∥两条平行线上的任意一点到另一条平行线的距离是这两条平行线间的距离,理由:两条平行直线之间距离的定义,故∥正确.∥平面内,过一点有且只有一条直线与已知直线垂直,理由:垂线的性质定理,故∥正确.∥平面内,过直线外一点有且只有一条直线与已知直线平行,故∥错误.故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.D【分析】根据对顶角的定义对∥∥进行判断;根据过直线外一点有且只有一条直线与已知直线平行对∥进行判断;根据平行线的性质对∥进行判断.【详解】对顶角相等,所以∥正确,不符合题意;过直线外一点有且只有一条直线与已知直线平行,所以∥不正确,符合题意;相等的角不一定为对顶角,所以∥不正确,符合题意;两直线平行,同位角相等,所以∥不正确,符合题意,故选:D.【点睛】本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键.6.C【分析】根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.7.0或1或2或3个【分析】分类讨论画出图形,∥当三条直线平行时,没有交点;∥三条直线交于一点时,有一个交点;∥两条平行线与一条直线相交时,有两个交点;∥三条直线两两相交时有三个交点吗,即可得出答案.【详解】解:如图,由图可知:同一平面内的三条直线,其交点个数为:0个;1个;2个;3个.故答案是:0个或1个或2个或3个【点睛】本题主要考查了相交线和平行线.正确画出图形,即可得到正确结果.8.3【分析】根据平行线间的距离与点到直线的距离即可求出.【详解】解:∥直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∥点P到b的距离是5﹣2=3,故答案为3.【点睛】此题主要考查平行线之间的距离,解题的关键是正确理解点到直线的距离.9.共线经过直线外一点,有且只有一条直线与这条直线平行【分析】根据平行公理即可解答.【详解】∥AE∥BC,AF∥BC,∥A,E,F三点共线(经过直线外一点,有且只有一条直线与这条直线平行).故答案为共线;经过直线外一点,有且只有一条直线与这条直线平行.【点睛】本题考查了平行公理,熟知经过直线外一点有且只有一条直线与这条直线平行是解决问题的关键. 10.a∥b;2a∥b;a与b相交;a与b相交.【分析】(1)由平行线的定义求解;(2)根据平行线公理,如果两条直线都与第三条直线平行,那么这两条直线也相互平行;(3)根据相交线的定义求解;(4)根据平行线、相交线的定义求解.【详解】(1)同一平面内的两条直线ab ,如果它们没有公共点,则a∥b ;(2)同一平面内的两条直线ab ,如果它们都平行于第三条直线,则a∥b ;(3)同一平面内的两条直线ab ,如果它们有且只有一个公共点,则a 和b 相交;(4)在同一平面内,若a∥c ,b∥d ,且c 不平行于d ,则a 与b 相交.【点睛】本题考查的重点是平行线的有关概念和公理.准确记忆是解答本题的关键.11. ∥ ∥ ∥【分析】利用立体图形分别得出各线段之间的位置关系;【详解】∥长方体的底面四边形ABCD 是矩形,∥AB∥BC,AB//CD;∥长方体的面四边形ABEF 是矩形,∥AB//EF;故答案是:∥,//,//.【点睛】考查了同一平面内,两条直线的位置关系.12.28【详解】解:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有()()1123112n n n +++⋯+-=-个交点. 8条直线两两相交,最多有()1881282⨯⨯-=个交点. 故答案为28.13.(1)画图见解析;(2)画图见解析;(3)CE <CD <OD ;(4)与∥AOB 互余的角是∥OCE 与∥ODC .【分析】(1)作DC ∥OB 即可;(2)作CE ∥OA 即可;(3)根据垂线段最短及直角三角形的斜边大于任一直角边即可得出结论;(4)根据两角互余的定义即可得出结论.【详解】解:(1)、(2)如图所示;(3)∥垂线段最短及直角三角形的斜边大于任一直角边,∥CE<CD<OD,(4)∥CE∥OA,∥CD∥OB,∥∥AOB+∥ODC=90°,∥与∥AOB互余的角是∥OCE与∥ODC.【点睛】本题考查的是作图—基本作图,熟知垂线的作法是解答此题的关键.14.见解析【分析】∥以P为端点,过点Q,用直尺画直线PQ即可;∥过点P作OB的垂线,垂足为D,PD即为OB边上的垂线段;∥过点Q作∥HQB=∥O,即可得出OA的平行线.【详解】解:∥直线PQ即为所求;∥直线PD即为所求,要求标出垂足符号;∥直线QH即为所求.【点睛】此题主要考查了基本作图作直线以及过直线外一点作垂线和做已知直线的平行线等知识,此题难度不大注意灵活的应用相关知识.15.详见解析.【分析】从平行线的角度考虑,先考虑只有二条直线平行,再考虑三条平行,作出草图即可看出.【详解】如下图.【点睛】本题考查平行线与相交线的综合运用.没有明确平面上六条不重合直线的位置关系,需要运用分类讨论思想.16. CD DC AB 的延长线于点G 延长线【分析】根据要求,直接进行作图就可以解决.【详解】解:(1)过A 作AE∥BC ,交DC 于点E ;(2)过B 作BF∥AD ,交DC 于点F ;(3)过C 作CG∥AD ,交AB 的延长线于点G ;(4)过D 作DH∥BC ,交BA 的延长线于点H .【点睛】本题主要考查平行线的作法以及几何语言的准确性.17.EF∥BC ,理由详见解析.【分析】根据平行于同一直线的两直线互相平行解答.【详解】EF∥BC.理由:∥AD∥BC ,EF∥AD ,∥EF∥BC.【点睛】本题考查了平行公理,熟记平行公理是解题的关键.18.图见解析,PE PD =;40︒【分析】根据题意利用三角板和量角器画出对应的80AOB ∠=︒,对应的角平分线OC ,线段PD ,PE ,PF ,再通过度量即可得出∥PE =PD ,利用平行线的性质“两直线平行,内错角相等”得到OPF POB ∠=∠ ,再由角平分线的性质“角平分线分得的两个角相等,都等于该角的一半”从而得出12POB AOB ∠=∠,即可得出答案.【详解】解:∥如图:80AOB ∠=︒为所作;∥如图:OC 为所作;∥如图:PD 、PE 为所作;∥如图:PF 为所作;∥通过度量可得:PE =PD ,∥∥PF //OB ,∥∥OPF =∥POB ,∥∥AOB =80°,OC 平分∥AOB ,∥180402COB AOB∠=∠=⨯︒=︒,∥P在OC上,∥∥POB=40°,∥∥OPF=∥POB=40°.【点睛】本题考查了画角平分线、垂线和平行线,角平分线的性质,平行线的性质,熟练使用直尺,量角器是画图的关键.。
平行线 单元测试卷 2022-2023学年浙教版数学七年级下册
第1章 平行线 单元测试卷一、单选题(共10题;共30分)1. 如图,直线a ∥b ,∠1=50°,∠2=30°,则∠3的度数为( )A. 30°B. 50°C. 80°D. 100°2. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )A. 先向左转130°,再向左转50°B. 先向左转50°,再向右转50°C. 先向左转50°,再向右转40°D. 先向左转50°,再向左转40°3. 下列图形中1∠与2∠是内错角的是A. B. C.D.4. 如图,以下条件能判定GE CH ∥的是( )A. ∠FEB =∠ECDB. ∠AEG =∠DCHC. ∠GEC =∠HCFD. ∠HCE =∠AEG5. 如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A. 14°B. 15°C. 16°D. 17°6. 如图,在“A”字型图中,AB 、AC 被DE 所截,则ADE ∠与DEC ∠是( )A. 内错角B. 同旁内角C. 同位角D. 对顶角7. 如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30°,则∠C 为( )A. 30°B. 60°C. 80°D. 120°8. 如图,给出了过直线AB 外一点P ,作已知直线AB 的平行线的方法,其依据是( )A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线品行D. 过直线外一点有且只有一条直线与这条直线平行9. 如图,直线l 1∥l 2,AB 与直线l 1垂直,垂足为点B ,若∠ABC=37°,则∠EFC的度数为( )A. 127°B. 133°C. 137°D. 143°10. 有下列说法:①三角形ABC在平移的过程中,对应线段一定相等;②三角形ABC在平移的过程中,对应线段一定平行;③三角形ABC在平移的过程中,周长不变;④三角形ABC在平移的过程中,面积不变.其中正确的有( )A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共6题;共24分)11. 如图所示,与∠C构成同旁内角的有___________个.12. 如图,已知∠1=∠2,则图中互相平行的线段是___________;理由是:__________________________.13. 如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是____________°.14. 如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有_____对;若∠BAC=50°,则∠EDF=_____.15. 如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.16. 如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是______(填序号);能够得到AB∥CD的条件是_______.(填序号)三、解答题(共8题;共66分)17. 如图,李老师在黑板上画了一个图形,请你在这个图形中分别找出角A的一个同位角、内错角和同旁内角,并指出是哪两条直线被哪条直线所截形成的.18. 如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠=︒,试判断AB和CD的位置关系,并说明理由.25019. 如图,张三打算在院落里种上蔬菜,已知院落为东西长32m,南北宽20m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1m,求蔬菜的总种植面积是多少?20. 如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.21. 如图,B处在A处的南偏西42°的方向,C处在A处的南偏东16°的方向,C 处在B处的北偏东72°的方向,求从C处观测A、B两处的视角∠ACB的度数.22. 如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN 的度数.23. 如图,E 点为DF 上的点,B 为AC 上的点,12C D ∠=∠∠=∠,,求证:(1)BD CE∥(2)DF AC∥24. 如图,直线l 1∥l 2,∠BAE =125°,∠ABF =85°,则∠1+∠2等于多少度?第1章平行线单元测试卷一、单选题(共10题;共30分)【1题答案】【答案】D【解析】【分析】利用平角的定义求出∠4=100°,再利用平行线的性质可得出结果.【详解】∵∠1=50°,∠2=30°,∴∠4=100°,∵a∥b,∴∠3=∠4=100°,故选D.【点睛】本题考查了平行线的性质,解题的关键是:两直线平行,同位角相等.【2题答案】【答案】B【解析】【详解】根据同位角相等,两直线平行,可得B.【3题答案】【答案】A【解析】【详解】A. <2与<1是内错角,故此选项正确;B. <2与<1的对顶角是内错角,故此选项错误;C. <2与<1 是同旁内角,故此选项错误;D. <2与<1的邻补角是内错角,故此选项错误;故选A.点睛:本题主要考查的知识点为内错角,两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.掌握内错角的定义是解答本题的关键.【4题答案】【答案】C【解析】【详解】解:∠FEB=∠ECD,∠AEG=∠DCH,∠HCE=∠AEG,它们不是直线∥;GE、CH被某条直线截得的同位角或内错角,不能判定GE CH∵∠GEC=∠HCF.且它们是直线GE、CH被直线EC截得的内错角.∥∴GE CH故选C.【5题答案】【答案】C【解析】【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.【6题答案】【答案】A【解析】【详解】试题分析:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选A.考点:同位角、内错角、同旁内角.点评:正确记忆内错角的定义是解决本题的关键.【7题答案】【答案】A【解析】【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°,故选:A.【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.【8题答案】【答案】A【解析】【分析】由平行线的画法可知,∠2与∠1相等,根据图形判断出∠2与∠1的位置关系,由此可得答案.【详解】解:由平行线的画法可知,∠2与∠1相等,且∠2与∠1是一对同位角,所以画法的依据是:同位角相等,两直线平行.故选A.【点睛】本题考查的是平行线的原理,熟练掌握平行线的判定方法是解答本题的关键.【9题答案】【答案】A【解析】【详解】因为AB与直线l1垂直,垂足为点B,∠ABC=37°,所以∠CBD=90°-∠ABC=53°;又因为直线l1∥l2,所以∠CBD=∠BFG=53°(两直线平行,同位角相等),所以∠EFC=180°-∠BFG=127°.故选A【10题答案】【答案】C【解析】【详解】①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵平移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确;∴①、③、④都符合平移的基本性质,都正确.故选C.二、填空题(共6题;共24分)【11题答案】【答案】3【解析】【分析】据图形和同旁内角的定义,可知∠C构成同旁内角的有∠EBC、∠DBC、∠BDC,共3个.【详解】AC把EB、DC相截,与∠C构成同旁内角的有∠EBC;AC把BD、DC相截,与∠C构成同旁内角的有∠DBC;DC把BD、BC相截,与∠C构成同旁内角的有∠BDC;共3个.答案为3.【点睛】本题主要考查同旁内角的定义,注意区分同位角、内错角、同旁内角的差别.【12题答案】【答案】①. AD∥BC②. 内错角相等,两直线平行【解析】【详解】解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故答案为AD∥BC,内错角相等,两直线平行.【13题答案】【答案】105°【解析】【详解】由图a知,∠EFC=155°.图b中,∠EFC=155°,则∠GFC=∠EFC-∠EFG=155°-25°=130°.图c中,∠GFC=130°,则∠CFE=130°-25°=105°.故答案为105°.点睛:在长方形的折叠问题中,因为有平行线和角平分线,所以存在一个基本的图形等腰三角形,即图b中的等腰△CEF,其中CE=CF,这个等腰三角形是解决本题的关键所在.【14题答案】【答案】①. 6,②. 50°【解析】【分析】【详解】试题分析:根据平移的性质直接得出对应边平行且相等,对应角相等得出答案即可.解:∵三角形ABC经过平移得到三角形DEF,∴图中平行且相等的线段有:AB DE,AC DF,CB FE,AD BE,EB CF,AD CF,一共有六对,∵∠BAC=50°,∴∠EDF=50°.故答案为6,50°.点评:此题主要考查了平移的性质,熟练掌握平移的性质得出是解题关键.【15题答案】【答案】46【解析】【分析】根据平行线的性质和平角的定义即可得到结论.【详解】解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为:46.【16题答案】【答案】①. ①④②. ②③⑤【解析】【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.三、解答题(共8题;共66分)【17题答案】【答案】见解析【解析】【详解】分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可.详解:∠A的同位角是∠BCE,是直线AB、BC被AE所截而成;∠A的内错角是∠ACF,是直线AB、GF被AC所截而成;∠A的同旁内角是∠B,是直线AC、BC被AB所截而成.点睛:此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.【18题答案】【答案】AB ∥CD ,理由见解析【解析】【分析】延长MF 交CD 于点H ,利用平行线的判定证明.【详解】解:延长MF 交CD 于点H ,∵∠1=90°+∠CHF ,∠1=140°,∠2=50°,∴∠CHF =140°-90°=50°,∴∠CHF =∠2,∴AB ∥CD .【点睛】本题主要考查了平行线的判定和外角定理,解题的关键是作出适当的辅助线求解.【19题答案】【答案】558【解析】【详解】试题分析:从平移的角度考虑本题,只需要将道路平移到边上去,即可求出总面积.试题解析:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为:()()()22021321558m -⨯-=.答:蔬菜的总种植面积是558平方米.【20题答案】【答案】∠PSQ=20°.【解析】【分析】首先利用平行线,垂线的定义和性质,然后根据平行线的性质求出∠APR=110°,∠APS =20°,再利用平行线的性质即可解题.【详解】∵AB∥EF,∴∠FRG=∠APR,∵∠FRG=110°,∴∠APR=110°,又∵PS⊥GH,∴∠SPR=90°,∴∠APS=∠APR-∠SPR=20°,∵AB∥CD,∴∠PSQ=∠APS=20°.【点睛】本题考查了平行线的性质,垂线的性质,中等难度,熟悉平行线的性质是解题关键.【21题答案】【答案】∠ACB=92°.【解析】【详解】试题分析:根据方向角的定义,即可求得∠EBA,∠EBC,∠DAC的度数,然后根据三角形内角和定理即可求解.试题解析:如图,∵AD,BE是正南正北方向,∴BE∥AD,∵∠EBA=42°,∴∠BAD=∠EBA=42°,∵∠DAC=16°,∴∠BAC=∠BAD+∠DAC=42°+16°=58°,又∵∠EBC=72°,∴∠ABC=72°-42°=30°,∴∠ACB=180°-∠ABC-∠BAC=180°-58°-30°=92°.【点睛】本题主要考查了方向角的定义,以及三角形的内角和定理,正确理解定义是解题的关键.【22题答案】【答案】32.5°.【解析】【详解】试题分析:已知AB ∥CD ,∠B =65°,根据平行线的性质可求得∠BCE =115°;再由角平分线的定义求得∠ECM 的度数,即可求得∠DCN 的度数.试题解析:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补)∵ ∠B =65°,∴ ∠BCE =115°∵ CM 平分∠BCE ,∴ ∠ECM =∠BCE =57.5°∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.点睛:本题主要考查了角平分线的定义,两直线平行同旁内角互补这一性质,题目较为简单,属于基础题.【23题答案】【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先由对顶角相等,得到:14∠=∠,然后根据等量代换得到:24∠∠=,然后根据同位角相等两直线平行,得到BD CE ∥;(2)根据两直线平行,同位角相等,得到C DBA ∠=∠,然后根据等量代换得到:D DBA ∠=∠,最后根据内错角相等两直线平行,即可得到DF AC ∥.【小问1详解】∵14∠=∠,12∠=∠,∴24∠∠=,∴BD CE ∥;【小问2详解】∵BD CE∥∴C DBA ∠=∠,∵C D ∠=∠,∴D DBA ∠=∠,∴DF AC ∥.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.【24题答案】【答案】30°.【解析】【分析】过点A 作l 1的平行线,过点B 作l 2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.【详解】解:如图,过点A 向左作AC ∥l 1,过点B 向左作BD ∥l 2,则∠1=∠3,∠2=∠4.因为l 1∥l 2,所以AC ∥B D.所以∠CAB +∠DBA =180°.又因为∠3+∠4+∠CAB +∠DBA =125°+85°=210°,所以∠3+∠4=30°.所以∠1+∠2=30°.【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题关键.。
浙教版七年级下册数学第一章《平行线》单元测试卷(含答案)
浙教版七年级下册数学第一章《平行线》单元测试卷一、选择题(共10小题;共30分)1. 在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线的位置关系是( )A . 平行B . 垂直C . 相交D . 可能垂直,也有可能平行2. 如图,在下列条件中,能判断AD ∥BC 的是 ( )A .∠DAC =∠BCAB .∠DCB +∠ABC =180° C .∠ABD =∠BDCD .∠BAC =∠ACD3. 下列说法正确的个数有( )(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A . 0个B .1个C . 2 个D .3 个4. 如图,在610 的网格中,每个小方格的边长都是1个单位长度,将 ⊿ABC 平移到 ⊿DEF 的位置,下面正确的平移步骤是 ( )A . 先向左平移5个单位长度,再向下平移2个单位长度B . 先向右平移 5个单位长度,再向下平移2个单位长度C . 先向左平移5个单位长度,再向上平移 2个单位长度D . 先向右平移 5个单位长度,再向上平移 2个单位长度5.下列说法:(1)不相交的两条线是平行线(2)在同一平面内,两条直线的位置关系有两种(3)若线段AB 与CD 没有交点,则AB ∥CD(4)若A ∥B ,B ∥C ,则A 与C 不相交第6题图 第7题图若以上的说法均不考虑重合的情况,则其中正确的说法个数为( )A .1B .2C . 3D .46.如图,AB ∥CD ,直线PQ 分别交AB 、CD 于点F 、E ,EG 是∠FED 的平分线,交AB 于点G . 若∠PEC =40°,那么∠EGB 等于( )A .80°B .100°C .110°D .120°7.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为( )A .a +bB .2a +bC .2(a +b )D .a +2b8.如图,AB ∥DE ,则下列说法中一定正确的是( )A .∠1=∠2+∠3B .∠1+∠2∠3=180°C .∠+∠2∠3=270°D .∠1-∠2+∠3=90°9.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm , 那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm10.如图,AB ∥EF ,∠C =90°,则δβα,,的关系为( )A .δαβ+=B .︒=++180δβαC .︒=-+90αδβD .︒=-+90δβα二、填空题(共6小题;共18分)11. 如图利用直尺和三角板过已知直线l 外一P 作直线l 平行线的方法,其理由是 .第10题图12.如图,直线AB被直线CD所截,若∠1=112°,∠2=68°,∠3=100°,则∠4=°.13.如图,∠1=∠2,∠A=60°,则∠ADC = °.14.如图,直线A∥B,点B在直线B上,且AB⊥BC,∠2=59°,则∠1=_________°.15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,这两个角的度数分别是 °.16.七巧板是我国祖先的一次卓越创造,在19世界曾极为流行,如图在由七巧板拼成的图形中,互相平行的线段有________对.三、解答题(共7小题;共52分)17.(6分)已知:如图所示,AB∥CD,EF交AB于点G,交CD于点F,FH平分∠EFD,交AB于点H,∠AGE=50°,求:∠BHF的度数.18.(6分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作P R⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.19.(6分)如图,A,B,C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.20.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.21.(8分)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.22.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.23.(10分)如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.答案一、选择题:AAAAB CCBCD二、填空题:11.同位角相等,两直线平行12.10013.12014.3115.10,10或2,13816.7三、解答题17.∵AB∥CD ,∴∠EFC=∠AGE=50°∴∠EFD=130°∵FH 平分∠EFD∴∠HFD=65°.∵AB∥CD ,∴∠HFD+∠BHF=180°∴∠BHF=115°.18.(1)(2)如图所示.(3)∠PQC=60°.∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=180°120°=60°.19.BD∥CF.因为∠1=∠2 ,所以AD∥BF,所以∠D=∠DBF,因为∠3=∠D,所以∠3=∠DBF ,所以BD ∥CF.20.证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.21.(1)BF ∥DE.理由如下:∵∠AGF=∠ABC∴FG ∥BC∴∠1=∠3∵∠1+∠2=180°∴∠3+∠2=180 °∴∠3+∠2=180 °∴BF ∥DE(2)∵BF ∥DE,BF⊥AC∴DE ⊥AC∵∠1+∠2=180°,∠2=150°∴∠1=30°∴∠AFG=60°22.∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,又BE,DF分别为∠ABC与∠ADC的平分线∴2∠ABE+2∠ADF=180°,即∠ABE+∠ADF=90°,又∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF23.解:(1)∵AB∥CD,∴∠AMN+∠CNM=180°,∵ME,NE分别是∠AMN与∠CNM的平分线,∴∠EMN =21∠AMN ,∠ENM =21∠MNC , ∴∠EMN +∠ENM =90°,即∠MEN =90°,又∵NG ⊥EN ,∴∠MEN +∠ENH =180°,∴EM ∥NG ;(2)设∠HEG =x ,则∠HGE =∠MEG =x ,∠NEH =90°﹣2x , ∵EP 平分∠FEH ,∴∠FEH =2∠PEH =2(∠PEG +x ),又∵∠FEH +∠HEN =180°,∴2(∠PEG +x )+90°﹣2x =180°,解得∠PEG =45°.。
第1章平行线单元测试(基础过关卷,七下浙教)-2023-2024学年七年级数学(0002)
【拔尖特训】2023-2024学年七年级数学下册尖子生培优必刷题【浙教版】第1章平行线单元测试(基础过关卷)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022•东阳市校级开学)图中,∠1和∠2是同位角的是()A.B.C.D.2.(2022春•西湖区校级期中)下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.投篮时的篮球运动C.小华乘手扶电梯从一楼到二楼D.随风飘动的树叶在空中的运动3.(2022春•嵊州市期末)如图,a∥b,若∠1=56°,则∠2的度数是()A.56°B.124°C.134°D.144°4.(2022春•萧山区期中)如图,图中给出了过直线外一点作已知直线的平行线的方法,其依据的是()A.同平行于一条直线的两直线平行B.同旁内角互补,两直线平行C.内错角相等,两直线平行D.同位角相等,两直线平行5.(2022秋•瑞安市校级月考)如图,AC∥DF,将一个含30°角的直角三角板如图放置,使得点E恰巧落在直线DF上,若∠ABE=72°,则∠PEF的度数为()A.12°B.15°C.18°D.20°6.(2022春•临平区月考)如图,已知直线l1∥l2,直线l与l1,l2分别相交于点A,B,把一块含30°角的直角三角尺按如图位置摆放,若∠1=130°,则∠ABD的度数为()A.15°B.20°C.25°D.30°7.(2022春•仙桃月考)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°8.(2021春•北仑区期中)如图,不能判断l1∥l2的条件是()A.∠1=∠3B.∠2+∠4=180°C.∠4=∠5D.∠2=∠39.(2019春•杭州期中)若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE10.(2022春•绍兴期末)如图,已知直线AB∥CD,直线EF分别交直线AB、CD于E、F,EM平分∠AEF 交CD于M,G是射线MD上一动点(不与M、F重合).EH平分∠FEG交CD于点H,设∠MEH=α,∠EGF=β,现有下列四个式子:①2α=β;②2α﹣β=180°;③α﹣β=30°;④2α+β=180°.其中正确的是()A.①②B.①④C.①③④D.②③④二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022•东阳市校级开学)如图所示,图中用数字标出的角中,∠2的内错角是.12.(2022春•温州期中)一直角三角板的直角顶点恰好放在直尺的边缘线上(如图所示),若∠2=50°,则∠1=度.13.(2022•舟山二模)将一副含30°角和45°角的直角三角板按如图共顶点摆放,若AB∥CD,则∠CAE =.14.(2022春•杭州期中)如图,在△ABC中,∠ABC+∠ACB=α,按图进行翻折,使MD∥NG∥BC,ME ∥FG,则∠NFE的度数是.15.(2018春•杭州期中)下列说法:①两点之间的距离是两点间的线段的长度;②过一点有且只有一条直线与已知直线平行;③两点之间的所有连线中,线段最短;④若a⊥b,c⊥b,则a与c的关系是平行;⑤只有一个公共点的两条直线叫做相交直线;其中正确的是.16.(2022春•孝南区期中)如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•恩施市期末)补全证明过程,并在()内填写推理的依据.已知:如图,直线a,b,c被直线d,e所截,∠1=∠2,∠4+∠5=180°,求证:∠6=∠7.证明:∵∠1=∠2,∠2=∠3(),∴∠1=∠3,∴c∥a(),∵∠4+∠5=180°,∴∥b().∴a∥b().∴∠6=∠7().18.(2022春•象山县期中)如图,在直角三角形ABC中,∠ABC=90°,将△ABC沿射线BC方向平移,得到△DEF,A,B,C的对应点分别是D,E,F,AD∥BF.(1)请说明∠DAC=∠F.(2)若BC=6cm,当AD=2EC时,则AD=.19.(2009秋•杭州期末)按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.20.(2018春•金华期中)如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.21.(2022春•鹿城区校级期中)如图,已知AD∥BC,点E在AB的延长线上,连结DE交BC于点F,且∠C=∠A.(1)请说明∠E=∠CDE的理由;(2)若∠1=75°,∠E=30°,求∠A的度数.22.(2022春•富阳区期中)如图,已知直线CB∥OA,∠C=∠OAB=100°,点E、F在线段BC上,满足∠FOB=∠FBO=α,OE平分∠COF.(1)OC与AB是否平行?请说明理由.(2)用含有α的代数式表示∠COE的度数;(3)若左右平移线段AB,是否存在∠OEC=∠OBA的可能?若存在,求出此时α的值;若不存在,请说明理由.23.(2022春•杭州期中)(1)问题发现:如图①,直线AB∥CD,连接BE,CE,可以发现∠B+∠C=∠BEC.请把下面的证明过程补充完整:证明:过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC().∴∠C=∠CEF.().∵EF∥AB,∴∠B=∠BEF(同理).∴∠B+∠C=(等量代换).即∠B+∠C=∠BEC.(2)拓展探究:如果点E运动到图②所示的位置,其他条件不变,说明:∠B+∠C=360°﹣∠BEC.(3)解决问题:如图③,AB∥DC,E、F、G是AB与CD之间的点,找出∠1,∠2,∠3,∠4,∠5之间的数量关系,并说明理由.。
浙教版七年级下数学第一章平行线单元测试及答案(共7张)
浙教版七年级下第一章平行线单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共10小题,3*10=30)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.69.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,3*6=18)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有个交点.12.如图,与∠1构成同位角的是,与∠2构成同旁内角的是.13.经过直线外一点,一条直线与这条直线平行.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有.(填序号)15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是度,再沿BF折叠成图c,则图c中的∠DHF的度数是.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=.三.解答题(共7小题,52分)17.(6分)按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.18.(6分)如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.19.(6分)如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()20.(8分)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.21.(8分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM 交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N 的度数.22.(8分)若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{,}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{,}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{,}直接平移至点F.23.(10分)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.参考答案与试题解析一.选择题(共10小题)1.D2.D 3.A 4.A 5.C 6.C 7.B 8.A 9.D 10.B 二.填空题(共6小题)11.2 12.∠B,∠1 13.有且只有.14.①②④15.52,78°16.110°三.解答题(共7小题)17.解:(1)作法利用量角器测得∠AEC=90°,AE即为所求;(2)作法:①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P③作射线BP,则射线BP为角ABC的角平分线;④射线BP交AC于点F;(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;(4)作法:利用量角器测得∠BHC=90°,CH即为所求.18.解:如∠2+∠4+∠6=360°,∠1+∠5+∠7=180°,∠2=∠5+∠7,∠3=∠1+∠8,已知如图:有四条互相不平行的直线L1、L2、L3、L4所截出的八个角,求证:∠1+∠5+∠7=180°,证明:∵∠DAC+∠7+∠5=180°,又∵∠1=∠DAC,∴∠1+∠5+∠7=180°.19.解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行),C,(两直线平行,同位角相等),(内错角相等,两直线平行).20.解:(1)如图1中,作PM∥AC,∵AC∥BD,∴PM∥BD,∴∠1=∠CPM,∠2=∠MPD,∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.由题可知:∠BAC=∠B+∠C,∵∠B=40°,∠C=45°,∴∠BAC=40°+45°=85°.故答案为:∠1+∠2=∠3,85°.(2)证明:∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.22.解:(1)从C到B,向左2个单位,向下1个单位,所以,平移量为{﹣2,﹣1};(2)①点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D如图所示;②(4+3+2+1)×2.5=10×2.5=25秒;③由图可知,点B到点D,向右2个单位,向下2个单位,所以,平移量为{2,﹣2},∵2a﹣5a+a=﹣2a,3b+b﹣5b=﹣b,∴点E到F的平移量为{﹣2a,﹣b}.故答案为:(1)﹣2,﹣1;(2)③2,﹣2;﹣2a,﹣b.23.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=60°,而∠A=120°,∴∠A+∠O=180°,∴OB∥AC;(2)∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×60°=30°,即∠EOC=30°;(3)比值不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=30°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣120°=60°﹣x,∵∠OEB=∠OCA,∴30°+x=60°﹣x,解得x=15°,∴∠OCA=60°﹣x=60°﹣15°=45°.浙教版七年级下第一章平行线单元检测卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
初一平行线单元检测
一、选择题 济宁学院附中李涛1.如图,可以得到DE ∥BC 的条件是______ [ ]A .∠ACB =∠BAC B .∠ABC +∠BAE =180° C .∠ACB +∠BAD =180° D .∠ACB =∠BAD 2.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是 A .第一次向右拐40°,第二次向左拐40° B .第一次向右拐50°,第二次向左拐130° C .第一次向右拐50°,第二次向右拐130° D .第一次向左拐50°,第二次向左拐130° 3.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A .AD ∥BCB .AB ∥CDC .∠3=∠4D .∠A =∠C 4.如图,a ∥b ,a 、b 被c 所截,得到∠1=∠2的依据是( )A .两直线平行,同位角相等B .两直线平行,内错角相等C .同位角相等,两直线平行D .内错角相等,两直线平行 5、两直线被第三条直线所截,则必有( )A 、同位角相等B 、内错角相等C 、同旁内角互补D 、以上都不对 二、填空题1.若,9021︒=∠+∠则21∠∠与的关系是 。
若,18021︒=∠+∠则21∠∠与的关系是 。
2.若,9021︒=∠+∠,9023︒=∠+∠则31∠∠与的关系是 ,理由是 。
3.若,18021︒=∠+∠,18023︒=∠+∠则31∠∠与的关系是 ,理由是 。
4.如图(2)中,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB ,则图中 与∠A 相等的角有 ,与∠A 互余的角有 。
5.(北京海淀区)已知:如图,AB ∥CD ,CE 平分∠ACD ,∠A =110°, 则∠ECD 的度数等于 。
6.(山西省)如图,直线a 、b 被直线c 所截,且a//b ,若∠1=118°, 则∠2的度数为_________. 7.(龙岩市)如图AB ∥CD ,若∠ACD=69°,则∠CAB= __________三、填空题1.FA ⊥AC ,EB ⊥AC ,垂足分别为A 、B ,且∠BED +∠D =180°.求证:AF ∥C D .2.如图,已知∠AMB=∠EBF ,∠BCN=∠BDE ,求证:∠CAF=∠AFD .第4题第1题第3题典型例题,方法渗透:例1、已知∠1=∠B ,求证:∠2=∠C例2、如图,AB ∥DF ,DE ∥BC ,∠1=65°求∠2、∠3的度数例3.(1)如图,若AB ∥DE ,∠B=135°,∠D=145°,你能求出∠C 的度数吗?(2)在AB ∥DE 的条件下,你能得出∠B 、∠C 、∠D 之间的数量关系吗?并说明理由.例4、如图:把一张长方形的纸片ABCD 沿EF 折叠后,ED 交BC 于G ,点D 、C 分别落在P 、Q 位置上,若∠EFG =55度,求∠1、∠2的度数练习:如图:已知∠1和∠D 互余,CF ⊥DF ,试证明AB ∥CD提高:已知:如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DFE 的平分线相交于点P .说明∠P =90.ADFB EC1 23。
浙教版七年级数学下册第1章平行线单元测试卷(原卷+答案)
第1章平行线单元检测卷一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是()2.下列结论正确的是()A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是()A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格(第4题图)(第5题图)(第6题图)4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件() A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线()A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于()A.26°B.32°C.25°D.36°(第7题图)(第8题图)(第9题图)(第10题图) 8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于()A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于()A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__ __.(第11题图)(第12题图)(第13题图)(第14题图) 12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为___.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为___.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=____时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为____.(第15题图)(第17题图)(第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是___度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__ __.(填序号)18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是____.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC ∥DF.21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC 于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC 与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图②,延长CB,DF相交于点G,过点B作BH⊥FG,垂足为H,试判断∠FBH与∠GBH的大小关系,并说明理由.答案:一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是(B)2.下列结论正确的是(D)A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是(D)A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格(第4题图)(第5题图)(第6题图)4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转(A)A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线(C)A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于(A) A.26°B.32°C.25°D.36°(第7题图)(第8题图)(第9题图)(第10题图)8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于(B)A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为(B) A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于(D)A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__相交__.(第11题图)(第12题图)(第13题图)(第12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为__120°__.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为__b(a-1)__.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=__120°__时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__8__.(第15题图)(第17题图)(第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是__90__度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__①②③__.(填序号)18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠r=180°__.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.解:∠2=50°20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC ∥DF.解:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?解:由题意知长方形CDEF的面积为20 cm2,∴10×DE=20,∴DE=2,∴AE=6-2=4,即将长方形ABCD沿着BC方向平移4 cm22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.解:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,又∵∠1=∠2,∴∠EAP=∠FPA,∴AE∥PF,∴∠E=∠F23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.解:∵∠3=∠4,∴CF∥BD,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠BGD,∵∠1=∠2,∴∠1=∠BGD,∴ED∥FB24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC 于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.解:(1)∵∠1+∠AFE=180°,∠CFE+∠AFE=180°,∴∠1=∠CFE,∴BC∥EF (2)∵∠BEG=∠EDF,∴DF∥EH,∴∠DFE=∠GEF,由(1)知BC∥EF,∴∠GEF=∠2,∴∠DFE=∠2,∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC 与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图②,延长CB,DF相交于点G,过点B作BH⊥FG,垂足为H,试判断∠FBH与∠GBH的大小关系,并说明理由.解:(1)BE∥DF.理由:∵BE,DF分别平分∠ABC和∠ADC,∴∠1=12∠ADC,∠ABE=12∠ABC,∵∠ABC+∠ADC=180°,∴∠1+∠ABE=12∠ADC+12∠ABC=12(∠ADC+∠ABC)=12×180°=90°,即∠1+∠ABE=90°,又∵∠1+∠2=90°,∴∠ABE=∠2,∴BE∥DF(2)∠FBH=∠GBH.理由:∵BH⊥FG,∴∠BHG=90°,由(1)知,BE∥DF,∴∠EBH=∠BHG=90°,∴∠FBH+∠ABE=90°,∠GBH+∠CBE=180°-90°=90°,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠FBH=∠GBH。
第一单元《平行线》单元测试卷(较易)(含答案)
浙教版初中数学七年级下册第一单元《平行线》单元测试卷(较易)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 下列四边形中,AB不平行于CD的是( )A. B.C. D.2. 下列生活实例: ①交通路口的斑马线; ②天上的彩虹; ③长方形门框的上下边; ④百米直线跑道; ⑤火车的平直铁轨线.其中属于平行线的有( )A. 1个B. 2个C. 3个D. 4个3. 如图所示,与∠C构成同旁内角的个数为( )A. 1B. 2C. 3D. 44. 如图所示,下列说法错误的是( )A. ∠A与∠EDC是同位角B. ∠A与∠ABF是内错角C. ∠A与∠ADC是同旁内角D. ∠A与∠C是同旁内角5. 如图,∠B的同位角可以是( )A. ∠1B. ∠2C. ∠3D. ∠46. 如图所示,下列能判定AB//EF的条件有( )①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A. 1个B. 2个C. 3个D. 4个7. 如图所示,下列条件中能判定AB//CE的是( )A. ∠B=∠ACBB. ∠B=∠BACC. ∠B=∠ECDD. ∠A=∠ECD8. 如图所示,AB//CD,EF//GH,∠1=65∘,则下列结论中错误的是( )A. ∠2=115∘B. ∠3=65∘C. ∠4=115∘D. ∠5=65∘9. 如图,直线m//n,若∠1=105∘,则∠2的度数为( )A. 55∘B. 65∘C. 75∘D. 105∘10. 如图所示,将三角形ABC平移得到三角形EFG,则图中共有平行线(含虚线)( )A. 3对B. 4对C. 5对D. 6对11. 如图,将边长为5cm的等边△ABC沿边BC向右平移4cm得到△A‘B’C’,则四边形AA‘C’B的周长为( )A. 22cmB. 23cmC. 24cmD. 25cm12. 如图,将△ABC沿BC方向平移至△DEF的位置,针对四边形ABED与四边形ACFD,下列说法中正确的是( )A. 周长与面积都相等B. 周长相等,面积不相等C. 周长不相等,面积相等D. 周长与面积都不相等第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,已知PC//AB,QC//AB,则点P,C,Q在同一条直线上.理由是.14.如图,与∠A是同旁内角的角共有个.15.如图所示,将面积为5的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为.16.如图,直角三角形ABC的周长为100,在其内部有6个小直角三角形,则6个小直角三角形的周长之和为______.三、解答题(本大题共9小题,共72分。
浙教版 七年级下 第一章 平行线 单元测试
第一章 平行线单元检测一、选择题(每题3分,共30分)1.下列所示的四个图形中,∠1和∠2是同位角的是( )A. ②③B. ①②③C. ①②④D.①④2.如图,直线c 与直线a 、b 相交,且a ∥b ,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中,正确的个数为( )A .0个B .1个C .2个D .3个3.两条直线平行被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交 4.如右图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD ( ) A. ∠3=∠4 B. ∠1=∠4C. ∠D=∠DCED. ∠D+∠ACD=180° 5.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A. 第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C. 第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130° 6.两个角的两边分别平行,其中一个角是60°,则另一个角是 ( ) A. 60° B. 120° C. 60°或120° D. 无法确定7.观察下图,在下图四幅图案中,能通过图案(1)的平移得到的是 ( )8.如图,直线c 截直线a 、b ,已知a ∥b 则下列式子中一定成立的是( ) A .∠1=∠5 B .∠1=∠4 C .∠1=∠3 D .∠1=∠2B EC FDA①2121②12③12④(第4题图)(1) A B C D (第2题图)9.如图,将周长为10的三角形ABC 沿BC 方向平移2个单位,得到三角形DEF ,则四边形ABFD 的周长为 ( ) A.10 B.12 C.14 D.1610.如图,在△ABC 中,∠C =90°。
初一(七年级)数学下册平行及相交线单元测试题(附答案)
初一(七年级)数学下册单元测试题第二章相交线与平行线相交线、平行线单元测试题11、一个角的余角是30º,则这个角的大小是.2、一个角与它的补角之差是20º,则这个角的大小是.3、如图①,如果∠= ∠,那么根据可得AD∥BC(写出一个正确的就可以).4、如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 = 度.5、如图③,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD = 28º,则∠BOE = 度,∠AOG = 度.6、时钟指向3时30分时,这时时针与分针所成的锐角是.7、如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度.8、把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70º,则∠B′OG = .9、如图⑥中∠DAB和∠B是直线DE和BC被直线所截而成的,称它们为角.10、如图⑦,正方形ABCD边长为8,M在DC上,且DM = 2,N是AC上一动点,则DN + MN的最小值为.二、选择题(每小题3分,共18分)11、下列正确说法的个数是()①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A . 1, B. 2, C. 3, D. 412、如图⑧,在△ABC中,AB = AC,∠A = 36º,BD平分∠ABC,DE∥BC,那么在图中与△ABC相似的三角形的个数是()A. 0,B. 1,C. 2,D. 313、下列图中∠1和∠2是同位角的是()A. ⑴、⑵、⑶,B. ⑵、⑶、⑷,C. ⑶、⑷、⑸,D. ⑴、⑵、⑸14、下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线.15、一束光线垂直照射在水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()A. 45º,B. 60º,C. 75º,D. 80º16、如图⑨,DH∥EG∥EF,且DC∥EF,那么图中和∠1相等的角的个数是()A. 2,B. 4,C. 5,D. 6三、解答题:17、按要求作图(不写作法,但要保留作图痕迹)(3分)已知点P、Q分别在∠AOB的边OA,OB上(如图).①作直线PQ,②过点P作OB的垂线,③过点Q作OA的平行线.18、已知线段AB,延长AB到C,使BC∶AB=1∶3,D为AC中点,若DC = 2cm,求AB的长. (7分)19、如图,,已知AB∥CD,∠1 = ∠2.求证.:∠E=∠F (6分)20、如图所示,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个判断:⑴ AD = CB⑵ AE = FC⑶∠B = ∠D⑷ AD∥BC请用其中三个作为已知条件,余下一个作为结论,编一道数学问题,并写出解答过程. (8分)21、如图,ABCD是一块釉面砖,居室装修时需要一块梯形APCD的釉面砖,且使∠APC=120º.请在长方形AB边上找一点P,使∠APC=120º.然后把多余部分割下来,试着叙述怎样选取P点及其选取P点的理由.(8分)22、如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E = 140º,求∠BFD的度数. (10分)相交线、平行线单元测试题2(本卷共100分,45分钟完成)1、一个角的余角是30º,则这个角的大小是.2、一个角与它的补角之差是20º,则这个角的大小是.3、如图①,如果∠= ∠,那么根据可得AD∥BC(写出一个正确的就可以).4、如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 = 度.5、如图③,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD = 28º,则∠BOE = 度,∠AOG = 度.6、时钟指向3时30分时,这时时针与分针所成的锐角是.7、如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度.8、把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70º,则∠B′OG = .9、如图⑥中∠DAB和∠B是直线DE和BC被直线所截而成的,称它们为角.10、如图⑦,正方形ABCD边长为8,M在DC上,且DM = 2,N是AC上一动点,则DN + MN的最小值为.五、选择题(每小题3分,共18分)11、下列正确说法的个数是()①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A . 1, B. 2, C. 3, D. 412、如图⑧,在△ABC中,AB = AC,∠A = 36º,BD平分∠ABC,DE∥BC,那么在图中与△ABC相似的三角形的个数是()A. 0,B. 1,C. 2,D. 313、下列图中∠1和∠2是同位角的是()A. ⑴、⑵、⑶,B. ⑵、⑶、⑷,C. ⑶、⑷、⑸,D. ⑴、⑵、⑸14、下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线.15、一束光线垂直照射在水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()A. 45º,B. 60º,C. 75º,D. 80º16、如图⑨,DH∥EG∥EF,且DC∥EF,那么图中和∠1相等的角的个数是()A. 2,B. 4,C. 5,D. 6六、解答题:17、按要求作图(不写作法,但要保留作图痕迹)(3分)已知点P、Q分别在∠AOB的边OA,OB上(如图).①作直线PQ,②过点P作OB的垂线,③过点Q作OA的平行线.18、已知线段AB,延长AB到C,使BC∶AB=1∶3,D为AC中点,若DC = 2cm,求AB的长. (7分)19、如图,,已知AB∥CD,∠1 = ∠2.求证.:∠E=∠F (6分)20、如图所示,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个判断:⑴ AD = CB⑵ AE = FC⑶∠B = ∠D⑷ AD∥BC请用其中三个作为已知条件,余下一个作为结论,编一道数学问题,并写出解答过程. (8分)21、如图,ABCD是一块釉面砖,居室装修时需要一块梯形APCD的釉面砖,且使∠APC=120º.请在长方形AB边上找一点P,使∠APC=120º.然后把多余部分割下来,试着叙述怎样选取P点及其选取P点的理由.(8分)22、如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E = 140º,求∠BFD的度数. (10分)相交线、平行线单元测试题3一、选择题(每题3分,共30分)1. 体育课上,老师测量跳远成绩的依据是( ).(A )平行线间的距离相等 (B )两点之间,线段最短(C )垂线段最短 (D )两点确定一条直线2. 如图1,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A. 同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等3. 如图2所示是“福娃欢欢”的五幅图案,②、③、④、⑤哪一个图案可以通过平移图案①得到( )A .②B .③C .④D .⑤ 4.( 2008年杭州市) 如图, 已知直线 25,115,//=∠=∠A C CD AB , 则=∠E ( )(A) 70 (B) 80 (C) 90 (D)1005.如果∠α与∠β是对顶角且互补,则它们两边所在的直线( ).A.互相垂直 B.互相平行 C.即不垂直也不平行D.不能确定6.如图3,若∠1=70°,∠2=110°,∠3=70°,则有( ).A.a ∥b B.c ∥d C.a ⊥d D.任两条都无法判定是否平行7.汉字“王、人、木、水、口、立”中能通过平移组成一个新的汉字的有( )A.1个B.2个C.3个D.4个8.一副三角扳按如图4方式摆放,且∠1的度数比∠2的度数大54°,则∠1=( )A . 18°B .54°C .72°D .70°图2图1 图3 图4第3个第2个第1个9.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个 B.2个 C.3个 D.4个10.如图6所示,已知∠3=∠4,若要使∠1=∠2,则还需()A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.AB∥CD二、填空题(每题3分,共30分)11.如图7,当剪刀口∠AOB增大21°时,∠COD增大。
第1章 平行线 单元检测卷(含答案)
浙教版2023年七年级下册第1章平行线单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直2.(3分)若将如图平移,则得到的图形是()A.B.C.D.3.(3分)如图,直线a,b被c所截,则∠1与∠2是()A.邻补角B.同位角C.内错角D.同旁内角4.(3分)如图,直线a,b被直线c所截,若a∥b,∠2=110°,则∠1的度数为()A.70°B.75°C.80°D.85°5.(3分)下列说法正确的是()A.a、b、c是直线,若a⊥b,b∥c,则a∥cB.a、b、c是直线,若a⊥b,b⊥c,则a⊥cC.a、b、c是直线,若a∥b,b⊥c,则a∥cD.a、b、c是直线,若a∥b,b∥c,则a∥c6.(3分)如图,下列推理中,正确的是()A.如果∠2=∠4,那么AD∥BCB.如果∠1=∠3,那么AD∥BCC.如果∠4+∠D=180°,那么AD∥BCD.如果∠4+∠B=180°,那么AB∥DC7.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=40°,则∠1=()A.60°B.50°C.40°D.30°8.(3分)如图,三角形ABC的周长是16cm,将三角形ABC向右平移3cm得到三角形DEF,则四边形ABFD的周长是()A.16cm B.18cm C.20cm D.22cm9.(3分)如图,把一张长方形的纸按图那样折叠后,B,C两点落在B1,C1处,若∠AEB1=70°,则∠BEF=()A.70°B.60°C.65°D.55°10.(3分)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB 上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°二.填空题(共5小题,满分20分,每小题4分)11.(4分)下列现象是数学中的平移的是.(填序号)①苹果垂直从树上落下;②电梯从底楼升到顶楼;③骑自行车时轮胎的滚动;④钟摆的摆动.12.(4分)如图,直线a,b被直线c所截,∠3的同旁内角是.13.(4分)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC=度.14.(4分)如图,将Rt△ABC沿着点B到点C的方向平移到△DEF的位置,已知AB=6,HD=2,CF=3,则图中阴影部分的面积为.15.(4分)如图,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=100°,CD与AB在直线EF异侧.若∠DCF=60°,射线AB、CD分别绕A点,C点以1度/秒和6度/秒的速度同时顺时针转动,设时间为t秒,在射线CD转动一周的时间内,当时间t的值为时,CD与AB平行.三.解答题(共7小题,满分50分)16.(6分)如图,指出图中直线AC,BC被直线AB所截的同位角、内错角、同旁内角.17.(6分)如图,已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.证明:∵∠BAD=∠DCB,∠1=∠3(),∴∠BAD﹣=∠DCB﹣(等式的性质),即=.∴AD∥BC().18.(6分)已知:如图,AE与BD相交于点F,∠B=∠C,∠1=∠2.求证:AB∥CE.19.(6分)如图,AF分别与BD、CE交于点G、H,AC分别与BD、CE交于点B、C,DF分别与BD、CE交于点D、E,∠1=55°.若∠A=∠F,∠C=∠D,求∠2的度数.20.(8分)如图,已知点E在直线DC上,射线EF平分∠AED,过E点作EB⊥EF,G为射线EC上一点,连接BG,且∠EBG+∠BEG=90°.(1)求证:∠DEF=∠EBG;(2)若∠EBG=∠A,求证:AB∥EF.21.(8分)如图,AF的延长线与BC的延长线交于点E,AD∥BE,∠1=∠2=30°,∠3=∠4=80°.(1)求∠CAE的度数;(2)求证:AB∥DC.22.(10分)如图1,已知AC∥BD,点P是直线AC,BD间的一点,连接AB,AP,BP,过点P作直线MN∥AC.(1)MN与BD的位置关系是什么,请说明理由;(2)试说明∠APB=∠PBD+∠P AC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:在同一个平面内,两条直线只有两种位置关系,即平行或相交.故选:C.2.【解答】解:将图中所示的图案平移后得到的图案是:,故选:C.3.【解答】解:∠1与∠2是内错角.故选:C.4.【解答】解:如图:∵a∥b,∠2=110°,∴∠3=∠2=110°,∵∠1+∠3=180°,∴∠1=70°.故选:A.5.【解答】解:A、∵a⊥b,b∥c,∴a⊥c,故本选项错误;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项错误;C、当a∥b,b⊥c时,a⊥c,故本选项错误;D、当a∥b,b∥c时,a∥c,故选项正确;故选:D.6.【解答】解:A、由内错角相等,两直线平行可知如果∠2=∠4,那么AB∥CD,不能得到AD∥BC,故此选项不符合题意;B、由内错角相等,两直线平行可知如果∠1=∠3,那么AD∥BC,故此选项符合题意;C、由同旁内角互补,两直线平行可知,如果∠3+∠4+∠D=180°,那么AD∥BC,,故此选项不符合题意;D、由同旁内角互补,两直线平行可知,如果∠3+∠4+∠B=180°,那么AB∥DC,故此选项不符合题意;故选:B.7.【解答】解:如图,∵∠2=40°,∴∠3=90°﹣∠2=50°,∴∠1=50°.故选:B.8.【解答】解:由平移的性质可知,AD=BE=CF=3cm,AB=DE,BC=EF,AC=DF,由于三角形ABC的周长是16cm,即AB+BC+AC=16cm,所以四边形ABFD的周长=AD+AB+BC+CF+DF=AB+BC+AC+AD+CF=16+3+3=22(cm),故选:D.9.【解答】解:∵把一张长方形的纸按图那样折叠后,B,C两点落在B1,C1处,∴∠BEF=∠B1EF,∵∠AEB1=70°,∠AEB1+∠BEF+∠AEB1=180°,∴∠BEF=(180°﹣∠AEB1)==55°.故选:D.10.【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠F AE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.二.填空题(共5小题,满分20分,每小题4分)11.【解答】解:①苹果垂直从树上落下,是平移,②电梯从底楼升到顶楼,是平移,③骑自行车时轮胎的滚动,是旋转,④钟摆的摆动,是旋转,所以,上列现象是数学中的平移的是:①②,故答案为:①②.12.【解答】解:根据题意,∠3的同旁内角是∠6.故答案为:∠6.13.【解答】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=135°,∠BAE=90°,∴∠1=45°,∠2=90°,∴∠ABC=∠1+∠2=135°.故答案为:135.14.【解答】解:由平移的性质知,BE=CF=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC=S梯形ABEH=(AB+HE)•BE=(6+4)×3=15.故答案为:15.15.【解答】解:分三种情况:如图①,AB与CD在EF的两侧时,∵∠BAF=110°,∠DCF=60°,∴∠ACD=180°﹣60°﹣(6t)°=120°﹣(6t)°,∠BAC=100°﹣t°,要使AB∥CD,则∠ACD=∠BAF,即120°﹣(6t)°=100°﹣t°,解得t=4;此时(180°﹣60°)÷6=20,∴0<t<20;②CD旋转到与AB都在EF的右侧时,∵∠BAF=100°,∠DCF=60°,∴∠DCF=360°﹣(6t)°﹣60°=300°﹣(6t)°,∠BAC=100°﹣t°,要使AB∥CD,则∠DCF=∠BAC,即300°﹣(6t)°=100°﹣t°,解得t=40,此时(360°﹣60°)÷6=50,∴20<t<50;③CD旋转到与AB都在EF的左侧时,∵∠BAF=100°,∠DCF=60°,∴∠DCF=(6t)°﹣(180°﹣60°+180°)=(6t)°﹣300°,∠BAC=t°﹣100°,要使AB∥CD,则∠DCF=∠BAC,即(6t)°﹣300°=t°﹣100°,解得t=40,此时t>50,∵40<50,∴此情况不存在.综上所述,当时间t的值为4秒或40秒时,CD与AB平行.故答案为:4秒或40秒.三.解答题(共7小题,满分50分)16.【解答】解:∵直线AC、BC被直线AB所截,∴∠1 与∠2,∠4 与∠DBC是同位角;∠1 与∠3,∠4 与∠5 是内错角;∠3 与∠4 是同旁内角,∠1 与∠5 是同旁内角.17.【解答】证明:∵∠BAD=∠DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式的性质),即∠2=∠4.∴AD∥BC(内错角相等,两直线平行).故答案为:已知,∠1,∠3,∠2,∠4,内错角相等,两直线平行.18.【解答】解:∵∠1=∠2,∴AC∥BD,∴∠C=∠BDE,∵∠B=∠C,∴∠B=∠BDE,∴AB∥CE.19.【解答】解:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF,∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠1=∠AHC=55°,∴∠2=180°﹣∠AHC=125°.20.【解答】证明:(1)∵EB⊥EF,∴∠FEB=90°,∴∠DEF+∠BEG=180°﹣90°=90°.又∵∠EBG+∠BEG=90°,∴∠DEF=∠EBG;(2)∵∠EBG=∠A,∠DEF=∠EBG,∴∠A=∠DEF.∵EF平分∠AED,∴∠AEF=∠DEF,∴∠A=∠AEF,∴AB//EF.21.【解答】(1)解:∵AD∥BE,∴∠CAD=∠3,∵∠2+∠CAE=∠CAD,∠3=80°,∴∠2+∠CAE=80°,∵∠2=30°,∴∠CAE=50°;(2)证明:∵∠2+∠CAE=∠CAD=∠3,∠1=∠2,∠3=∠4,∴∠1+∠CAE=∠4,即∠BAE=∠4,∴AB∥DC.22.【解答】解:(1)平行;理由如下:∵AC∥BD,MN∥AC,∴MN∥BD;(2)∵AC∥BD,MN∥BD,∴∠PBD=∠1,∠P AC=∠2,∴∠APB=∠1+∠2=∠PBD+∠P AC.(3)答:不成立.它们的关系是∠APB=∠PBD﹣∠P AC.理由是:如图2,过点P作PQ∥AC,∵AC∥BD,∴PQ∥AC∥BD,∴∠P AC=∠APQ,∠PBD=∠BPQ,∴∠APB=∠BPQ﹣∠APQ=∠PBD﹣∠P AC.。
数学七年级下学期第1章 平行线单元测试(1)
第1章平行线单元测试卷(A卷基础篇)【浙教版】学校:___________姓名:___________班级:___________考号:___________满分:120分考试时间:100分钟题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,每小题3分,共30分)1.(3分)(2020春•杭州期末)在下列图形中,∠1与∠2是同位角的是()A.B.C.D.2.(3分)(2020春•长葛市期末)下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.3.(3分)(2020春•鹿城区期中)如图所示,∠B与∠3是一对()A.同位角B.内错角C.同旁内角D.对顶角4.(3分)(2020•余姚市模拟)如图,在Rt△ABC中,过顶点C作l∥AB,若∠1=25°,则∠2的度数为()A.35°B.45°C.55°D.65°5.(3分)(2020秋•西湖区校级月考)对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1+∠4=180°B.∠2=∠4C.∠1=∠4D.∠3=∠46.(3分)(2020春•绍兴期中)将一条两边互相平行的纸带按如图所示的方式折叠.若∠1=50°,则∠a 的度数是()A.50°B.65°C.75°D.80°7.(3分)(2020秋•兰州期末)下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是()A.1个B.2个C.3个D.4个8.(3分)(2020春•杭州期末)如图,点E在BC的延长线上,对于给出的四个条件:①∠1=∠3;②∠2+∠5=180°;③∠4=∠B;④∠D+∠BCD=180°.其中能判断AD∥BC的是()A.①②B.①④C.①③D.②④9.(3分)(2020春•滨江区期末)如图,l1∥l2∥l3,∠1,∠2,∠3如图所示,则下列各式正确的是()A.∠3=∠1+∠2B.∠2+∠3﹣∠1=90°C.∠1﹣∠2+∠3=180°D.∠2+∠3﹣∠1=180°10.(3分)(2020春•新昌县期末)如图,已知AB∥CD,则∠α,∠β,∠γ之间的等量关系为()A.∠α+∠β﹣∠γ=180°B.∠β+∠γ﹣∠α=180°C.∠α+∠β+∠γ=360°D.∠α+∠β+∠γ=180°第Ⅱ卷(非选择题)评卷人得分二.填空题(共6小题,每小题4分,共24分)11.(4分)(2020春•黄石港区校级期中)已知:如图,∠1=82°,∠2=98°,∠3=70°,那么直线a 与b的位置关系是,∠4=.12.(4分)(2020春•临颍县期末)我们可以用直尺和三角尺画平行线,如图,在这一过程中,所用到的判断两直线平行的方法是.13.(4分)(2020秋•白银期末)如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于.14.(4分)(2020•黄冈)已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=度.15.(4分)(2020春•柯桥区期末)如图,∠C=90°,将直角三角形ABC沿着射线BC方向平移6cm,得三角形A′B′C′,已知BC=3cm,AC=4cm,则阴影部分的面积为cm2.16.(4分)(2019春•下城区期末)如图,点E在AD的延长线上,下列四个条件:①∠1=∠2;②∠C+∠ABC=180°;③∠C=∠CDE;④∠3=∠4,能判断AB∥CD的是(填序号).评卷人得分三.解答题(共7小题,共66分)17.(6分)(2020春•瑞安市期中)如图,∠1=∠2.(1)试说明:AB∥CD.(2)若∠1=76°,GM平分∠BGH,求∠HMG的度数.18.(8分)(2019秋•邓州市期末)已知如图,已知∠1=∠2,∠C=∠D.(1)判断BD与CE是否平行,并说明理由;(2)说明∠A=∠F的理由.19.(8分)(2020春•长岭县期末)完成下列推理过程:如图,M、F两点在直线CD上,AB∥CD,CB∥DE,BM,DN分别是∠ABC,∠EDF的平分线.求证:BM∥DN.证明:∵BM,DN分别是∠ABC,∠EDF的平分线,∴∠1=∠ABC,∠3=(角平分线定义).∵AB∥CD,∴∠1=∠2,∠ABC=(),∴∠2=∠BCF(等量代换).∵CB∥DE,∴∠BCD=(),∴∠2=(等量代换),∴BM∥DN().20.(10分)(2018秋•丹江口市期末)已知:如图,DG⊥BC,AC ⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()21.(10分)(2019秋•叶县期末)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN 与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.22.(12分)(2019春•嵊州市期末)如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ∥EC交射线CD于点Q,连结CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ的度数;若不存在,请说明理由.23.(12分)(2019春•越城区期中)为更好地理清平行线与相关角的关系,小明爸爸为他准备了四根细直木条AB、BC、CD、DE,做成折线ABCDE,如图1,且在折点B、C、D处均可自由转出.(1)如图2,小明将折线调节成∠B=50°,∠C=85°,∠D=35°,判断AB是否平行于ED,并说明现由;(2)如图3,若∠C=∠D=35°,调整线段AB、BC使得AB∥CD,求出此时∠B的度数,要求画出图形,并写出计算过程.(3)若∠C=85°,∠D=35°,AB∥DE,请直接写出此时∠B的度数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5D 1C B A F E G H 432济宁学院附中李涛
一、选择题
1.在同一平面内,两条直线可能的位置关系是 ( )
(A) 平行. (B) 相交. (C) 相交或平行. (D) 垂直.
2.判定两角相等,不正确的是 ( )
(A ) 对顶角相等.
(B ) 两直线平行,同位角相等.
(C ) ∵∠1=∠2,∠2=∠3,∴∠1=∠3.
(D ) 两条直线被第三条直线所截,内错角相等.
3.两个角的两边分别平行,其中一个角是60°,则另一个角是 ( )
(A )60°. (B )120°.
(C ) 60°或120°. (D ) 无法确定.
4.下列语句中正确的是( )
(A )不相交的两条直线叫做平行线.
(B )过一点有且只有一条直线与已知直线平行.
(C )两直线平行,同旁内角相等.
(D )两条直线被第三条直线所截,同位角相等.
5.下列说法正确的是( )
(A )垂直于同一直线的两条直线互相垂直.
(B )平行于同一条直线的两条直线互相平行.
(C )平面内两个角相等,则他们的两边分别平行.
(D )两条直线被第三条直线所截,那么有两对同位角相等.
6.已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD ,那么图中与∠AGE 相等的角有( )
(A )5个. (B )4个. (C )3个. (D )2个.
二、填空题
7. 如果a ∥b ,b ∥c ,则______∥______,因为________.
8.在同一平面内,如果a ⊥b ,b ⊥c ,则a c ,因为 .
9.填注理由: 如图,已知:直线AB ,CD 被直线EF ,GH 所截,且∠1=∠2,
试说明:∠3+∠4=180°. 解:∵∠1=∠2 ( ) 又∵∠2=∠5 ( )
∴∠1=∠5 ( )
∴AB ∥CD ( ) ∴∠3+∠4=180° ( )
4321l l l l 51432
10.已知:如图,∠1=∠4,∠2=∠3,求证:1l // 2l .
11.已知:如图AD ∥BE ,∠1=∠2,求证:∠A =∠E .
D 1C B A
E 32。