新人教版六年级数学下册比和比例知识点
六年级数学下册概念公式(新人教版)(比和比例)
新人教版六年级数学下总复习概念——(比和比例)姓名: 学号:一、比 1、两个数的比表示两个数相除。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以后项的商,叫做比值。
例: 12 ∶ 20 =2012= 12÷20 = 53 = 0.6 12∶20读作:12比20 区分比和比值:比值是一个数,通常用分数表示,也可以用小数或整数表示。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、两个数的比也可以写成分数形式。
例如:15:10也可以写成1015,仍读作“15比10”。
4、比的前项和后项同时乘或除以相同的数(0除外),比值不变。
这叫做比的基本性质。
5、化简比:化简之后结果还是一个比,不是一个数。
(最简单的整数比:前项和后项是互质关系)(1) 整数比:前项和后项同时除以它们的最大公因数。
(2) 分数比:前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值,再写成比的形式。
(3)小数比:向右移动小数点的位置,也就是先化成整数比。
4、求比值的方法:前项÷后项。
结果是一个数(整数、小数或分数)。
5、比和除法、分数的区别:前项 后项 比号 比值 比值附:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
二、比例1、① 比:两个数相除又叫做两个数的比。
② 比值:比的前项除以后项所得的商叫做比值。
③ 比例:表示两个比相等的式子叫做比例。
④ 组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
⑤ 在比例里,两个外项的积等于两个内项的积。
这叫做比例的基本性质。
⑥ 根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
2、 正比例和反比例① 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
小学六年级_比和比例知识点梳理(最新整理)
复习课:比和比例知识点一: 比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
基本性质化简比的依据。
解比例的依据。
知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)÷除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:(一定)k xy=2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:(一定)k xy =3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系不同点名称意义不相同变化方向不相同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。
(一定)k xy =反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。
整理和复习 第7课时 比和比例(1)——2025学年六年级下册数学人教版
第6单元 整理和复习 1.数与代数
第 7 课时 比和比例(1 )
归纳整理
关于比和比例的知识,你知道什么 ?
比和比例的意义、性质
比
比例
意义
两个数相除又叫 作这两个数的比
表示两个比相等的 式子叫作比例。
各部分 名称
。4 ∶ 2 = 2 前项 后项 比值
6∶3=10∶5
内项 外项
巩固运用
1.(1)写出两个比值都是3的比,并组成比例。
3∶1
6∶2
3∶1=6∶2
(答案不唯一)
(2)写出一个比例,使它的两个内项的积是12 。
2∶3T1)
2.(1)六年级男生有80人,女生有84人,男生与
女生人数之比为__2_0_∶__2_1_。
(2)小明身高160cm,他一庹长也是160cm,二
a ∶b = a = a ÷b b
(b≠0 )
比的基本性质、分数的基本性质、商不变的规律
比的基本 比的前项和后项同时乘或除以相同的数(0除外), 性质 比值不变。
分数的基 分数的分子和分母同时乘或除以相同的数(0除外), 本性质 分数值不变。 商不变 被除数和除数同时乘或除以相同的数(0除外), 的规律 商不变。
比的前项和后项同时乘 在比例里,两个内
基本性质 或者同时除以相同的数 项的积等于两个外
(0除外),比值不变。 项的积。
比与分数、除法的关系
各部分名称
例子
分数 分子 分数线 分母 分数值 5
8
除法 被除数 除号 除数 商 5÷8
比 前项 比号 后项 比值 5∶8
你能用字母表示比、分数 、除法之间的关系吗?
者之比为__1_∶__1___。
六年级下册数学比例知识点
六年级下册数学比例知识点六年级下册数学比例知识点1、比的意义(1)两个数相除又叫做两个数的比(2)“:〞是比号,读作“比〞。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
这叫做比例的基本性质。
7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示x/y=k(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
六年级数学《比和比例》知识点
六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
六年级数学下册总复习《比和比例》
0
40
80
120千米
2、在比例尺是1∶4000000的地图上量 得甲、乙两地的距离是35cm,若把这 两地画在比例尺是1:7000000的地图 上,应画多少长?
3、在一副比例尺1:5000000 的地图上,甲、乙两城间的 距离是2.4cm,一列火车每小 时72千米的速度从甲城开往 乙城,共要几小时?
分 子 6
分 分数的基本性质 数 分数的分母和分子同 值 时乘以或除以相同的 2 数(0除外),比值不变。
三、求比值和化简比 举例 求 比 = 4÷ 值 = 10
2 : 4 5 9 3 5 10 2 3 10 × 5 =5 9 2 =3
一般方法
结果
:
根据比值的意义, 是一个商,可 用前项除以后项。 以是整数、小 所得的商如果是分 数或分数,但 数,不能是假分数。不能是假分数。
轻松学数学 快乐在海卫
例2
(1) X︰( 2 × 5
5 1 )= : 9 10 1 9
(2)(10+5)χ=10×30
(3) 2.3︰X=(9.6 - 4.5)︰10.2
按比例分配是把一个量按一定的比来分配. 解题方法: (1)根据比,得出各部分占总量的几分之 几,即先求出总份数,然后求出各部分量占 总量的几分之几,最后按照求一个数的几分 之几是多少的解题方法,求出各部分的量。 (2)根据比,求出总份数,然后用总 数量 除以总份数, 求出另一份是多少,再用一份 的量乘各部分的份数求得各部分的量。
性质 应用 0.9:0.6=9:(6)=3:(2)
例如:
1. 0.9︰0.6 =(0.9×10)︰(0.6×10) = 9 ︰6 =(9÷3)︰(6÷3) = 3 ︰2 2. 5 ︰6 = 20︰24
(完整版)小学六年级_比和比例知识点梳理
复习课:比和比例知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:〜 k (一定)x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:xy k (一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量, 就不成比例4、正比例、反比例的区别与联系知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。
(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量总份数=平均每份的量(归一)",再用"一份的量各部分量所对应的份数”,求出各部分的量。
用比例知识解答:首先设未知量为。
再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出X。
2、用正、反比例知识解答应用题的步骤(1)分析数量关系。
判断成什么比例。
(2)找等量关系。
如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。
(3)解比例式。
设未知数为X,并代入等量关系式,得正比例式或反比例式。
(4)解比例。
(5)检验并写出答语。
精讲典型题例题1填空(1)一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是(): ()(2)把2米:4厘米化成最简单的整数比是(),比值是()。
六年级下册数学知识点解析:比和比例
次火车自北京西站开往安庆西站,行驶至全程的511再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米两地相距多少千米? ?【分析与解】设北京西站、安庆西站相距多少千米?设北京西站、安庆西站相距多少千米?(511x+56)x+56)::x=60x=60::120120,即,即,即((511x+56)x+56)::x=1x=1::2,即x=1011x+112x+112,解得,解得x=1232x=1232.. 即北京西站、安庆西站两地相距即北京西站、安庆西站两地相距1232千米,千米,3.两座房屋A 和B 各被分成两个单元.若干只猫和狗住在其中.已知:各被分成两个单元.若干只猫和狗住在其中.已知:A A 房第一单元内猫的比率房第一单元内猫的比率((即住在该单元内猫的数目与住在该单元内猫狗总数之比在该单元内猫的数目与住在该单元内猫狗总数之比))大于B 房第一单元内猫的比率;并且A 房第二单元内猫的比率也大于B 房第二单元内猫的比率.试问是否整座房屋A 内猫的比率必定大于整座房屋B 内猫的比率的比率? ?【分析与解】 如下表给出的反例指出:如下表给出的反例指出:如下表给出的反例指出:对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.表中具体写出了各个表中具体写出了各个单元及整座房屋中的宠物情况和猫占宠物总数的比率.单元及整座房屋中的宠物情况和猫占宠物总数的比率. 小升初数学知识点解析:比和比例两个数相除又叫做两个数的比.两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a: b=c a: b=c::d ,则,则(a + c)(a + c)(a + c)::(b + d)= a (b + d)= a::b=c b=c::d ;性质2:若a: b=c a: b=c::d ,则,则(a - c)(a - c)(a - c)::(b - d)= a (b - d)= a::b=c b=c::d ;性质3:若a: b=c a: b=c::d ,则,则(a +x c)(a +x c)(a +x c)::(b +x d)=a (b +x d)=a::b=c b=c::d ;(x 为常数)性质4:若a: b=c a: b=c::d ,则a ×d ×d = = = b×b×b×c c ;(即外项积等于内项积即外项积等于内项积) )正比例:如果a ÷b=k(k 为常数为常数)),则称a 、b 成正比;成正比;反比例:如果a ×b=k(k 为常数为常数)),则称a 、b 成反比.成反比.二、比和比例在行程问题中的体现在行程问题中,因为有在行程问题中,因为有速度速度=路程时间,所以:,所以: 当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.1.A 和B 两个数的比是8:5,每一数都减少34后,后,A A 是B 的2倍,试求这两个数.倍,试求这两个数.【分析与解】方法一:设A 为8x 8x,则,则B 为5x 5x,于是有,于是有,于是有(8x-34):(5x-34)=2(8x-34):(5x-34)=2(8x-34):(5x-34)=2::1,x=17x=17,所以,所以A 为136136,,B 为8585.. 方法二:因为减少的数相同,所以前后A A 、、B 的差不变,开始时差占3份,后来差占1份且与B 一样多,也就是说减少的3434,占开始的,占开始的3-1=2份,所以开始的1份为34÷2=17,所以A 为17×8=136,B 为17×5=85.17×5=85.2.近年来.近年来火车火车大提速,大提速,142714274.家禽场里鸡、鸭、鹅三种家禽中公篱与母篱数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公鸡、母鸡数量之比是1:3,公鸭、母鸭数量之比是3:4.试求公鹅、母鹅的数量比..试求公鹅、母鹅的数量比.【分析与解】 公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的 =21124615:(3544)45:46:(3544)46:47.333345´´+´´=´´+´´=8118751310´=+++,母鸡占总数的310; 公鸭占总数的8338753420´=+++,母鸭占总数的420; 公鹅占总数的213332102020-+=+(),母鹅占总数的234232102020-+=+(),公鹅、母鹅数量之比【分析与解】70cm 的杆子产生影子的长度为175cm;所以影子的长度与杆子的长度比为:所以影子的长度与杆子的长度比为:175175175::70=2.5倍.为322020::3:2.5.在古巴比伦的在古巴比伦的金字塔金字塔旁,旁,其朝西下降的阶梯旁其朝西下降的阶梯旁6m 的地方树立有1根走子,其影子的其影子的前端前端正好到达阶梯的第3阶(箭头箭头)).另外,此时树立l 根长70cm 自杆子,其影子的长度为175cm 175cm,设阶梯各阶的高度,设阶梯各阶的高度与深度都是50cm 50cm,求柱子的高度为多少?,求柱子的高度为多少? 于是,影子的长度为6+1.5+1.6+1.5+1.5×25×25×2.5=11.25.5=11.25.5=11.25,所以杆子的长度为,所以杆子的长度为11.11.25÷225÷225÷2.5=4.5m .5=4.5m .5=4.5m..6.已知三种.已知三种混合物混合物由三种成分A 、B 、C 组成,第一种仅含成分A 和B ,重量比为3:5;第二种只含成分B 和C ,重量比为I :2;第三种只含成分A 和C ,重量之比为2:3.以什么.以什么比例比例取这些混合物,才能使所得的混合物中A ,B 和C ,这三种成分的重量比为3:5:2 ?【分析与解】注意到第一种混合物种A 、B 重量比与最终混合物的A 、B 重量比相同,均为3:5.5.所以,所以,k=65. 标准的时钟每隔56511分钟重合一次.分钟重合一次. 假设经历了假设经历了x 分钟.分钟. 于是,甲钟每隔于是,甲钟每隔52460651124605´´´-分钟重合一次,甲钟重合了246052460´-´×x 次;次; 同理,乙钟重合了同理,乙钟重合了246052460´+´×x 次;次; 于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合 246052460´+´×x-246052460´-´×x=102460´×x=10; 所以,所以,x=24x=24x=24×60;×60;×60; 所以要经历24×60×65511分钟,则为5246065 51165246011´´=´天.于是为65天510(24)10()1111´=天.后来,由一队工人23与二队工人13组成新一队,其余的工人组成新二队.其余的工人组成新二队.两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队结果新二队先将第二种、第三种先将第二种、第三种混合物混合物的A 、B 重量比调整到重量比调整到 3 3 3::5,再将第二种、第三种混合物中A 、B 与第一种混合物中A 、B 视为单一物质视为单一物质. .第二种混合物不含第二种混合物不含A ,第三种混合物不含B ,所以1.5倍第三种混合物含A 为3,5倍第二种混合物含B 为5,即第二种、第三种混合物的重量比为5:1.51.5..于是此时含有于是此时含有C 为5×2+15×2+1..5×3=145×3=14.5.5.5,在最终混合物中,在最终混合物中C 的含量为3A 3A//5B 含量的2倍.有14.14.5÷25÷25÷2-1=6.25-1=6.25-1=6.25,所以含有第一种混合物,所以含有第一种混合物6.256.25..即第一、二、三这三种混合物的即第一、二、三这三种混合物的比例比例为6.256.25::5:1.5=251.5=25::2020::6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样人,其中全体男工和全体女工可用同样天数天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人女工各多少人? ?【分析与解】 直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过方程方程求解,过程会比较繁琐.求解,过程会比较繁琐.设开始男工为“1”,此时女工为“设开始男工为“1”,此时女工为“k k ”,有1名男工相当k 名女工.男工、女工人数对调以后,则男工为“男工为“k k ”,相当于女工“,相当于女工“k k 2”,女工为“I”.,女工为“I”.有k 2:1=361=36::2525,所以,所以于是,开始有男工数为11k+×1100=500人,女工600人.人.8.有甲乙两个钟,甲每天比.有甲乙两个钟,甲每天比标准时间标准时间慢5分钟,而乙每天比标准时间快5分钟,在3月15日的日的零点零点零分的时候两钟正好对准.若已知在某一时刻,乙钟和甲钟时针与分针都分别重合,且在从3月15日开始到这个时候,乙钟时针与分针重合的次数比甲钟多10次,那么这个时候的标准时间是多少次,那么这个时候的标准时间是多少? ?【分析与解】 小时106(60)541111´=分钟.分钟.9.一队和二队两个.一队和二队两个施工施工队的人数之比为3:4,每人工作效率之比为5:4,两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工96÷147=282´´´´282×4645天.天.144:(282×:(282×4645)=(144×45):(282×46))=(144×45):(282×46)=540。
人教版六年级数学下册第六单元第十三课时_比和比例—比例
32 32 9 2 两个圆面积的比: 2 5 5 25
结论:两个圆半径的比=两个圆直径的比=两个圆周长的比 两个圆面积的比=两个圆半径的平方的比
4
李阿姨是剪纸艺人。平时李阿 姨每天工作6小时,剪出72张 纸;节日期间,李阿姨每天要 工作8小时,能剪出96张剪纸。
(1)写出李阿姨平时和节日期间剪 纸张数及相应工作时间的比。
102 x 360 82 360 64 x 10 x 230.4
x 231
答:需要231块。
变化2:会场铺地, 360块可铺40 平方米,再添 540块,一共铺地多少平方米? 解:设一共铺地x平方米。
40 x 360 360 540
ห้องสมุดไป่ตู้
x 100
答:一共铺地100平方米。
解比例的方法: 根据比例的基本性质,把比例式转化为乘积相 等的等式,再根据以前学过的解方程的方法求解。
比例尺:
一幅图的图上距离和实际距离的比,叫做 这幅图的比例尺。
图上距离 :实际距离 比例尺
或
图上距离 比例尺 实际距离
图上距离 比例尺 实际距离 实际距离 比例尺 图上距离
比例尺的分类:
数值比例尺 按形式分: 线段比例尺
0 50km
1:5000000
缩小比例尺
1:5000000 50:1
按用途分:
放大比例尺
正比例和反比例的对比:
正比例 反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。 变 化 规 律 关 系 式 变化的方向相同,一种 量扩大(或缩小),另一 种量也扩大(或缩小)。 相对应的两个数的比值 (商)一定。
人教版六年级数学下册第六单元
小学六年级数学知识点:比和比例的区别
小学六年级数学知识点:比和比例的区别
比:两个数相除又叫两个数的比。
比号前面的数叫比的前项,比号后面的数叫比的后项。
比值:比的前项除以后项的商,叫做比值。
比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。
比例:表示两个比相等的式子叫做比例。
a:b=c:d或
比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。
正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。
反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。
比例尺:图上距离与实际距离的比叫做比例尺。
按比例分配:把几个数按一定比例分成几份,叫按比例分配。
温馨提示:在数学学习方面掌握好数学知识点很重要,由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,学好数学就并不困难,希望这篇小学六年级数学知识点:比和比例的区别可以对大家有所帮助。
人教版数学六年级下册 第六单元复习第7课时 比和比例
4.某造纸厂每小时造纸1.5吨,2小时、3小时…… 各造纸多少吨?
造纸时间/时 1 2 3 4 … 造纸吨数/吨 1.5 3 4.5 6 …
(3)造纸吨数 与造纸时间成 正比例关系吗? 为什么?
造纸吨数与造纸时间成正比 例关系。因为“造纸吨数÷ 造纸时间=每小时造纸吨 数”,每小时造纸吨数一定。
5.在一幅比例尺是1∶5000000的地图上,量得两地之 间 的 距 离 是 2.4 厘 米 。 如 果 将 这 两 地 画 在 比 例 尺 是 1∶15000000的地图上,两地之间的图上距离是多少 厘米?
正比例:两种相关联的量,一种量变化,另 一种量也随着变化,如果这两种量中相对应 的两个数的比值一定,这两种量就叫作成正 比例的量,它们的关系叫作正比例关系。
反比例:两种相关联的量,一种量变化,另 一种量也随着变化,如果这两种量中相对应 的两个数的乘积一定,这两种量就叫作成反 比例的量,它们的关系叫作反比例关系。
解比例的依据。
教材第83页第1题
2.比与分数、除法有什么联系?先填写下表,再 说一说它们的区别。
名称
各部分名称
例子
分数 分子 分数线 分母 分数值 -58
除法 被除数 除号 除数 商 5÷8
区别 一个数 一种运算
比
前项
比号
后项 比值
5∶8
表示两个数 相除的关系
教材第83页第2题
3.比的基本性质、分数的基本性质、商不变的规 律之间有什么联系?
6 整理和复习
1.数与代数
第7课时 比和比例
人教版数学六年级(下)
复习导入
关于比和比例的知识,你知道什么?它们 有什么区别和联系?
复习回顾“比和比例”部分所学知识, 尝试回答教材第83页的问题。
六年级下册数学专题-比和比例
知识点一:认识比1、两个数相除又叫两个数的比,任何两个相关数量的比都可以抽象为两个数的比。
知识点二:比、除法、分数的关系2、比、除法、分数之间的联系:知识点三:比值的计算方法3、计算方法:求两个数的比的比值,就是用比的前项除以后项。
4、比和比值的区别:(1)比表示的是两个数的一种关系;比值是一个数值; (2)比可以写成bab a 或:的形式;比值可以是分数、小数或整数。
知识点四:比的基本性质5、比的前项、后项同时乘或除以相同的数(0除外),比值不变。
这叫做比的基本性质。
知识点五:化简比6、如果比的前项和后项都是整数,化简时可直接把比的前项和后项同时除以它们的最大公因数。
比 前项 比号 后项 比值 除法 被除数 除号 除数 商 分数 分子分数线分母分数值比和比例知识归纳提示:在以后解决问题或计算时,求两个数或几个数的比,如果没有特殊要求,一般要求出最简单的整数比。
知识点六:比例的意义7、比例的意义:表示两个比相等的式子叫做比例。
比例中有两个内项和两个外项。
拓展:比和比例的联系:比例是由比组成的。
比和比例的区别:(1)意义不同,比表示两个数相除的关系;比例表示两个比相等的关系 (2)形式不同,比由两项组成,比例由四项组成。
知识点七:比例的基本性质8、在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
如果用字母表示比例的四个项,d c b a ::=,那么比例的基本性质可以表示成c b d a ⨯=⨯。
拓展:(1)根据比例的基本性质,可以判断两个比能否组成比例。
(2)组成比例的4个数最多可以组成8个不同的比例。
(3)根据比例的基本性质,已知比例中的任意三项,就可以求出第四项。
知识点八:解比例9、根据比例的基本性质,把两个外项和两个内项分别相乘,将比例式改写成c b d a ⨯=⨯的形式,再解方程求出x 的值。
【例1】 比的意义:一辆汽车3小时行驶了150千米,这辆汽车行驶的路程和时间的比是多少?比值是多少?比值表示什么?【练习】甲3小时走15千米,乙4小时走24千米。
人教版小学六年级数学比的知识点总结
人教版六年级比的知识点总结比:两个数相除也叫两个数的比。
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
比如:3:4:读作:3比42、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20=12÷20=1220读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,要写成比的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
例:1:2= (1X6):(2X6)= 6:12 、 8:2=(8÷2):(2÷2)4、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
24:16 = (24÷8):(16÷8)=2:3(2)、两个分数的比,可以求出比值再写成比的形式。
1 2:34= 12÷34= 12X 43= 23= 2:3(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
0.5:0.8 = 5:85、求比值:把比号写成除号再计算,结果是一个数(或分数或小数),相当于商,是数的形式,不是比。
6:3 = 6 ÷ 3 =2 1:8 = 1÷8 =0.125例: 5:6 = 566、比和除法、分数的联系:7、分数除法和比的应用1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?乙看成单位“1”甲=乙×几分之几对应量= 单位“1”的量X对应分率乙=甲÷几分之几单位“1”的量 = 对应量÷对应分率几分之几=甲÷乙对应分率 = 对应量÷单位“1”的量(2)甲比乙多几分之几?甲=乙×(1+几分之几)乙=甲÷(1+几分之几)甲= 乙×(1-几分之几)乙=甲÷(1-几分之几)8、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
六年级数学下册比例讲义
六年级数学下册比例讲义知识点一、比和比例(一)比和比例的意义和基本性质例题1:应用比例的意义判断6.4 : 4和9.6 : 6能否组成比例?因为:6.4 : 4 = 6.4 ÷4 = 1.6 9.6 : 6 = 9.6 ÷ 6 = 1.6所以:6.4 : 4 = 9.6 : 6例题2:运用比例的基本性质判断3.6 :1.8和0.5 :0.25能否组成比例?因为 3.6 × 0.25 = 0.9 1.8 × 0.5 = 0.9所以 3.6 :1.8 = 0.5 :0.25例题3:从12的因数中任意选出4个数,再组成8个比例式。
因为:12 = 1 × 12 = 2 × 6 = 3 × 4所以从12的因数中任意选出两组4个数并运用比例的基本性质可以组成8个不同的比例。
2 × 6 = 3 ×4(2)︰(3)= (4)︰(6)(3)︰(2)= (6)︰(4)(2)︰(3)= (4)︰(6)(3)︰(2)= (6)︰(4)(6)︰(4)= (3)︰(2)(4)︰(6)= (2)︰(3)(6)︰(4)= (3)︰(2)(4)︰(6)= (2)︰(3)(二)比、除法和分数的关系联 系 区别 比6:3=2 前项 比号 后项 比值 比的基本性质 一种关系 除法6÷3=2 被除数 除号 除数 商 商不变的性质 一种运算 分数6/3=2分子分数线分母分数值分数的基本性质一个数(三)求比值和化简比举例 一般方法结果求比值4:2/5=4÷2/5根据比值的意义,用前项除以后项 是一个商,可以是整数、小数或分数化简比4:2/5=20:2=10:1根据比的基本性质,把比的前项和后项同时乘上或除以相同的数(0除外)是一个最简整数比。
(前项和后项互质)解比例3 : 8 = ⅹ : 40 8x=3×40 8x=120 X=15 根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。
人教版六年级数学下册 比例 知识点归纳
《比例》知识点归纳
知识点一、比例的概念与性质
1、两个比相等的式子叫做比例。
2、组成比例的四个数,叫做比例的项。
两端的项叫做比例的外项,中间的项叫做比例的内项。
例、
3、比例的基本性质:在比例里,两个外项之积等于两个内项之积。
4、比例的另一个性质:在比例里,两个外项交换位置或者两个内项交换位置,比例依然成立。
知识点二、正比例与反比例
1、一种量变化,另一种量也随之变化,而且这两种量对应的数的比值一定,那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
字母表示:y
=k(k一定)。
x
2、一种量变化,另一种量也随之变化,而且这两种量对应的数的乘积一定,那么这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
字母表示:xy=k(k一定)。
3、如果两种量既不成正比,也不成反比,我们就说它们不成比例。
知识点三、比例尺
1、比例尺=图上距离:实际距离
2、比例尺有3种表示方法:数值比例尺、线段比例尺、文字比例尺。
它们之间可以互相转换。
例1、1:100000 “图上距离1厘米等于实际距离100千米”
数值比例尺线段比例尺文字比例尺
3、比例尺可以分成2类:放大比例尺、缩小比例尺。
例2、10:1是放大比例尺,表示图上距离是实际距离的10倍。
例3、1:10是缩小比例尺,表示图上距离是实际距离的1
10
温馨提示:计算比例尺时,一定要先把单位化为一致,再用比的基本性质来解比例。
人教版六年级比例知识点
人教版六年级比例知识点六年级数学知识点:比例比例是数学中常见的概念,它描述了两个或多个数量之间的关系。
在六年级数学课程中,学生将学习关于比例的基本概念和解题方法。
本文将介绍人教版六年级数学教材中的比例知识点,包括比例的定义、比例的性质和比例的应用。
一、比例的定义比例是指两个或多个量之间的相对关系。
当两个量之间的比相等时,我们称之为比例。
比例通常用冒号(:)或分数形式表示。
例如,如果一个菜单上列出的两种汉堡的价格分别是10元和15元,我们可以表示为10:15或者10/15。
这表示了两种汉堡价格之间的比例关系。
二、比例的性质比例有一些基本的性质,包括比例的交换律、比例的可加性和比例的可减性。
1. 比例的交换律:如果a:b的比例相等于c:d的比例,那么b:a的比例也相等于d:c的比例。
例如,如果两辆汽车的速度比为3:4,那么这两辆汽车的速度比也可以表示为4:3。
交换律说明了比例的顺序对结果没有影响。
2. 比例的可加性:如果a:b的比例相等于c:d的比例,那么a+c:b+d的比例也相等于c:d。
例如,如果一只猫吃了2条鱼,而一只狗吃了3条鱼,那么两只动物一共吃了多少条鱼呢?我们可以计算出:2+3:2+3,即5:5,也就是1:1。
这说明了比例的可加性。
3. 比例的可减性:如果a:b的比例相等于c:d的比例,那么a-c:b-d的比例也相等于c:d。
例如,一张纸板被切成了两段,比例是2:3。
如果我们从每一段中分别切下相等的长度,那么这两段余下的部分的比例仍然是2:3。
这说明了比例的可减性。
三、比例的应用比例在生活中有许多应用,尤其是在解决实际问题时。
在六年级数学教材中,我们学习了一些应用比例的方法,如比例尺和数学模型。
1. 比例尺:比例尺是指地图上距离和实际距离之间的比例关系。
比例尺通过一个比例来表示,常见的比例尺有1:1000、1:500和1:100等。
使用比例尺,我们可以根据地图上的距离来估算实际距离。
例如,一张地图的比例尺是1:1000,两个城市在地图上的距离是5厘米。
人教版六年级数学下册第四单元知识点总结
第四单元比例一、比例的意义旧知识复习1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
新知识学习5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
例如:提示:组成比例的两个比既可以写成带比号的形式,也可以写成分数的形式,但读法相同。
例如:a:b=c:d或ab =cd(b、d≠0)提示:如果4个不同的数能组成比例,那么这4个数一共能组成8个不同的比例。
6、判断两个比能否组成比例的方法:(1)可以根据比例的意义,看两个比的比值是否相等。
(2)可以根据比的基本性质,化简两个比。
7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
二、比例的基本性质解比例1、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版六年级数学下册比和比例知识点
---------判断两个量是否成正比例、反比例或不成比例
一、写(写出数量关系式)
1、根据数量间的关系或公式,写出数量关系式。
如,①宽一定,长方形的面积和长是否成正比例。
根据“长方形的面积=长×宽”得到“
宽(一定)长
长方形的面积
”,因为长方形的面积和长是相关联的量,宽一定,也就是它们的比值一定,
所以“宽一定,长方形的面积和长是成正比例”。
②圆锥的体积一定,底面积和高是否成反比例。
根据“底面积×高×3
1
=圆锥的体积”得到“底面积×
高=圆锥的体积×3”,因为底面积和高是相关联的量,圆锥的体积一定,“圆锥的体积×3"的结果也一定,就是底面积和高的积一定(底面积×高=圆锥的体积×3(一定)),所以圆锥的体积一定,底面积和高是成反比例。
2、注意:写出的数量关系式,其中的一边(左边)只能有这两个相关联的量,不能有多余的量和数字。
如,“(长+宽)×2=长方形的周长”的左边就多了×2,应变为“(长+宽)=2
长方形的周长
”
又如,梯形的上底和下底不变,面积和高。
可以这样写关系式: (a +b )×h ÷2=s →(a +b )×h ÷2÷h=s ÷h →(a +b )÷2 =s ÷h →
s ÷h=(a +b )÷2,因为上底和下底不变,(a +b )÷2的结果也是一定的,所以梯形的上底和下底不变,面积和高成正比例。
3、还有些数量之间是无法写关系式的。
如,“小明的身高和跳高的高度成正比例”是无法写出关系式的。
二、看(1、看是否相关联2、看是否能变化3、看是否商(积)一定) 1、看是否相关联:也就是一个量变化了,另一个量是否也会随着变化。
如,长方形的面积一定,长和宽就是相关联的量,因为长变化了,宽也会随着变化。
又如,圆的周长一定,π和直径就不是相关联的量。
因为不管直径怎么变,π总是等于3.14……,不会随直径而改变。
2、看是否能变化:也就是这两个量都是能变化的,不是固定的。
如,上例的π就不是能变化的量。
如,“边长×边长=正方形的面积(一定)”,因为正方形的面积(一定),所以边长也只能是固定的,不是变量。
所以,正方形的面积(一定),边长和边长不成比例。
3、看是否商(积)一定:也就是这两个量相除(或相乘)的结果是否固定不变的。
如,圆的周长和直径成正比例。
因为圆的周长和直径的比值等于π,π是固定的数,即圆的周长和直径的比值一定的。
π(一定)直径
圆的周长。