质粒构建-protocol
质粒转染protocol
1. 细胞分盘:通过胰酶消化收集细胞,用适当的完全培养基以1×105 至4×105 细胞/cm2 的密度平铺细胞于60 mm 组织培养皿上(根据实验需要选择培养皿,使细胞贴壁后所占面积达到培养皿总面积的30%)。
将细胞置于含5%
CO2 的37℃温箱中孵育8-24 h,当细胞贴壁完全后即可开始转染。
转染前2 h 换
液(用4 ml 新鲜的完全培养基置换旧的培养基)。
注:为得到较高的转染效率,尽量使用指数生长的细胞,转染时细胞的密度不超过80%。
2. 制备磷酸钙-DNA 沉淀:以60 mm 组织培养皿用480 μl 反应总体积,6孔板培养皿用240ul反应体系。
在灭菌水中加入质粒DNA(总量1-3 μg 为佳),
3.再加入48ul的10*HBS,vortex 3s左右,再加入24ul的5*CaCl2,vortex 10s
,静置12min,将磷酸钙-DNA悬液逐滴加入上述单层细胞的细胞培养基中,轻轻摇动平皿混匀。
注:可以观察到滴入的部位培养基瞬间会出现浑浊的橘黄色,应尽快将其混匀,避免形成过大的颗粒,影响转染效率。
3.若转染的细胞不用转染促进剂处理,则置于含5%CO2 的37℃温箱孵育。
8 h 后吸去培养基与DNA 沉淀,加入5 ml 37℃预热的完全培养基,继续将细胞放
置温箱孵育,16-40 h 观察其转染效率。
质粒构建 (2)
质粒构建1. 引言质粒是一种重要的实验工具,广泛应用于基因工程、遗传学和生物学研究中。
质粒构建是指将感兴趣的DNA片段插入到质粒中的过程,用于进一步研究DNA序列的功能和相互作用。
本文将介绍质粒构建的基本原理和步骤。
2. 质粒构建的基本原理质粒构建需要以下几个基本要素:•质粒:质粒是一种环状的DNA分子,可存在于细菌、酵母等生物体内。
•DNA片段:DNA片段是质粒构建中要插入质粒的感兴趣DNA序列,可以通过PCR扩增、基因合成等方法得到。
•限制酶:限制酶是一种特殊的酶,能够识别和切割DNA的特定序列。
•连接酶:连接酶是一种酶,能够将DNA片段与质粒连接起来。
基于以上要素,质粒构建的基本原理如下:1.将质粒和目标DNA片段分别进行限制性内切酶切割。
限制酶切割会产生粘性末端或平滑末端的DNA片段。
2.使用连接酶将目标DNA片段与质粒连接起来。
连接酶能够将两条DNA片段的末端连接起来,形成一个完整的质粒。
3.利用转化或转染等方法将质粒导入到宿主细胞中。
质粒在宿主细胞中进行复制和表达。
3. 质粒构建的步骤质粒构建的具体步骤如下:3.1 质粒提取从质粒宿主细胞中提取质粒是质粒构建的第一步。
常用的质粒提取方法包括碱裂解法、盐溶解法、商业提取试剂盒等。
质粒提取的目的是获取纯度较高的质粒样本,便于后续实验操作。
3.2 目标DNA片段的获取目标DNA片段可以通过PCR扩增、基因合成等方法得到。
PCR扩增需要设计引物,引物的序列与目标DNA片段的两端相互衔接。
基因合成则需要将目标DNA序列依照设定的序列进行化学合成。
3.3 DNA片段与质粒的连接将目标DNA片段与质粒进行连接,需要使用连接酶。
连接酶则需要根据DNA片段和质粒的不同情况选择合适的连接酶和反应条件。
连接酶反应通常包括连接酶、DNA片段和质粒的混合体系,以及一定的温度和时间。
3.4 转化或转染将连接好的质粒导入到宿主细胞中,以使质粒在宿主细胞中进行复制和表达。
pLKOshRNA病毒质粒载体构建protocol方法详解
pLKOshRNA病毒质粒载体构建protocol⽅法详解Search for Plasmids:Home Deposit Plasmids Request PlasmidsInformationBrowseSearchPricingFAQProtocols > pLKO.1 ProtocolpLKO.1 - TRC Cloning VectorAddgene Plasmid 10878. Protocol Version 1.0. December 2006.Copyright Addgene 2006, All Rights Reserved. This protocol is provided for yourconvenience. See warranty information in appendix.Click here for a printable copy.Table of ContentsA. pLKO.1-TRC Cloning Vectoro A.1 The RNAi Consortiumo A.2 Map of pLKO.1o A.3 Related plasmidsB. Designing shRNA Oligos for pLKO.1o B.1 Determine the optimal 21-mer targets in your geneo B.2 Order oligos compatible with pLKO.1C. Cloning shRNA oligos into pLKO.1o C.1 Recommended materialso C.2 Annealing oligoso C.3 Digesting pLKO.1 TRC-Cloning Vectoro C.4 Ligating and transforming into bacteriaD. Screening for Insertso D.1 Recommended materialsPlasmid CartYour cart is empty.Recently ViewedpLKO.1 - TRC clo...Plasmid 10878pLVTHMPlasmid 12247Mammalian RNAi T...Collectiono D.2 Screening for insertsE. Producing Lentiviral Particleso E.1 Recommended materialso E.2 Protocol for producing lentiviral particles ? F. Infecting Target Cellso F.1 Recommended materialso F.2 Determining the optimal puromycin concentrationo F.3 Protocol for lentiviral infection and selection ?G. SafetyH. Referenceso H.1 Published articleso H.2 Web resourcesI. Appendixo I.1 Sequence of pLKO.1 TRC-Cloning Vectoro I.2 Recipeso I.3 Warranty informationBack to TopA. pLKO.1-TRC Cloning VectorA.1 The RNA i ConsortiumThe pLKO.1 cloning vector is the backbone upon which The RNAi Consortium (TRC) has built a library of shRNAs directed against 15,000 human and 15,000 mouse genes. Addgene is working with the TRC to make this shRNA cloning vector available to the scientific community. Please cite Moffat et al., Cell 2006 Mar; 124(6):1283-98 (PubMed) in all publications arising from the use of this vector.A.2 Map of pLKO.1pLKO.1 is a replication-incompetent lentiviral vector chosen by the TRC for expression of shRNAs. pLKO.1 can be introduced into cells via direct transfection, or can be converted into lentiviral particles for subsequent infection of a target cell line. Once introduced, the puromycin resistance marker encoded in pLKO.1 allows for convenient stable selection.A.3 Related ProductsThe following plasmids available from Addgene are recommended for use in conjunction with the pLKO.1 TRC-cloning vector.Note: pLKO.1 can also be used with packaging plasmid pCMV-dR8.2 dvpr (Addgene #8455) and envelope plasmid pCMV-VSVG (Addgene#8454) from Robert Weinberg's lab. For more information, visit Addgene's Mammalian RNAi Tools page.Several other laboratories have deposited pLKO derived vectors that may also be useful for your experiment. To see these vectors, visit Addgene's website and search for "pLKO".Back to TopB. Designing shRNA Oligos for pLKO.1B.1 Determining the Optimal 21-mer Targets in your GeneSelection of suitable 21-mer targets in your gene is the first step toward efficient gene silencing. Methods for target selection are continuously being improved. Below are suggestions for target selection.1. Use an siRNA selection tool to determine a set of top-scoring targets for your gene. For example, the Whitehead Institute for Biomedical Research hosts an siRNA Selection Program that can be accessed after a free registration(/doc/c66f21e6f8c75fbfc77db279.html /bioc/siRNAext/). If you have MacOS X, another excellent program is iRNAi, which is provided free by the company Mekentosj(/doc/c66f21e6f8c75fbfc77db279.html /irnai/).A summary of guidelines for designing siRNAs with effective gene silencing is included here:Starting at 25nt downstream of the start codon (ATG), search for 21nt sequences that match the pattern AA(N19). If no suitablematch is found, search for NAR(N17)YNN, where N is anynucleotide, R is a purine (A,G), and Y is a pyrimidine (C,U).G-C content should be 36-52%.Sense 3' end should have low stability – at least one A or T between position 15-19.Avoid targeting introns.Avoid stretches of 4 or more nucleotide repeats, especially repeated Ts because polyT is a termination signal for RNA polymerase III.2. To minimize degradation of off-target mRNAs, use NCBI's BLAST program. Select sequences that have at least 3 nucleotide mismatches to all unrelated genes.Addgene recommends that you select multiple targetsequences for each gene. Some sequences will be more effectivethan others. In addition, demonstrating that two different shRNAsthat target the same gene can produce the same phenotype willalleviate concerns about off-target effects.B.2 Ordering Oligos Compatible with pLKO.1To generate oligos for cloning into pLKO.1, insert your sense and antisense sequences from step B.1 into the oligos below. Do not change the ends; these bases are important for cloning the oligos into the pLKO.1 TRC-cloning vector.Forward oligo:5' CCGG—21bp sense—CTCGAG—21bp antisense—TTTTTG 3'Reverse oligo:5' AATTCAAAAA—21bp sense—CTCGAG—21bp antisense 3'For example, if the target sequence is (AA)TGCCTACGTTAAGCTATAC, the oligos would be:Forward oligo:5'CCGG AATGCCTACGTTAAGCTATAC CTCGAG GTATAGCTTAACGTA GGCATT TTTTTG 3'Reverse oligo:5'AATTCAAAAA AATGCCTACGTTAAGCTATAC CTCGAG GTATAGCTTA ACGTAGGCATT 3'Back to TopC. Cloning Oligos into pLKO.1The pLKO.1-TRC cloning vector contains a 1.9kb stuffer that is releasedupon digestion with EcoRI and AgeI.The oligos from section B contain the shRNA sequence flanked by sequences that are compatible with the sticky ends of EcoRI and AgeI. Forward and reverse oligos are annealed and ligated into the pLKO.1 vector, producing a final plasmid that expresses the shRNA of interest.C.1 Recommended MaterialsC.2 A nnealing Oligos1. Resuspend oligos in ddH2O to a concentration of 20 µM, then mix:5 µL Forward oligo5 µL Reverse oligo5 µL10x NEB buffer 235 µL ddH2O2. Incubate for 4 minutes at 95o C in a PCR machine or in a beaker of boiling water.3. If using a PCR machine, incubate the sample at 70o C for 10 minutes then slowly cool to room temperature over the period of several hours. If using a beaker of water, remove the beaker from the flame, and allow the water to cool to room temperature. This will take a few hours, but it is important for the cooling to occur slowly for the oligos to anneal.C.3 Digesting pLKO.1 TRC Cloning Vector1. Digest pLKO.1 TRC-cloning vector with AgeI. Mix:6 µg pLKO.1 TRC-cloning vector (maxiprep or miniprep DNA)5 µL10x NEB buffer 11 µL AgeIto 50 µL ddH2O> Incubate at 37o C for 2 hours.2. Purify with Qiaquick gel extraction kit. Elute in 30 µL of ddH2O.3. Digest eluate with EcoRI. Mix:30 µL pLKO.1 TRC-cloning vector digested with AgeI5 µL10x NEB buffer for EcoRI1 µL EcoRI14 µL ddH2O> Incubate at 37o C for 2 hours.4. Run digested DNA on 0.8% low melting point agarose gel until you can distinctly see 2 bands, one 7kb and one 1.9kb. Cut out the 7kb band and place in a sterile microcentrifuge tube.When visualizing DNA fragments to be used for ligation, useonly long-wavelength UV light. Short wavelength UV light willincrease the chance of damaging the DNA.5. Purify the DNA using a Qiaquick gel extraction kit. Elute in 30 µL of ddH2O.6. Measure the DNA concentration.C.4 Ligating and Transforming into Bacteria1. Use your ligation method of choice. For a standard T4 ligation, mix:2 µL annealed oligo from step C.2.20 ng digested pLKO.1 TRC-cloning vector from step C.3. (If you were unable to measure the DNA concentration, use 1 µL) 2 µL10x NEB T4 DNA ligase buffer 1 µL NEB T4 DNA ligaseto 20 µL ddH2O> Incubate at 16o C for 4-20 hours.2. Transfo rm 2 µL of ligation mix into 25 µL competent DH5 alpha cells, following manufacturer's protocol. Plate on LB agar plates containing 100 µg/mL ampicillin or carbenicillin (an ampicillin analog).Back to TopD. Screening for InsertsYou may screen for plasmids that were successfully ligated by restriction enzyme digestion. However, once you have identified the positive clones, it is important to verify the insert by conducting a sequencing reaction.D.1 Recommended MaterialsD.2 Screening for InsertsDay 1:1. Innoculate 5 colonies from each ligation into LB + 100 µg/mLampicillin or carbenicillin.Day 2:2. Spin down the cultures and use a miniprep kit to obtain DNA.3. Conduct a restriction digest with EcoRI and NcoI:1 µg miniprep DNA2 µL10x NEB buffer for EcoRI0.8 µL EcoRI0.8 µL NcoIto 20 µL ddH2O> Incubate at 37o C for 1-2 hours.4. Run the digestion products on a 1% agarose gel. You shouldsee two fragments, a 2kb fragment and a 5kb fragment.5. Sequence positive clones with pLKO.1 sequencing primer (5'CAA GGC TGT TAG AGA GAT AAT TGG A 3').You may need to adjust the sequencing conditions if theDNA polymerase has difficulty reading through thesecondary structure of the hairpin sequence.Back to TopE. Producing Lentiviral ParticlesBefore this step, you must contact your institution's Bio-Safety office to receive permission and institution-specific instructions. You must follow safety procedure s and work in an environment (e.g. BL2+) suitable for handling HIV-derivative viruse s.For transient knockdown of protein expression, you may transfect plasmid DNA directly into the target cells. The shRNA will be expressed, but the DNA is unlikely to be integrated into the host genome.For stable loss-of-function experiments, Addgene recommends that you generate lentiviral particles and infect the target cells. Addition of puromycin will allow you to select for cells that stably express your shRNA of interest.E.1 Recommended MaterialsNote: pLKO.1 could also be packaged using pCMV-dR8.2 dvpr and pCMV-VSVG from the Robert Weinberg lab. For more information, visit Addgene's Mammalian RNAi Tools page.E.2 Protocol for Producing Lentiviral ParticlesThis protocol is for transfection in a 6 cm plate. The protocol can be scaled to produce different amounts of virus as needed. Day 1:a. For each plasmid to be transfected, plate 7x105 HEK-293T cellsin 5 mL of media in a 6 cm tissue culture plate. Incubate cells at37o C, 5% CO2 overnight.Although cells should regularly be passaged in DMEM +10% FBS with penicillin/streptomycin, cells should beplated at this step in DMEM + 10% FBS without antibiotics(no penicillin or streptomycin).Day 2:b. Perform the transfection in the late afternoon because thetransfection mix should only be incubated with the cells for 12-15hours.c. In polypropylene microfuge tubes (do NOT use polystyrenetubes), make a cocktail for each transfection:1 µg pLKO.1 shRNA plasmid750 ng psPAX2 packaging plasmid250 ng pMD2.G envelope plasmidto 20 µl serum-free OPTI-MEMYou may want to vary the ratio of shRNA plasmid,packaging plasmid, and envelope plasmid to obtain theratio that gives you the optimal viral production.d. Create a master mix of FuGENE? 6 transfection reagent inserum-free OPTI-MEM. Calculate the amount of Fugene? andOPTI-MEM necessary given that each reaction will require 6 µLFuGENE? + 74 µL OPTI-MEM. For example:1x master mix: 6 µL FuGENE? + 74 µL OPTI-MEM5x master mix: 30 µL FuGENE? + 370 µL OPTI-MEM10x master mix: 60 µL FuGENE? + 740 µL OPTI-MEM In a polypropylene tube, add OPTI-MEM first. Pipette FuGENE? directly into the OPTI-MEM - do not allow FuGENE? to come incontact with the walls of the tube before it has been diluted. Mix byswirling or gently flicking the tube. Incubate for 5 minutes at roomtemperature.e. Add 80 µL of FuGENE? master mix to each tube from step c fora total volume of 100 µL. Pipette master mix direct ly into the liquidand not onto the walls of the tube. Mix by swirling or gently flickingthe tube.f. Incubate for 20-30 minutes at room temperature.g. Retrieve HEK-293T cells from incubator. The cells should be50-80% confluent and in DMEM that does not contain antibiotics.h. Without touching the sides of the dish, gently addDNA:FuGENE? mix dropwise to cells. Swirl to disperse mixtureevenly. Do not pipette or swirl too vigorously, as you do not wantto dislodge the cells from the plate.i. Incubate cells at 37o C, 5% CO2 for 12-15 hours.Day 3:j. In the morning, change the media to remove the transfectionreagent. Replace with 5 mL fresh DMEM + 10% FBS +penicillin/streptomycin. Pipette the media onto the side of the plateso as not to disturb the transfected cells.k. Incubate cells at 37o C, 5% CO2 for 24 hours.Day 4:l. Harvest media from cells and transfer to a polypropylenestorage tube. The media contains your lentiviral particles. Store at4o C.m. Add 5 mL of fresh media containing antibiotics to the cells andincubate at 37o C, 5% CO2 for 24 hours.Day 5:n. Harvest media from cells and pool with media from Day 4. Spinmedia at 1,250 rpm for 5 minutes to pellet any HEK-293T cellsthat were inadvertently collected during harvesting.In lieu of centrifugation, you may filter the media througha 0.45 µm filter to remove the cells. Do not use a 0.2 µmfilter, as this is likely to shear the envelope of your virus.o. Virus may be stored at 4o C for a few days, but should be frozenat -20o C or -80o C for long-term storage.Freeze/thaw cycles decrease the efficiency of the virus,so Addgene recommends that you use the virusimmediately or aliquot the media into smaller tubes toprevent multiple freeze/thaw cycles.Back to TopF. Infecting Target CellsLentiviral particles can efficiently infect a broad range of cell types, including both dividing and non-dividing cells. Addition of puromycin will allow you to select for cells that are stably expressing your shRNA of interest.F.1. Recommended Materials* Detailed protocols for preparing polybrene, protamine sulfate, andpuromycin are located in the Appendix.F.2. Determining the Optimal Puromycin ConcentrationEach cell line responds differently to puromycin selection. Addgene strongly recommends that you determine the optimal puromycin concentration for your cell line before initiating your experiment.Day 1:a. Plate target cells in ten 6 cm plates and grow at 37o C, 5% CO2overnight.Day 2:b. The target cells should be approximately 80-90% confluent.c. Dilute puromycin in the preferred culture media for your targetcells. The final concentration of puromycin should be from 1-10µg/mL in 1 µg/mL increments.d. Label plates from 1-10 and add appropriatepuromycin-containing media to cells.Days 3+:e. Examine cells each day and change to freshpuromycin-containing media every other day.f. The minimum concentration of puromycin that results in complete cell death after 3-5 days is the concentration that should be used for selection in your experiments. (You may wish to repeat this titration with finer increments of puromycin to determine a more precise optimal puromycin concentration.)F.3. Protocol for Lentiviral Infection and SelectionDay 1:a. Plate target cells and incubate at 37o C, 5% CO2 overnight. Day 2:b. Target cells should be approximately 70% confluent. Change to fresh culture media containing 8 µg/mL polybrene.Polybrene increases the efficiency of viral infection. However, polybrene is toxic to some cell lines. In these cell lines, substitute protamine sulfate for polybrene.c. Add lentiviral particle solution from step E. For a 6 cm target plate, add between 0.05-1 mL virus (add ≥0.5 mL for a high MOI, and ≤0.1 mL for a low MOI). Scale the amount of virus a dded depending on the size of your target plate.MOI (multiplicity of infection) refers to the number ofinfecting viral particles per cell. Addgene recommends thatyou test a range of MOIs to determine the optimal MOI for infection and gene silencing in your target cell line.d. Incubate cells at 37o C, 5% CO2 overnight.Day 3:e. Change to fresh media 24 hours after infection.If viral toxicity is observed in your cell line, you maydecrease the infection time to between 4 - 20 hours.Remove the virus-containing media and replace with freshmedia. Do not add puromycin until at least 24 hours afterinfection to allow for sufficient expression of the puromycinresistance gene.f. To select for infected cells, add puromycin to the media at theconcentration determined in step E.2.Addgene recommends that you maintain one uninfectedplate of cells in parallel. This plate will serve as a positivecontrol for the puromycin selection.Days 4+:g. Change to fresh puromycin-containing media as needed everyfew days.h. Assay infected cells. The following recommendations areguidelines for the number of days you should wait until harvestingyour cells. However, you should optimize the time based on yourcell line and assay:Assay Days post-infectionmRNA knockdown (quantitative PCR) ≥ 3 daysProtein knockdown (western blot) ≥ 4 daysPhenotypic assay ≥ 4 daysBack to TopG. SafetyBL2 safety practices should be followed when preparing and handling lentiviral particles. Personal protective clothing should be worn at all times. Use plastic pipettes in place of glass pipettes or needles. Liquid waste should be decontaminated with at least 10% bleach. Laboratory materials that come in contact with viral particles should be treated as biohazardous waste and autoclaved. Please follow all safety guidelines from your institution and from the CDC and NIH for work in a BL2 facility.If you have any questions about what safety practice to follow, please contact your institution's safety office.To obtain the MSDS for this product, visit /doc/c66f21e6f8c75fbfc77db279.html /sitemap and follow the MSDS link.Back to TopH. ReferencesH.1. Published A rticlesKhvorova A et. al. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209-216. (PubMed)Moffat J et. al. 2006. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124:1283-1298. (PubMed)Naldini L et. al. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263-267. (PubMed)Schwarz DS et. al. 2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199-208. (PubMed)Stewart SA et. al. 2003. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9(4):493-501. (PubMed) Zufferey R et. al. 1997. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871-5. (PubMed)Zufferey R et. al. 1998. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873-80. (PubMed)H.2. Web resourcesAddgene's mammalian RNAi website: /doc/c66f21e6f8c75fbfc77db279.html /rnaitoolsThe RNAi Consortium (TRC):/doc/c66f21e6f8c75fbfc77db279.html /genome_bio/trc/rnai.htmlBackground on RNAi mechanism:/doc/c66f21e6f8c75fbfc77db279.html /focus/rnai/animations/animation/animation.htm Whitehead siRNA Selection Program: /doc/c66f21e6f8c75fbfc77db279.html /bioc/siRNAext/ Mekentosj iRNAi Program: /doc/c66f21e6f8c75fbfc77db279.html /irnai/Back to TopI. AppendixI.1. Sequence of pLKO.1 TRC-Cloning VectorClick here (/doc/c66f21e6f8c75fbfc77db279.html /10878) to see the sequence of pLKO.1 TRC-cloning vector. The vector is 8901 base pairs total, and the stuffer insert is shown in all capital letters.I.2. RecipesLuria Broth Agar (LB agar) + antibioticPer 40 grams of powder from American Bioanalytical catalog #AB01200-02000, LB contains:10g tryptone5g yeast extract10g sodium chloride15g agar> Prepare LB agar solution by dissolving 40g of LB powder in 1Lof distilled water. Autoclave and cool to 55o C. Add 1mL of100mg/mL ampicillin or carbenicillin to obtain a final concentrationof 100 µg/mL antibiotic. Pour plates and store at 4o C.Hexadimethrine Bromide (Polybrene)Prepare a 1mg/mL solution of polybrene (Sigma-Aldrich catalog #H9268) in 0.9% NaCl. Autoclave to sterilize. Stock solution is stable at 4o C for up to one year. The powder form of polybrene is stable at 4o C for several years.Protamine SulfateStore protamine sulfate (MP Biomedicals catalog #194729) at 4o C. Freely soluble in hot water and slightly soluble in cold water.PuromycinPrepare a 50mg/mL stock solution of puromycin (Sigma-Aldrich catalog #P8833) in distilled water. Sterilize by passing through a 0.22 µm filter. Store aliquots at -20o C.I.3. Warranty InformationAddgene is committed to providing scientists with high-quality goods and services. Addgene makes every effort to ensure the accuracy of its literature, but realizes that typographical or other errors may occur. Addgene makes no warranty of any kind regarding the contents of any literature. Literature are provided to you as a guide and on an "AS IS" "AS AVAILABLE" basis without warranty of any kind either expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, typicality, safety and accuracy.The distribution of any literature by Addgene is not meant to carry with it, and does not grant any license or rights of access or use to the materials described in the literature.The distribution of materials by Addgene is not meant to carry with it, and does not grant any license, express or implied, under any patent. All transfers of materials from Addgene to any party are governed by Addgene's Terms of Use, Addgene's Terms of Purchase, and applicable Material Transfer Agreements between the party that deposited the material at Addgene and the party receiving the material.Back to TopHome | Contact | Terms of Use | Privacy Policy | Site Map。
质粒的构建原理
质粒的构建原理质粒是一种环状的DNA分子,常用于基因工程和基因转移研究中,具有无菌发酵的能力。
质粒构建是将外源基因插入质粒中,形成重组质粒,然后通过转化等方法将重组质粒导入目标细胞中,实现外源基因的表达。
质粒构建主要包括质粒选择、外源基因克隆、质粒复制源的选择和质粒验证等步骤。
首先,质粒选择是质粒构建的第一步。
常用的质粒有pUC、pBR322、pET等。
质粒的选择主要考虑质粒的大小、拷贝数和复制源。
较小的质粒易于操作,而高拷贝质粒有更高的表达效率;复制源是质粒复制和稳定维持的关键元件,常用的复制源有p15A、pMB1和ColE1等。
其次,外源基因克隆是质粒构建的核心步骤。
一般来说,先从源细胞中提取目标基因的DNA序列,然后使用PCR扩增或酶切方法将目标基因插入质粒的多克隆位点(多克隆位点是质粒上的一段特定区域,用于插入外源基因)。
在PCR扩增中,引物可以根据目标基因序列设计,将目标基因扩增出来;在酶切中,则需要使用一对限制酶切酶切剪目标基因和质粒,生成具有互补末端的片段,然后通过连接将目标基因与质粒连接起来,形成重组质粒。
质粒复制源的选择是质粒构建的重要一环。
质粒复制源是指负责质粒复制的DNA序列,可以使质粒在宿主细胞中进行自主复制。
不同的宿主细胞可能对不同的质粒复制源有不同的适应性。
此外,质粒复制源还涉及到质粒的拷贝数和稳定性。
通常来说,高拷贝质粒(如pUC)能够在细胞中形成较高的拷贝数,适合对外源基因进行高效表达;而低拷贝质粒(如p15A)则适合用于负载大片段DNA。
最后,质粒构建的最后一步是质粒验证。
质粒验证是为了确认重组质粒是否成功构建。
一种常见的验证方法是限制性酶切分析,通过对重组质粒进行限制酶切检测,可以观察到目标基因的大小变化,从而判断是否成功插入外源基因;另一种验证方法是测序分析,通过将重组质粒进行测序,可以得到目标基因的序列信息,验证插入的正确性。
总而言之,质粒构建的原理是将外源基因插入质粒中,通过质粒选择、外源基因克隆、质粒复制源的选择和质粒验证等步骤,构建出重组质粒。
质粒提取与分析 Protocol
质粒提取与分析是分子生物学实验中的基本技术之一,它是从细菌中提取和纯化质粒DNA,并对质粒DNA进行相关的分析和检测。
下面是质粒提取与分析的实验原理、所需试剂和耗材、实验仪器、准备工作、实验方法、注意事项、常见问题及解决方法。
一、实验原理质粒是一种独立于细菌染色体之外的DNA分子,它不参与细胞的染色体复制,而是在细胞分裂时进行自我复制。
质粒提取的原理是通过物理和化学方法裂解细菌,释放出质粒DNA,然后通过离心、沉淀和洗涤等步骤将质粒DNA与细菌其他成分分离,最终得到纯化的质粒DNA。
二、所需试剂和耗材1.试剂:o溶液Ⅰ:10mmol/L Tris-HCl(pH=8.0)、1mmol/L EDTA (pH=8.0)、50mmol/L葡萄糖。
o溶液Ⅱ:0.1mol/L NaOH、1% SDS。
o溶液Ⅲ:3mol/L醋酸钾、20mmol/L Tris-HCl(pH=8.0)。
o70%乙醇。
o TE缓冲液:10mmol/L Tris-HCl(pH=8.0)、1mmol/L EDTA (pH=8.0)。
2.耗材:o移液器。
o离心管和离心管盖。
o 1.5ml微量移液器。
o无菌水。
o0.22μm滤膜。
o培养板和涂布器。
o细菌培养液(如LB液体培养基)。
o氯仿。
o异戊醇。
三、实验仪器1.实验室搅拌器。
2.高速冷冻离心机。
3.水浴锅。
4.无菌工作台或超净工作台。
5.紫外线分光光度计。
6.电泳仪和电泳槽。
7.显微镜。
8.恒温摇床或振荡器。
9.烘箱或微波炉。
10.量筒和烧杯。
11.计时器。
12.手套和实验服。
四、准备工作1.阅读实验步骤和注意事项,了解所需的试剂和耗材及其使用方法。
2.准备好所需的试剂和耗材,并确保它们处于保质期内。
3.检查实验室内是否具备上述实验仪器,并确保其正常运行。
4.用70%乙醇擦拭实验台面,以确保无菌环境。
5.用高压蒸汽灭菌法灭菌所有的实验器具,包括离心管、移液器等。
6.设置离心机的高速和低速离心参数,以及水浴锅的温度等参数。
CRISPR protocol2-质粒构建和建系
CRISPR/Cas9系统操作说明-2 ---基于lentiCRISPR v2应用指南-载体构建和建系汉恒生物提供CRISPR/Cas9载体的快速构建试剂盒,同时也提供各种载体构建和病毒包装(慢病毒、腺病毒和AAV)、建系服务lentiCRISPR v2载体是张锋实验室发布一个慢病毒载体,cas9和sgRNA 表达框在同一各载体上。
而且Cas9的C 端带有FLAG 融合标签,载体包含Puromycin 抗性基因,适合建系。
验证sgRNA 活性的时候也适合顺转;包装成慢病毒适合常规细胞系的建系。
构建非常方便。
说明lentiCRISPR v2https:///52961/☐克隆gDNA 使用BsmBI 位点,载体可以切出一个~1.9 kb 的filler 片段,便于confirm 酶切成功并利于载体回收;☐BsmBI 的位点是,酶切之后不需要CIP 脱磷也不会自连!☐Cas9的COOH 端带有FLAG tag,可以WB 或者Immunostaining;☐EFS promoter 被优化的小而强,极大提高了慢病毒包装的效率;☐载体带有Puromycin 抗性,可以富集转染/感染成功的细胞。
☐gDNA 设计方法和原则请参考上第一篇“CRISPR/Cas9系统操作说明”,链接如下:☐对于lentiCRISPR v2克隆,其合成的oligo 末端和pX330不同,请注意设计;☐怕大家看不懂,举个例子说明(克隆小白千万注意oligo 的方向):gDNA 设计说明载体克隆说明☐Backbone的酶切体系同上一篇文章(说明:不脱磷处理参考黑框,脱磷参考红框内操作);☐Oligo的退火条件也参考上一篇文章(说明:如果载体不脱磷,oligo不需要磷酸化;载体脱磷参考红框内操作,oligo就需要加磷处理!!!(红色框内是FengZhang提供的protocol,设计脱磷,可以参考))仅作参考病毒包装体系☐包装病毒使用的包装体系如下(for 100 mm dish ,6x106293T )☐转染条件:用细胞转染试剂lipofiter (超便宜且好用)(汉恒生物,/cn/products/item/36,(或者lipo2000)DNA/lipofiter=1 μg :2.5 μl☐收集48hr 和72hr 病毒上清,待用。
两大方法帮你搞定质粒构建
两大方法帮你搞定质粒构建质粒构建是分子生物学研究中最常用的实验技术。
原理依赖于限制性核酸内切酶,DNA 连接酶和其他修饰酶的作用,分别对目的基因和载体 DNA 进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。
质粒构建方式多样,常规的 T4 连接酶,以及最近更受欢迎的重组酶方式。
下面小编就总结一下 T4 连接酶与重组酶构建质粒方法,通过比较,其最大的不同点可能在于目的基因的设计以及连接体系。
壹一. T4 DNA Ligase 即 T4 DNA 连接酶,可以催化粘端或平端双链 DNA 或 RNA 的5’-P 末端和3’-OH 末端之间以磷酸二酯键结合,该催化反应需 ATP 作为辅助因子。
1. 质粒载体的制备既可以选择单酶切也可以选择双酶切,一般推荐使用双酶切。
其实目的就只有一个,尽量使载体的末端具有特异性,防止自连。
[可选酶切体系]VECTOR 3 ugCutSmart Buffer 5 ul限制性内切酶 1 1 ul限制性内切酶 2 1 ul酶切体系一般选择 50ul,试剂加好之后37°C 孵育 6~8 小时,或适当延长时间,保证质粒酶切完全。
每隔一段时间振荡一下并离心以防液滴蒸发至管盖上。
酶切后载体通过切胶回收线性化载体。
2.根据目的序列构建引物后,引物设计原则简单总结一下:(1)前向引物:5’ 端-保护碱基序列+限制性内切酶 1 酶切位点序列+基因正向引物序列 -3’ 端(2)反向引物:5’ 端-保护碱基序列+限制性内切酶 2 酶切位点序列+基因反向引物序列 -3 ’端如果目的基因片段较长的话,可以选择 PCR 方式扩增目的基因片段[可选 PCR 扩增体系]ddH2O:14ul10xTaq buffer:2ul10um DNTP:1ul10um primer F:0.5ul10um primer R:0.5ul模板 DNA:1ulTaq 酶:1ul[可选 PCR 扩增条件](1)95℃:5min(2) 35cycle95℃:30s55℃:30s(退火温度可以根据目的引物TM值决定,一般退火温度根据引物TM值降低5度)72℃:40s(3)72℃:10min(4)16℃:hold引物扩增之后,首先要进行琼脂糖凝胶电泳验证条带大小,然后通过胶回收,获得纯化目的片段产物.由于加入保护碱基,回收产物需要进行双酶切,双酶切方法与质粒酶切方法相同。
质粒构建步骤
质粒构建步骤
嘿,你问质粒构建步骤啊?这事儿还挺复杂,不过咱慢慢说。
第一步呢,得先确定你要构建啥样的质粒。
就像你要盖房子,得先有个设计图吧。
想好你要把哪些基因放进去,要让质粒有啥功能。
这可不能瞎整,得有个明确的目标。
第二步,准备材料。
你得有合适的载体质粒,就像盖房子得有块地一样。
还有你要插进去的基因片段,这就好比盖房子的砖头瓦块啥的。
还得有各种酶啊,像剪刀一样把东西剪开再拼起来。
第三步,把基因片段剪下来。
用特定的酶在合适的位置把基因片段从原来的地方切下来。
这就像用剪刀把一块布剪成你想要的形状。
得小心点,可别剪坏了。
第四步,把基因片段插进载体质粒里。
这就像把一块拼图放进一个大拼图里一样。
用另一种酶把载体质粒打开一个口子,然后把基因片段塞进去。
再把口子封上,让它们连在一起。
第五步,验证一下你构建的质粒对不对。
可以用一些方法,比如测序啊,看看基因片段是不是插对地方了,有没有弄错啥的。
要是不对,就得重新来过。
比如说有个科学家想构建一个能让细菌发光的质粒。
他先想好要把哪个发光基因插进去,找好了载体质粒和各种酶。
然后小心翼翼地把发光基因剪下来,插进载体质粒里。
最后验证的时候发现插对了,可高兴了。
把这个质粒放到细菌里,细菌就真的发光了。
所以说啊,质粒构建可不是件容易的事,得一步一步来,细心又耐心。
咋样,现在知道质粒构建的步骤了吧?。
质粒构建的原理及方法
质粒构建的原理及方法质粒构建的原理及方法是指通过研究DNA片段的特征,以及其在生物学实验中的复制、表达、合成和移植的原理及方法,来构建质粒。
质粒是一类由DNA片段组成的可重复使用的基因工程载体,用于转移和表达外源基因,广泛应用于基因工程和生物技术研究中。
质粒构建的原理主要是根据DNA片段的周期性结构形成的,即质粒的结构是由DNA片段组成的,而不是其他的物质。
在质粒构建中,首先要明确需要构建的质粒的目的和功能,然后根据此目的和功能,从DNA片段库中选择合适的片段,将其组装成质粒,以达到预期的效果。
质粒构建的方法有几种,常用的有PCR扩增法、等位子构筑法、同源克隆法和限制性内切酶构建法等。
1 PCR扩增法:PCR扩增法是一种用于构建质粒的有效方法,其原理是利用特定酶,如Taq DNA聚合酶,对DNA 片段进行反复扩增,从而获得大量的DNA片段。
该方法的优点是快速、灵敏,可以构建任意大小的质粒,但也有一定的缺点,例如扩增的精确性和准确性较差,可能会引入噪声,影响质粒的质量。
2 等位子构建法:等位子构建法是指在特定的位置插入预先准备好的DNA片段,即将DNA片段配对到等位子上,从而构建质粒。
该方法的优点是可以以高精度构建质粒,精度可达99.9%,但是缺点是时间较长,构建大型质粒时耗时较长。
3 同源克隆法:同源克隆法是指将DNA片段插入到一种特定的质粒中,从而形成新的质粒。
该方法的优点是可以用于构建任意大小的质粒,但缺点是构建的质粒的精确性较差,可能会引入噪声,影响质粒的质量。
4 限制性内切酶构建法:限制性内切酶构建法是指将DNA片段插入到限制性内切酶识别序列中,从而形成质粒。
该方法的优点是可以快速构建质粒,而且可以构建任意大小的质粒,但缺点是质粒的精确性较差,可能会引入噪声,影响质粒的质量。
以上就是质粒构建的原理及方法,质粒构建的方法也不断发展壮大,未来还有可能推出更多的质粒构建方法,以满足更多的应用需求。
质粒的构建
质粒的构建一、质粒构建的基本原理1.1 质粒结构质粒是一种环状DNA分子,通常大小在1-200 kb之间,其中包含了一个或多个基因编码序列,以及与复制、表达等相关的功能序列。
质粒通常由多个功能区域组成,包括基因插入位点、选择标记、复制起点、多克隆位点等。
1.2 质粒构建方法质粒构建一般分为以下几个步骤:基因克隆、质粒挑选、连接反应、转化、筛选,这些步骤通常需要借助于PCR、限制性内切酶、DNA连接酶、转化试剂等。
1.3 质粒的应用质粒构建技术广泛应用于基因工程、蛋白质表达、基因敲除、基因组编辑等领域。
通过构建特定功能的质粒,可以实现对基因的操控和调控,对生物学功能进行研究。
二、质粒构建的方法与步骤2.1 基因克隆质粒构建的第一步通常是通过PCR扩增目的基因,得到目的基因片段。
基因片段的选择根据实验需要,可以是全长基因、部分序列、突变体等。
2.2 质粒挑选选择合适的质粒载体是质粒构建的关键一步。
通常质粒载体的选择考虑到基因插入位点、复制起点、选择标记等功能。
常用的质粒载体有pUC19、pBR322、pET等。
2.3 连接反应将基因片段与质粒载体进行连接反应,通常需要利用DNA连接酶将两者连接起来。
连接反应后,通过热激酶等方法将连接产物转化到大肠杆菌等宿主细胞中。
2.4 转化转化是将连接后的质粒DNA导入到宿主细胞中的过程,通常采用化学转化、电穿孔转化、热激等方法进行。
2.5 筛选通过选择标记或多克隆位点等方法对转化后的细胞进行筛选,筛选出含有目的质粒的阳性克隆。
通常可以利用抗生素抗性筛选、荧光报告基因筛选等方法。
三、质粒构建的应用3.1 基因工程质粒构建技术可以用于将外源基因导入到宿主细胞中,实现基因的操控和表达。
通过构建携带感兴趣基因的质粒,可以实现对基因编码蛋白质的表达和研究。
3.2 蛋白质表达利用质粒携带外源基因序列,在宿主细胞中进行蛋白质表达。
通过构建携带目的基因的质粒,可以实现对特定蛋白质的大量表达和纯化。
重组质粒构建(protocol)
重组质粒的构建(beta版)一、引物设计:1.选择合适的载体。
酶切位点及其顺序(酶切位点的顺序一定不能颠倒;注意ATG和stop codon)。
2.在NCBI上再次确认目的片段的碱基序列。
1,使用word2,设计引物:primer-upPrimer-down3,另设计一对引物扩增CDS区,引物位于CDS区之外,扩增产物包含完整的CDS区。
引物长度约20个碱基。
4,核对----送公司合成。
5,对公司合成的引物快速离心,在超净台按照管子上标注的体积加入高压水(dd2H2O),配成100umol/ul(100uM),-20℃保存。
使用时按1:3比例稀释成25uM工作浓度。
二、PCR(P出目的片段):(一)、PCR P出目的片段:2,pcr: cDNA 1ul10x PFU buffer 2.5ul ℃ 5mindNTP 1ul ℃ 30secF’-Primer 1ul ℃ 30secR’-Primer 1ul ℃ X minPFU 0.5ul ℃ 5mindd2H2O 18ul(X是根据片段的长度设定,1000bp/min,退火温度根据Tm值来计算,一般低于Tm值5℃)3,跑胶、回收:(1),配胶:0.6g 琼脂糖60ml 1X TAE0.6ul (待温度降到50-60℃左右时)25分钟后,即可点样跑胶。
(2),跑胶:130-150V、25-30分钟左右。
(3),紫外灯下观察,切胶(要带防护手套和口罩)4,胶回收(胶回收试剂盒):按照试剂盒的protocol来做,在胶回收的最后一步,Elution Buffer预先在55-65℃温箱中水浴,放在37℃温箱中2min。
对胶回收的产物跑胶验证。
可建立10ul的体系:回收产物5ul、6xloading buffer 2ul、dd2H2O 5ul。
三、酶切、链接:1,目的片段酶切:(酶切时间根据酶的活性,70℃15-20min灭活)insert (胶回收产物) 10ul10 x buffer 2ul20ul的体系dd2H2O 6ulEcoRI 1ulHindⅢ1ul2,载体酶切:(1~2小时)Vector (1ug/ul):5 ul(总量5ug)10 x buffer 2ul20ul的体系dd2H2O 11ulEcoRI 1ulHindⅢ1ul为方便以后使用,载体可以一次性多切点。
质粒构建-protocol批注
一、引物设计:1,选择合适的载体。
酶切位点及其顺序(酶切位点的顺序一定不能颠倒)。
2,在NCBI上再次确认目的片段的碱基序列,进行primer blast,确定其特异性。
1,使用primer5排除目的片段里含有的酶切位点,或利用其本身含有的酶切位点,最后确定所使用的酶。
2,设计引物:primer-up:Primer-down:3,核对----送公司合成。
4,对公司合成的引物离心,10000rpm、5-10分钟、at 4℃,在超净台按照管子上标注的体积加入1*TE,为100uM,再用ddH2O稀释成10uM,-30℃保存。
二、PCR():(一)、引物Tm值titrate:pcr(15ul小体系)Sence:0.3ul 一般titrate5个温度值,并设一Anti sence:0.3ul 个NC(不加template)DNTP:0.3ul cDNA一般为Hela或293T Taq:0.1ul10*buffer: 1.5ulTemplate(cDNA):1ulH2O:11.5ul(二)、pcr(50ul大体系)Sence:1ul Tm温度用titrate时得到的条带Anti sence:1ul 最亮的温度DNTP:1ulTaq:0.5ul 10*buffer:5ul Template(cDNA):2ul H2O:39.5ul三、跑胶,胶回收:称1.2g的琼脂糖加入100ml的plasmid越小胶浓度越大)胶凝固后,即可点样跑胶。
2、跑胶:120V、40min。
3、泡EB溶液20min后,紫外灯下观察,切胶(要带防护手套和口罩)4、做胶回收:(1)加入400ul溶胶液,55℃溶胶;(2)待胶全溶后,过胶回收柱,12000rpm,1min;(3)DNA Wash Buffer 500ul,12000rpm,1min,twice;(4)开盖离心,15min;(5)换新的1.5ml EP管,加Elution Buffer 30ul,12000rpm,1min,重复吸取,12000rpm,1min;(Elution Buffer使用前65℃温热)(6)测浓度四、连接:2x Buffer 5ul10ul的体系T Vector 0.5ul 16℃水浴过夜Insert 4ulLignase 0.5ul若insert浓度较大,应加的量小于4ul,则其余部分用水补齐。
omega质粒小提protocol
Omega 质粒小提试剂盒protocol主要试剂1. 使用前,将RNase A全部加入Solution I中并于4度保存。
2. 按下表用无水乙醇稀释DNA Wash Buffer,并于室温保存。
D6942-00: 加入6 ml无水乙醇D6942-01: 加入120 ml无水乙醇3. 按下表用异丙醇稀释HBC Buffer,并于室温保存。
D6942-00: 加入1.6 ml无水乙醇D6942-01: 加入16 ml无水乙醇D6942-02: 加入32 ml无水乙醇试剂配方及作用Solution I组分浓度25 mM Tris-HCl(pH8.0),10 mM EDTA,50 mM 葡糖糖(Glucose)溶液1的主要作用是将菌体沉淀悬浮起来。
25mM Tris-HCl是缓冲溶液,保证反应体系的pH 恒定。
EDTA是金属离子螯合剂,10 mM EDTA的作用是与微生物体内的金属离子相互结合,抑制DNase的活性。
50 mM葡萄糖的作用是增加溶液的粘度,保证菌体悬浮,延缓菌体沉降的时间。
溶液1在使用前通常要加入RNA酶(RNase A),RNA酶的作用很清楚,降解掉溶液中的RNA。
由于RNA酶属于蛋白质,蛋白质稳定性很差,所以加了RNase A的溶液1需要低温4℃保存。
Solution II组份浓度250 mM NaOH,1%(W/V)SDS(十二烷基硫酸钠)溶液2的主要作用是细胞裂解。
溶液1将细胞悬浮后,就需要添加溶液2了,溶液2的作用就是对细胞进行裂解。
溶液2只包括两种成分:氢氧化钠和SDS。
真正起到到细胞裂解作用的是氢氧化钠,这也是为什么这个方法会被叫做碱裂解法。
氢氧化钠会破坏细胞膜的结构,使之发生bilayer(双层膜)结构向micelle(微囊)结构的相变化,从而导致细胞的裂解。
SDS的作用将在下一步提到。
添加溶液2后需要注意的一个是时间一定不能过长,另一个是不可以剧烈震动离心管。
时间过长以及剧烈震动都将导致氢氧化钠破坏基因组DNA,断裂的基因组DNA碎片将会与相似大小质粒一同被抽提,污染样品。
质粒构建 关键技术
质粒构建1.简介在分子生物学研究中,质粒构建是常用的技术手段之一。
质粒是一种圆环状的DNA分子,可被用于在细胞中传递和复制外源基因。
通过将外源基因插入质粒中,研究者可以实现基因的表达、检测和传递等多种目的。
质粒构建包括质粒的选择、基因片段的插入、转化和筛选等步骤,是进行基因工程研究的基础。
2.质粒的选择质粒的选择是质粒构建的第一步,不同的实验目的和研究要求需要选择不同的质粒。
常用的质粒有载体质粒和表达质粒两类。
2.1 载体质粒载体质粒是研究中最常使用的质粒类型之一。
它们通常具有高复制数和选择性。
常见的载体质粒有pUC18、pBR322等。
选择载体质粒时需要考虑质粒的大小、复制数、选择标记和聚合酶启动子等因素。
2.2 表达质粒表达质粒是用于表达外源基因的质粒。
它们通常具有启动子、翻译子和终止子等功能元件,能够在宿主细胞中高效地转录和翻译目标蛋白。
常见的表达质粒有pET、pGEX等。
3.基因片段的插入在质粒构建中,将外源基因片段插入质粒是重要的一步。
这通常通过酶切和连接技术完成。
3.1 酶切酶切是将DNA分子按照特定序列切割成片段的过程。
常用的酶切酶有限制性内切酶。
通过选择合适的酶切酶,可以切割目标基因和质粒的DNA,生成粘性或平滑的末端。
在酶切时,需要考虑酶切位点的位置和酶切反应的条件。
3.2 连接连接是将切割好的质粒和目标基因片段连接在一起的过程。
这通常通过DNA连接酶完成,如T4 DNA连接酶。
连接成功后,可以通过转化技术将重组质粒导入宿主细胞。
4.转化和筛选转化是将质粒导入宿主细胞的过程。
在一般情况下,大肠杆菌是常用的宿主细胞。
转化技术通常包括热激、电穿孔和化学法等。
转化后,通过筛选可以获得含有目标基因的细胞。
4.1 筛选标记筛选标记是通过在质粒中引入某个选择标记来实现对转化细胞的选择。
常用的筛选标记有抗生素抗性基因、荧光蛋白基因等。
通过在培养基中添加相应的选择性抗生素,只有含有质粒的转化细胞能够生长。
质粒构建流程
质粒构建流程质粒构建是分子生物学实验中常见的一项重要技术,它可以用于基因克隆、蛋白表达、基因编辑等多个领域。
在本文中,我们将介绍质粒构建的基本流程,希望能够帮助大家更好地理解和掌握这一技术。
第一步,设计引物。
质粒构建的第一步是设计引物。
引物是一小段单链DNA,它们的序列与目标DNA的两端相互补。
在构建质粒时,我们需要设计两对引物,分别用于扩增目标DNA的两端。
引物设计的好坏将直接影响到后续的实验效果,因此需要仔细选择引物的序列,确保其具有高度的特异性和稳定性。
第二步,PCR扩增。
设计好引物后,接下来就是进行PCR扩增。
PCR是一种体外合成DNA的方法,通过PCR扩增可以在短时间内获得大量目标DNA。
在PCR反应中,我们需要将待扩增的DNA模板、引物、DNA聚合酶和反应缓冲液混合,然后进行一系列的温度循环,最终得到目标DNA的扩增产物。
第三步,酶切和连接。
获得PCR产物后,接下来需要进行酶切和连接。
酶切是利用限制性内切酶在特定的酶切位点上切割DNA分子,从而得到特定的DNA片段。
在质粒构建中,我们通常会选择两种不同的限制性内切酶,分别用于酶切目标DNA和质粒载体。
然后将酶切后的目标DNA 片段与质粒载体连接,形成重组质粒。
第四步,转化和筛选。
最后一步是将重组质粒转化至宿主细胞中,然后进行筛选。
转化是利用化学方法或电穿孔法将质粒导入宿主细胞内,使其在细胞内进行复制和表达。
然后通过对转化后的细胞进行抗生素筛选或荧光筛选,筛选出含有目标重组质粒的细胞克隆。
总结。
质粒构建是一项复杂而又重要的实验技术,它涉及到许多分子生物学的基本原理和实验操作。
通过本文的介绍,相信大家对质粒构建的流程有了更清晰的认识。
当然,质粒构建的具体操作还需要根据实验的具体要求和目的进行调整和优化。
希望本文能够为大家在质粒构建实验中提供一些帮助和指导。
质粒构建的书
质粒构建的书质粒构建是分子生物学实验中经常使用的技术,用于将所需的外源DNA序列插入质粒中,以实现对该DNA序列的研究。
质粒构建的过程包括选择合适的质粒背景、切割和连接DNA片段、转化宿主细胞等。
在进行质粒构建实验时,需要参考一系列相关内容,包括质粒选择、酶切位点的设计、连接方法、宿主细胞选择等。
首先,选择合适的质粒背景非常重要。
质粒背景应根据实验目的和所需外源DNA序列的大小进行选择。
一般来说,选择能够在宿主细胞中高效复制的质粒背景,例如pUC、pBR322等。
同时,质粒背景中应包含需要的选择标记,如抗生素抗性基因,用于筛选成功转化的细胞。
其次,设计酶切位点也是质粒构建中的重要环节。
酶切位点的设计基于所需外源DNA序列的限制性内切酶切位点和质粒背景中已有的酶切位点。
通常使用的酶切酶有多种,如EcoRI、XhoI、HindIII等。
设计合适的酶切位点可以方便将外源DNA序列与质粒连接。
然后,连接方法也需要根据实验要求进行选择。
常用的连接方法包括限制性内切酶消化连接、TA克隆、脂质体介导转染等。
限制性内切酶消化连接是最常用的连接方法,通过酶切和连接酶作用将外源DNA序列与质粒连接。
TA克隆则通过多A尾连接将外源DNA序列与质粒连接。
脂质体介导转染则是将外源DNA与石蜡质粒封装成脂质体颗粒,通过转染将其引入宿主细胞。
最后,宿主细胞选择也是质粒构建中需要考虑的因素之一。
宿主细胞的选择应根据实验需要,例如在大肠杆菌中进行质粒构建实验时,选择常用的宿主菌株,如DH5α、BL21等。
同时,宿主细胞还应具备较高的质粒复制能力和稳定性,以保证所构建的质粒在细胞中能够有效复制传递。
总之,质粒构建是一项常用的分子生物学技术,用于将外源DNA序列插入质粒中,以实现对该DNA序列的研究。
在进行质粒构建实验时,需要参考相关内容,如质粒选择、酶切位点的设计、连接方法和宿主细胞选择等。
这些参考内容的选择将直接影响质粒构建实验的成功率和结果。
pLKOshRNA病毒质粒载体构建protocol方法详解
Search for Plasmids: Home Deposit Plasmids Request Plasmids Plasmid Tools AInformationBrowseSearchPricingFAQProtocols > pLKO.1 Protocol pLKO.1 - TRC Cloning VectorAddgene Plasmid 10878. Protocol Version 1.0. December 2006.Copyright Addgene 2006, All Rights Reserved. This protocol is provided for your convenience. See warranty information in appendix.Click here for a printable copy.Table of Contents•A. pLKO.1-TRC Cloning Vectoro A.1 The RNAi Consortiumo A.2 Map of pLKO.1o A.3 Related plasmids• B. Designing shRNA Oligos for pLKO.1o B.1 Determine the optimal 21-mer targets in your geneo B.2 Order oligos compatible with pLKO.1• C. Cloning shRNA oligos into pLKO.1o C.1 Recommended materialso C.2 Annealing oligoso C.3 Digesting pLKO.1 TRC-Cloning Vectoro C.4 Ligating and transforming into bacteria• D. Screening for Insertso D.1 Recommended materialso D.2 Screening for inserts Plasmid CartYour cart is empty.Recently ViewedpLKO.1 - TRC clo...Plasmid 10878pLVTHM Plasmid 12247 Mammalian RNAi T... Collection• E. Producing Lentiviral Particleso E.1 Recommended materialso E.2 Protocol for producing lentiviral particles • F. Infecting Target Cellso F.1 Recommended materialso F.2 Determining the optimal puromycin concentrationo F.3 Protocol for lentiviral infection and selection •G. Safety•H. Referenceso H.1 Published articleso H.2 Web resources•I. Appendixo I.1 Sequence of pLKO.1 TRC-Cloning Vectoro I.2 Recipeso I.3 Warranty informationBack to TopA. pLKO.1-TRC Cloning VectorA.1 The RNAi ConsortiumThe pLKO.1 cloning vector is the backbone upon which The RNAi Consortium (TRC) has built a library of shRNAs directed against 15,000 human and 15,000 mouse genes. Addgene is working with the TRC to make this shRNA cloning vector available to the scientific community. Please cite Moffat et al., Cell 2006 Mar; 124(6):1283-98 (PubMed) in all publications arising from the use of this vector.A.2 Map of pLKO.1pLKO.1 is a replication-incompetent lentiviral vector chosen by the TRC for expression of shRNAs. pLKO.1 can be introduced into cells via direct transfection, or can be converted into lentiviral particles for subsequent infection of a target cell line. Once introduced, the puromycin resistance marker encoded in pLKO.1 allows for convenient stable selection.Figure 1 : Map of pLKO.1 containing an shRNA insert. The originalpLKO.1-TRC cloning vector has a 1.9kb stuffer that is released bydigestion with AgeI and EcoRI. shRNA oligos are cloned into the AgeI and EcoRI sites in place of the stuffer. The AgeI site is destroyed inmost cases (depending on the target sequence), while the EcoRI site is preserved. For a complete map of pLKO.1 containing the 1.9kb stuffer, visit /10878.Description Vector ElementU6 Human U6 promoter drives RNA Polymerase IIItranscription for generation of shRNA transcripts.cPPT Central polypurine tract, cPPT, improves transduction efficiency by facilitating nuclear import of the vector'spreintegration complex in the transduced cells.hPGK Human phosphoglycerate kinase promoter drivesexpression of puromycin.Puro R Puromycin resistance gene for selection of pLKO.1plasmid in mammalian cells.sin 3'LTR 3' Self-inactivating long terminal repeat.f1 ori f1 bacterial origin of replication.Amp R Ampicillin resistance gene for selection of pLKO.1 plasmid in bacterial cellspUC ori pUC bacterial origin of replication.5'LTR 5' long terminal repeat.RRE Rev response element.Figure 2 : Detail of shRNA insert. The U6 promoter directs RNAPolymerase III transcription of the shRNA. The shRNA contains 21"sense" bases that are identical to the target gene, a loopcontaining an XhoI restriction site, and 21 "antisense" bases thatare complementary to the "sense" bases. The shRNA is followedby a polyT termination sequence for RNA Polymerase III.A.3 Related ProductsThe following plasmids available from Addgene are recommended for use in conjunction with the pLKO.1 TRC-cloning vector.Plasmid (Addgene ID #)DescriptionpLKO.1 - TRC control (10879)Negative control vector containing non-hairpin insert.pLKO.1 - scramble shRNA (1864)Negative control vector containing scrambled shRNA.psPAX2 (12260)Packaging plasmid for producing viralparticles.Note: pLKO.1 can also be used with packaging plasmid pCMV-dR8.2 dvpr (Addgene #8455) and envelope plasmid pCMV-VSVG (Addgene#8454) from Robert Weinberg's lab. For more information, visit Addgene's Mammalian RNAi Tools page.Several other laboratories have deposited pLKO derived vectors that may also be useful for your experiment. To see these vectors, visit Addgene's website and search for "pLKO".Back to TopB. Designing shRNA Oligos for pLKO.1B.1 Determining the Optimal 21-mer Targets in your GeneSelection of suitable 21-mer targets in your gene is the first step toward efficient gene silencing. Methods for target selection are continuously being improved. Below are suggestions for target selection.1. Use an siRNA selection tool to determine a set of top-scoring targets for your gene. For example, the Whitehead Institute for Biomedical Research hosts an siRNA Selection Program that can be accessed after a free registration (/bioc/siRNAext/). If you have MacOS X, another excellent program is iRNAi, which is provided free by the company Mekentosj (/irnai/).A summary of guidelines for designing siRNAs with effective gene silencing is included here:•Starting at 25nt downstream of the start codon (ATG), search for 21nt sequences that match the pattern AA(N19). If no suitablematch is found, search for NAR(N17)YNN, where N is anynucleotide, R is a purine (A,G), and Y is a pyrimidine (C,U).•G-C content should be 36-52%.•Sense 3' end should have low stability – at least one A or T between position 15-19.•Avoid targeting introns.•Avoid stretches of 4 or more nucleotide repeats, especially repeated Ts because polyT is a termination signal for RNApolymerase III.2. To minimize degradation of off-target mRNAs, use NCBI's BLAST program. Select sequences that have at least 3 nucleotide mismatches to all unrelated genes.Addgene recommends that you select multiple targetsequences for each gene. Some sequences will be more effectivethan others. In addition, demonstrating that two different shRNAsthat target the same gene can produce the same phenotype willalleviate concerns about off-target effects.B.2 Ordering Oligos Compatible with pLKO.1To generate oligos for cloning into pLKO.1, insert your sense and antisense sequences from step B.1 into the oligos below. Do not change the ends; these bases are important for cloning the oligos into the pLKO.1 TRC-cloning vector.Forward oligo:5' CCGG—21bp sense—CTCGAG—21bp antisense—TTTTTG 3'Reverse oligo:5' AATTCAAAAA—21bp sense—CTCGAG—21bp antisense 3'For example, if the target sequence is (AA)TGCCTACGTTAAGCTATAC, the oligos would be:Forward oligo:5'CCGG AATGCCTACGTTAAGCTATAC CTCGAG GTATAGCTTAACGTA GGCATT TTTTTG 3'Reverse oligo:5'AATTCAAAAA AATGCCTACGTTAAGCTATAC CTCGAG GTATAGCTTA ACGTAGGCATT 3'Back to TopC. Cloning Oligos into pLKO.1The pLKO.1-TRC cloning vector contains a 1.9kb stuffer that is releasedupon digestion with EcoRI and AgeI.The oligos from section B contain the shRNA sequence flanked by sequences that are compatible with the sticky ends of EcoRI and AgeI. Forward and reverse oligos are annealed and ligated into the pLKO.1 vector, producing a final plasmid that expresses the shRNA of interest.C.1 Recommended MaterialsC.2 Annealing Oligos1. Resuspend oligos in ddH2O to a concentration of 20 μM, then mix:5 μL Forward oligo5 μL Reverse oligo5 μL10x NEB buffer 235 μL ddH2O2. Incubate for 4 minutes at 95o C in a PCR machine or in a beaker of boiling water.3. If using a PCR machine, incubate the sample at 70o C for 10 minutes then slowly cool to room temperature over the period of several hours. If using a beaker of water, remove the beaker from the flame, and allow the water to cool to room temperature. This will take a few hours, but it is important for the cooling to occur slowly for the oligos to anneal.C.3 Digesting pLKO.1 TRC Cloning Vector1. Digest pLKO.1 TRC-cloning vector with AgeI. Mix:6 μg pLKO.1 TRC-cloning vector (maxiprep or miniprep DNA)5 μL10x NEB buffer 11 μL AgeIto 50 μL ddH2O> Incubate at 37o C for 2 hours.2. Purify with Qiaquick gel extraction kit. Elute in 30 μL of ddH2O.3. Digest eluate with EcoRI. Mix:30 μL pLKO.1 TRC-cloning vector digested with AgeI5 μL10x NEB buffer for EcoRI1 μL EcoRI14 μL ddH2O> Incubate at 37o C for 2 hours.4. Run digested DNA on 0.8% low melting point agarose gel until you can distinctly see 2 bands, one 7kb and one 1.9kb. Cut out the 7kb band and place in a sterile microcentrifuge tube.When visualizing DNA fragments to be used for ligation, useonly long-wavelength UV light. Short wavelength UV light willincrease the chance of damaging the DNA.5. Purify the DNA using a Qiaquick gel extraction kit. Elute in 30 μL of ddH2O.6. Measure the DNA concentration.C.4 Ligating and Transforming into Bacteria1. Use your ligation method of choice. For a standard T4 ligation, mix:2 μL annealed oligo from step C.2.20 ng digested pLKO.1 TRC-cloning vector from step C.3. (If you were unable to measure the DNA concentration, use 1 μL)2 μL10x NEB T4 DNA ligase buffer 1 μL NEB T4 DNA ligaseto 20 μL ddH2O> Incubate at 16o C for 4-20 hours.2. Transfo rm 2 μL of ligation mix into 25 μL competent DH5 alpha cells, following manufacturer's protocol. Plate on LB agar plates containing 100 μg/mL ampicillin or carbenicillin (an ampicillin analog).Back to TopD. Screening for InsertsYou may screen for plasmids that were successfully ligated by restriction enzyme digestion. However, once you have identified the positive clones, it is important to verify the insert by conducting a sequencing reaction.D.1 Recommended MaterialsD.2 Screening for InsertsDay 1:1. Innoculate 5 colonies from each ligation into LB + 100 μg/mLampicillin or carbenicillin.Day 2:2. Spin down the cultures and use a miniprep kit to obtain DNA.3. Conduct a restriction digest with EcoRI and NcoI:1 μg miniprep DNA2 μL10x NEB buffer for EcoRI0.8 μL EcoRI0.8 μL NcoIto 20 μL ddH2O> Incubate at 37o C for 1-2 hours.4. Run the digestion products on a 1% agarose gel. You shouldsee two fragments, a 2kb fragment and a 5kb fragment.5. Sequence positive clones with pLKO.1 sequencing primer (5'CAA GGC TGT TAG AGA GAT AAT TGG A 3').You may need to adjust the sequencing conditions if theDNA polymerase has difficulty reading through thesecondary structure of the hairpin sequence.Back to TopE. Producing Lentiviral ParticlesBefore this step, you must contact your institution's Bio-Safety office to receive permission and institution-specific instructions. You must follow safety procedures and work in an environment (e.g. BL2+) suitable for handling HIV-derivative viruses.For transient knockdown of protein expression, you may transfect plasmid DNA directly into the target cells. The shRNA will be expressed, but the DNA is unlikely to be integrated into the host genome.For stable loss-of-function experiments, Addgene recommends that you generate lentiviral particles and infect the target cells. Addition of puromycin will allow you to select for cells that stably express your shRNA of interest.E.1 Recommended MaterialsMaterial Vendor and catalog #psPAX2Addgene #12260pMD2.G Addgene #12259HEK-293T cells GenHunter: #Q401FuGENE® 6 Transfection Reagent Roche Applied Biosciences:#11814443001OPTI-MEM® serum-free media Invitrogen: #31985Dulbecco's Modified Eagle MediumInvitrogen: #11995(DMEM)Fetal Bovine Serum (FBS) Invitrogen: #16000Penicillin/Streptomycin Invitrogen: #15140-122 Polypropylene tubes VWR: #87003-290Note: pLKO.1 could also be packaged using pCMV-dR8.2 dvpr and pCMV-VSVG from the Robert Weinberg lab. For more information, visit Addgene's Mammalian RNAi Tools page.E.2 Protocol for Producing Lentiviral ParticlesThis protocol is for transfection in a 6 cm plate. The protocol can be scaled to produce different amounts of virus as needed.Day 1:a. For each plasmid to be transfected, plate 7x105 HEK-293T cellsin 5 mL of media in a 6 cm tissue culture plate. Incubate cells at37o C, 5% CO2 overnight.Although cells should regularly be passaged in DMEM +10% FBS with penicillin/streptomycin, cells should beplated at this step in DMEM + 10% FBS without antibiotics(no penicillin or streptomycin).Day 2:b. Perform the transfection in the late afternoon because thetransfection mix should only be incubated with the cells for 12-15hours.c. In polypropylene microfuge tubes (do NOT use polystyrenetubes), make a cocktail for each transfection:1 μg pLKO.1 shRNA plasmid750 ng psPAX2 packaging plasmid250 ng pMD2.G envelope plasmidto 20 μl serum-free OPTI-MEMYou may want to vary the ratio of shRNA plasmid,packaging plasmid, and envelope plasmid to obtain theratio that gives you the optimal viral production.d. Create a master mix of FuGENE® 6 transfection reagent inserum-free OPTI-MEM. Calculate the amount of Fugene® andOPTI-MEM necessary given that each reaction will require 6 μLFuGENE® + 74 μL OPTI-MEM. For example:1x master mix: 6 μL FuGENE® + 74 μL OPTI-MEM5x master mix: 30 μL FuGENE® + 370 μL OPTI-MEM10x master mix: 60 μL FuGENE® + 740 μL OPTI-MEM In a polypropylene tube, add OPTI-MEM first. Pipette FuGENE®directly into the OPTI-MEM - do not allow FuGENE® to come incontact with the walls of the tube before it has been diluted. Mix byswirling or gently flicking the tube. Incubate for 5 minutes at roomtemperature.e. Add 80 μL of FuGENE® master mix to each tube from step c fora total volume of 100 μL. Pipette master mix direct ly into the liquidand not onto the walls of the tube. Mix by swirling or gently flickingthe tube.f. Incubate for 20-30 minutes at room temperature.g. Retrieve HEK-293T cells from incubator. The cells should be50-80% confluent and in DMEM that does not contain antibiotics.h. Without touching the sides of the dish, gently addDNA:FuGENE® mix dropwise to cells. Swirl to disperse mixtureevenly. Do not pipette or swirl too vigorously, as you do not wantto dislodge the cells from the plate.i. Incubate cells at 37o C, 5% CO2 for 12-15 hours.Day 3:j. In the morning, change the media to remove the transfectionreagent. Replace with 5 mL fresh DMEM + 10% FBS +penicillin/streptomycin. Pipette the media onto the side of the plateso as not to disturb the transfected cells.k. Incubate cells at 37o C, 5% CO2 for 24 hours.Day 4:l. Harvest media from cells and transfer to a polypropylenestorage tube. The media contains your lentiviral particles. Store at4o C.m. Add 5 mL of fresh media containing antibiotics to the cells andincubate at 37o C, 5% CO2 for 24 hours.Day 5:n. Harvest media from cells and pool with media from Day 4. Spinmedia at 1,250 rpm for 5 minutes to pellet any HEK-293T cellsthat were inadvertently collected during harvesting.In lieu of centrifugation, you may filter the media througha 0.45 μm filter to remove the cells. Do not use a 0.2 μmfilter, as this is likely to shear the envelope of your virus.o. Virus may be stored at 4o C for a few days, but should be frozenat -20o C or -80o C for long-term storage.Freeze/thaw cycles decrease the efficiency of the virus,so Addgene recommends that you use the virusimmediately or aliquot the media into smaller tubes toprevent multiple freeze/thaw cycles.Back to TopF. Infecting Target CellsLentiviral particles can efficiently infect a broad range of cell types, including both dividing and non-dividing cells. Addition of puromycin will allow you to select for cells that are stably expressing your shRNA of interest.F.1. Recommended MaterialsMaterial Vendor and catalog # Hexadimethrine bromide (polybrene)* S igma-Aldrich: #H9268 Protamine Sulfate* MP Biomedicals: #194729 Puromycin* Sigma-Aldrich: #P8833Target cells Varies based on your experiment Culture media for target cells Varies based on your experiment Materials for assay Varies based on your experiment* Detailed protocols for preparing polybrene, protamine sulfate, andpuromycin are located in the Appendix.F.2. Determining the Optimal Puromycin ConcentrationEach cell line responds differently to puromycin selection. Addgene strongly recommends that you determine the optimal puromycin concentration for your cell line before initiating your experiment.Day 1:a. Plate target cells in ten 6 cm plates and grow at 37o C, 5% CO2overnight.Day 2:b. The target cells should be approximately 80-90% confluent.c. Dilute puromycin in the preferred culture media for your targetcells. The final concentration of puromycin should be from 1-10μg/mL in 1 μg/mL increments.d. Label plates from 1-10 and add appropriatepuromycin-containing media to cells.Days 3+:e. Examine cells each day and change to freshpuromycin-containing media every other day.f. The minimum concentration of puromycin that results incomplete cell death after 3-5 days is the concentration that shouldbe used for selection in your experiments. (You may wish torepeat this titration with finer increments of puromycin todetermine a more precise optimal puromycin concentration.)F.3. Protocol for Lentiviral Infection and SelectionDay 1:a. Plate target cells and incubate at 37o C, 5% CO2 overnight.Day 2:b. Target cells should be approximately 70% confluent. Change tofresh culture media containing 8 μg/mL polybrene.Polybrene increases the efficiency of viral infection.However, polybrene is toxic to some cell lines. In these celllines, substitute protamine sulfate for polybrene.c. Add lentiviral particle solution from step E. For a 6 cm targetplate, add between 0.05-1 mL virus (add ≥0.5 mL for a high MOI,and ≤0.1 mL for a low MOI). Scale the amount of virus a ddeddepending on the size of your target plate.MOI (multiplicity of infection) refers to the number ofinfecting viral particles per cell. Addgene recommends thatyou test a range of MOIs to determine the optimal MOI forinfection and gene silencing in your target cell line.d. Incubate cells at 37o C, 5% CO2 overnight.Day 3:e. Change to fresh media 24 hours after infection.If viral toxicity is observed in your cell line, you maydecrease the infection time to between 4 - 20 hours.Remove the virus-containing media and replace with freshmedia. Do not add puromycin until at least 24 hours afterinfection to allow for sufficient expression of the puromycinresistance gene.f. To select for infected cells, add puromycin to the media at theconcentration determined in step E.2.Addgene recommends that you maintain one uninfectedplate of cells in parallel. This plate will serve as a positivecontrol for the puromycin selection.Days 4+:g. Change to fresh puromycin-containing media as needed everyfew days.h. Assay infected cells. The following recommendations areguidelines for the number of days you should wait until harvestingyour cells. However, you should optimize the time based on yourcell line and assay:Assay Days post-infectionmRNA knockdown (quantitative PCR) ≥ 3 daysProtein knockdown (western blot) ≥ 4 daysPhenotypic assay ≥ 4 daysBack to TopG. SafetyBL2 safety practices should be followed when preparing and handling lentiviral particles. Personal protective clothing should be worn at all times. Use plastic pipettes in place of glass pipettes or needles. Liquid waste should be decontaminated with at least 10% bleach. Laboratory materials that come in contact with viral particles should be treated as biohazardous waste and autoclaved. Please follow all safety guidelines from your institution and from the CDC and NIH for work in a BL2 facility.If you have any questions about what safety practice to follow, please contact your institution's safety office.To obtain the MSDS for this product, visit /sitemap and follow the MSDS link.Back to TopH. ReferencesH.1. Published ArticlesKhvorova A et. al. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209-216. (PubMed)Moffat J et. al. 2006. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124:1283-1298. (PubMed)Naldini L et. al. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263-267. (PubMed)Schwarz DS et. al. 2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199-208. (PubMed)Stewart SA et. al. 2003. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9(4):493-501. (PubMed)Zufferey R et. al. 1997. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871-5. (PubMed)Zufferey R et. al. 1998. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873-80. (PubMed)H.2. Web resourcesAddgene's mammalian RNAi website: /rnaitoolsThe RNAi Consortium (TRC):/genome_bio/trc/rnai.htmlBackground on RNAi mechanism:/focus/rnai/animations/animation/animation.htmWhitehead siRNA Selection Program: /bioc/siRNAext/Mekentosj iRNAi Program: /irnai/Back to TopI. AppendixI.1. Sequence of pLKO.1 TRC-Cloning VectorClick here (/10878) to see the sequence of pLKO.1 TRC-cloning vector. The vector is 8901 base pairs total, and the stuffer insert is shown in all capital letters.I.2. RecipesLuria Broth Agar (LB agar) + antibioticPer 40 grams of powder from American Bioanalytical catalog #AB01200-02000, LB contains:10g tryptone5g yeast extract10g sodium chloride15g agar> Prepare LB agar solution by dissolving 40g of LB powder in 1Lof distilled water. Autoclave and cool to 55o C. Add 1mL of100mg/mL ampicillin or carbenicillin to obtain a final concentrationof 100 μg/mL antibiotic. Pour plates and store at 4o C.Hexadimethrine Bromide (Polybrene)Prepare a 1mg/mL solution of polybrene (Sigma-Aldrich catalog #H9268) in 0.9% NaCl. Autoclave to sterilize. Stock solution is stable at 4o C for up to one year. The powder form of polybrene is stable at 4o C for several years.Protamine SulfateStore protamine sulfate (MP Biomedicals catalog #194729) at 4o C. Freely soluble in hot water and slightly soluble in cold water.PuromycinPrepare a 50mg/mL stock solution of puromycin (Sigma-Aldrich catalog #P8833) in distilled water. Sterilize by passing through a 0.22 μm filter. Store aliquots at -20o C.I.3. Warranty InformationAddgene is committed to providing scientists with high-quality goods and services. Addgene makes every effort to ensure the accuracy of its literature, but realizes that typographical or other errors may occur. Addgene makes no warranty of any kind regarding the contents of any literature. Literature are provided to you as a guide and on an "AS IS" "AS AVAILABLE" basis without warranty of any kind either expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, typicality, safety and accuracy.The distribution of any literature by Addgene is not meant to carry with it, and does not grant any license or rights of access or use to the materials described in the literature.The distribution of materials by Addgene is not meant to carry with it, and does not grant any license, express or implied, under any patent. All transfers of materials from Addgene to any party are governed by Addgene's Terms of Use, Addgene's Terms of Purchase, and applicable Material Transfer Agreements between the party that deposited the material at Addgene and the party receiving the material.Back to TopHome | Contact | Terms of Use | Privacy Policy | Site Map。
基因编辑中的质粒构建技术
基因编辑中的质粒构建技术基因编辑已经成为现代生物技术中的重要工具,它可以通过改变生物体的基因组,实现对其基因信息的精确修饰。
而在基因编辑的过程中,质粒构建技术起着关键作用。
本文将探讨基因编辑中的质粒构建技术及其应用。
质粒是一种环状DNA分子,可以在细菌等生物体内复制和传递,它是基因编辑工具的重要载体。
质粒构建技术是指将目标基因组的DNA片段与质粒DNA连接,形成新的质粒分子。
质粒构建技术的基本步骤包括目标DNA的获取、质粒DNA的选择、DNA片段连接和质粒构建的验证。
首先,在基因编辑中,目标DNA可以通过不同的方法获得,如PCR扩增、基因合成或DNA库筛选。
这些方法可以从已知基因组中特异性扩增出目标DNA片段,提供进一步编辑的基础。
其次,选择适当的质粒也是质粒构建技术的重要一环。
质粒通常具有细菌选择标记、启动子、终止子和特定的多克隆位点。
它们可以导入宿主细胞,使质粒表达目标基因。
然后,将目标DNA片段与选定的质粒进行连接。
连接方法主要有限制性内切酶切割法、PCR重叠延伸法和基因合成法等。
限制性内切酶切割法是最常用的方法,通过DNA酶切及黏性末端连接实现DNA片段的连接。
PCR重叠延伸法则是利用PCR反应扩增出具有重叠部分的DNA片段,并通过PCR重组连接两个片段。
基因合成法则通过人工合成DNA序列,直接获得目标DNA片段。
最后,质粒构建的验证是确保基因编辑工作顺利进行的重要一步。
常用的方法包括限制性内切酶切割检测、PCR检测、测序及功能鉴定等。
这些验证手段可以检测质粒的正确性和稳定性,确保质粒构建的可靠性和可行性。
基因编辑中的质粒构建技术在许多生物研究领域得到了广泛的应用。
例如,在基因敲除研究中,质粒构建技术可以用来构建sgRNA(single guide RNA)序列,以引导Cas9蛋白靶向特定基因位点,实现基因组插入或缺失。
在基因敲入研究中,质粒构建技术则可用于引入外源DNA或基因片段至目标基因组。
质粒构建-protocol
质粒构建-protocol⼀,引物设计:1,选择合适的载体。
酶切位点及其顺序(酶切位点的顺序⼀定不能颠倒)。
2,在NCBI上再次确认⽬的⽚段的碱基序列。
1,使⽤word2,设计引物:primer-upPrimer-down3,核对----送公司合成。
4,对公司合成的引物离⼼,10000rpm、5-10分钟、at 4℃,在超净台按照管⼦上标注的体积加⼊⾼压⽔(2dH2O),再把上游引物和下游引物混在⼀起,at 4℃保存。
⼆,PCR(P出⽬的⽚段):(⼀)、从韩家淮实验室赠送的菌液⾥P出⽬的⽚段:12ul韩家淮实验室的菌液,相应的抗⽣素94℃ 5min菌液1ul 94℃ 30sec2x PFU mix 25ul 58℃ 30secPrimer 1ul 72℃ X min2d H2O 23ul 72℃ 5min(X是根据⽚段的长度设定,500-1000bp/min,退⽕温度根据Tm值来计算,⼀般低于Tm值2℃)3,跑胶、回收:(1),配胶:称0.6g的琼脂糖加⼊60ml的加⼊0.6ul的EB(℃左右时)25分钟后,即可点样跑胶。
(2),跑胶:130-150V、25-30分钟左右。
(3),紫外灯下观察,切胶(要带防护⼿套和⼝罩)4,做胶回收(天根{TIANGEN}公司的DNA纯化回收试剂盒): 按照试剂盒的protocol来做,在胶回收的最后⼀步,Elution Buffer预先在55-65℃温箱中⽔浴,并且在加过EB后,放在37℃温箱中2min。
对胶回收的产物跑胶验证。
可建⽴10ul的体系:回收产物2ul、10xloading buffer 2ul、2d H2O 6ul。
三,酶切、链接:1,⽬的⽚段酶切:(37℃酶切过夜或者4⼩时)insert :上述胶回收产物35ul10 x H buffer(1.5x)7ul50ul的体系 dd H2O 6ul酶1 1ul酶2 1ul2,载体酶切:(37℃酶切过夜或者4⼩时)V ector (1ug/ul):2 ul10 x buffer(1.5x)3ul20ul的体系dd H2O 13ul酶1 1ul酶2 1ul为⽅便以后使⽤,载体可以⼀次性多切点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,引物设计:
1,选择合适的载体。
酶切位点及其顺序(酶切位点的顺序一定不能颠倒)。
2,在NCBI上再次确认目的片段的碱基序列。
1,使用word
2,设计引物:primer-up
Primer-down
3,核对----送公司合成。
4,对公司合成的引物离心,10000rpm、5-10分钟、at 4℃,在超净台按照管子上标注的体积加入高压水(2dH2O),再把上游引物和下游引物混在一起,at 4℃保存。
二,PCR(P出目的片段):
(一)、从韩家淮实验室赠送的菌液里P出目的片段:
12ul韩家淮实验室的菌液,
相应的抗生素
94℃ 5min
菌液1ul 94℃ 30sec
2x PFU mix 25ul 58℃ 30sec
Primer 1ul 72℃ X min
2d H2O 23ul 72℃ 5min
(X是根据片段的长度设定,500-1000bp/min,退火温度根据Tm值来计算,一般低于Tm值2℃)
3,跑胶、回收:
(1),配胶:
称0.6g的琼脂糖
加入60ml的1X TAE
加入0.6ul的EB(℃左右时)
25分钟后,即可点样跑胶。
(2),跑胶:130-150V、25-30分钟左右。
(3),紫外灯下观察,切胶(要带防护手套和口罩)
4,做胶回收(天根{TIANGEN}公司的DNA纯化回收试剂盒): 按照试剂盒的protocol来做,在胶回收的最后一步,Elution Buffer预先在55-65℃温箱中水浴,并且在加过EB后,放在37℃温
箱中2min。
对胶回收的产物跑胶验证。
可建立10ul的体系:回收产物2ul、10xloading buffer 2ul、2d H2O 6ul。
三,酶切、链接:
1,目的片段酶切:(37℃酶切过夜或者4小时)
insert :上述胶回收产物
35ul
10 x H buffer(1.5x)7ul
50ul的体系 dd H2O 6ul
酶1 1ul
酶2 1ul
2,载体酶切:(37℃酶切过夜或者4小时)
Vector (1ug/ul):2 ul
10 x buffer(1.5x)3ul
20ul的体系dd H2O 13ul
酶1 1ul
酶2 1ul
为方便以后使用,载体可以一次性多切点。
3,酶切时,首先要核对一下酶的buffer,有时双酶切时两个酶不能共用一种buffer,那么就要先切一端,酶切回收后再用另一酶切另一端,然后再酶切产物回收。
4,连接:
2x Rapid Ligation 6ul
Vector 0.8ul
12ul的体系insert 4.5ul
(目的是为了多加点insert)T4 DNA Lignase 1ul
四,转化:
⑴、冰上20分钟-→热激:42℃、90秒-→冰上2分钟
⑵、加1ml SOC(或者1ml LB),37℃、180 rpm、45分钟。
⑶、将上述转化后的菌液加入到100ml的LB中。
再按抗生素:LB=1:1000的比例加入抗生素,(100ml的LB加50ul的2Kx的氨苄)。
⑷、250rpm、过夜。
五,质粒大抽:
六,收菌:
取过夜菌至50毫升离心管,离心:6000g、3-5分钟、4℃。
再重复一次,每管共收集100毫升过夜菌沉淀。
(倒置于草纸上使液体流尽)。
七,重悬:
每管加入8ml的RES-EF(RnaseA),重悬细菌沉淀—充分V ortex或用枪头吹打沉淀。
确保沉淀完全散开,无可见细菌团块。
3,裂解:
每管加入等量的L YS-EF bufffer,即8ml。
轻轻上下颠倒离心管4-6次,(勿震!!)室温放置5min,使细菌完全裂解,溶液透明,无团块或絮状物。
注意:vortex或其它剧烈操作会导致基因组DNA断裂,易导致最终所得质粒被基因组DNA 污染
4,平衡:
⑴:滤芯插入柱子,将柱子驾于50ml离心管上(或者直接架于50ml离心管架上)
⑵:取15ml EQU-EF buffer 沿滤芯四周加入—充分平衡滤芯。
注意:①离心管内的液体不要浸没滤柱的头,所以要勤于倒弃滤液,②在过滤平衡液的同时,进行5、6步,防止滤芯干掉。
5,中和:
在等待EQU-EF buffer滤完时,往裂解好的菌液中加入8ml NEU-EF buffer,颠倒混匀,冰上孵育5min。
(不能vortex)
6,离心、过滤:
⑴:离心中和过的菌液:10000rpm、5-10min、at 4℃--质粒存在于上清中。
(离心使沉淀更加紧密,更集中于管底,对于进一步提高质粒质量会有所帮助)
⑵:将上清吸入到平衡好的滤芯中,重力自流尽。
7,洗一:
过滤完毕后,吸取5ml的FIL-EF buffer,沿滤芯四周加入(将粘在滤芯上的质粒洗下来)--过滤完后,将滤芯弃掉。
8,洗二:
往滤柱中加入35ml的ENDO-EF buffer—去内毒素
9,洗三:
待滤完后再加入15ml的wash-EF buffer—过滤。
10,洗脱:
取一支干净的15ml超速离心管,将滤完的柱子插入到离心管中,用高压条将二者绑好,往滤柱中加入5ml Elu-EF buffer.
(Elu-EF buffer预先放在50℃的恒温箱中加热,可提高洗脱效率)
11,沉淀:
待Elu-EF buffer滤完后,弃滤柱,往离心管中加入5ml的异丙醇(将质粒沉淀下来),混匀(充分vortex),静止10min---10000rpm、30min、4℃---弃上清。
12,洗涤:
加5ml的70%酒精(ETOH)或用15ml三蒸水(高压过)+35ml的无水乙醇配制(在超净台进行),混匀(上下颠倒即可),离心:10000rpm、10min、常温。
弃上清,重复上述步骤一次(再洗涤一次)弃上清---到超净台用200ul枪头把上清尽量洗净----再空离一次,在超净台用小枪头把液体洗净---吹干。
13,溶解:
取100-300ul高压过的H2O-EF溶解质粒--定量后,将质粒的浓度调至1ug/ul—最后,保存到-20℃。