超几何分布和二项分布的联系和区别精编版

合集下载

超几何分布于二项分布的区别与联系

超几何分布于二项分布的区别与联系

§超几何分布与二项分布的区别与联系1、二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1),0,1,2,...,.k k n k n P X k C p p k n -==-=此时称随机变量X 服从二项分布,记作X ~(,)n p ,并称p 为成功概率。

2.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则(),0,1,2,...,.k N K M N M n NC C P X k k m C --⋅=== 此时称随机变量X 服从超几何分布。

注意:超几何分布中必须同时满足两个条件:一是抽取的产品不再放回去; 二是产品数是有限个为N (总数较少).当这两个条件中任意一个发生改变,则不再是超几何分布.一、 当抽取的方式从无放回变为有放回,超几何分布变为二项分布【例1】从含有3件次品的10产品中有放回地逐次取,每次取一个,取3次,用X 表示次品数。

(1) 求X 的分布列;(2) 求()E X 和()D X二、 当产品总数N 很大时,超几何分布变为二项分布【例2】 从批量较大的产品中,随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量ξ表示这10件产品中的不合格品数,求随机变量ξ的数学期望()E ξ【例3】根据我国相关法规则定,食品的含汞量不得超过1.00ppm,沿海某市对一种贝类海鲜产品进行抽样检查,抽出样本20个,测得含汞量(单位:ppm)数据如下表所示:(1)若从这20个产品中随机任取3个,求恰有一个含汞量超标的概率;(2)以此20个产品的样本数据来估计这批贝类海鲜产品的总体,若从这批数量很大的贝类海鲜产品中任选3个,记ξ表示抽到的产品含汞量超标的个数,求ξ的分布列及数学期望Eξ.()【例5】一条生产线上生产的产品按质量情况分为三类:A类、B类、C类。

超几何分布和二项分布

超几何分布和二项分布

超几何分布和二项分布超几何分布和二项分布是概率论中两种重要的离散型概率分布。

它们都在描述了离散型随机变量的分布规律,但在具体的描述和应用上有一定的区别。

本文将分别介绍超几何分布和二项分布的定义、特点、性质和应用,并对两者之间的关系和区别进行详细的比较分析。

一、超几何分布的定义、特点和性质超几何分布是描述了一种从有限个物件中抽出样本不放回地抽取成功次数的概率分布。

具体来说,超几何分布描述了在总体中有M个成功物件和N-M个失败物件时,从总体中抽取n个物件,其中成功物件的个数X的分布概率。

其概率质量函数为:P(X=k) = (M choose k) * (N-M choose n-k) / (N choose n),其中(M choose k)表示从M个物件中抽取k个物件的组合数。

超几何分布的特点有以下几点:1.超几何分布是离散型概率分布,其取值只能是非负整数。

2.超几何分布的期望值和方差分别为E(X) = n * M/N, Var(X) =n * M/N * (N-M)/N * (N-n)/(N-1)。

3.超几何分布的分布形状随着总体大小和成功物件的比例而改变,当总体很大时,超几何分布近似于二项分布。

超几何分布在实际应用中有着广泛的应用。

例如在质量抽样、抽样调查、生物统计学等领域,常常需要进行不放回地从总体中抽取物件的情况,而超几何分布恰好可以描述这类情况下随机变量的分布规律。

二、二项分布的定义、特点和性质二项分布是描述了n次独立重复的伯努利试验中成功次数的概率分布。

具体来说,二项分布描述了n次重复试验中成功的次数X的概率分布。

其概率质量函数为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k),其中(n choose k)表示从n次试验中成功k次的组合数。

二项分布的特点有以下几点:1.二项分布是离散型概率分布,其取值只能是非负整数。

2.二项分布的期望值和方差分别为E(X) = np, Var(X) = np(1-p)。

超几何分布与二项分布的区别是什么

超几何分布与二项分布的区别是什么

超几何分布与二项分布的区别是什么超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复),当总体的容量非常大时,超几何分布近似于二项分布。

超几何分布和二项分布超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布。

二项分布即重复n次独立的伯努利试验。

在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n 重伯努利实验,当试验次数为1时,二项分布就是伯努利分布超几何分布是统计学上一种离散概率分布。

它描述了由有限个物件中抽出n 个物件,成功抽出指定种类的物件的次数(不归还)。

在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=C(M,k)·C(N-M,n-k)/C(N,n),C(a b)为古典概型的组合形式,a为下限,b为上限,此时我们称随机变量X服从超几何分布(1)超几何分布的模型是不放回抽样(2)超几何分布中的参数是M,N,n上述超几何分布记作X~H(N,n,M)。

超几何分布超几何分布是统计学上一种离散概率分布。

它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。

称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。

超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。

二项分布在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。

用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布。

二项分布和超几何分布的区别是什么

二项分布和超几何分布的区别是什么

二项分布和超几何分布的区别是什么
就一句话,一个是有放回抽取(二项分布),另一个是无放回抽取(超几何分布)。

本质区别:
(1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题。

(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题。

扩展资料
二项分布、(超)几何分布异同
他们全部是描述概率分布。

二项分布:重复n次独立的伯努利试验,发生k次事件的概率
几何分布:重复伯努利试验中,直达k次才第一次成功的概率
超几何分布:N中有M个特定种类,抽取n个时,会有k个特定种类的概率。

抽取n个,有k个特定种类的'组合一共有:C(M,k)*C(N-M,n-k) 抽取n个,所有的组合数:C(N,n)
超几何分布 P(x=k)=C(M,k)*C(N-M,n-k)/C(N,n)
超几何分布跟二项分布的区别:抽取n个的过程中,抽得特定种类的概率会变化(因为不归还),但抽完后每个组合的发生概率是一样的。

而二项分布重复n次实验,每次概率不变。

关于二项分布与超几何分布问题区别举例

关于二项分布与超几何分布问题区别举例

关于二项分布与超几何分布问题区别举例Company number:【0089WT-8898YT-W8CCB-BUUT-202108】关于“二项分布”与“超几何分布”问题举例一.基本概念 1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)=n Nk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为:P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。

不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。

因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 二.典型例题例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,. 03031464(0)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 333141(3)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为(2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P YC ===.因此,Y 的分布列为例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1) 取出的3件产品中一等品件数多于二等品件数的概率.(2) 记:X表示“取出的3件产品中一等品件数多于二等品件数的数量”,求X 的分布列并求EX;分析:由题可知:从10件产品中分别任取两次得到“一等品”或“二等品”的概率是不相等的,因此是一种不放回抽样;随机变量 X服从超几何分布.解:(1) 记A1:取出3件一等品;A2:取出2件一等品;A3:取出1件一等品,二件三等品.A1、A2、A3互斥,P(A 1)= C 33C 103 = 1120 , P(A 2)= C 32C 71C 103 =740,P(A 3)= C 31C 72C 103 = 340 ; 所以,P =P(A 1)+ P(A 2)+ P(A 3)= 31120 .(2)X=0,1,2,3; X 服从超几何分布,所以P(X=0)= P(一件一等品,一件二等品,一件三等品)=310131413C C C C =310;P(X=1)=P (二件一等品,一件二等品) =3101423C C C =110; P(X=2)=P(三件一等品,一件二等品)=3101433C C C =130 ; P(X=3)= P (三件一等品,零件二等品)= 3100433C C C = 1120;EX = nM N = 3310=说明:谨防错误地认为随机变量X 服从二项分布,即:XB(3, 31120).例3.从某高中学校随机抽取16名学生,经校医检查得到每位学生的视力,其中“好视力”4人,以这16人的样本数据来估计整个学校的整体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.分析:本题就是从“该校(人数很多)任选3人”,由此得到“好视力”人数X,若每次从该校任取一名学生为“好视力”这一事件的概率显然是相等的,因为该校“人数很多”相当于“有放回抽样”,因此,随机变量X服从“二项分布”而不是“超几何分布”.解:由题可知:X= 0,1,2,3;由样本估计总体,每次任取一人为“好视力”的概率为: P = 416 = 14,则XB(3,14 );P(X=0)= C 30( 14 )0(1- 14)3-0 = 2764; P(X=1)= C 31( 14 )1(1- 14)3-1 = 2764 ;P(X=2)= C 32( 14 )2(1- 14 )3-2 = 964 ;P(X=3)= C 33( 14 )3(1- 14 )3-3 = 164;EX = 3×14 = 34. 说明:假设问题变为:“从16名学生中任取3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望”.那么X 服从“超几何分布”,即:P(X=k)= 3163124C C C k k ,(X=0,1,2,3),其中,数学期望值不变,即为:EX= 3×416 = 34.。

超几何分布和二项分布的联系和区别

超几何分布和二项分布的联系和区别

超几何分布和二项分布的联系和区别开滦一中张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、两者的定义是不同的教材中的定义: (一)超几何分布的定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k) =nNk -n M-N k MCC C,,2,1,0k, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布(二)独立重复试验和二项分布的定义1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An)2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=kn kp p )1(Ck n(k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。

1.本质区别(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题; (2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题2.计算公式超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=nNk -n M-N k MCC C,,2,1,0k, m,二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=kn kp p )1(Ck n(k=0,1,2,…,n),温馨提示:当题目中出现“用样本数据估计XXX 的总体数据”时,均为二项分布问题。

二项分布与超几何分布区别(同名24066)

二项分布与超几何分布区别(同名24066)

二项分布与超几何分布辨析超几何分布和二项分布都是离散型分布超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布.........例1袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.例2.某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:(1)根据上面的频率分布表,求①,②,③,④处的数值;80,150上的频率分布直方图;(2)根据上面的频率分布表,在所给的坐标系中画出在区间[](3)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从总100,120中的个体数为ξ,求ξ的分布列和数学体中任意抽取3个个体,成绩落在[]期望.分组频数频率[)80,90①②练习2.为从甲、乙两名运动员中选拔一人参加2010年广州亚运会跳水项目,对甲、乙两名运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如图所示(Ⅰ)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员合适? (Ⅱ)若将频率视为概率,对甲运动员在今后3次比赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望E ξ。

例3.按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动).某校高一· 一班50名学生在上学期参加活动的次数统计如条 形图所示.(I )求该班学生参加活动的人均次数x ;(II )从该班中任意选两名学生,求他们参加活动甲 乙5 32 58 0 3 5 5 4 1 9 8 7 9次数恰好相等的概率;(III)从该班中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.(要求:答案用最简分数表示)练习3.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50]、[50,60]、…、[90,100]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80]内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60]记0分,在[60,80]记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望。

二项分布与超几何分布的区别

二项分布与超几何分布的区别

二项分布与超几何分布的区别:
定义:若有N 件产品,其中M 件是废品,无返回...
地任意抽取n 件,则其中恰有的废品件数X 是服从超几何分布的。

概率为()k n K M N M n N C C P X k C --==. 若有N 件产品,其中M 件是废品,有.
返回..
地任意抽取n 件,则其中恰有的废品件数X 是服从二项分布的。

概率为()()1n k k k n P X k C p p -==-,其中M p N
=. 区别:(1)二项分布是做相同的n 次试验(n 次独立重复试验),
(2)当样本个数为无穷大时,超几何分布和二项分布的对应概率就相等,换而言之超几何分布的极限就是二项分布。

在废品为确定数M 的足够多的产品中,任意抽取n 个(由于产品个数N 无限多,无返回与有返回无区别,故可看作n 次独立重复试验)中含有k 个废品的概率当然服从二项分布。

在这里,超几何分布转化为二项分布的条件是①产品个数应无限多,否则无返回地抽取n 件产品是不能看作n 次独立试验的.②在产品个数N 无限增加的过程中,废品数应按相应的“比例”增大,否则上述事实也是不成立的。

(3)实际上,在以样本估计总体时,从样本中无返回地任意抽取n 件,当然废品件数X 服从超几何分布的;而从总体中无返回地任意抽取n 件,理想认为....
废品件数X 服从二项分布的。

二项分布与超几何分布的区别与联系

二项分布与超几何分布的区别与联系
=233×132+13×233×13+132×233 =881.
谢谢
谢谢
例题解析
1、从含有 2 件优等品的 5 件产品中,随机抽取 2 件,求
抽取的 2 件产品中的优等品数 的分布列及其均值。
解: 可能的取值为 0,1,2,
P( i) C2i C32i
C52
(i 0, 1, 2) ,
的分布列为
012
P
3 10
3 5
1 10
均值
E( )
1
3 52 1 10源自4 5结论:在实际应用 时,只要N≥10n, 不放回抽取可以近 似看成是放回抽取, 可用二项分布近似 描述不合格品个数 , 即当超几何分布计 算非常困难时应考 虑用二项分布近似 代替。
练习:
[2009 广东理 17 题部分]对某城市一年(365 天)的空 气质量进行监测,发现一年中有 219 天空气质量为良或 轻度污染,求该城市某一周至少有 2 天的空气质量为轻 微污染的概率.
超几何分布一般地在含有m件次品的n件产品中任取n件其中恰有x件次品则事件xk发生的概率为服从参数为nmn的超几何分布1从含有2件优等品的5件产品中随机抽取2抽取的2件产品中的优等品数10均值2011广东理17部分从含有2件优等品的5件产品中随机抽取2件求抽取的2件产品中的优等品数的分布列及其均值
二项分布与超几何分布的区别与 联系
C1MCnN--1M CnN

CmMCnN--mM CnN
为超几何分布列,如果随机变量X的分布列为超几何 分布列,则称随机变量X服从超几何分布.
3、二项分布、超几何分布的均值、方差 (1)若 X~B(n,p),则 E(X)=np,D(X)=np(1-p). ※(2)若 X 服从参数为 N、M、n 的超几何分布, 则 E(X)=nNM.

超几何分布与二项分布

超几何分布与二项分布

超几何分布与二项分布超几何分布与二项分布是两种常见的离散概率分布,它们在统计学和概率论中有着广泛的应用。

本文将介绍这两种分布的定义、概率密度函数、期望值和方差,以及它们的区别和联系。

一、超几何分布超几何分布描述的是从有限个物件中抽出指定数量的元素,不放回地抽取的这个过程中,恰好抽取某些元素的概率。

在一个包含 $N$ 个物件的集合中,其中 $K$ 个物件具有某种特征,设从中不放回地抽取 $n$ 个物件,则随机变量 $X$ 表示其中具有该特征的物件的个数。

超几何分布的概率质量函数为:$$P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$$其中 $\binom{a}{b}$ 表示从 $a$ 个不同元素中取出 $b$ 个元素的组合数。

超几何分布的期望值为$$E(X)=\frac{nK}{N}$$方差为$$Var(X)=n\frac{K}{N}\left(1-\frac{K}{N}\right)\cdot\frac{N-n}{N-1}$$二、二项分布二项分布是把一次独立试验成功的概率为 $p$,失败的概率为 $1-p$ 的 Bernoulli 试验独立重复进行 $n$ 次,成功的次数就是随机变量 $X$ 的取值。

二项分布的概率质量函数为:$$P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$$$$Var(X)=np(1-p)$$超几何分布与二项分布都是描述随机试验的离散概率分布,但二者的基本假设不同。

超几何分布假设实验进行过程中不放回,且每次结果取决于前一次结果,因此从同一总体中取出的每个样本在某种意义上都不一定相互独立。

二项分布则假设每次实验结果独立,即试验的结果不受之前结果的影响。

此外,当超几何分布的总体 $N$ 无限大时,其概率分布可以近似为二项分布。

这是因为当总体 $N$ 很大时,从总体中取出一个相对较小的 $n$ 个样本时,每个样本的相对大小都可以视为独立的 Bernoulli 试验,也就是说超几何分布变得近似独立分布,因此可以用二项分布来近似替代。

关于二项分布与超几何分布问题区别举例

关于二项分布与超几何分布问题区别举例

关于“二项分布”与“超几何分布”问题举例一.基本概念1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件?X=k ?发生的概率为:P(X=k)= n N k n MN k M C C C --⋅,k= 0,1,2,3,??,m ;其中,m =min ?M,n ?,且n ? N , M ? N . n,M,N ? N?为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n ?M N2.二项分布在n次独立重复试验中,设事件A发生的次数为X,在每次试验中,事件A发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为:P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,?,n),此时称随机变量X服从二项分布.记作:X ? B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件✍每次试验中,事件发生的概率是相同的;是一种放回抽样.✍各次试验中的事件是相互独立的;✍每次试验只有两种结果,事件要么发生,要么不发生;✍随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;共同点:每次试验只有两种可能的结果:成功或失败。

不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。

因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.二.典型例题例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫ ⎪⎝⎭,. 03031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;3033141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为(2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P YC ===.因此,Y 的分布列为例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1) 取出的3件产品中一等品件数多于二等品件数的概率.(2) 记:X 表示“取出的3件产品中一等品件数多于二等品件数的数量”,求X 的分布列并求EX;分析:由题可知:从10件产品中分别任取两次得到“一等品”或“二等品”的概率是不相等的,因此是一种不放回抽样;随机变量X服从超几何分布.解:(1) 记A1:取出3件一等品;A2:取出2件一等品;A3:取出1件一等品,二件三等品.A1、A2、A3互斥,P(A1)=C33 C103=1120, P(A2)=C32?C71C103=740,P(A3)= C31?C72C103=340; 所以,P =P(A1)+ P(A2)+ P(A3)= 31 120.(2)X=0,1,2,3; X服从超几何分布,所以P(X=0)= P(一件一等品,一件二等品,一件三等品)=310131413C C C C = 310 ; P(X=1)=P (二件一等品,一件二等品) = 3101423C C C = 110 ; P(X=2)=P(三件一等品,一件二等品)= 3101433C C C = 130; P(X=3)= P (三件一等品,零件二等品)= 3100433C C C= 1120; EX = nM N = 3 310= 0.9 说明:谨防错误地认为随机变量X 服从二项分布,即:X B(3, 31 120).例3.从某高中学校随机抽取16名学生,经校医检查得到每位学生的视力,其中“好视力”4人,以这16人的样本数据来估计整个学校的整体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.分析:本题就是从“该校(人数很多)任选3人”,由此得到“好视力”人数X,若每次从该校任取一名学生为“好视力”这一事件的概率显然是相等的,因为该校“人数很多”相当于“有放回抽样”,因此,随机变量X服从“二项分布”而不是“超几何分布”.解:由题可知:X= 0,1,2,3;由样本估计总体,每次任取一人为“好视力”的概率为: P = 416 = 14 ,则X B(3,14 );P(X=0)= C 30( 14 )0(1- 14)3-0 = 2764; P(X=1)= C 31( 14 )1(1- 14)3-1 = 2764 ;P(X=2)= C 32( 14 )2(1- 14 )3-2 = 964 ;P(X=3)= C 33( 14 )3(1- 14 )3-3 = 164;EX = 3×14 = 34. 说明:假设问题变为:“从16名学生中任取3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望”.那么X 服从“超几何分布”,即:P(X=k)= 3163124C C C k k ,(X=0,1,2,3),其中,数学期望值不变,即为:EX= 3×416 = 34 .。

超几何分布和二项分布的联系和区别

超几何分布和二项分布的联系和区别

超几何分布和二项分布的联系和区别如何计算恰好有1件次品的概率?这道题目可以用超几何分布和二项分布两种方法来解决。

首先,我们可以使用超几何分布,因为这是一个不放回抽样问题。

根据题目条件,我们可以得到M=0.02n,N=n,n=3,k=1.代入超几何分布的公式,可以得到P(X=1)=0.111.其次,我们也可以使用二项分布,因为这是一个独立重复试验问题。

根据题目条件,我们可以得到n=3,p=0.02,k=1.代入二项分布的公式,可以得到P(X=1)=0.057.因此,两种方法得到的结果略有不同,但可以看出它们之间是有联系的。

二项分布可以看作是超几何分布的一种近似,当样本容量n很大时,二项分布的计算结果可以逼近超几何分布的计算结果。

在进行放回或不放回的方式抽取时,当产品总数分别为500、5000和时,恰好抽到1件次品的概率分别是多少?根据此问题,你对超几何分布与二项分布的关系有何认识?解析:在不放回的方式抽取中,每次抽取时都是从这n件产品中抽取,从而抽到次品的概率都为。

次品数X服从二项分布,恰好抽到1件次品的概率为1P(X=1)=C3×(1-2%)^2×(2%)^1≈0.057.在不放回的方式抽取中,抽到的次品数X是随机变量,X服从超几何分布,X的分布与产品的总数n有关,所以需要分3种情况分别计算。

①当n=500时,产品的总数为500件,其中次品的件数为500×2%=10,合格品的件数为490.从500件产品中抽出3件,其中恰好抽到1件次品的概率为P(X=1)=12C10×C×490×489÷3500×499×498≈0..②当n=5000时,产品的总数为5000件,其中次品的件数为5000×2%=100,合格品的件数为4900.从5000件产品中抽出3件,其中恰好抽到1件次品的概率为P(X=1)=12C100×Cxxxxxxx×4900×4899÷×4999×4998≈0.xxxxxx x。

二项分布与超几何分布知识点

二项分布与超几何分布知识点

二项分布与超几何分布知识点
二项分布与超几何分布都是概率论中的重要分布,下面为你介绍两者的知识点:
- 定义不同:
- 超几何分布:描述的是不放回抽样问题。

- 二项分布:描述的是放回抽样问题。

- 概率计算不同:
- 超几何分布中的概率计算实质上是古典概型问题。

- 二项分布中的概率计算实质上是相互独立事件的概率问题。

- 联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布。

二项分布和超几何分布在概率论中有广泛的应用,包括试验设计、数据分析和决策制定等。

如果你想了解更多相关内容,可以继续向我提问。

超几何分布、二项分布区别

超几何分布、二项分布区别


P X k
CMk
C nk N M
CNn
k 0,1,2,,M
区分超几何分布及二项分布的使用
(1)逐次抽取,取后放回用二项分布 (2)一次性抽取(无放回、无顺序)用超几何分布 (3)在统计中,用频率估计概率,在总体中抽取用二项分布 (4)在统计中,在样本中抽取用超几何分布
常见数列通项求法 求an
(1)Sn与n关系式,例如: Sn n2 n或Sn n2 n 1 (2)Sn与an关系式(不含n),例如:Sn 1 2an
Sn1与Sn关系式(不含n),例如:a1 2,Sn1 2Sn 1
Sn与an1关系式(不含n),例如:a1
1 2
,Sn
1
2an1
(3)an1与an的关系式(不含 n,非等差等比),例如a1 1,an1 2an 3
超几何分布、二项分布的区别与联系
超几何分布和二项分布都是离散型随机变量 的一种概率分布模型,一般以分布列的形式 体现其分布
二项分布:
(1)是在n次独立重复试验条件下的概率分布模型 (2)随机变量的取值是这n次独立重复试验中事件发生的次数,为0—n (3)每次试验的结果只有发生和不发生两种情况,且相互独立 (4)每次试验中事件发生的概率保持不变
错位相减法万能公式
差比数列 cn an bqn1 ,则其前n项和一定为: Sn An Bqn B
其中A a ,B b A q 1 q 1
注:本结论只能作为最后结果的检验,不能 作为解答过程。
在n次独立重复试验中,事件A发生的次数为X,每次试验中事件A
发生概率为p,记 X ~ Bn, p ,则
PX k Cnk pk 1 p nk
k 0,1,2,,n
超几何分布:描述了由有限个物件中抽出n个物件,成功抽

二项分布与超几何分布区别修订版

二项分布与超几何分布区别修订版

二项分布与超几何分布区别修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】二项分布与超几何分布辨析超几何分布和二项分布都是离散型分布超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布.........例1 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.例2.某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:(1)根据上面的频率分布表,求①,②,③,④处的数值;(2)根据上面的频率分布表,在所给的坐标系中画出在区间[]80,150上的频率分布直方图;(3)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从100,120中的个体数为ξ,求ξ的分布列和数总体中任意抽取3个个体,成绩落在[]学期望.分组频数频率[)80,90①②[)90,1000.050[)100,1100.200练习2.为从甲、乙两名运动员中选拔一人参加2010年广州亚运会跳水项目,对甲、乙两名运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如图所示(Ⅰ)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员合适?(Ⅱ)若将频率视为概率,对甲运动员在今后3次比赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望E ξ。

甲 乙5 32 58 0 3 5 5 4 1 9 8 7 9例3.按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动).某校高一·一班50名学生在上学期参加活动的次数统计如条形图所示.(I)求该班学生参加活动的人均次数x;(II)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率;(III)从该班中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.(要求:答案用最简分数表示)练习3.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50]、[50,60]、…、[90,100]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80]内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60]记0分,在[60,80]记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望。

超几何分布与二项分布的区别与联系-二项分布与超几何分布的区别

超几何分布与二项分布的区别与联系-二项分布与超几何分布的区别

吉林教育·教学7/2013二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。

在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。

一、超几何分布与二项分布的定义1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为P (X=k)=C M k C n-m n-kC Nn,k=0,1,2,…,m其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。

其分布列为超几何分布列。

如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。

2.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。

在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k)=C n k P k(1-p )n-k,k=0,1,2,…,n 。

此时称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。

二、超几何分布与二项分布的区别从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。

超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。

实质上,超几何分布是古典概型的一种特例。

二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。

这就是二者之间的区别。

本文笔者举例说明:例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。

解:(1)是不放回地抽取,X 服从超几何分布。

【数学】超几何分布与二项分布的区别与联系

【数学】超几何分布与二项分布的区别与联系

二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。

在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。

一、超几何分布与二项分布的定义1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为P (X=k)=C M k C n-m n-kC Nn,k=0,1,2,…,m其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。

其分布列为超几何分布列。

如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。

2.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。

在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k)=C n k P k(1-p )n-k,k=0,1,2,…,n 。

此时称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。

二、超几何分布与二项分布的区别从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。

超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。

实质上,超几何分布是古典概型的一种特例。

二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。

这就是二者之间的区别。

本文笔者举例说明:例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。

解:(1)是不放回地抽取,X 服从超几何分布。

从10个球中任取2球的结果数为C 102,从10个球中任取2个,其中恰有k 个黑球的结果数为C 4k C 62-k,那么从10个球中任取2个,其中恰有k 个黑球的概率为P (X=k )=C 4k C 62-kC 102,k=0,1,2。

超几何分布与二项分布的关系

超几何分布与二项分布的关系

超几何分布与二项分布的关系超几何分布与二项分布都是概率论中常用的离散概率分布。

它们之间存在一定的关系,但又有一些明显的区别。

本文将详细介绍超几何分布和二项分布的定义、特点以及它们之间的联系。

超几何分布在描述离散事件的概率分布中起到了重要的作用。

在进行一系列独立实验时,若每次实验中成功和失败的概率不变,并且每次实验是相互独立的,那么这个实验服从二项分布。

而在超几何分布中,每次抽样并不是相互独立的,所以超几何分布常用于描述有限总体中的抽样实验。

首先,我们来看一下超几何分布的定义和特点。

超几何分布用于描述从有限总体中抽取固定数量的样本时,成功的次数的概率分布。

它的概率质量函数(Probability Mass Function,PMF)为:P(X=k) = (M choose k) * (N-M choose n-k)/(N choose n)其中,X是成功的次数,k是成功的次数,N是总体中的总样本数,M是总体中的成功样本数,n是抽取的样本数。

超几何分布的特点有以下几点:1. 每次抽样都会改变总体中的样本数,所以每次抽样的概率并不相等。

2. 概率质量函数是非对称的,呈现左偏态分布。

3. 超几何分布没有平均值和方差,因为每次抽样的样本数不一样。

4. 超几何分布的取值范围为0到min(n,M),即不能超过抽样个数和总体中成功样本数。

现在我们来看一下二项分布的定义和特点。

二项分布用于描述一系列独立实验中成功次数的概率分布。

它的概率质量函数(PMF)为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k)其中,X是成功次数,k是成功次数,n是实验次数,p是每次实验成功的概率。

二项分布的特点有以下几点:1. 每次实验的成功和失败的概率是相等的,并且每次实验都是相互独立的。

2. 概率质量函数是对称的,呈现钟形曲线。

3. 二项分布的平均值为np,方差为np(1-p),即平均值和方差的乘积是相等的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超几何分布和二项分布的联系和区别开滦一中 张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、两者的定义是不同的教材中的定义: (一)超几何分布的定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=nNk-n M -N k M C C C , ,2,1,0k =, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布(二)独立重复试验和二项分布的定义1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An) 2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=k n k p p --)1(C k n(k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。

1.本质区别(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题;(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题2.计算公式超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=n Nk-n M -N k M C C C , ,2,1,0k =, m,二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=kn k p p --)1(C k n(k=0,1,2,…,n), 温馨提示:当题目中出现“用样本数据估计XXX 的总体数据”时,均为二项分布问题。

比如2017-2018高三上学期期末考试19题。

二、二者之间是有联系的人教版新课标选修2-3第59页习题2.2B 组第3题:例.某批n 件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问:(1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件次品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识? 人教版配套的教学参考上给出了如下的答案与解释说明 【解】(1)在不放回的方式抽取中,每次抽取时都是从这n 件产品中抽取,从而抽到次品的概率都为0.02.次品数X~B(3,0.02),恰好抽到1件次品的概率为P(X=1)=13C ×0.02×(1-0.02)2=3×0.02×0.982≈0.057624。

在不放回的方式抽取中,抽到的次品数X 是随机变量,X 服从超几何分布,X 的分布与产品的总数n 有关,所以需要分3种情况分别计算①n=500时,产品的总数为500件,其中次品的件数为500×2%=10,合格品的件数为490.从500件产品中抽出3件,其中恰好抽到1件次品的概率为057853.049849950048949030)1(35002490110≈⨯⨯⨯⨯===C C C X P ②n=5000时,产品的总数为5000件,其中次品的件数为5000×2%=100,合格品的件数为4900.从5000件产品中抽出3件,其中恰好抽到1件次品的概率为0576747.049984999500048994900300)1(35000249001100≈⨯⨯⨯⨯===C C C X P ③n=50000时,产品的总数为50000件,其中次品的件数为50000×2%=1000,合格品的件数为49000.从50000件产品中抽出3件,其中恰好抽到1件次品的概057626.049998499995000048999490003000)1(35000024900011000≈⨯⨯⨯⨯===C C C X P (2)根据(1)的计算结果可以看出,当产品的总数很大时,超几何分布近似为二项分布.这也是可以理解的,当产品总数很大而抽出的产品较少时,每次抽出产品后,次品率近似不变,这样就可以近似看成每次抽样的结果是互相独立的,抽出产品中的次品件数近似服从二项分布【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外本题目也可以帮助学生了解超几何分布和二项分布之间的关系:第一,n 次试验中,某一事件A 出现的次数X 可能服从超几何分布或二项分布.当这n 次试验是独立重复试验时,X 服从二项分布;当这n 次试验是不放回摸球问题,事件A 为摸到某种特性(如某种颜色)的球时,X 服从超几何分布。

第二,在不放回n 次摸球试验中,摸到某种颜色的次数X 服从超几何分布,但是当袋子中的球的数目N 很大时,X 的分布列近似于二项分布,并且随着N 的增加,这种近似的精度也增加。

从以上分析可以看出两者之间的联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布 下面看相关例题例1.(2016·漯河模拟)寒假期间,我市某校学生会组织部分同学,用“10分制”随机调查“阳光花园”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶),若幸福度分数不低于8.5分,则称该人的幸福度为“幸福”(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;(2若从该社区(人数很多)任选3人,记ξ表示抽到“幸福”的人数,求ξ的分布列及数学期望先不要急于看答案,大家先自己解一下这道题再往下看,会有意想不到的收获哦[错解](1)由茎叶图可知,抽取的16人中“幸福”的人数有12人,其他的有4人;记“从这16人中随机选取3人,至少有2人是“幸福”,”为事件A.由题意得140121709140111)(3161122431634=--=⨯--=C C C C C A P (2)ξ的可能取值为0,1,2,3则14015604)0(31601234====C C C P ξ;70956072)1(31611224====C C C P ξ; 7033560264)2(31621214====C C C P ξ;2811560220)3(31631204====C C C P ξ; 所以ξ的分布列为[错解分析]第二问的选人问题是不放回抽样问题,按照定义先考虑超几何分布,但是题目中又明确给出:“以这16人的样本数据来估计整个社区的总体数据,从该社区(人数很多)任选3人”,说明不是从16人中任选3人,而是从该社区(人数很多)任选3人,所以可以近似看作是3次独立重复试验,应该按照二项分布去求解,而不能按照超几何分布去处理【正解】(1) (1)由茎叶图可知,抽取的16人中“幸福”的人数有12人,其他的有4人;记“从这16人中随机选取3人,至少有2人是“幸福”,”为事件A.由题意得140121709140111)(3161122431634=--=⨯--=C C C C C A P 2)由茎叶图知任选一人,该人幸福度为“幸福”的概率为43,ξ的可能取值为0,1,2,3,显然)43,3(B ~ξ则64141)0(3=⎪⎭⎫ ⎝⎛==ξP ;6494143)1(213=⎪⎭⎫ ⎝⎛⋅⋅==C P ξ; 64274143)2(223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==C P ξ;642743)3(3=⎪⎭⎫⎝⎛==ξP ;从以上解题过程中我们还发现,错解中的期望值与正解中的期望值相等,好多学生都觉得不可思议,怎么会出现相同的结果呢?其实这还是由于前面解释过的原因,超几何分布与二项分布是有联系的,看它们的期望公式:(1)在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,随机变量Ⅹ服从超几何分布,超几何分布的期望计算公式为EX=NnM(可以根据组合数公式以及期望的定义推导);(2)随机变量X 服从二项分布,记作X~B(n,p), EX=np;当超几何分布中的∞→N 时,p NM→,此时可以把超几何分布中的不放回抽样问题,近似看作是有放回抽样问题,再次说明∞→N 时,可以把超几何分布看作是二项分布。

总结:综上可知,当提问中涉及“用样本数据来估计总体数据”字样的为二项分布。

高考解题中,我们还是要分清超几何分布与二项分布的区别,以便能正确的解题,拿到满分。

相信各位同学们手中都应该有历年真题卷和2018的模拟试卷吧,快去找几道二项分布和超几何分布的概率大题试试吧,争取概率满分,加油!再比如:18.(本小题满分12分)(百所名校高考模拟金典卷五)为了调查观众对某电视娱乐节目的喜爱程度,某人在甲、乙两地各随机抽取了8名观众做问卷调查(满分100分),现将结果统计如下图所示(1)计算甲、乙两地被抽取的观众的问卷得分的平均分以及方差,并根据统计知识简单说明丽甲、乙两地观众对该电视娱乐节目的喜爱程度;3人进行问卷调查,记问卷分数超过80分的人数为E,求的分布列与数学期望请看原题答案,居然是错解:正解:(1)同上。

(2即以该频率来估计甲地区的整体情况,“若从甲地观众人”即时强有力的证据,所以此题应为二项分布,而非超几何分布。

超过80分的频率为34,即概率p=34,ξ的可能取值为0,1,2,3, 331(0)1464P x ⎛⎫==-= ⎪⎝⎭,1213319(1)4464P x C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, 2233127(2)4464P x C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,3327(3)464P x ⎛⎫=== ⎪⎝⎭;E (X )=np=4。

而下面这道题,就应该是超几何分布啦!18.(本小题满分12分)(2018石家庄质检一)某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:(1)求m 的值;并且计算这50名同学数学成绩的样本平均数(Ⅱ)该学校为制定下阶段的复习计划,从成绩在[130,150]的同学中选出3位作为代表进行座谈,记成绩在140,150]的同学人数为ξ,写出ξ的分布列,并求出期望。

18. 解(Ⅰ)由题()0.0040.0120.0240.040.012101m +++++⨯=解得 0.008m = ……… 3分950.004101050.012101150.024101250.04101350.012101450.00810x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯121.8= ……… 6分(Ⅱ)成绩在[)130,140的同学人数为6,,在[]140,150的同学人数为4,从而ξ的可能取 值为0,1,2,3,()0346310106C C P C ξ===, ()1246310112C C P C ξ=== ()21463103210C C P C ξ=== ()30463101330C C P C ξ===所以ξ的分布列为113160123.6210305E ξ=⨯+⨯+⨯+⨯= ……… 12分18.(本小题满分12分)(2018百所名校示范卷五) “共享单车”是城市慢行系统的一种模一A 城市 B 城市式创新,对于解决民众出行“最后一公1公里”的问题特别见效,由于停取方便、租用价格低廉,各种共享单车受到人们的 热捧.某机构为了调查人们对此种交通方式的满意度,从交通拥堵的A 城市和交通严重拥堵的B 城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,若评分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,并绘制出茎叶图如图。

相关文档
最新文档