平面直角坐标系点的坐标特点

合集下载

高斯平面直角坐标系特点

高斯平面直角坐标系特点

高斯平面直角坐标系特点高斯平面直角坐标系,这个名字听起来有点拗口,但其实它并没有你想象中的那么复杂。

今天,我们就来聊聊它的特点,让这些数学术语变得简单易懂。

1. 什么是高斯平面直角坐标系?1.1 平面上的坐标首先,我们得搞清楚什么是“高斯平面直角坐标系”。

这个系统主要用来在平面上定位点的位置。

简单来说,它就是一个二维的网格,帮助我们准确找到任何一个点的位置。

想象一下,我们把这个平面当成一张大地图,坐标系就像是地图上的经纬线,帮助你确定你在地图上的哪个角落。

1.2 坐标轴的角色在这个系统里,我们有两条基本的直线——x轴和y轴。

x轴是水平的,y轴是垂直的。

它们在平面上交叉形成一个“十字”,而交叉点就是原点,通常我们用字母“O”表示。

原点就像是坐标系的起点,从这里我们可以用坐标来描述任何一个点的位置。

2. 高斯坐标系的主要特点2.1 坐标的表示在高斯坐标系中,任何一个点的具体位置是用一对数字来表示的,这对数字就是坐标。

第一个数字表示点在x轴上的位置,第二个数字表示点在y轴上的位置。

比如,点(3, 4)表示这个点离x轴3个单位,离y轴4个单位的位置。

2.2 坐标系的优势这个坐标系有个特别大的好处,就是它很直观。

你只要知道点的坐标,就可以在图纸上很轻松地找到那个点。

它帮助我们处理各种图形、计算位置,也能帮助解决实际问题。

比如,你在设计一个建筑图纸时,就可以用坐标系来确定每个墙壁、窗户的准确位置。

3. 高斯坐标系的应用场景3.1 日常生活中的应用即使我们没有意识到,高斯坐标系其实已经渗透到我们的生活中了。

比如你在玩游戏时,游戏中的角色位置、障碍物的布置,很多时候都是用这种坐标系统来规划的。

就像是玩“寻宝游戏”,你需要根据坐标找到宝藏的位置。

3.2 科学与工程中的应用不仅如此,科学家和工程师们在做实验、设计机器时,也离不开高斯坐标系。

它能帮助他们精确计算、规划实验方案。

比如,建筑师在设计桥梁的时候,会用这种坐标系来确保桥梁的每一部分都在正确的位置上,从而保证结构的稳定性和安全性。

平面直角坐标系内点的坐标特征

平面直角坐标系内点的坐标特征

横坐标的绝 对值
③点P(a,b)与坐标原点的距离是 a2 b2
学习文档
练一练
1.点M〔-5,12〕到x轴的距离是__1_2_;到y轴的距 离是__5__;到原点的距离是__1_3_. 2.点M〔m,-5〕. ①点M到x轴的距离是__5__; ②假设点M到y轴的距离是4;那么 m 为±_4___.
学习文档
学习文档
7.点P(a-2,2a+8),分别根据以下条件求出点P的 坐标. 〔3〕点Q的坐标为〔1,5〕,直线PQ∥y轴;
解:∵点Q的坐标为(1,5),直线PQ∥y轴, ∴a-2=1, 解得 a=3, 故2a+8=14,那么P(1,14);
学习文档
7.点P(a-2,2a+8),分别根据以下条件求出点P的 坐标.
2
学习文档
问题3:如图,在平面直角坐标系中你能画出点A关 于y轴的对称点吗?
y
A′(-2,3)
A (2,3)
你能说出点A 与点A'坐标的 关系吗?
O
x
学习文档
做一做:在平面直角坐标系中画出以下各点关于y轴
的对称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2)
O
C '(-3,-4)
-4 -3 -2 -1O 1 2 3 4 5 x
E
-1 -2
H
F
-3 -4
Q
G
学习文档
总结归纳 y
O L(-x,-y)
M〔x,y〕 x
关于原点对称的两点,横坐标和纵坐标都互为 相反数.
学习文档
做一做
点〔4,3〕与点〔4,- 3〕的关系是〔 B 〕 A.关于原点对称 B.关于 x轴对称 C.关于 y轴对称 D.不能构成对称关系

中考数学复习考点知识归类讲解与练习01 平面直角坐标系与函数基本概念

中考数学复习考点知识归类讲解与练习01 平面直角坐标系与函数基本概念

中考数学复习考点知识归类讲解与练习专题01 平面直角坐标系与函数基本概念知识对接考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移1 / 27要点补充:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于;(2)点P(x,y)到y 轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点补充:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.专项训练一、单选题1.已知点P (a ,a+3)在第二象限,且点P 到x 轴的距离为2,则a 的值为()A .1-B .5-C .2-D .2y x 22y x +【答案】A【分析】先判断a的取值,进而根据点P到x轴的距离为2得到a+3=2,解得即可.【详解】解:∵点P(a,a+3)在第二象限,∴30aa<⎧⎨+>⎩,∴-3<a<0,∵点P到x轴的距离为2,∴|a+3|=2,∴a+3=2,∴a=-1,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(﹣3,﹣4)D.(4,﹣3)【答案】A【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】3 / 27解:点P (3,4)关于y 轴对称点的坐标为(-3,4),故选:A .【点睛】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.3.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-【答案】A【分析】 先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),5 / 27由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.4.小娜驾车从哈尔滨到大庆.设她出发第x min 时的速度为y km/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系式.下列说法:(1)在77≤x ≤88时,小娜在休息;(2)小娜驾车的最高速度是120km/h ;(3)小娜出发第16.5min 时的速度为48km/h ;(4)如果汽车每行驶100km 耗油10升,那么小娜驾车在33≤x ≤66时耗油6.6升. 其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象对每个选项进行分析判断,最后得出结论.①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;②观察图象小娜的最高时速为120千米;③用待定系数法求出11≤x ≤22时的函数关系式,可求小娜出发第16.5min 时的速度;④小娜驾车在33≤x ≤66时时速为120千米/小时,依次求出小娜驾车在33≤x ≤66时行驶的路程,从而耗油量可求.【详解】解:①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;故①错误; ②观察图象小娜的最高时速为120千米,故②正确;③在11≤x ≤22时,设y =kx +b .将(11,24)和(22,72)代入上式:11242272k b k b +=⎧⎨+=⎩, 解得:481124k b ⎧=⎪⎨⎪=-⎩. ∴482411y x =-. 当x =16.5min 时,y =48.∴小娜出发第16.5min 时的速度为48km /h .故③正确;④由图象可知:小娜驾车在33≤x ≤66时时速为120千米/小时,∴车在33≤x ≤66时小娜行驶了66331206660-⨯=(千米). ∴耗油为:66×10100=6.6(升).7 / 27故④正确;综上,正确的有②③④共三个.故选:C .【点睛】本题主要考查了一次函数的应用.理解函数图象上的点的实际意义是解题的关键.另外待定系数法是确定函数解析式的重要方法.5.下列不能表示y 是x 的函数的是()A .B .21y x =+C .D .【答案】C【分析】根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断, A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.x的函数的是()6.下列各图象中,y不是..A.B.C.D.【答案】B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.9 / 277.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.6【答案】A【分析】 由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,根据勾股定理求得DE 的长度,再根据三角形相似求得BF ,矩形的性质得到OF ,即可求解.【详解】解:由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,如下图:∵5CD AD ==,DE AC ⊥ ∴132CE AC ==,90DEC ∠=︒由勾股定理得4DE =∵//AB DC∴DCE BAC ∠=∠,90ODC BOD ∠=∠=︒又∵AC BC⊥∴90 ACB CED∠=∠=︒∴DEC BCA△∽△∴DE CE CDBC AC AB==,即4356BC AB==解得8BC=,10AB=∵CF OB⊥∴90 ACB BFC∠=∠=︒∴BCF BAC∽△△∴BC BFAB BC=,即8108BF=解得 6.4BF=由题意可知四边形OFCD为矩形,∴5OF CD==11.4OB BF OF=+=故选A【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.8.在平面直角坐标系中,已知点A(0,0)、B(2,2)、C(3,0),若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能为()A.(﹣1,2) B.(5,2) C.(1,﹣2) D.(2,﹣2)【答案】D【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的11 / 27性质容易得出点D 的坐标. 【详解】解:分三种情况:①BC 为对角线时,点D 的坐标为(5,2) ②AB 为对角线时,点D 的坐标为(﹣1,2), ③AC 为对角线时,点D 的坐标为(1,﹣2),综上所述,点D 的坐标可能是(5,2)或(﹣1,2)或(1,﹣2). 故选:D . 【点睛】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.9.半径是R 的圆的周长C 2R π=,下列说法正确的是() A .C ,π,R 是变量,2是常量 B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量 D .C ,R 是变量,2π是常量【答案】D 【分析】根据变量和常量的概念解答即可. 【详解】解:在半径是R 的圆的周长2C R π=中,C ,R 是变量,2π是常量. 故选D . 【点睛】本题主要考查了变量和常量,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10.关于变量x ,y 有如下关系:①6-=x y ;②24y x =;③2y x =;④3y x =.其中y 是x 函数的是() A .①③ B .①②③④ C .①③④ D .①②③【答案】C 【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数. 【详解】解:y 是x 函数的是①x -y =6;③y =2|x |;④3y x =; ∵x =1时,y =±2,∴对于y 2=4x ,y 不是x 的函数; 故选:C . 【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量. 二、填空题11.若点()25,4P a a --到两坐标轴的距离相等,则点P 的坐标是______. 【答案】()1,1或()3,3-; 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案. 【详解】解:∵P (2a -5,4-a )到两坐标轴的距离相等, ∴254a a -=-.13 / 27∴254a a -=-或25(4)a a -=--, 解得3a =或1a =,当3a =时,P 点坐标为(1,1); 当1a =时,P 点坐标为(-3,3). 故答案为:(1,1)或(-3,3). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.12.在平行四边形ABCD 中,点A 的坐标是(﹣1,0),点B 的坐标是(2,3),点D 的坐标是(3,1),则点C 的坐标是___. 【答案】(6,4). 【分析】根据四边形ABCD 是平行四边形,可得AB∥DC ,且AB =DC ,根据坐标间关系可得2-(-1)=x C -3,3-0=y C -1,解得x C =6,y C =4即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB∥DC ,且AB =DC , ∴2-(-1)=x C -3,3-0=y C -1, ∴x C =6,y C =4, 点C (6,4) 故答案为(6,4).【点睛】本题考查平行四边形的性质,点的坐标关系建构方程,掌握平行四边形的性质,点的坐标关系建构方程.13.函数y=182xx+-的自变量的取值范围是______.【答案】x≠4【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零,据此可得结论.【详解】解:由题可得,8﹣2x为分母,8﹣2x≠0,解得x≠4,∴函数182xyx+=-的自变量的取值范围是x≠4,故答案为:x≠4.【点睛】本题考查的是自变量的取值范围,由于此题表达式为分式,根据分式有意义的条件,分母不为零,得到自变量的取值范围.14.若一个函数图象经过点A(1,3),B(3,1),则关于此函数的说法:①该函数可能是一次函数;②点P(2,2.5),Q(2,3.5)不可能同时在该函数图象上;15 / 27③函数值y 一定随自变量x 的增大而减小;④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大. 所有正确结论的序号是 ___. 【答案】①②④ 【分析】根据函数的定义,一次函数的图象及函数的性质一一分析即可求解. 【详解】解:①因为一次函数的图象是一条直线,由两点确定一条直线,故该函数可能是一次函数,故正确;②由函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,所以点P (2,2.5),Q (2,3.5)不可能同时在该函数图象上,故正确;③因为函数关系不确定,所以函数值y 不一定一直随自变量x 的增大而减小,故错误; ④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大,故正确; 故答案为①②④. 【点睛】本题主要考查函数的定义及一次函数的图象与性质,熟练掌握函数的定义及一次函数的图象与性质是解题的关键.15.在圆周长公式2C r π=中,常量是__________. 【答案】2π 【分析】根据常量的定义即可解答. 【详解】解:圆周长公式2C r π=中,常量是2π, 故答案为:2π. 【点睛】本题考查了常量的定义,正确理解定义是关键.16.如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【答案】12⎛ ⎝⎭【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可. 【详解】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D点作x轴的垂线交于x2处,∵△OAB是等边三角形,且OA=2,∴在Rt△AD x2中,∠DA x2=60°,AD=1,∴21 2Ax=,2Dx=故D点的坐标为32⎛⎝⎭,即P332⎛⎝⎭;第4秒结束时P点运动到了点B的位置,同理过B点向x轴作垂线恰好交于点C,在Rt△OBC中,∠BOC =60°,2OB=,1OC=,BC故B点的坐标为(1,即P4(1;第5秒结束时P点运动到了线段OB的中点E的位置,根据点D即可得出E点的坐标为12⎛⎝⎭,即 P512⎛⎝⎭;第6秒结束时运动到了点O的位置,所以P6的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……17 / 27由上可知,P 点的坐标按每6秒进行循环, ∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为12⎛ ⎝⎭,故答案为:12⎛ ⎝⎭.【点睛】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.17.平面直角坐标系中,点()5,3A -,()0,3B ,()5,0C -,在y 轴左侧一点(),P a b (0b ≠且点P 不在直线AB 上).若40APO ∠=︒,BAP ∠与COP ∠的角平分线所在直线交于D 点.则ADO ∠的度数为______°.【答案】110或70 【分析】分两种情况,①点P 在AO 下方,设AP 与CO 交于点N ,过点N 作//NM AD ,先证明NM 平分PNO ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMO P ∠=+∠,即可求解;②点P 在AO 上方,设PO 与AB 交于点M,过点M 作//NM OD ,先证明NM 平分PNA ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMA P ∠=+∠,即可求解. 【详解】19 / 27解:分两种情况, ①点P 在AO 下方时,设AP 与CO 交于点N ,过点N 作//NM AD ,PAD PNM ∴∠=∠, //AB NO , BAN ONP ∴∠=∠,AD 平分BAN ∠,12PAD BAN ∴∠=∠,12PNM ONP ∴∠=∠,NM∴平分ONP ∠,OM 平分NOP ∠,111(180)70222MNO NOM ONP PON NPO ∴∠+∠=∠+∠=-∠=︒,110NMO ∴∠=︒, //NM AD ,110ADO NMO ∴∠=∠=︒;①点P 在AO 上方时,设AB 与PO 交于点N ,过点N 作//NM OD ,POD PNM ∴∠=∠,//AB CO ,PNA POC ∴∠=∠,DO 平分POC ∠,12POD POC ∴∠=∠,12PNM PNA ∴∠=∠,NM∴平分ANP ∠,直线CD 平分NAP ∠,111(180)70222MNA NAM PNA PAN NPA ∴∠+∠=∠+∠=-∠=︒,110NMA ∴∠=︒, //NM AD ,18070ADO NMO ∴∠=-∠=, 70ADO ∴∠=︒或110︒.故答案为:70或110.【点睛】本题主要考查了三角形双内角平分线模型,平行线的性质,解题的关键是找基本模型. 18.一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________. 【答案】3 32y x = 【分析】先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到21 / 27y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量. 三、解答题19.已知一个圆柱的底面半径是3cm ,当圆柱的高(cm)h 变化时,圆柱的体积()3cm V 也随之变化.(1)在这个变化过程变量h 、V 中,自变量是______,因变量是______; (2)在这个变化过程中,写出圆柱的体积V 与高h 之间的关系式;(3)当圆柱的高h 由3cm 变化到6cm 时,圆柱的体积V 由______变化到______. 【答案】(1)h ,V ;(2)9V h π=;(3)327cm π,354cm π 【分析】(1)利用函数的概念进行回答;(2)利用圆柱的体积公式求解;(3)分别计算出h =3和6对应的函数值可得到V 的变化情况. 【详解】解:(1)在这个变化过程中,自变量是h ,因变量是V ;故答案为h ,V ;(2)V =π•32•h =9πh ;(3)当h =3cm 时,V =27πcm 3;当h =6cm 时,V =54πcm 3;所以当h 由3cm 变化到6cm 时,V 是由27πcm 3变化到54πcm 3.故答案为:27πcm3;54πcm3.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.函数解析式是等式.解决此题的关键是圆柱的体积公式.20.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t,s;(2)50,30;(3)15小时,450km【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh时,两车相遇,根据题意列出方程,解之可得x,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t;因变量是路程s;(2)由图象可得,小轿车的速度为:500÷10=50(km/h),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21.在平面直角坐标系中,O为坐标原点,C(4,0),A(a,3),B(a+4,3)(1)求ΔOAC的面积;(2)若aOABC是菱形.【答案】(1)6;(2)见解析【分析】(1)过点A(a,3)作AE⊥x轴于点E,根据A(a,3),C(4,0)求出AE和OC的长度,23 / 27然后根据三角形面积公式求解即可;(2)首先根据点A 和点B 的纵坐标相同得到//AB OC ,然后结合AB OC =得到四边形OABC 是平行四边形,然后根据勾股定理求出OA 的长度,得到OA =OB ,根据菱形的判定定理即可证明. 【详解】解:(1)如图所示,过点A (a ,3)作AE ⊥x 轴于点E ,则AE =3, 又∵C (4,0), ∴OC =4,∴S △OAC =11=43622OC AE ⨯⨯⨯⨯=.(2)若a =)A ,)43B ,, ∵A B y y =, ∴//AB OC , ∵44AB OC ==,, ∴AB OC =.∴四边形OABC 是平行四边形, 过点A 作AE ⊥x 轴,则90AEO ∠=︒,3AE OE ==,∴4OA =,∴OA AB=,∴四边形OABC是菱形.【点睛】此题考查了三角形面积的求法,菱形的判定,解题的关键是根据题意找到坐标和线段的关系.22.定义:平面直角坐标系中,点M(a,b)和点N(m,n)的距离为MN,例如:点(3,2)和(4,0(1)在平面直角坐标系中,点(2,5-)和点(2,1)的距离是,点(72,3)和点(12,1-)的距离是;(2)在平面直角坐标系中,已知点M(2-,4)和N(6,3-),将线段MN平移到M ′ N′,点M的对应点是M′,点N的对应点是N′,若M′的坐标是(8-,m),且MM′=10,求点N′的坐标;(3)在平面直角坐标系中,已知点A在x轴上,点B在y轴上,点C的坐标是(12,5),若BC=13,且△ABC的面积是20,直接写出点A的坐标.【答案】(1)6,5;(2)当M′(-8,12)时,N′(0,5),当M′(-8,-4)时,N′(0,-11);(3)(8,0)或(-8,0)或(16,0)或(32,0)【分析】(1)分别利用两点间距离公式求解即可.(2)构建方程求出m的值,可得结论.(3)设(0,)B t,构建方程求出t的值,可得结论.【详解】解:(1)点(2,5)-和点(2,1)的距离6,25 / 27点7(2,3)和点1(2,1)-的距离5=, 故答案为:6,5. (2)由题意,10MM '=,∴10=,12m =∴或4-,(8,12)M ∴'-或(8,4)--,当(8,12)M '-时,(0,5)N ', 当(8,4)M '--时,(0,11)N '-. (3)设(0,)B t ,(12,5)C ,13BC =,∴13,解得0t =或10,(0,0)B ∴或(0,10),当(0,0)B 时,20ABC S ∆=,∴15202OA ⨯⨯=, 8OA ∴=,(8,0)A ∴或(8,0)-.当(0,10)B 时,20ABC BOC AOC AOB S S S S ∆∆∆∆=+-=或20ABC AOC AOB BOC S S S S ∆∆∆∆=--=,∴111101*********OA OA ⨯⨯+⨯⨯-⨯⨯=或111101012520222OA OA ⨯⨯-⨯⨯-⨯⨯=,16OA ∴=或32,∴或(32,0),A(16,0)综上所述,满足条件的点A的坐标为(8,0)或(8,0)-或(16,0)或(32,0).【点睛】本题属于三角形综合题,考查了两点间距离公式,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27 / 27。

点的坐标的知识点总结

点的坐标的知识点总结

点的坐标的知识点总结一、概念点是几何中最基本的元素之一,它是没有大小和形状的,只有位置的概念。

在平面几何中,一个点的位置可以由其和参考坐标系中的两个坐标值来确定。

这两个坐标值分别叫做横坐标和纵坐标,通常用小括号分别括起来,中间用逗号隔开表示。

例如,点A的坐标为(x,y)。

其中,x是横坐标,y是纵坐标。

横坐标表示点在x轴上的位置,纵坐标表示点在y轴上的位置。

二、表示方法在平面直角坐标系中,点的位置是由两个坐标值确定的。

横坐标和纵坐标的取值范围可以是实数,也可以是整数,具体取决于所使用的坐标系和具体问题的要求。

通常,我们可以使用平面直角坐标系、极坐标系和球面坐标系来表示点的位置。

1、平面直角坐标系:平面直角坐标系是最常用的表示点的坐标的方法之一。

在平面直角坐标系中,x轴和y轴互相垂直,起始于原点O,并且正方向分别被定义为正的方向。

点的坐标表示为(x,y),其中x是点在x轴上的投影,y是点在y轴上的投影。

2、极坐标系:极坐标系是另一种表示点的坐标的方法。

在极坐标系中,点的位置不是由横纵坐标确定,而是由极径和极角确定。

极径表示点到坐标原点的距离,极角表示点在极轴上的极角。

点的坐标表示为(r,θ),其中r是点到原点的距离,θ是点在极轴上的极角。

3、球面坐标系:球面坐标系用来描述三维空间中点的位置。

在球面坐标系中,点的坐标表示为(r,θ,φ),其中r是点到原点的距离,θ是点在xz平面上的极角,φ是点与z轴的夹角。

球面坐标系能够描述点在球面上的位置,适用于球面上的问题。

三、坐标系坐标系是用来描述点的位置的基础工具之一。

在平面几何中,常用的坐标系包括直角坐标系、极坐标系和其他特殊的坐标系。

每种坐标系都有其独特的特点和适用范围。

1、直角坐标系:直角坐标系是最基本,也是最常用的坐标系。

在直角坐标系中,点的位置是由横坐标和纵坐标表示的。

横坐标和纵坐标的取值范围都是实数。

直角坐标系可以用于描述平面上的点的位置,以及平面上的图形和问题。

考点01 平面直角坐标系内点的坐标特征(解析版)

考点01 平面直角坐标系内点的坐标特征(解析版)

考点一平面直角坐标系内点的坐标特征知识点整合1.有序数对(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.2.点的坐标特征点的位置横坐标符号纵坐标符号第一象限﹢+第二象限-+第三象限--第四象限+-x轴上正半轴上+0负半轴上-0y轴上正半轴上0+负半轴上0-原点003.轴对称(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).4.中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).5.图形在坐标系中的旋转图形(点)的旋转与坐标变化:(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).6.图形在坐标系中的平移图形(点)的平移与坐标变化(1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);(2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);(3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);(4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).考向一有序数对有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.典例引领1.根据下列表述,能确定具体位置的是()A.电影城1号厅6排B.北京市海淀区C.北纬31︒,东经103︒D.南偏西40︒【答案】C【分析】本题考查了平面内的点与有序实数对一一对应,根据平面内的点与有序实数对一一对应分别对每个选项判断.【详解】A、电影城1号厅6排不能确定具体位置.故本选项不合题意;B、北京市海淀区不能确定具体位置.故本选项不合题意;C、北纬31︒,东经103︒能确定具体位置.故本选项符合题意;D、南偏西40︒不能确定具体位置.故本选项不合题意.故选:C2.下列表述,能确定准确位置的是()A.威高广场东面B.环翠楼北偏西10︒C.U度影城2号厅一排D.北纬37︒,东经122︒【答案】D【分析】本题考查了有序数对,利用有序数对可以准确的表示出一个位置.确定位置需要两个数据,对各选项分析判断利用排除法即可求解.【详解】解:A、威高广场东面,不能确定具体位置,故本选项不符合题意;B、环翠楼北偏西10︒,不能确定具体位置,故本选项不符合题意;C 、U 度影城2号厅一排,不能确定具体位置,故本选项不符合题意;D 、北纬37︒,东经122︒,能确定具体位置,故本选项符合题意.故选:D .3.2023年山西省大学生篮球锦标赛于12月中旬开赛,图1是某大学篮球场座位图,图2是该篮球场部分座位的示意图.小刚、小芳、小美的座位如图所示.若小刚的座位用()1,1-表示,小芳的座位用()3,2表示,则小美的座位可以表示为()A .()1,2-B .()2,0C .()2,1-D .()1,0【答案】C【分析】本题考查点的坐标,根据点的位置先确定平面直角坐标系的位置,然后写出点的坐标是解题的关键.【详解】解:根据小刚、小芳的位置确定坐标系位置如图所示,∴小美的座位可以表示为()2,1-,故选C .4.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F ,目标E ,F 的位置分别表示为()()3,330,2,30E F ︒︒.按照此方法,目标A ,B ,C ,D 的位置表示不正确的是()A .()5,60A ︒B .()3,120B ︒C .()3,210C ︒D .()5,270D ︒【答案】C【分析】本题考查利用有序实数对表示位置,解题的关键是根据理解题意.根据()3,330E ︒,()2,30F ︒得到第一个数为由里向外的圈数,第二个数为角度,直接逐个判断即可得到答案【详解】解:∵()3,330E ︒,()2,30F ︒,∴()5,60A ︒,()3,120B ︒,()4,210C ︒,()5,270D ︒,故选:C5.如果剧院里“5排2号”记作()5,2,那么()7,9表示()A .“7排9号”B .“9排7号”C .“7排7号”D .“9排9号”【答案】A【分析】本题考查了坐标确定位置,解题关键是清楚有序数对与排号之间的关系,根据题意可前一个数表示排数,后一个数表示号数即可求解.【详解】解:由“5排2号”记作()5,2可知,有序数对与排号对应,所以()7,9表示第7排9号.故选:A .6.一幢东西走向的5层教学楼,每层共8个教室.若把一楼从东侧数起第3个教室记为()1,3,二楼最东侧教室记为()2,1,则五楼最西侧教室记为()A .()5,1B .()5,8C .()8,5D .()1,5【答案】B【解析】略7.某班级第3组第4排的位置可以用数对()3,4表示,则数对()1,2表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排【答案】C【解析】略变式拓展00,【答案】()【分析】本题考查有序数对位置的确定,进而得出答案,采用数形结合的思想是解此题的关键.【详解】解:根据棋子“马”和“车”00,.故答案为()【答案】23【分析】本题主要考查了数字类的规律探索,的数为()1n n+,据此算出第三、解答题13.如图是某校区域示意图.规定列号写在前面,行号写在后面.(1)用数对的方法表示校门的位置.9,7在图中表示什么地方?(2)数对()2,3;【答案】(1)()(2)教学楼.【分析】(1)根据校门所在的列及所在的行,即可表示出校门的位置;(2)根据数对的表示方法找到对应的位置,即可得到数对表示的地点;本题考查了用有序数对表示点的位置,理解序数对表示的含义是解题的关键.【详解】(1)解:由图可知,校门位于第2列,第3行,2,3;∴校门的位置为数对()9,7表示的位置为第9列,第7行,(2)解:数对()由图可知,表示的地方为教学楼.14.在计算机软件Excel中,若将第A列第1行空格记作A1,如图.(1)试在图中找出空格B53,并填上“B53”字样;(2)图中的蜜蜂所在位置记作什么?(3)一只电子“蜜蜂”的行进路线为A52→A51→B52→C51→D52→C53.试在图中描出它的行进路线.【答案】(1)见解析(2)D52(3)见解析【详解】(1)如图所示(2)图中的蜜蜂所在位置记作D52.(3)行进路线如图所示.考向二点的坐标特征1.象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.典例引领∴点()3,1Q a a -+所在象限是第二象限,故选:B .变式拓展二、填空题所以23a a +=±,解得3a =-(舍去)或1-.故答案为:1-.三、解答题考向三点的坐标规律探索这类问题通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.典例引领1.如图,将边长为1的正方形ABOC 沿x 轴正方向连续翻转2014次,点A 依次落在点12A A 、、32014A A 、、的位置,则点2014A 的横坐标为()A .1343B .1510C .1610D .2014【答案】D【分析】本题考查了探究规律,利用规律即可解决问题,涉及坐标与图形变化-对称、规律型:点的坐标,先根据题意写出已知点的坐标,再找到规律为次数是2的奇数倍的偶数,位于x 轴上,横坐标为这个翻转次数;次数是2的偶数倍的偶数,位于x 轴的上方,横坐标为这个翻转次数加上1;据此作答即可.A .()3032,1-B .()3034,4C .()3036,4D .()3031,1【答案】B【分析】本题考查坐标的规律问题,先找到点的规律,然后计算解题即可,解题的关键是找到点的坐标规律.【详解】由题可知,每四个点纵坐标重复一次,横坐标向左平移6个单位长度,∴202345053÷= ,则2023A 的横坐标为:505643034⨯+=,纵坐标为4,故选:B .4.对一组数(),x y 的一次操作变换记为()111,P x y ,定义其变换法则如下:()111,(,)P x y x y x y =+-,()()()()22211111111,,,,n n n n n n n P x y x y x y P x y x y x y ----=+-=+- (n 为大于1的整数),如这组数为(1,2),则1(3,1)P =-,2(2,4)P =,3(6,2)P =-…当这组数为(1,1)-时,2024P =()A .()101210122,2-B .()10120,2-C .()10110,2D .()101110112,2-【答案】A【分析】本题考查了新定义点的坐标,根据操作方法依次求出前几次变换的结果,然后根据规律解答,读懂题目信息,理解操作方法并观察出点的纵坐标的指数的变化规律是解题的关键.【详解】解:当这组数为()1,1-时,()()11,10,2P -=,()()21,12,2P -=-,()()()231,10,40,2P -==,()()()2241,14,42,2P -=-=-,()()()351,10,80,2P -==,∴()()1012101220241,12,2P -=-,故选:A .二、填空题【答案】()20212,【分析】本题考查了点坐标规律探索,旨在考查学生的抽象概括能力.标为对应的运动次数减3,纵坐标依次为:4,2,1,1,2-,每5次一个循环,据此即可求解.【详解】解:由题意得:动点0()34P -,在平面直角坐标系中的运动为:1()22P -,,()21,1P -,31(0)P -,,42(1)P ,,54(2)P ,,62(3)P ,,...∴横坐标为对应的运动次数减3,则第2024次运动到点2024P 的横坐标为:202432021-=;∵()202415405+÷=,∴第2024次运动到点2024P 的纵坐标为:2;故答案为:()20212,变式拓展【答案】()20242024,0P 【分析】本题考查了坐标系中点的坐标规律探索,仔细观察点的坐标发现第()22,0P ,第4次坐标为()44,0P ,第6次坐标为()66,0P ,故第2024次的坐标为【详解】第2次坐标为()22,0P ,第4次坐标为()44,0P ,第6次坐标为故第2024次的坐标为()20242024,0P .故答案为:()20242024,0P .7.在平面直角坐标系xOy 中,对于点(),P x y ,我们把(11,P y x --知点1A 的友好点为2A ,点2A 的友好点为3A ,点3A 的友好点为4A ,这样依次得到各点的坐标为()1,2,设()1,A x y ,则x y +的值是.【答案】5-【分析】本题主要考查了规律型:点的坐标,解答本题的关键是准确理解题意,发现变换规【答案】()2023,1-【分析】本题主要考查的是坐标系中的规律探究问题,计算P 的时间,根据规律即可求得第2023秒P 点位置,找出运动规律是解题的关键.【详解】由题意可知,点P 运动一个半圆所用的时间为:π÷三、解答题10.如图,在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4A (_________,_________),8A (_________,_________),12A (_________,_________);(2)写出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点2021A 到点2022A 的移动方向.【答案】(1)2,0;4,0;6,0;(2)()2,0n (3)向右.【分析】(1)本题考查了在平面坐标系中点的坐标特点,根据题意知道按向上、向右、向下、向右的方向每次移动1个单位,即可解题.(2)本题考查了在平面坐标系中坐标的特点和坐标的规律,观察点4A 的位置,由图可知,蚂蚁每走4步为一个周期,得出4n OA 的值,再根据点4n A 在x 轴的正半轴上,即可解题.(3)本题考查了在平面坐标系中坐标的特点和坐标的规律,根据点4n A 的坐标,分析可得点2020A 的坐标,再结合题意知道按方向每次移动1个单位,得到点2021A 和点2021A 的坐标,即可解题.【详解】(1)解:由图可知,点4A ,点8A ,点12A 都在x 轴的正半轴上,小蚂蚁每次移动1个单位,42OA ∴=,84OA =,126OA =,()42,0A ∴,()84,0A ,()126,0A ,故答案为:2,0;4,0;6,0.(2)解:由图可知,蚂蚁每走4步为一个周期,44422n OA n n ∴=÷⨯=,点4n A 在x 轴的正半轴上,()42,0n A n ∴.(3)解: 当2020n =时,4505n ∴=⨯,∴点2020A 的坐标为()1010,0,∴点2021A 的坐标为()1010,1,点2022A 的坐标为()1011,1,∴蚂蚁从点2021A 到点2022A 的移动方向为向右.。

平面直角坐标系与点的坐标

平面直角坐标系与点的坐标

平面直角坐标系与点的坐标平面直角坐标系是数学中常用的坐标系之一,用于描述平面上的点的位置。

它由两个相互垂直的坐标轴组成,分别为x轴和y轴。

一、直角坐标系的定义与特点直角坐标系是由两条相互垂直的直线构成,它们通常被称为x轴和y轴。

这两个轴分别代表了水平方向和垂直方向。

在这个坐标系中,我们可以用有序数对(x, y)来表示平面上的一个点P,其中x表示点P在x 轴上的坐标,y表示点P在y轴上的坐标。

直角坐标系的特点有以下几点:1. 坐标原点:直角坐标系中的原点O位于x轴和y轴的交点处,它的坐标为(0, 0)。

2. 坐标轴:x轴和y轴相互垂直,并且共同构成了整个平面。

3. 坐标值:每个点P在直角坐标系中都有唯一的坐标表示。

x轴的坐标值是实数集上的所有数,y轴的坐标值也是实数集上的所有数。

二、点的坐标表示方法在直角坐标系中,点P的坐标可通过以下方法求得:1. 水平和垂直距离:假设点P的水平距离为x,垂直距离为y,则点P的坐标为(x, y)。

2. 垂直和水平投影:假设点P的垂直投影在x轴上的坐标为x,水平投影在y轴上的坐标为y,则点P的坐标为(x, y)。

例如,点A位于x轴上,其坐标为(3, 0);点B位于y轴上,其坐标为(0, 5);点C位于第一象限,其坐标为(2, 4);点D位于第四象限,其坐标为(-1, -2)。

三、坐标系的应用举例直角坐标系在数学和科学领域中有广泛的应用。

以下是一些具体的应用举例:1. 几何图形:通过直角坐标系,我们可以方便地描述几何图形的位置、形状和大小,如直线、抛物线、圆等。

2. 数据分析:直角坐标系可以用于绘制数据图表,帮助我们分析和比较数据,如折线图、柱状图、散点图等。

3. 物理学:在物理学中,直角坐标系可以用于描述力、速度、加速度等物理量的方向和大小。

4. 工程应用:直角坐标系可以应用于工程领域,如建筑设计、城市规划等,帮助确定位置、测量距离等。

总结:平面直角坐标系是用来描述平面上点的位置的数学工具,由x轴和y轴组成。

冀教版八年级数学_19.2.2 平面直角坐标系点的坐标特征

冀教版八年级数学_19.2.2  平面直角坐标系点的坐标特征

知1-练
感悟新知
2. 下列说法错误的是( C ) A.象限内的点的坐标可用一个有序数对来表示 B.坐标轴上的点的坐标可用一个有序数对来表 示 C.过点P向x轴作垂线,点P与垂足之间的线段 长是点P的纵坐标 D.过点P向y轴作垂线,点P与垂足之间的线段 长不一定是点P的横坐标
知1-练
感悟新知
3. 【中考·荆门】在平面直角坐标系中,若点A(a, 知1-练
标为(0,0)
-2 第三象限 -3 第四象限
(-,-)
-4 -5
(+,-)
知1-讲
感悟新知
1、点P(x,y)在第一象限 2、点P(x,y)在第二象限 3、点P(x,y)在第三象限 4、点P(x,y)在第四象限
x>0,y>0. 知1-讲 x<0,y>0. x<0,y<0. x>0,y<0.
感悟新知
例 1 [中考·湛江]在平面直角坐标系中,点A(2,-3)
在第( D )象限.
A.一
B.二
C.三
D.四
知1-讲
导引:根据平面直角坐标系中四个象限内的点的坐标 特征,即可确定点的位置. 答案:D
感悟新知
归纳
知1-讲
由点的坐标(a,b)确定点的位置的方法:
方法一:由点的坐标的符号确定点的位置,即(+,+)的
知2-讲
坐标轴上的点的坐标:
点M(x,y)所处的位置
坐标特征
点M在x轴上
在x轴正半轴上:M(正,0) 在x轴负半轴上:M(负,0)
点M在y轴上
在y轴正半轴上:M(0,正) 在y轴负半轴上:M(0,负)
感悟新知
拓展: 平行于x轴的直线上的点的纵坐标相等; 平行于y轴的直线上的点的横坐标相等.

(完整版):平面直角坐标系经典例题解析

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1在平面直角坐标系中,点P(m, m-2)在第一象限内,则m的取值范围是_________________ 思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得: 解得:m > 2.故答案为:m> 2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1如果m是任意实数,则点P (m-4, m+1) 一定不在( )A. 第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:T( m+1 - ( m-4) =m+1-m+4=5•••点P的纵坐标一定大于横坐标,•••第四象限的点的横坐标是正数,纵坐标是负数,•第四象限的点的横坐标一定大于纵坐标,•••点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-,+);第三象限(-,-);第四象限(+,-). 例2如图,矩形BCDE 的各边分别平行于x轴或y轴,物体甲和物体乙分别由点 A (2, 0) 同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( )A . (2, 0)B . ( - 1 , 1) C. ( - 2, 1) D. (- 1,- 1)分析:禾U用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12X1,物体甲行的路程为12冷=4,物体乙行的路程为12烂=8,在BC边相遇;31②第二次相遇物体甲与物体乙行的路程和为 12X2,物体甲行的路程为12X2』=8,物体乙行 [3的路程为12X 2X =16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的 路程和为12X 3,物体甲行的路程为 12X 3X1=12,物体乙3行的路程为12X 3X =24,在A 点相遇;3此时甲乙回到原出发点,则每相遇三次,两点回到出发点, •/ 2012- 3=670…2 ,故两个物体运动后的第 2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为故选:D .点评: 此题主要考查了行程问题中的相遇问题及按比例分配的运用, 通过计算发现规律就可以解决问题.例2如图,动点P 从(0, 3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时 反射角等于入射角,当点 P 第2013次碰到矩形的边时,点 P 的坐标为( )A. ( 1,4)B. (5, 0)C. (6, 4)D. (8, 3)思路分析:根据反射角与入射角的定义作出图形,可知每 6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.~解 如图,经过6次反弹后动点回到出发点( 0, 3),V 划 4/KJ 11321:;; !12S45678•/ 2013- 6=335…3,•••当点P 第2013次碰到矩形的边时为第 336个循环组的第3次反弹, 点P 的坐标为(8, 3). 故选D.点评:本题是对点的坐标的规律变化的考查了, 作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练 2.如图,在平面直角坐标系中, A (1, 1) , B (- 1, 1), C (- 1,- 2), D (1 , - 2).把 一条长为2012个单12 X 2 =16,在DE 边相遇; 此时相遇点的坐标为:(-1,-1),物体乙行的路程为位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A - B - C - D - A -…的规律紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点 的坐标是()••• AB=1 -( - 1) =2 , BC=1 -( - 2) =3, CD=1 -( - 1) =2 , DA=1 -( - 2) =3 , •••绕四边形 ABCD 一周的细线长度为 2+3+2+3=10, 2012 - 10=201 …2 •细线另一端在绕四边形第 202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(-1, 1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形 ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题 的关键.例2如图,在平面直角坐标系 xOy 中,点P (-3, 5)关于y 轴的对称点的坐标为()A . (-3, -5)B . (3, 5)C . ( 3. -5)D . ( 5, -3)答:B考点二:函数的概念及函数自变量的取值范围例3在函数y中,自变量x 的取值范围是 ____________ .x思路分析:本题主要考查自变量的取值范围, 函数关系中主要有二次根式和分式两部分. 根据二次根式的意义,被开方数 X+1A0,根据分式有意义的条件, x 工0就可以求出自变量 x 的取值范围.解:根据题意得:x+1>0且x 工0 解得:X 二1且X M0 例3函数y= _3中自变量x 的取值范围是()x 1A. x > -3B. x >3C. x 》0 且 x MlD. x > -3 且 x ^l思路分析:根据被开方数大于等于 0,分母不等于0列式计算即可得解. 解:根据题意得,x+3>0且X-1M 0, 解得x > -3且x M 1. 故选D.点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1 )当函数表达式是整式时,自变量可取全体实数;分析: 根据点的坐标求出四边形 ABCD 的周长,然后求出另一端是绕第几圈后的第几个 A . (1,- 1) B • ( - 1, 1) 单位长度,从而确定答案.解答:解:••• A (1 , 1), B (- 1, 1), C (- 1 , - 2), D (1,- 2),(2 )当函数表达式是分式时,考虑分式的分母不能为 (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数y ,2 中自变量x的取值范围是( )7x2A . x > -2B . x > 2C . x 乂2D . x >23. A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离 S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了 C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 后开始返回与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断. 解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,至厅一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准 确,错误;C 、 从家出发,一直散步(没有停留) ,然后回家了,图形为上升和下降的两条折线,错误;D 、 从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴 表示的量,再根据函数图象用排除法判断.例5如图,Y ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在 Y ABCD 的顶点上,它们的各边与 Y ABCD 的各边分别平行,且与 Y ABCD 相似.若小平 行四边形的一边长为 X ,且0V x <8阴影部分的面积的和为 y ,则y 与x 之间的函数关系的 大致图象是( )思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形0;18分钟味着有停留,而路程没有增加,意的面积,再根据相似多边形面积的比等于相似比的平方列式求出y与x之间的函数关系式, 然后根据二次函数图象解答.解:•••四个全等的小平行四边形对称中心分别在Y ABCD的顶点上,•••阴影部分的面积等于一个小平行四边形的面积,•••小平行四边形与Y ABCD相似,..._y_32x 2(8),整理得 1 2 y -x ,2又O v x<8纵观各选项,只有D选项图象符合y与x之间的函数关系的大致图象.故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平"面直角坐标洗中,点 A (11, 0),点B (0, 6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B'和折痕OP.设BP=t.(I)如图①,当/ BOP=30时,求点P的坐标;(H)如图②,经过点P再次折叠纸片,使点C落在直线PB'上,得点C'和折痕PQ,若AQ=m , 试用含有t的式子表示m;(川)在(H)的条件下,当点C'恰好落在边OA上时,求点P的坐标(直接写出结果即可). 考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(I)根据题意得,/ OBP=9O , OB=6,在Rt A OBP 中,由/ BOP=3O , BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(□)由厶OB P、△ QC P分别是由厶OBP、△ QCP折叠得到的,可知△ OB OBP ,△ QC QCP,易证得△ OBP s^ PCQ,然后由相似三角形的对应边成比例,即可求得答案;(川)首先过点P作PE丄OA于E,易证得△ PC C QA由勾股定理可求得C'Q的长,1 11然后利用相似三角形的对应边成比例与m= t2- t+6,即可求得t的值.6 6点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识. 此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4. 甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A .甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D •比赛中两队从出发到 2.2秒时间段,乙队的速度比甲队的速度快4•解:A 、由函数图象可知,甲走完全程需要 4分钟,乙走完全程需要 3.8分钟,乙队率先到达终点,本选项错误;B 、 由函数图象可知,甲、乙两队都走了1000米,路程相同,本选项错误;C 、 因为4-3.8=02分钟,所以,乙队比甲队少用 0.2分钟,本选项正确;D 、 根据0〜2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,本选项错误; 故选C • 5. 如图,点A 、B 、C 、D 为O O 的四等分点,动点 P 从圆心O 出发,沿OC-CD-DO 的路线做匀速运动,设运动的时间为 t 秒,/ APB 的度数为y 度,则下列图象中表示 yCD上运动时,/ APB 不变,当P 在DO 上运动时,/ APB 逐渐增大,即可得出答案.解答: 解:当动点P 在OC 上运动时,/ APB 逐渐减小; 当P 在C D 上运动时,/ APB 不变; 当P 在DO 上运动时,/ APB 逐渐增大.故选C •点评:本题主要考查了动点问题的函数图象,用到的知识点是圆周角、圆内的角及 函数图象认识的问题.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所 需要的条件,结合实际意义画出正确的图象.(度)与t (秒)之间函数关系最恰当的是(考点:动点问题的函数图象•分析:根据动点 P 在OC 上运动时,/ APB 逐渐减小,当 P考点四:动点问题的函数图象例5如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE-ED-DC 运动到点C 时停止, 点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是 1cm/s .若P , Q 同时开始运动,设运动时间为t (s ), △ BPQ 的面积为y (cm ).已知y 与t 的函数图象如图2,则下列结论 错误的是()4 B.sin /EBC —52 2 C. 当 0 v t < 10 时,y= — t5D. 当t=12s 时,△ PBQ 是等腰三角形思路分析:由图2可知,在点(10, 40)至点(14, 40)区间,△ BPQ 的面积不变,因此可 推论(1 )在BE 段,BP=BQ 持续时间10s ,贝U BE=BC=10 y 是t 的二次函数; (2 )在ED 段, y=40是定值,持续时间 4s ,则ED=4; (3)在DC 段, y 持续减小直至为0, y 是t 的一次函数. 解:(1)结论A 正确.理由如下:分析函数图象可知, BC=10cm ED=4cm 故 AE=AD-ED=BC-ED=10-4=6cm如答图1所示,连接EC,过点E 作EF 丄BC 于点F ,11由函数图象可知, BC=BE=10cm BEC =40=— BC?EF= X 10X EF,2 2E F 8/• sin / EBC= =-BE 10(3)结论C 正确.理由如下: 如答图2所示,过点P 作PGLBQ 于点G,•/ BQ=BP=,AEA. 图1AE=6cmEF=8,(2)结论B 正确.理由如下:答圏2答郎1 1 1 4 2••• y=S^BPC= BQ?PG= BQ?BP?sinZ EBC= t?t? = t2.2 2 2 5 5(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB, NC此时AN=8 ND=2由勾股定理求得:NB=S J2,NC=2j17 ,•/ BC=10,•••△ BCN不是等腰三角形,即此时厶PBQ不是等腰三角形.点评:本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm。

平面直角坐标系内点的坐标特征

平面直角坐标系内点的坐标特征

1、平面直角坐标系内点的坐标特征2、《平面直角坐标系》错解剖析3、坐标、棋盘、考题4、坐标方法的应用5、《平面直角坐标系》考点聚焦6、《平面直角坐标系》考点例析1、平面直角坐标系内点的坐标特征在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

平面直角坐标系将平面分成四个象限,在坐标轴上以及四个象限内的各点的坐标各有特征。

现就有关点的坐标特征归纳如下。

一、各象限内点的坐标特征如图,点P(a,b)在各象限内的特点:①点P在第一象限⇔a>0,b>0;②点P在第二象限⇔a<0,b>0;③点P在第三象限⇔a<0,b<0;④点P在第二象限⇔a>0,b<0;例1 、若a>0,则点P(-a,2)应在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:因为a>0,所以-a<0.根据各象限内的坐标特点可知,点P(-a,2)应在第二象限内,故应选(C)。

二、坐标轴上的点的坐标特征在x轴上的点的纵坐标为0,即x轴上的点的坐标可记作(x,0),如点(-3,0)在x 轴上;在y轴上的点的横坐标为0,即y轴上的点的坐标可记作(0,y),如点(0,-3)在y 轴上;原点的坐标为(0,0)。

归纳:点P(a,b)在坐标轴上的特点:①点P在x轴上⇔a为任何实数,b=0;②点P在y轴上⇔a=0,b为任何实数;③点P在原点⇔a=0,b=0;例2、若点A(2、n)在x轴上则点B(n-2 ,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限析解:因为点A(2、n)在x轴上,所以n=0,所以n-2 =-2,n+1=1,因此点B的坐标为(-2,1),故点B在第二象限内,选(B).三、点的坐标与点到坐标轴的距离的关系点到直线的距离,也就是这一点到直线的垂线段的长度。

根据点在平面直角坐标系中的特点,点P(a,b)到x轴的距离为|b|,到y轴的距离为|a|。

如图点A(-2,3)到x轴的距离为AD=OE=|3|=3,到y轴的距离为AE=OD=|-2|=2.例3 、P(3,-4)到x轴的距离是.解析:根据上面的结论可知,点P到x轴的距离为|-4|=4,到y轴的距离为|3|=3,所以应填4.四、象限角的平分线上的点的坐标特征①若P(a,b)在第一、三象限的角平分线上⇔横、纵坐标相等,即a=b;②若P(a,b)在第二、四象限的角平分线上⇔横、纵坐标互为相反数,即a=-b或a+b=0;例4 已知点P(a+3,7-a)位于象限的角平分线上,则点P的坐标为_______。

7.1.2平面直角坐标系内点的坐标特征

7.1.2平面直角坐标系内点的坐标特征

15.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义: 若|x1-x2|≥|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1-x2|; 若|x1-x2|<|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1-y2|. (1)已知点A(-1,0),点B为y轴上的动点.
练习:
1、平面直角坐标系中,点P(1,-4)在第( D ) A、第一象限 B、第二象限 C、第三象限 D、第四象限
23、、AA已点、、A知1((点-B2mM,、+(032),m3Ca+-B、19、),13-(在aD)2y、,轴在00上第),三C则象、A限(点,0的且,坐它-2标)的为坐D(标、都C(是0,)整2数),则a由所=点以(Am在+D1y=轴)-2上,所可以31知a-Aa-9<x点<0=0坐0,标即为m(aa+<>3031=,0,-解2)1得<.故am<=选3 -C3,. a=2
(2)∵点C(m,3 m+3),点D(0,1)
∴|x1-x2|=|m-04|=|m|,|y1-y2|=|43
m+3-1|=|
3 4
m+2|
3
令 m m2
∴|y|=2,
4
∴y=±2 ∴点B的坐标为(0,2)或(0,-2).
解得:m 8或m 8 7
②∵点A(-1,0),B(0,y)
当m=8时,“识别距离”为8
在第四象限内 x>0,y<0;
(二) 坐标轴上点的坐标特点:设点P坐标(x,y),
x轴正半轴上
x>0,y=0;

平面直角坐标系中几种点的坐标的特点

平面直角坐标系中几种点的坐标的特点

平面直角坐标系中几种点的坐标的特点(1)第一象限内点的坐标特点是:“横正纵正”第一象限内点的坐标特点是:“横负纵正”第一象限内点的坐标特点是:“横负纵负”第一象限内点的坐标特点是:“横正纵负”(2)x轴上的点的坐标特点是:“纵0横任意”y轴上的点的坐标特点是:“横0纵任意”(3)在一、三象限的两条坐标轴夹角平分线上的点的坐标特点是:横坐标=纵坐标在二、四象限的两条坐标轴夹角平分线上的点的坐标特点是:横坐标+纵坐标=0(4)点P(a,b)关于X 轴对称的点的坐标是:(a,-b)关于Y 轴对称的点的坐标是:(-a,b)关于原点对称的点的坐标是:(-a,-b)练习:1.点M(- 8,12)到x轴的距离是(),到y轴的距离是()2.假设点P(2m - 1,3)在第二象限,那么()(A)m >1/2(B)m <1/2(C)m≥-1/2(D)m ≤1/2.3、若是同一直角坐标系下两个点的横坐标相同,那么过这两点的直线()(A)平行于x轴(B)平行于y轴(C)经过原点(D)以上都不对4.假设mn = 0,那么点P(m,n)必然在上5.已知点P(a,b),Q(3,6)且PQ ∥x轴,那么b的值为( )6.点(m,- 1)和点(2,n)关于x轴对称,那么mn等于( )(A)- 2 (B)2 (C)1 (D)- 17.实数x,y知足x2+ y2= 0,那么点P(x,y)在( )(A)原点(B)x轴正半轴(C)第一象限(D)任意位置8.点A 在第一象限,当m 为何值()时,点A(m + 1,3m - 5)到x轴的距离是它到y轴距离的一半.函数图象与方程、不等式的关系1、假设不解方程组,你能取得以下方程组的解吗?2、假设不解不等式,你能取得以下不等式的解吗?(1)10x>40x-120 (y A>y B)1040120 y xy x=⎧⎨=-⎩(2)10x <40x-120( y A <y B )两个一次函数图象的交点处,自变量和对应的函数值同时知足两个函数的关系式.而两个一次函数的关系式确实是方程组中的两个方程,因此交点的坐标确实是方程组的解.据此,咱们能够利用图象来求某些方程组的解和不等式的解集.练习1.已知函数y =4x -3.当x 取何值时,函数的图象在第四象限?2.画出函数y =3x -6的图象,依照图象,指出:(1) x 取什么值时,函数值 y 等于零?(2) x 取什么值时,函数值 y 大于零?(3) x 取什么值时,函数值 y 小于零?3.画出函数y =--1的图象,依照图象,求:(1)函数图象与x 轴、y 轴的交点坐标;(2)函数图象在x 轴上方时,x 的取值范围;(3)函数图象在x 轴下方时,x 的取值范围. 4.如图,一次函数y =kx +b 的图象与反比例函 的图象交于A 、B 两点. (1)利用图中条件,求反比例函数和一次函数的解析式;(2)依照图象写出一次函数的值大于反比例函数的值的x 的取值范围.5.学校有一批复印任务,原先由甲复印社承接,按每100页40元计费.现乙复印社表m y x示:假设学校先按月付给必然数额的承包费,那么可按每100页15元收费.两复印社每一个月收费情形如下图.)依照图象回答:(1)乙复印社的每一个月承包费是多少?(2)当每一个月复印多少页时,两复印社实际收费相同?(3)若是每一个月复印页数在1200页左右,那么应选择哪个复印社?6.小张预备将平常的零用钱贮存起来,他已存有50元,从此刻起每一个月存12元,小王以前没有存过零用钱,听到小张在存钱,表示也从此刻起每一个月存22元 .1)、请你在同一平面直角坐标系中别离画出小张和小王存款和月份之间的函数关系的图象;2)、在图上找一找几个月以后小王的存款和小张的一样多?至少几个月后小王的存款能超过小张?图像与解析式1.为了研究某合金材料的体积V (cm3)随温度t (℃)转变的规律,对一个用这种合金2.小明在做电学实验时,电路图如下图.在维持电压不变的情形下,•改换不同的电阻R,并用电流表测量出通过不同电阻的电流I,记录结果如下:(1)成立适当的平面直角坐标系,在座标系中描出表格中的各点,•并画出该函数的近似图象;(2)观看图象,猜想I 与R 之间的函数关系,并求出函数解析式;(3)小明将一个未知电阻值的电阻串联到电路中,查得电流表的度数为安培,你明电流I(安培)6 3 2 1函数解析式:如何求函数的自变量取值范围要紧考虑以下四个方面:一、凡是整式函数,其自变量的取值范围都是全体实数;二、分式的分母不等于0;三、平方根的被开方数为非负数;四、对于实际问题,应根据具体情况而定。

3.2 第2课时 平面直角坐标系中点的坐标特点

3.2 第2课时 平面直角坐标系中点的坐标特点

解:S△AOB=3×3-
1 2
×2×3-
1 ×2×1- 1 ×1×3= 7 .
2
2
2
例1 已知点A(m+1,-2),B(3,m-1). (1)若直线AB∥x轴,则m的值为 -1 ; (2)若直线AB∥y轴,则m的值为 2 .
分析:(1)因为直线AB∥x轴,所以A,B两点的纵坐标 相等,即m-1=-2;
(2)因为直线AB∥y轴,所以A,B两点的横坐标相等, 即m+1=3.
例2 若点(6-2x,x+6)到两坐标轴的距离相等,则该 点的坐标为 (6,6)或(-18,18) .
等的点
线上.
P,Q两点的 纵坐标 相等. P,Q两点的 横坐标 相等.
|x|=|y|,即x=y或 x= -y .
不规则图形面积的求法:补形法或割补法.
解题 策略
如图①,S△ABC=S长方形CDOE-S△ABO-S△ACD- S△BCE;如图②,S四边形OABC=S△COD+ S梯形ABCD.(如T5)
3.经过两点A(2,3),B(-4,3)作直线AB,则直线
AB( A )
A.平行于x轴
B.平行于y轴
C.经过原点
D.无法确定
4.已知点P的坐标为(2a+1,a-3).
(1)若点P在y轴上,则a=
1 2

(2)若点P到两坐标轴的距离相等,则a=
4或 2 3
.
5.在平面直角坐标系中,已知点A(2,3),B(3,1), O为坐标原点,求△AOB的面积.
分析:因为点到两坐标轴的距离相等,所以 |6-2x|=|x+6|,所以6-2x=x+6或6-2x=-(x+6), 所以x=0或12,即可求得该点的坐标.
1.若点P(m-3,m+1)在x轴上,则点P的坐标为 (C)

平面直角坐标系中点的坐标特征

平面直角坐标系中点的坐标特征

平面直角坐标系中点的坐标特征
在平面直角坐标系中,点的坐标特征可以分为以下几点:
1. 横坐标和纵坐标:一个点在平面直角坐标系中的位置可以通过其横坐标和纵坐标来描述。

横坐标表示点在x轴上的位置,纵坐标表示点在y轴上的位置。

2. 原点:平面直角坐标系的原点是坐标轴的交点,其坐标为(0,0)。

3. 轴:平面直角坐标系有两个坐标轴,即x轴和y轴。

x轴位于横向,纵坐标为0;y轴位于纵向,横坐标为0。

4. 四象限:以坐标轴的交点为中心,平面直角坐标系将平面分为四个象限,分别为第一象限、第二象限、第三象限和第四象限。

第一象限位于坐标轴的右上方,第二象限位于坐标轴的左上方,第三象限位于坐标轴的左下方,第四象限位于坐标轴的右下方。

5. 距离:平面直角坐标系中,两点之间的距离可以通过勾股定理计算。

设两点分别为A(x1, y1)和B(x2, y2),则两点之间的距离d可以表示为d = √((x2 - x1)² + (y2 - y1)²)。

总的来说,平面直角坐标系中点的坐标特征主要包括横坐标和纵坐标、原点、坐标轴、四象限和距离等。

平面直角坐标系中点的变化规律

平面直角坐标系中点的变化规律

平面直角坐标系中点的变化规律在数学的世界里,有一块神奇的领域,就是平面直角坐标系。

你有没有想过,我们生活中很多事物,其实都可以用这种坐标系来描述?比如地图、运动场、甚至是你桌上的那块巧克力。

今天,我们就来聊聊这个话题,看看点在平面直角坐标系里是怎么变化的,别急,我们一步步来,确保你跟得上。

1. 坐标系的基础知识1.1 坐标系的构建首先,平面直角坐标系就是我们平常看到的那个“十字”图。

横轴叫X轴,竖轴叫Y 轴。

这个十字形状把平面分成了四个象限,我们用它来标记点的位置。

想象一下,X轴就像是平地上的长道路,Y轴是垂直的直梯。

点的位置,就是在这两条路的交叉点上。

1.2 坐标的表示每个点都有两个坐标值,X和Y,像“(3, 4)”这样。

X表示点在横轴上的位置,Y表示在竖轴上的位置。

比如,点(3, 4)就像是说:从原点出发,先走3步到右边,再走4步到上面,找到了这个点。

2. 点的变化规律2.1 平移说到点的变化,我们得从最简单的平移开始。

平移就是把一个点从一个地方搬到另一个地方,但不改变它的形状和方向。

举个例子,如果点(2, 3)向右移动2个单位,它就变成了(4, 3)。

就像你从家里搬到隔壁的房间,位置变了,但你的样子还是那个样子。

2.2 缩放接下来是缩放。

缩放就像是用放大镜看一个点,让它变得大一点或者小一点。

比如,点(1, 2)经过缩放,变成了(2, 4)。

也就是说,坐标都乘以了一个倍数。

这就像是把一张照片放大,里面的细节看起来都变得更加清楚了。

2.3 旋转最后,我们来看看旋转。

旋转就是把点绕着原点转动。

比如,点(1, 0)绕原点逆时针旋转90度,就会变成(0, 1)。

这个过程就像你在转动一个旋转木马,点的位置随着旋转而改变,但它本身的“本质”没变。

3. 点的组合与变换3.1 点的相对位置有时候,我们需要考虑多个点之间的相对位置。

例如,点A(1, 2)和点B(4, 6)之间的距离。

我们可以用勾股定理来计算它们之间的距离,这就像是用尺子量两点之间的直线距离。

平面直角坐标系点的坐标特点

平面直角坐标系点的坐标特点
3
2
5
3
5
3
练一练
2.点A在x轴上,距离原点4个单位长度,则A点的坐标是 _______________。
(4,0)或(-4,0)
3.若点P在第三象限且到x轴的距离为 2,到y轴的距离为1.5,则点P的坐标是___________。
(-1.5,-2)
1.如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线( ) (A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对
点C(-2,-3)到x轴的距离是3,到y轴的距离是2
点D(2,3)到x轴的距离是3,到y轴的距离是2
A
例:点M(-8,12)到x轴的距离是_____,到y轴的距离是_____.
12
8
平行于x轴的直线上的点的纵坐标相同
5
-5
-2
-3
-1
3
2
1
6
y
-5
5
-3
-4
4
-2
3
-1
2
1
-6
6
o
X
(3,4)
(-4,4)
(+, -)
5
-5
-2
-4
-1
2
4
1
-6
6
y
-5
5
-3
-4
4
-2
3
-1
2
1
-6
6
o
X
x轴或横轴
y轴或纵轴
平面直角坐标系
(+, +)
(-, +)
(-, -)
(0, +)
(0, -)
(+, 0)
(-, 0)
C(3,4)
A(4,-2)

平面直角坐标系的特点及应用

平面直角坐标系的特点及应用

平面直角坐标系的特点及应用特点平面直角坐标系是一种常用于描述二维平面的坐标系。

它具有以下特点:1. 直角性:平面直角坐标系中的两条坐标轴相互垂直,形成直角关系。

直角性:平面直角坐标系中的两条坐标轴相互垂直,形成直角关系。

2. 坐标轴:平面直角坐标系由两条相互垂直的坐标轴组成,通常称为x轴和y轴。

坐标轴:平面直角坐标系由两条相互垂直的坐标轴组成,通常称为x轴和y轴。

3. 原点:坐标轴的交点被定义为原点,通常表示为(0,0)。

原点:坐标轴的交点被定义为原点,通常表示为(0,0)。

4. 单位长度:坐标轴上的刻度表示长度单位,可以根据实际需求选择合适的单位长度。

单位长度:坐标轴上的刻度表示长度单位,可以根据实际需求选择合适的单位长度。

应用平面直角坐标系具有广泛的应用,以下是几个常见的应用场景:1. 几何图形描述:平面直角坐标系可以用于描述各种几何图形,例如点、线、多边形等。

通过坐标系中点的坐标,可以方便地计算距离、角度和面积等几何属性。

几何图形描述:平面直角坐标系可以用于描述各种几何图形,例如点、线、多边形等。

通过坐标系中点的坐标,可以方便地计算距离、角度和面积等几何属性。

2. 方程表示:平面直角坐标系可以用于表示方程。

例如,直线可以表示为y = mx + b的形式,其中m是斜率,b是y轴截距。

曲线也可以用方程来表示,例如圆的方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)是圆心坐标,r是半径。

方程表示:平面直角坐标系可以用于表示方程。

例如,直线可以表示为y = mx + b的形式,其中m是斜率,b是y轴截距。

曲线也可以用方程来表示,例如圆的方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)是圆心坐标,r是半径。

3. 数据可视化:平面直角坐标系可以用于数据可视化。

将数据点在坐标系中绘制出来,可以直观地显示数据之间的关系。

例如,散点图可以用来表示两组数据之间的相互关系。

北师大版八年级数学上册3.2 平面直角坐标系 第2课时 平面直角坐标系中点的坐标特征

北师大版八年级数学上册3.2 平面直角坐标系  第2课时 平面直角坐标系中点的坐标特征

B.(-3,2)
C.(3,2)
D.(3,-2)
3. (中考·广安)点 M(x-1,-3)在第四象限,则 x 的 取值范围是 x>1 .
知识点 坐标轴上的点的坐标特征
4. 在平面直角坐标系中,点 A(-4,0)在( B )
A.x 轴正半轴上
B.x 轴负半轴上
C.y 轴正半轴上
D.y 轴负半轴上
5. 平面直角坐标系中,在 x 轴上的点是( B )
7. 过点 A(-3,2)和点 B(-3,5)作直线,则直线
AB( A ) A.平行于 y 轴
B.平行于 x 轴
C.与 y 轴相交
D.与 y 轴垂直
8. 如图,每个小正方 形的边长为单位长度 1.
(1) 写 出 多 边 形 ABCDEF 各个顶点的坐标;
(2)点 C 与 E,点 B 与 C 的坐标有什么关系?
与 y 轴垂直,则 l 也会通过下列哪
一点?( D )
A.A
B.B
C.C
D.D
19. (中考·阜新)如图,在平
面直角坐标系中,将△ABO 沿
x 轴向右滚动到△AB1C1 的位
置,再到△A1B1C2 的位置……
依次进行下去,若已知点 A(4,0),B(0,3),则点 C100
的坐标为( B )
A.(1200,12) 5
A.(3,-2)
B.(2,4)
C.(-3,2)
D.(-3,-4)
13. 如图,正方形 ABCD 在平面直角坐标系中,其 中三个顶点的坐标分别为 A(-2,3),B(-2,-2),C(3, -2),则第四个顶点 D 的坐标为 (3,3) .
14. (教材 P62 例 2 变式)在如图的平面直角坐标系中 描出下列各点,并将各点用线段顺次连接起来.

数学平面直角坐标系的知识点

数学平面直角坐标系的知识点

数学平面直角坐标系的知识点漫长的学习生涯中, 是不是听到知识点, 就立刻清醒了?知识点也不一定都是文字, 数学的知识点除了定义, 同样重要的公式也可以理解为知识点。

想要一份整理好的知识点吗?下面是店铺精心整理的数学平面直角坐标系的知识点, 供大家参考借鉴, 希望可以帮助到有需要的朋友。

数学平面直角坐标系的知识点11.平面直角坐标系:(1)在平面内两条有公共点并且互相垂直的数轴就构成了平面直角坐标系, 通常把其中水平的一条数轴叫横轴或轴, 取向右的方向为正方向;铅直的数轴叫纵轴或轴, 取向上的方向为正方向;两数轴的交点叫做坐标原点。

(2)建立了直角坐标系的平面叫坐标平面.x轴和y轴把坐标平面分成四个部分, 称为四个象限, 按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限说明: 两条坐标轴不属于任何一个象限。

2.点的坐标:对于平面直角坐标系内任意一点P, 过点P分别向x轴和y轴作垂线, 垂足在x轴, y轴对应的数a,b分别叫做点P的横坐标, 纵坐标, 有序数对(a, b)叫做P的坐标。

3.点与有序实数对的关系:坐标平面内的点可以用有序实数对来表示, 反过来每一个有序实数对应着坐标平面内的一个点, 即坐标平面内的点和有序实数对是一一对应的关系。

数学平面直角坐标系的知识点2一、平面解析几何的基本思想和主要问题平面解析几何是用代数的方法研究几何问题的一门数学学科, 其基本思想就是用代数的方法研究几何问题。

例如, 用直线的方程可以研究直线的性质, 用两条直线的方程可以研究这两条直线的位置关系等。

平面解析几何研究的问题主要有两类:一是根据已知条件, 求出表示平面曲线的方程;二是通过方程, 研究平面曲线的性质。

二、直线坐标系和直角坐标系直线坐标系, 也就是数轴, 它有三个要素: 原点、度量单位和方向。

如果让一个实数与数轴上坐标为的点对应, 那么就可以在实数集与数轴上的点集之间建立一一对应关系。

点与实数对应, 则称点的坐标为, 记作, 如点坐标为, 则记作;点坐标为, 则记为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若点M、N两点都在第一、三象限 角平分线上,则 a ___,b ___
1.如果同一直角坐标系下两个点的横坐标相同, 那么过这两点的直线( B ) (A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对 2.点A在x轴上,距离原点4个单位长度,则A点的坐标是
(4,0)或(-4,0)。 _______________ 3.若点P在第三象限且到x轴的距离为 2
-5 -6
( +, -)
分别说出下列各点在哪个 象限内或在哪条坐标轴上? A(4,-2)3,4)
F(-4,3)
D(-4,-3)
注:坐标轴上的点不属于任何象限
点到坐标轴的距离
例: 点A(2,3)到x轴的距离是3,到y轴的距离是2 点B(-5,4)到x轴的距离是4,到y轴的距离是5 点C(-2,-3)到x轴的距离是3,到y轴的距离是2 点D(2,3)到x轴的距离是3,到y轴的距离是2 5 4 点A(a,b)到x轴的距离为 b , 3 到y轴的距离为 a 2 1
横轴上的点的纵坐标为0,表示为(x,0)

纵轴上的点的横坐标为0.表示为(0,y) 原点的坐标为(0,0)
y
y轴或纵轴
平面直角坐标系
6 5 4
(-, +) (0, +)
(-, 0)
-6 -5 -4 -3 -2 -1
( +, +)
(+, 0) x轴或横轴
2 1
o
-1 -2
-4
1
2 3
4
5
6
X
(-, -) (0, -)
7.实数 x,y满足 (x-1)2+ |y| = 0,则点 P( x,y) 在( B ). (A)原点 (B)x轴正半轴 (C)第一象限 (D)任意位置
特殊位置的点的坐标特点:
⑴ x轴上的点,纵坐标为0。 y轴上的点,横坐标为0。 ⑵ 第一、三象限夹角平分线上的点,纵横坐标相等。
第二、四象限夹角平分线上的点,纵横坐标互为相 反数。 ⑶与x轴平行(或与y轴垂直)的直线上的点纵坐标 都相同。
A
8 12 到y轴的距离是_____. 例:点M(-8,12)到x轴的距离是_____,
-4 -3 -2 -1 0 1 2 3 4 5 -1 -2 -3 -4
平面直角坐标系中对称点的坐标特征
点A与点D关于X轴对称 横坐标相同, 纵坐标互为相反数 点A与点B关于Y轴对称 纵坐标相同, 横坐标互为相反数 点A与点C关于原点对称 横坐标、纵坐标 均互为相反数
P (
·
-2
- 3,3) y
3 2
1
a=-b
1
-4
-3
-1
0 -1 -2 -3
·
P
2
3
4
5
x
练一练
1、若点A( x,3)在第一象限的角平分线 上,则x ______ 3
2 2、若点B(2, y)在第二象限的角平分线 上,则y _____
3、已知点M (3,b), N (a,5) :
5 -3 3 (2)若点M、N两点都在第二、四象限 角平分线上,则 a -5 ___,b ___
纵坐标相同的点的连线平行 于x轴; 横坐标相同的点的连线平行 于y轴。
(-3,4) 2、写出 A 平行四边 形ABCD 各个顶点 的坐标。
1
y
D (5,4)
O
B (-5,-2)
1 C (3,-2)
x
A与D、B与C的纵坐标相同吗?为什么?A与B, C与D的横坐标相同吗?为什么?
平面直角坐标系中象限平分线上的的点的特点
B ( -3 , 2) 1 A ( 3, 2 )
y
0
C (-3, -2 )
1
x
D ( 3 , -2)
A(-3,2)
·
5 4 3 2
· C(-3,- 2 )
-4 -3 -2 -1
· -1
O
1
·
1 2 3
P(3,2)
4 5 X
-2 -3 -4
· B(3,-2)
你能说出点P关于x轴、y轴、 原点的对称点坐标吗?
y
K (3,4)
C(-6,0)
-6 -5 -4 -3 -2 -1
· ·
(-6,2) B
· ·
4 5
J(4,2)
o
1
2 3
6
X
-5 线段BD、GJ与X轴有什么位置关系?点B点D的 -6
-3 D (-6,-3) E -4 (-3,-4)
· ·
(4,-4) G
·
横坐标有什么特点? 点G点J呢?
平行于横轴的直线上的点的 纵坐标相同; 平行于纵轴的直线上的点的 横坐标相同;
与y轴平行(或与x轴垂直)的直线上的点横坐标都 相同。 (4)平面直角坐标系中有一点P(a , b),
点P到x轴的距离是这个点的 纵坐标的绝对值;
点P到y轴的距离是这个点的横坐标的绝对值;

( -1.5,-2) 到y轴的距离为1.5,则点P的坐标是 ___________ 。
4.点P到x轴、y轴的距离分别是2、1,则点P的 坐标可能为 (1,2)、(1,-2)、(-1,2)、(-1,-2) 。 5.在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 第二或四象限。 则点P的位置在____________ 6.若点(a,b-1)在第二象限,则a的取值范 a<0,b的取值范围________ 围是_____ b>1 。
点的位置 横坐标符号 纵坐标符号 在第一象限 + + 在第二象限 + 在第三象限 在第四象限 + 在x轴上 在正半轴上 + 0 在负半轴上 0 在y轴上 在正半轴上 0 + 在负半轴上 0 原 点 0 0

象限中点的坐标符号的特点: 第一、二、三、四象限内的坐标的 符号分别是(+,+),(-,+),(-,-),(+, -) 坐标轴上的点坐标特点:
小结: 当点P (a,b)落在一、三象 限的两条坐标轴夹角平分线上时。 点P (a,b)具有什么特征?
y
3 2
1 -4 -3 -2
·
1 2 3 4
P (3,3)
·
P
-1
0 -1 -2 -3
5
x
a=b
小结: 当点P (a,b)落在二、四象限 的两条坐标轴夹角平分线上时。 点P (a,b)具有什么特征?
E(0,4)F(0,-4) G(4,0) H (-4,0) y
4
(-3,2)C H
·
3 2 1
·E
纵轴
A( 3 , 2 )
·
3
· -4 -3 -2 (-3,-2)D·
0 -1 -1 -2 -3 -4
1
2
x · 4
G
横轴
B(3,-2) ·
·F
观察上图中点的坐标与点在坐标系中位置的关系, 用“+”“-”或“0”完成下表:
19.2 平面直角坐系
平面直角坐标系
y
6 5
y轴或纵轴
第二象限 (-3,2) P
-6 -5 -4 -3 -2 -1
4 3
第一象限
原点
1 2 3 4
2 1 -1
-2 -3 -4
x轴或横轴
5 6
X
第三象限
第四象限
-5 -6
注:坐标轴上的点不属于任何象限
每一个象限内的点的坐标在符号上 活动1:在直角坐标系中描出下列各点: 有何特点? 坐标轴上点的坐标有什 A(3,2)B(3,-2)C(-3,2)D(-3,-2) 么特点?
归纳:
若设点M(a,b), M点关于X轴的对称点M1( a,-b ) M点关于Y轴的对称点M2( - a, b ),
M点关于原点O的对称点M3( -a,-b )
与坐标轴平行的直线上的点的特点
线段AK、EG与X轴有什么位置关系?点A点K 6 的纵坐标有什么特点?点E点G呢?
A (-4,4)
5 4 3 2 1 -1 -2
相关文档
最新文档