七年级数学培优试题
七年级上册数学培优
七年级上册数学培优一、有理数。
1. 知识点梳理。
- 有理数的定义:整数和分数统称为有理数。
包括正整数、0、负整数、正分数、负分数。
- 数轴:规定了原点、正方向和单位长度的直线。
数轴上的点与有理数一一对应。
- 相反数:绝对值相等,符号相反的两个数互为相反数。
例如,2和 - 2是相反数,0的相反数是0。
- 绝对值:一个数在数轴上所对应点到原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 典型例题。
- 例1:已知a = - 3,求a的相反数和绝对值。
- 解:a=-3,a的相反数是-a=-(-3) = 3,a的绝对值| a|=| - 3| = 3。
- 例2:在数轴上表示-2,1.5,0,并比较它们的大小。
- 解:先画出数轴,标注原点、正方向和单位长度。
在数轴上找到对应的点,从左到右的顺序为-2<0<1.5。
3. 培优练习。
- 练习1:若| x| = 5,求x的值。
- 练习2:比较-(3)/(4)和-(4)/(5)的大小。
二、整式的加减。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如,3x,-5,a都是单项式。
- 多项式:几个单项式的和叫做多项式。
例如,2x + 3y是多项式。
- 整式:单项式和多项式统称为整式。
- 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
例如,3x^2y和-5x^2y是同类项。
- 合并同类项:把同类项合并成一项叫做合并同类项,合并同类项时,系数相加,字母和字母的指数不变。
2. 典型例题。
- 例1:化简3x^2 - 2x+5x^2 - 4x。
- 解:首先找出同类项,3x^2和5x^2是同类项,-2x和-4x是同类项。
- 合并同类项得(3x^2 + 5x^2)+(-2x - 4x)=8x^2 - 6x。
- 例2:已知A = 2x^2 - 3x+1,B=-x^2 + 2x - 3,求A - B。
- 解:A - B=(2x^2 - 3x + 1)-(-x^2+2x - 3)- 去括号得2x^2 - 3x + 1+x^2 - 2x + 3- 合并同类项得(2x^2+x^2)+(-3x - 2x)+(1 + 3)=3x^2 - 5x+4。
七年级数学培优题库
七年级数学培优题库
七年级数学培优题库如下:
1. x是任意有理数,则2x不大于零的选项是:
A. 大于零
B. 小于零
C. 不小于零
D. 不大于零
2. 比较255、344、533、622四个数的大小,最小的数是:
A. 255
B. 344
C. 533
D. 622
3. 某超市为了促销,先将彩电按原价提高了40%,然后在广告中写上“节大酬宾,八折优惠”,结果每台彩电比原价多赚了270元,那么每台彩电的原价为:
A. 1750元
B. 2200元
C. 2250元
D. 2300元
4. 已知abc>0,则b的正方体,在地面上堆叠成什么样的立体:
A. 三维图形
B. 二维图形
C. 一维图形
D. 以上都不是
5. 北京奥运会期间,体育馆要对观众进行安全检查。
设某体育馆在安检开始时已有若干名观众在馆外等候安检,安检开始后,到达体育馆的观众人数按固定速度增加。
又设各安检人员的安检效率相同。
若用3名工作人员进行安检,需要25分钟才能将等候在馆外的观众检测完,使后来者能随到随检;若用6名工作人员进行安检,时间则缩短为10分钟。
现要求不超过5分钟完成安检工作,需要多少名工作人员:
A. 4名
B. 5名
C. 6名
D. 7名
以上题目仅供参考,每个学生的学习情况和理解能力都不一样,所以最好结合课堂上的教学内容和个人的学习进度来制定针对性的学习计划,这样才能更有效地提高数学成绩。
七年级上册数学培优题及详解答案
挑战题1、已知a :b :c=2 :3 :4,且2a+3b-2c=10,求a, b,c的值。
2、麦迪在一次比赛中22投14中得28分,除了3个三分球全中外,他还投中了两分球和个罚球.3、小明、小亮、小强三个人在一起玩扑克牌,,他们各取了相同数量的扑克牌(牌数大于3),然后小亮从小明手中抽取了3张,又从小强手中抽取了2张;最后小亮说小明,“你有几张牌我就给你几张。
”小亮给小明牌之后他手中还有张牌。
4、.一个长方形的周长为26,如果长减少1,宽增加2,就可成为一个正方形,设长方形的长为,则可列方程为.5、生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的成本降低了.(精确到元.毛利率即利润率)6、元代朱世杰所著《算学启蒙》里有这样一道题:“良马日行两百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”,请你回答:良马___________天可以追上驽马.7、古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()8、一张试卷共25道题,做对一题得4分,做错或不做一题扣1分,小明做了全部试题,若要得70分以上,那么小明至少要做对的题数是()9、小亮的爸爸在一家合资企业工作,月工资5500元,按规定:其中2500元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过1500元的部分按3%的税率;超过1500元不超过4500元的部分则按5%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?10、民航规定:旅客可以免费携带a千克物品,若超过a千克,则要收取一定的费用,当携带物品的质量为b 千克(b>a)时,所交费用为Q=10b-200(单位:元).(1)小明携带了35千克物品,质量大于a千克,他应交多少费用?(2)小王交了100元费用,他携带了多少千克物品?(3)若收费标准以超重部分的质量m(千克)计算,在保证所交费用Q不变的情况下,试用m表示Q.11、某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元?(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由.12、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案.方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?13、某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了20%,结果不但提前了16天完成,而且超额完成了32件,求原来预定几天完成?原计划共做多少零件?14、小华家是我市第一批9万户统一换装“峰谷分时”电表的家庭之一,他们家将率先享受苏州市生活用电“峰谷分时电价”的新政策,用电价将按不同时段实行不同的价格,具体为:8点至21点为“峰时”,电价为每千瓦时0.55元;21点至次日8点为“谷时”,电价为每千瓦时0.30元,而我市原来实行的电价为每千瓦时0.52元。
人教版七年级数学(上)期中考试题(培优卷)
人教版七年级数学(上)期中考试题(培优卷)一、选择题:相信你一定能选对!(下列各小题的四个选项中,只有一个是符合题意的,把符合题意的答案填入表中,每小题3分,共30分)1.(3分)﹣2018的倒数是()A.2018B.﹣2018C.D.﹣2.(3分)在代数式:﹣ab,0,,,,中,单项式有()A.6个B.5个C.4个D.3个3.(3分)下列化简错误的是()A.﹣(﹣5)=5B.﹣|﹣|=C.﹣(﹣3.2)=3.2D.+(+7)=74.(3分)下列整式中,不是同类项的是()A.m2n与3×102nm2B.1与﹣2C.3x2y和﹣yx2D.a2b与b2a5.(3分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×109千克B.50×109千克C.5×1010千克D.0.5×1011千克6.(3分)若(2a﹣1)2+2|b﹣3|=0,则﹣2a﹣b的值为()A.﹣2B.﹣4C.2D.﹣77.(3分)多项式2a2b﹣ab2﹣ab的项数及次数分别是()A.3,3B.3,2C.2,3D.2,28.(3分)用代数式表示“m的5倍与n的差的平方”正确的是()A.(5m﹣n)2B.5(m﹣n)2C.5m﹣n2D.(m﹣5n)2 9.(3分)如图,两个有理数a、b在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0B.ab<0C.b﹣a<0D.>010.(3分)如图,一块砖的外侧面积为x,那么图中残留部分墙面的面积为()A.4x B.12x C.8x D.16x二、填空题:你能填得又对又快吗?(每小题3分,共21分)11.(3分)在一次军事训练中,一架直升机“停”在离海面80m的低空,一艘潜水艇潜在水下50m.若直升机的高度记作+80m则潜水艇的高度记作.12.(3分)单项式的系数是,次数是.13.(3分)比较大小:﹣(﹣3.14)﹣|﹣π|.14.(3分)如果a﹣3b=6,那么代数式5﹣a+3b的值是.15.(3分)若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=.16.(3分)按图示的程序计算,若开始输入的x为正整数,最后输出的结果为67,则x的值是.17.(3分)下列图形按一定规律排列,第一个图形共有4个★,第二个图形共有7个★;依照此规律,第n个图形中有个★.三、解答题(一):一定要细心,你能行!(共34分)18.(8分)计算:(1)﹣2﹣1+(﹣16)﹣(﹣13);(2).19.(8分)计算:(1)|﹣2|;(2).20.(8分)化简:(1)3y2﹣9y+5﹣y2+4y﹣5y2(2)5(3a2b﹣2ab2)﹣3(4ab2+a2b)21.(5分)先化简,再求值:,其中x=﹣2,y=.22.(5分)已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|c﹣b|.五、解答题(本题有5小题,共35分,各小题都必须写出解答过程)23.(5分)已知a,b互为相反数,c,d互为倒数,m2=1,则+1+m﹣cd的值为多少?24.(7分)已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并化简;(3)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.25.(7分)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.26.(8分)小虫从某点O处出发在一直线上来回爬行,假定向右爬行的路程记为正数.向左爬行的路程记为负数.爬行的路程依次为(单位:cm)+5,﹣3,+10,﹣8,﹣6,+12,﹣11.(1)小虫经后是否回到出发点O处?如果不是,请说出小虫的位置.(2)小虫离开出发点O处最远时是cm.(3)在爬行过程中,如果每爬1cm奖励两片嫩叶,那么小虫共得多少片嫩叶?27.(8分)小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:加数的个数n连续偶数的和S12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6请你根据表中提供的规律解答下列问题:(1)如果n=8时,那么S的值为;(2)根据表中的规律猜想:用字母n的式子表示S,则S=2+4+6+8+ (2)=;(3)利用上题的猜想结果,计算202+204+206+…+1998+2000的值(要有计算过程).。
七年级数学培优试题
七年级数学培优试题填空题(共25题,满分100) 1、有一只手表每小时比准确时间慢3分钟, 若在清晨4:30与 准确时间对准, 则当天上午手表指示的时间是10:50, 准确时间应该是 。
2、 将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作(见下图).按上边规则完成五次操作以后,剪去所得小正方形的左下角. 问:当展开这张正方形纸片后,一共有 个小孔3、已知关于x 的整系数的二次三项式ax 2+bx+c,当x 分别取1,3,6,8时,某同学算得这个二次三项式的值分别为1,5,25,50,经过验算,只有一个结果是错误的,这个错误的结果是 。
4、 下表记录了某次钓鱼比赛中,钓到n 条鱼的选手数:n0 1 2 3 … 13 14 15 钓到n 条鱼的人数95723…521已知:(1)冠军钓到了15条鱼; (2)钓到3条或更多条鱼的所有选手平均钓到6条鱼; (3)钓到12条或更少鱼的所有选手平均钓到5条鱼;则参加钓鱼比赛的所有选手共钓到 条鱼。
5、如图,在一个正方体的两个面上画了两条对角线AB ,AC ,那么这两条对角线的夹角等于 度。
6、一个木制的立方体,棱长为n (n 是大于2的整数),表面涂上黑色,用刀片平行于立方体的各面,将它切成 3n 个棱长为1的小立方体,若恰有一个面涂黑色的小立方体的个数等于没有一个面涂黑色的小立方体的个数,则n= .7、把8张不同的扑克牌交替的分发成左右两叠:左一张,右一张,左一张,右一张,……;然后把左边一叠放在右边一叠上面,称为一次操作。
重复进行这个过程,为了使扑克牌恢复到最初的次序,至少要进行操作的次数是 。
8、一台大型计算机中排列着500个外形相同的同一种元件,其中有一只元件已损坏,为了找出这一元件,检验员将这些元件按1-500的顺序编号,第一次先从中取出单数序号的元件,发现其中没有坏元件,他将剩下的元件在原来的位置上又按1-250编号。
(原来的2号变成1号,原来的4号变成2号…)又从中取出单数序号的元件进行检查,仍没有发现…如此下去,检查到最后一个元件,才是坏元件。
7年级数学培优竞赛试题1-25题(含详解)
七年级第1题:已知0132=+-x x , 则 =++13242x x x 。
答案:0.1第2题:若,,a b c 互异,且x y a b b c c aZ ==---,求x y Z ++的值。
答案:0第3题:a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数?答案:6.2<a <331第4题:方程 200422=-b a的正整数解有 组.答案:2组第5题:用一张长方形的纸,折出一个30°的角,如何折?答案:第6题:(1)若A 和B 都是4次多项式,则A+B 一定是( ) A 、8次多项式 B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式答案: C(2)如果316x +的立方根是4,求24x +的平方根___________。
答案:立方根是4,则这个数是43=64。
3x+16=64,解得x =16。
2x +4=2×16+4=36, 36=±6。
第7题:已知21x x +=,那么 . 答案: 2016解析:x 4+2x 3-x 2-2x +2017= x 4+2x 3+ x 2-2x 2-2x +2017=(x 2+x )2-2(x 2+x )+2017=12-2×1+2017=1-2+2017=2016。
第8题:若2a +5b +4c =0,3a +b -7c =0,则a +b -c 的值是___________________答案:2a +5b +4c =0 ① a +b -7c =0 ②将①×3得6a +15b +12c =0 ③将②×2得6a +2b -14c =0 ④由③-④得13b +26c =0 , b= -2c ⑤将⑤带入① 2a -10c +4c =0 , 2a =6c ,a =3c ⑥将⑤和⑥带入a +b -c =3c -2c-c =0。
第 9 题:如图所示,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且AB AE 21=,BC CF 31=,AF 与CE 相交于G ,如果矩形ABCD 的面积为120,那么可知AEG ∆与CGF ∆的面积之和为____________。
七年级上册数学有理数培优50题含详细答案
(七年级上册数学有理数培优50题一.填空题(共5小题)1.=2.若|a|+|b|=2,则满足条件的整数a、b的值有组.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)5.|x+1|+|x﹣2|+|x﹣3|的值为.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;( (2)正确的结果是.8.如图,已知数轴上的点A 表示的数为 6,点 B 表示的数为﹣4,点 C 是 AB 的中点,动点P 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动时间为 x 秒(x>0).(1)当 x =秒时,点 P 到达点 A .(2)运动过程中点 P 表示的数是(用含 x 的代数式表示);(3)当 P ,C 之间的距离为 2 个单位长度时,求 x 的值.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式 a +b =ab ﹣1 成立的一对有理数 a ,b 为“椒江有理数对”,记为(a ,b ),如:数对(3,2),(4, )都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是 ;(2)若(a ,3)是“椒江有理数对”,求 a 的值;(3)若(m ,n )是“椒江有理数对”,则(﹣n ,﹣m )“椒江有理数对” 填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)10.计算:(﹣+1 ﹣ )÷(﹣ )×|﹣110﹣(﹣3)2|11.已知 a 、b 互为相反数,c 、d 互为倒数,并且 x 的绝对值等于 2.试求:x 2﹣(a +b +cd )+2(a +b )的值.12.如图,A 、B 分别为数轴上的两点,A 点对应的数为﹣20,B 点对应的数为 100.(1)请写出与 A 、B 两点距离相等的点 M 所对应的数;(2)现有一只电子蚂蚁 P 从 B 点出发,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道 C 点对应的数是多少吗?(3)若当电子蚂蚁 P 从 B 点出发时,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)5001000100050017.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是.则N点表示的数是.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,(1)求3※(﹣5)的值;(2)若(﹣3)※b与b互为相反数,求b的值.20.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数dB , 的点到原点的距离为 4,求 a ﹣b ﹣c +d 的值.21.阅读下列材料:点 A 、B 在数轴上分别表示两个数 a 、b ,A 、B 两点间的距离记为|AB|,O 表示原点.当A 、B 两点中有一点在原点时,不妨设点 A 为原点,如图 1,则|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,①如图 2,若点 A 、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;②如图 3,若点 A 、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a﹣b |;③如图 4,若点 A 、B 在原点的两边时,|AB|=|OB|+|OA|=|b |+|a|=﹣b +a =|a ﹣b |.回答下列问题:(1)综上所述,数轴上 A 、B 两点间的距离为|AB|=.(2)若数轴上的点 A 表示的数为 3,点 B 表示的数为﹣4,则 A 、 两点间的距离为 ;(3)若数轴上的点 A 表示的数为 x ,点 B 表示的数为﹣2,则|AB|= ,若|AB|=3,则 x 的值为.22.已知数轴上 A ,B 两点对应数分别为﹣2 和 5,P 为数轴上一点,对应数为 x .(1)若 P 为线段 AB 的三等分点(把一条线段平均分成相等的三部分的两个点) 求 P点对应的数.(2)数轴上是否存在点 P ,使 P 点到 A 点,B 点距离和为 10?若存在,求出 x 值;若不存在,请说明理由.(3)若点 A ,点 B 和点 P (P 点在原点)同时向左运动,它们的速度分别为 1,6,3 个长度单位/分,则第几分钟时,A ,B ,P 三点中,其中一点是另外两点连成的线段的中点?23.已知|x|=5,|y|=3.(1)若 x ﹣y >0,求 x +y 的值;(2)若 xy <0,求|x ﹣y|的值;(3)求 x ﹣y 的值.24.解答下列问题::(1)计算:6÷(﹣ + )方方同学的计算过程如下:原式=6÷(﹣ )+6÷ =﹣12+18=6.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程)①999×(﹣15);②999×118 +333×(﹣ )﹣999×18 .25.阅读材料,解答下列问题:例:当 a =5,则|a|=|5|=5,故此时 a 的绝对值是它本身;当 a =0 时,|a|=0,故此时 a的绝对值是 0;当 a <0 时,如 a =﹣5,则|a|=|5|=﹣(5)=5,故此时 a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣ ﹣3|= ;(2)如果|x+1|=2,求 x 的值;(3)若数轴上表示数 a 的点位于﹣3 与 5 之间,求|a +3|+|a ﹣5|的值;(4)当 a =时,|a ﹣1|+|a +5|+|a ﹣4|的值最小,最小值是 .26.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米),﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为 0.3 升/千米,这天下午汽车共耗油多少升?27.定义一种新运算:a ⊕b =a ﹣b +ab .(1)求(﹣2)⊕(﹣3)的值;(2)求 5⊕[1⊕(﹣2)]的值.28.在学习绝对值后,我们知道,a|表示数a在数轴上的对应点与原点的距离.如:|5|表示|5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B 在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.29.夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶记录如下(单位:千米)+11,﹣9,7,﹣14,+8,﹣13,+4.①该巡警巡逻时离岗亭最远是千米.②在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.③A在岗亭何方?距岗亭多远?④若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油多少升?30.邮递员骑车从邮局出发,先向南骑行3km到达A村,继续向南骑行2km到达B村,然后向北骑行8km到达C村,最后回到邮局,以邮局为原点,以向南方向为正方向,用1cm 表示1km,画出数轴如图.(1)在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有km;(3)邮递员一共骑行了km;(4)如果邮递员骑行的速度为10千米/小时,在每个村庄停留10分钟,那么邮递员从出发到回到邮局一共用了多少小时?31.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿(AC 方向,以每秒 1 个单位的速度向终点 C 运动,设点 P 运动时间为 t 秒.(1)用含 t 的代数式表示点 P 到点 A 、C 的距离,PA =;PC = .(2)当点 P 运动到点 B 时,点 Q 从 C 点出发,沿 CA 方向,以每秒 3 个单位的速度向 A点运动,当其中一点到达目的地时,另一点也停止运动.①当 t =,点 P 、Q 相遇,此时点 Q 运动了 秒.②请用含 t 的代数式表示出在 P 、Q 同时运动的过程中 PQ 的长.32.如图 A 在数轴上所对应的数为﹣2.(1)点 B 在点 A 右边距 A 点 4 个单位长度,求点 B 所对应的数;(2)在(1)的条件下,点 A 以每秒 2 个单位长度沿数轴向左运动,点 B 以每秒 2 个单位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A ,B 两点间距离.(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A ,B两点相距 4 个单位长度.33.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖 100 斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期与计划量一+4二﹣3 三﹣5 四+14五﹣8 六+21鈤﹣6的差值(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按 8 元出售,每斤冬枣的运费平均 3 元,那么小明本周一共收入多少元?34.如图,半径为 1 个单位的圆片上有一点 A 与数轴上的原点重合,AB 是圆片的直径. 注:结果保留 π )(1)把圆片沿数轴向右滚动半周,点 B 到达数轴上点 C 的位置,点 C 表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.35.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N →A应记为什么?36.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?37.我们定义一种新运算:△a b=a﹣b+ab.3 2)(1)求 △2 (﹣)的值;(2)求(﹣△5) △[1 (﹣ ]的值.38.学校图书馆平均每天借出图书 50 册,如果某天借出 53 册,就记作+3;如果某天借出40 册,就记作﹣10.上星期图书馆借出图书记录如表:星期一0 星期二+8 星期三+6星期四﹣2 星期五﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?39.已知,如图 A 、B 分别为数轴上的两点,A 点对应的数为﹣10,B 点对应的数为 70(1)请写出 AB 的中点 M 对应的数(2)现在有一只电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的 C 点相遇,请你求出 C 点对应的数(3)若当电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距 35 个单位长度,并写出此时 P 点对应的数.40.一辆交通巡逻车在南北公路上巡视,某天早上从 A 地出发,中午到达 B 地,行驶记录如下(规定向北为正方向,单位:千米):+15,﹣8,+6,+12,﹣8,+5,﹣10.回答下列问题:(1)B 地在 A 地的什么方向?与 A 地相距多远?(2)巡逻车在巡逻中,离开 A 地最远多少千米?(3)巡逻车行驶每千米耗油 a 升,这半天共耗油多少升?41.【概念学习】规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”,一般地,把 (a ≠0)记作 a ,读作“a 的圈 n 次方”.+,【初步探究】(1)直接写出计算结果:2③=,(﹣ )⑤= ;(2)关于除方,下列说法错误的是A .任何非零数的圈 2 次方都等于 1;B .对于任何正整数 n ,1 =1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥= ;(﹣ )⑩= .(2)想一想:将一个非零有理数 a 的圈 n 次方写成幂的形式等于;(3)算一算:122÷(﹣ )④×(﹣2)⑤﹣(﹣ )⑥÷33.42.若|a|=5,|b |=2,且 a <b ,求 a ﹣b 的值.43.观察下列等式: =1﹣ , = ﹣ , = ﹣ ,把以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣(1)猜想并写出:=.(2)规律应用:计算: + +++ +(3)拓展提高:计算:+ +…+.44.操作探究:已知在纸面上有一数轴(如图所示)操作一:(1)折叠纸面,使表示的1 点与﹣1 表示的点重合,则﹣3 表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1 表示的点与 3 表示的点重合,回答以下问题:①5 表示的点与数表示的点重合;b :② 若数轴上 A 、B 两点之间距离为 11,(A 在 B 的左侧),且 A 、B 两点经折叠后重合,求 A 、B 两点表示的数是多少.45.阅读下面材料:点 A 、B 在数轴上分别表示实数 a 、 ,A 、B 两点之间的距离表示为|AB|.当 A 、B 两点中有一点在原点时,不妨设点 A 在原点,如图 1,|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,如图 2,点 A 、B 都在原点的右边|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;如图 3,点 A 、B 都在原点的左边,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a ﹣b |;如图 4,点 A 、B 在原点的两边,|AB|=|OB|+|OA|=|a|+|b |=a +(﹣b )=|a ﹣b |;回答下列问题:(1)数轴上表示 2 和 5 的两点之间的距离是,数轴上表示﹣2 和﹣5 的两点之间的距离是,数轴上表示 1 和﹣3 的两点之间的距离是.(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离是 ,如果|AB|=2,那么 x为;(3)当代数式|x +1|+|x ﹣2|取最小值时,相应的 x 的取值范围是.46.某淘宝商家计划平均每天销售某品牌儿童滑板车 100 辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负)星期与计划量的差值一+4二﹣3 三﹣5 四+14五﹣8 六+21 日﹣6(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;( (3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得 40 元,若超额完成任务,则超过部分每辆另奖 15 元;少销售一辆扣 20 元,那么该店铺的销售人员这一周的工资总额是多少元?47.求若干个相同的不为零的有理数的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3次方”, ﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”.一般地,把(a ≠0)记作 ,读作“a 的圈 n 次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣ )⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于;(3)计算 24÷23+(﹣8)×2③.48.已知 a ,b 互为相反数,c ,d 互为倒数,且 a ≠0,那么 3a +3b + ﹣cd 的值是多少?49.已知(|x +1|+|x ﹣2|)(|y ﹣2)|+|y+1|)(|z ﹣3|+|z+1|)=36,求 2016x+2017y+2018z 的最大值和最小值50.已知 a 2=9,|b |=5,且 a <b ,求 a ﹣b 的值.(七年级上册数学有理数培优 50 题参考答案与试题解析一.填空题(共 5 小题)1.【解答】解:====,故答案为:=.2.若|a|+|b |=2,则满足条件的整数 a 、b 的值有8 组.【解答】解:∵|a|+|b |=2,∴|a|=0,|b |=2 或|a|=1|b |=1,或|a|=2,|b |=0,∴a =0,b =2;a =0,b =﹣2;a =1,b =1;a =1,b =﹣1;a =﹣1,b =1;a =﹣1,b=﹣1;a =﹣2,b =0;a =2,b =0,故答案为:8.3.已知 a ,b ,c ,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|取得最大值时,这个四位数的最小值是 1119 .【解答】解:若使|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|的值最大,则最低位数字最大 d =9,最高位数字最小 a =1 即可,同时为使|c ﹣d |最大,则 c 应最小,且使低位上的数字不小于高位上的数字,故 c 为 1,此时 b 只能为 1.所以此数为 1119.故答案为 1119.4.如图,若数轴上 a 的绝对值是 b 的绝对值的 3 倍,则数轴的原点在点C 或点D .填“A ”、“B ”“C ”或“D ”)|【解答】解:由图示知,b ﹣a =4,①当 a >0,b >0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,舍去;②当 a <0,b <0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,故数轴的原点在 D 点;③当 a <0,b >0 时,由题意可得 a |=3|b |,即﹣a =3b ,解得 a =﹣3,b =1,故数轴的原点在 C 点;综上可得,数轴的原点在 C 点或 D 点.故填 C 、D .5.|x +1|+|x ﹣2|+|x ﹣3|的值为.【解答】解:当 x ≤﹣1 时,|x +1|+|x ﹣2|+|x ﹣3|=﹣x ﹣1﹣x +2﹣x +3=﹣3x +4;当﹣1<x ≤2 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1﹣x +2﹣x +3=﹣x +6;当 2<x ≤3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2﹣x +3=x +2;当 x >3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2+x ﹣3=3x ﹣4.综上所述,|x +1|+|x ﹣2|+|x ﹣3|的值为.故答案为: .二.解答题(共 45 小题)6.在一个 3×3 的方格中填写了 9 个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的 3×3 的方格称为一个三阶幻方.(1)在图 1 中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图 2 的方格中填写了一些数和字母,当 x +y 的值为多少时,它能构成一个三阶幻方.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第一步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第三步,错误的原因是同号两数相除,结果为正(事实上结果应为正数);(2)正确的结果是.【解答】解:正确做法:原式=(第一步)=15××6(第二步)=(第三步).故答案为:(1)一,在同级运算中,没有按从左到右的顺序进行,二,同号两数相除,结果为正(事实上结果应为正数);(2).8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=5秒时,点P到达点A.(2)运动过程中点P表示的数是2x﹣4(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(6,1.4)等.故答案为:(5,);不是;(6,1.4).10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣(﹣8)=.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.)×【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)50010001000500【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”【解答】解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(﹣5)❈12=﹣17;(3)加法的交换律仍然适用,例如:(﹣3)❈(﹣5)=8,(﹣5)❈(﹣3)=8,所以(﹣3)❈(﹣5)=(﹣5)❈(﹣3),。
七年级初中数学培优试卷
一、选择题(每题3分,共30分)1. 下列数中,是正数的是:A. -2B. 0C. 1/3D. -52. 下列代数式中,正确的是:A. 3x + 2 = 5B. 2(x + 3) = 8C. 4x - 2 = 10D. 5x + 6 = 03. 下列图形中,是平行四边形的是:A. 矩形B. 正方形C. 等腰三角形D. 等边三角形4. 下列等式中,正确的是:A. a + b = cB. a - b = cC. a × b = cD. a ÷ b = c5. 下列数中,是偶数的是:A. 7B. 10C. 11D. 136. 下列图形中,对边相等的是:A. 梯形B. 平行四边形C. 等腰三角形D. 等边三角形7. 下列代数式中,正确的是:A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²8. 下列数中,是质数的是:A. 2B. 3C. 4D. 59. 下列图形中,是圆的是:A. 矩形B. 圆形C. 三角形D. 正方形10. 下列数中,是整数的是:A. 2.5B. 3C. 2.75D. 4.5二、填空题(每题5分,共25分)11. 若a = 5,b = -3,则a + b = _______。
12. 若a = 4,b = 2,则2a - b = _______。
13. 若一个长方形的周长是24厘米,宽是4厘米,则其长是 _______厘米。
14. 若一个圆的半径是5厘米,则其直径是 _______厘米。
15. 若一个三角形的底是6厘米,高是4厘米,则其面积是 _______平方厘米。
三、解答题(每题10分,共30分)16. 解方程:3x - 4 = 11。
七年级上学期数学第一次月考考试题(培优卷)
七年级上学期数学第一次月考考试题(培优卷)一.选择题(共10小题,满分30分,每小题3分)1.(3分)在,﹣3,0,﹣5这四个数中,最小的是()A.B.﹣3C.0D.﹣52.(3分)有理数﹣2018的相反数是()A.2018B.﹣2018C.D.﹣81023.(3分)据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×105 4.(3分)单项式2a2b的次数是()A.2B.3C.4D.55.(3分)在数轴上与﹣2相距3个单位的点表示的数是()A.﹣5B.5和1C.﹣5和1D.16.(3分)用大小相等的小正方形按一定规律拼成下列图形,则第11个图形中正方形的个数是()A.110B.240C.428D.5727.(3分)计算(﹣2)2的结果是()A.0B.﹣2C.4D.﹣88.(3分)已知某学校A社团原有30人,B社团原有48人,新学期新一轮社团选课,由于入社与退社,造成两个社团的人数变动,A,B两社团退社的人数比为1:4,且入社的人数比也为1:4,若选课结束开学时,A社团、B社团两社团人数相同,则B社团新的人数()A.48人B.6人C.54人D.24人9.(3分)m个学生按每6人一组分成若干组,其中有一组少2人,则共有()A.组B.组C.+2组D.﹣2组10.(3分)1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛书”图①,是世界上最早的“幻方”,图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.7B.9C.6D.4二.填空题(共6小题,满分18分,每小题3分)11.(3分)若a、b互为倒数,则(﹣ab)2021=.12.(3分)如果节约20元钱,记作“+20”元,那么浪费15元钱,记作元.13.(3分)用四舍五入法对2.1415取近似数并精确到0.01,得到近似值是.14.(3分)某班部分学生外出参加社会实践活动,据统计共有三种出行方式:骑自行车、乘公交车和乘私家车(每人选择了一种出行方式),其中骑车的人数比乘公交车的人数多10人,乘私家车的人数比骑车的人数少3人,设乘公交车的有m人,则该班参加此次活动的学生共有人.(用含m的式子表示)15.(3分)若m2=25,|n|=3,且m+n<0,则m﹣n的值是.16.(3分)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1,若A+2B的值与x的取值无关,则y的值为.三.解答题(共8小题,满分72分)17.(8分)计算:①(﹣3)+(﹣4)﹣(+11)﹣(﹣9);.18.(8分)计算:(﹣2)4÷(2)2+(﹣4)×+125%19.(8分)先化简再求值:,其中x=﹣2,y=.20.(8分)某巡逻车在一条东西大道上巡逻,某天巡逻车从岗亭A处出发,规定向东为正,当天行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2.(1)最终巡逻车是否回到岗亭A处?若没有,在岗亭何方,距岗亭多远?(2)在巡逻过程中,最远处离出发点有多远?(3)巡逻车行驶1千米耗油0.2升,出发前油箱有油10升,则途中还需补充多少升油?21.(8分)计算(1)(﹣3)﹣(﹣2)+(﹣4)(2)(﹣4)﹣(﹣5)﹣|﹣|﹣(﹣)(3)﹣23÷×(﹣)2(4)(+﹣)×(﹣36)(5)﹣14﹣×[2﹣(﹣3)2](6)(﹣1)4+5÷(﹣)×(﹣6)22.(10分)南山市出台阶梯电价计算方案,居民生活用电将月用电量分为三档,第一档为月用电量100度(含)以内,第二档为月用电量100﹣220度(含),第三档为月用电量220度以上,这三个档次的电价分别为:第一档0.5元/度,第二档0.6元/度,第三档0.8元/度价目表月用电量单价不超出100度的部分0.5元/度超出100度不超出220度部分0.6元/度超出220度的部分0.8元/度若某户居民1月份用电150度,则应收电费:0.5×100+0.6×(150﹣100)=80元(1)若某户居民10月份电费48元,则该户居民10月份用电度;(2)若该户居民2月份用电320度,则应缴电费元;(3)用x(度)来表示月用电量,当x>220时的用电费用用含x的代数式表示出来.(要化简)23.(10分)在梯形ABCD中,AB∥CD,∠B=90°,AB=BC=3cm,CD=4cm.动点P 从点A出发,先以2cm/s的速度沿A→B→C运动,然后以1cm/s的速度沿C→D运动,动点Q从点C出发,以0.5cm/s速度沿C→D运动,P,Q两点同时出发,当其中一个点到达终点时,运动结束.设点P运动的时间为t秒:①当t为何值时,P、Q两点相遇?②当t为何值时,BP=CQ?③是否存在这样的t,使得△BPD的面积S=3cm2?24.(12分)已知有理数a,b,c在数轴上对应的点分别为A,B,C,其中b是最小的正整数,a,c满足|a+2|+(c﹣5)2=0.(1)填空;a=,b=,c=.(2)现将点A,点B和点C分别以每秒4个单位长度,1个单位长度和1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒.①求经过多长时间,AB的长度是BC长度的两倍.②定义,已知M,N为数轴上任意两点.将数轴沿线段MN的中点Q进行折叠,点M与点N刚好重合,所以我们又称线段MN的中点Q为点M和点N的折点.试问:当t为何值时,这三个点中恰好有一点为另外两点的折点?。
七年级第一学期数学第二章培优练习题
七年级第一学期数学第二章培优练习题一、选择题1、如图所示的几何体是由一些小正方体组成的,那么从左边看它的图形是( )2.小明家电冰箱冷藏室的温度是6℃,冷冻室的温度比冷藏室的温度低24℃,那么这台电冰箱冷冻室的温度为( )A. 30℃B. ﹣16℃C. ﹣22℃D. ﹣18℃ 3.有理数﹣2016的相反数是( ) A. 2016 B. ﹣2016 C. D. ﹣4.化简﹣(﹣3)的结果是( )A. 3B. -3C.D. - 5.计算:﹣3+4的结果等于( )A. 7B. -7C. 1D. -1 6.若|a+3|+(b ﹣2)2=0,则a b 的值为( )A.﹣9B. 9C. -8D. 8 7.对于有理数a 、b ,如果ab <0,a+b <0.则下列各式成立的是( ) A. a <0,b <0 B. a >0,b <0且|b|<a C. a <0,b >0且|a|<b D. a >0,b <0且|b|>a8.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与110.已知有理数a ,b ,c 在数轴上的位置如图所示,下列子正确的是( )A .cb >abB .c >bC .cb <abD .c +b >a +b 11.下列式子正确的是( )A .-0.1>-0.01B .-1>0C .12<13D .-5<312.如果两个有理数的绝对值相等,且这两个数在数轴上对应的两点之间的距离为4,那么这两个数分别是( )A .4和-4B .2和-2C .0和4D .0和-4 13. 下列说法中,正确的是( )A .若a≠b,则a 2≠b 2B .若a>|b|,则a>bC .若|a|=|b|,则a =bD .若|a|>|b|,则a>b14. 已知|x|=4,|y|=1,且x>y ,则x +y 的值为( ) A .5 B .3 C .-5或-3 D .5或315.已知a 为有理数,且0<a <1,则a ,a 2,1a的大小关系是( )A .a <a 2<1aB .a 2<a <1aC .1a <a <a 2D .1a<a 2<a16.若|x ﹣1|+|y+2|+|z ﹣3|=0.则x+y+z 的值为( )A. 2B. -2C. 0D. 617.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>二、填空题1.若2a +3与3互为相反数,则a =__ __.2.一个有理数x 满足:x <0且|x |<2,写出一个满足条件的有理数x 的值:x =____. 3.若有理数a ,b ,c 在数轴上的位置如图所示,则|a -c |-|b +c |可化简为____.4.计算:﹣22﹣(﹣2)2=________ . 5.观察下列算式,用你所发现的规律得出20102的末位数字是______.21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… 6. 已知5,a a b =-=,则b 的值为_____. 7. 2-的相反数是_____.若-│a │= -3.2,则a =_______.8.把-0.21+(-5.34)-(+0.15)-(-1015)写成省略括号的和的形式为___________________________. 9.平方等于94的数是________.10.一个数的平方等于它本身,则这个数是________;一个数的三次方等于它本身,则这个数是________11.1--的相反数是______,138⎛⎫-- ⎪⎝⎭的倒数是_________.12.在数轴上到-2的距离小于3个单位长度的整数有13.绝对值等于本身的数是 .相反数等于本身的数是 ,绝对值最小的负整 数是 , 绝对值最小的有理数是 .倒数等于本身的数是_______14.如果a =b ,那么a 与b 的关系是 化简(4)--+的结果为___________三.计算:(1)-14+|3-5|-16÷(-2)×12; (2)6×⎝ ⎛⎭⎪⎫13-12-32÷(-12).(3)()48242387651211-⨯⎪⎭⎫⎝⎛-+- (4)⎪⎪⎪⎪⎪⎪-79÷⎝ ⎛⎭⎪⎫23-15-13×(-4)2.(5) -|-7+1|+3-2÷⎝ ⎛⎭⎪⎫-13; (6)(-2)3-13÷⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫-1220.125×8+[1-32×(-2)].(7)(-1)3-14×[2-(-3)2] (8)13.1+1.6-(-1.9)+(-6.6);(9)(-1)2×5+(-2)3÷4; (10) 25×43―(―25)×21+25×(-41)(13) )2()2(2123322-+--⎪⎭⎫⎝⎛-+-(14)()()222132539⎡⎤--⨯-⨯+--⎣⎦(15)⎝⎛⎭⎫58-23×24+14÷⎝⎛⎭⎫-123+|-22| .四、解答题1.将下列各数在数轴上表示出来,并用“<”把它们连接起来. ﹣3,﹣(﹣1)4, 0,|﹣2.5|,﹣1.2.10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,﹣0.2,﹣0.3,+1.1,﹣0.7,﹣0.2,+0.6,+0.7.这10袋大米总重量是多少千克?3.若a 与b 互为相反数,c 与d 互为倒数,m 是最大的负整数.求代数式2a+2b -+m 2的值.4.观察下列两组算式:①22×32与(2×3)2;②(-12)2×22与[(-12)×2]2.(1)每组两个算式的结果是否相等?(2)根据(1)的结果猜想a n b n等于什么? (3)用(2)的结论计算(15)2018×(-5)2018.5. 一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.6.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,-9,+8,-7,13,-6,+12,-5.(1)请你帮忙确定B地相对于A地的方位;(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油.7. 邮递员骑摩托车从邮局出发,先向东骑行2 km到达A村,继续向东骑行3 km到达B村,然后向西骑行9 km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1 km,请你在数轴上表示出A,B,C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1 km耗油0.03升,这趟路共耗油多少升?8.你能比较20182019与20192018的大小吗?为了解决这个问题,我们首先写出它的一般形式,即比较n n+1与(n+1)n的大小(n是正整数),然后我们从分析n=1,n=2,n=3,…中发现规律,经归纳、猜想得出结论.(1)通过计算,比较下列各组中两数的大小:(在横线上填写“>”“=”或“<”)①12________21;②23________32;③34______43;④45________54;⑤56________65.(2)从第(1)题的结果中,经过归纳,猜想出n n+1与(n+1)n的大小关系;(3)根据以上归纳、猜想得到的一般结论,试比较20182019与20192018的大小.9.如图,点A 、B 都在数轴上,O 为原点. (1)点B 表示的数是________;(2)若点B 以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B 表示的数是________;(3)若点A 、B 都以每秒2个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后有一个点是一条线段的中点,求t 的值.10. (1)已知a |a|+b |b|=0,求ab|ab|的值;(2)已知a ,b ,c 是不为0的有理数,求a |a|+b |b|+c|c|的值.11.有理数a 、b 、c 在数轴上的位置如图所示,化简0a b c -+--12.对于有理数a ,b ,定义一种新运算“⊙”,规定:a ⊙b =|a +b |+|a -b |. (1)计算2⊙(-4)的值;(2)若a ,b 在数轴上的位置如图所示,化简a ⊙b .b ac13.同学们都知道|5-(-2)|表示5与(-2)之差的绝对值,也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求|5-(-2)|=__7__;(2)找出所有符合条件的整数x ,使得|x +5|+|x -2|=7成立的整数是__-5,-4,-3,-2,-1,0,1,2__;(3)由以上探索猜想,对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有,写出最小值;如果没有,请说明理由.14、已知2-ab 与1-b 互为相反数,求代数式.)1999)(1999(1)2)(2(1)1)(1(11的值++++++++++b a b a b a ab。
七年级上册数学培优试卷
一、选择题(每题5分,共25分)1. 下列数中,属于无理数的是()A. √4B. √9C. √25D. √362. 下列运算正确的是()A. (-3)² = 3B. (-2)³ = -8C. (-5)⁴ = 25D. (-4)⁵ = -10243. 下列各数中,最小的是()A. -3B. -2C. 0D. 14. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 三角形D. 梯形5. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 5x - 2 = 0C. 3x + 2 = 5x - 2D. 4x + 1 = 3x + 4二、填空题(每题5分,共25分)6. 若a = -2,则a² + 3a的值为______。
7. 下列数中,绝对值最小的是______。
8. 若x + 5 = 0,则x的值为______。
9. 一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积为______cm²。
10. 若一个数的平方等于25,则这个数是______。
三、解答题(每题10分,共30分)11. (10分)计算下列各式的值:(1)3√16 - 4√9 + 2√25(2)(a - 3)² - (a + 2)²12. (10分)已知:a² - 5a + 6 = 0,求a的值。
13. (10分)已知:三角形的三边长分别为3cm、4cm、5cm,求该三角形的面积。
四、应用题(每题10分,共20分)14. (10分)一辆汽车从甲地出发,以60km/h的速度匀速行驶,3小时后到达乙地。
求甲、乙两地之间的距离。
15. (10分)一个长方形的长是宽的3倍,若长方形的周长为36cm,求长方形的长和宽。
答案:一、选择题1. B2. B3. A4. A5. A二、填空题6. -17. 08. -59. 1610. ±5三、解答题11. (1)3√16 - 4√9 + 2√25 = 12 - 12 + 10 = 10(2)(a - 3)² - (a + 2)² = a² - 6a + 9 - a² - 4a - 4 = -10a + 512. a² - 5a + 6 = 0,因式分解得:(a - 2)(a - 3) = 0,所以 a = 2或 a = 3。
七年级数学《有理数》经典培优(含答案)
1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是_______.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点An与原点的距离不小于26,那么n的最小值是________.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是.4.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;_____ <_____ < ______ <______<_________ <______(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.5.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B 表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为____,点B表示的数为_______.(2)用含t的代数式表示P到点A和点C的距离:PA=_______,PC=________.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.6.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数______所表示的点是{M,N}的奇点;数_______所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?7.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B 分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是_______,数轴上表示数x和3的两点之间的距离表示为_________;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:________,式子|x+3|+|x+2|的最小值是.②请你在草稿纸上画出数轴,当x等于_________时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是__________.8.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1=_____=(_______)2(2)用含有n的式子表示上面的规律:______.9.如图,数轴上每相邻两刻度线间的距离为1个单位长度,请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是多少?图中5个点表示的数的乘积是多少?(3)求|x+1.5|+|x﹣0.5|+|x﹣4.5|的最小值10.我们知道数轴上两点间的距离等于这两点所对应的数的差的绝对值,例:点A、B 在数轴上分别对应的数为a、b,则A、B两点间的距离表示为AB=|a﹣b|根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为__________;②若两点之间的距离为2,那么x值为________;(2)在(1)的条件下,是否存在点P,使得点P到点A的距离等于点P到点B的距离的三倍.。
培优试卷答案七年级数学
一、选择题1. 下列各数中,有理数是()A. √2B. πC. -3D. 1/3答案:C解析:有理数是可以表示为两个整数之比的数,即分数形式。
在选项中,只有-3可以表示为整数之比(-3/1),因此选C。
2. 若a > b,那么下列不等式中错误的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. a^2 < b^2答案:D解析:选项D中,如果a和b都是负数,且|a| < |b|,那么a^2 > b^2,所以D 选项错误。
3. 在下列各数中,属于无理数的是()A. 0.333...B. √4C. πD. 1/2答案:C解析:无理数是不能表示为两个整数之比的数。
在选项中,只有π是无理数,因此选C。
4. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2答案:C解析:平方差公式是(a + b)^2 = a^2 + 2ab + b^2,所以选C。
5. 下列图形中,面积最小的是()A. 正方形B. 长方形C. 等腰三角形D. 梯形答案:D解析:在相同底和高的情况下,梯形的面积小于正方形、长方形和等腰三角形的面积,因此选D。
二、填空题1. 如果一个数加上它的相反数等于0,那么这个数是______。
答案:0解析:一个数加上它的相反数等于0,即a + (-a) = 0,因此这个数是0。
2. 下列各数中,正数是______。
答案:2解析:在给出的数中,只有2是正数,其他都是负数或零。
3. 若a = 3,b = -2,那么a - b的值是______。
答案:5解析:a - b = 3 - (-2) = 3 + 2 = 5。
4. 若x^2 = 25,那么x的值是______。
七年级上册数学培优题及详解答案
七年级上册数学培优题及详解答案1.已知比例关系和一个方程,求解比例中各项的值。
设比例中a的系数为2x,b的系数为3x,c的系数为4x,则根据条件2a+3b-2c=10,可列出方程2(2x)+3(3x)-2(4x)=10,解得x=1,因此a=2,b=3,c=4,即a:b:c=2:3:4.2.XXX在比赛中得28分,其中三分球全中得9分,因此他投中的两分球和罚球得分为28-9=19分。
除去三分球,他投了19次,命中率为14/19,得分率为28/19.3.三人各取n张牌,XXX抽取3张后手中剩下n-3张,再从XXX手中抽取2张,手中共有n-1张牌。
根据XXX的话,XXX手中有n-1张牌,因此n-1是n的约数,且n-1不等于3和2.最小的满足条件的n为7,因此每人取7张牌。
4.设长方形的宽为y,则根据周长为26可列出方程2x+2y=26,即x+y=13.根据条件长减少1,宽增加2可列出方程(x-1)=(y+2),即x-y=3.解这两个方程可得x=8,y=5,因此长方形的长为8.5.原来每只打火机的成本为2元,毛利率为25%,即售价为2.5元。
现在毛利率增加15%,即售价为2.875元,因此每只打火机的成本降低了(2.875-2)/2.875=28%。
6.驽马先行12天,良马追上它需要的时间与良马比驽马多走的路程成正比,因此可以设良马追上驽马需要x天,那么良马比驽马多走的路程为240(x+12)-150x=30x+2880.因为良马比驽马多走的路程是240-150=90,所以30x+2880=90,解得x=54,因此良马需要54天才能追上驽马。
7.原来每人与相邻两人之间的圆弧长度为arccos(10/60)≈1.23弧度。
现在每人向后挪动x,因此每人与相邻两人之间的圆弧长度为arccos(10/60)+2arcsin(x/60),根据题意可得出方程2arcsin(x/60)=arccos(10/60)+2π/8,解得x≈3.91,因此每人向后挪动3.91cm。
人教版七年级下册数学期末解答题培优题(含答案)
人教版七年级下册数学期末解答题培优题(含答案)一、解答题1.(1)如图1,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm;(2)若一个圆的面积与一个正方形的面积都是22πcm,设圆的周长为C圆.正方形的周长为C正,则C圆______C正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm,李明同学想沿这块正方形边的方向裁出一块面积为2740cm的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?2.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.3.如图,用两个边长为103的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?4.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.5.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二、解答题6.已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E . (1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.7.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.8.已知AB ∥CD ,线段EF 分别与AB ,CD 相交于点E ,F .(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P 在线段EF 上时,已知∠A =35°,∠C =62°,求∠APC 的度数; 解:过点P 作直线PH ∥AB , 所以∠A =∠APH ,依据是 ; 因为AB ∥CD ,PH ∥AB , 所以PH ∥CD ,依据是 ; 所以∠C =( ),所以∠APC =( )+( )=∠A +∠C =97°. (2)当点P ,Q 在线段EF 上移动时(不包括E ,F 两点): ①如图2,∠APQ +∠PQC =∠A +∠C +180°成立吗?请说明理由;②如图3,∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠M +∠MPQ +∠PQM =180°,请直接写出∠M ,∠A 与∠C 的数量关系. 9.已知//AB CD ,点E 在AB 与CD 之间. (1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.10.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.三、解答题11.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.12.将两块三角板按如图置,其中三角板边AB AE =,90BAC EAD ∠=∠=︒,45C ∠=︒,30D ∠=︒.(1)下列结论:正确的是_______. ①如果60BFD ∠=︒,则有//BC AD ; ②180BAE CAD ∠+∠=︒;③如果//BC AD ,则AB 平分EAD ∠.(2)如果150CAD ∠=︒,判断BFD ∠与C ∠是否相等,请说明理由.(3)将三角板ABC 绕点A 顺时针转动,直到边AC 与AD 重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出EAB ∠所有可能的度数.13.已知:三角形ABC 和三角形DEF 位于直线MN 的两侧中,直线MN 经过点C ,且BC MN ⊥,其中A ABC CB =∠∠,DEF DFE ∠=∠,90∠+∠=︒ABC DFE ,点E 、F 均落在直线MN 上.(1)如图1,当点C 与点E 重合时,求证://DF AB ;聪明的小丽过点C 作//CG DF ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF 沿着NM 的方向平移,如图2,求证://DE AC ;(3)将三角形DEF 沿着NM 的方向平移,使得点E 移动到点E ',画出平移后的三角形DEF ,并回答问题,若DFE α∠=,则∠=CAB ________.(用含α的代数式表示) 14.如图1所示:点E 为BC 上一点,∠A =∠D ,AB ∥CD (1)直接写出∠ACB 与∠BED 的数量关系;(2)如图2,AB ∥CD ,BG 平分∠ABE ,BG 的反向延长线与∠EDF 的平分线交于H 点,若∠DEB 比∠GHD 大60°,求∠DEB 的度数;(3)保持(2)中所求的∠DEB 的度数不变,如图3,BM 平分∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).15.已知AB ∥CD ,点M 在直线AB 上,点N 、Q 在直线CD 上,点P 在直线AB 、CD 之间,∠AMP =∠PQN =α,PQ 平分∠MPN .(1)如图①,求∠MPQ 的度数(用含α的式子表示);(2)如图②,过点Q 作QE ∥PN 交PM 的延长线于点E ,过E 作EF 平分∠PEQ 交PQ 于点F .请你判断EF 与PQ 的位置关系,并说明理由;(3)如图③,在(2)的条件下,连接EN ,若NE 平分∠PNQ ,请你判断∠NEF 与∠AMP 的数量关系,并说明理由.四、解答题16.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.17.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 . 拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 . 18.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.(1)当∠A为70°时,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.19.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的32倍,求∠ABO的度数.20.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、解答题1.(1);(2)<;(3)不能,理由见解析 【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(122)<;(3)不能,理由见解析 【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm , ∴小正方形的面积为1cm 2, ∴两个小正方形的面积之和为2cm 2, 即所拼成的大正方形的面积为2 cm 2, 设大正方形的边长为x cm , ∴22x = , ∴x∴; (2)设圆的半径为r , ∴由题意得22r ππ=, ∴r = ∴=22C r π=圆 设正方形的边长为a ∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下: ∵正方形的面积为900cm 2, ∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4, ∴设长方形纸片的长为5x ,宽为4x , 则54740x x ⋅=, 整理得:237x =,∴22(5)252537925900x x ==⨯=>, ∴22(5)30x >, ∴530x >,∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.2.(1)4;(2)不能,理由见解析. 【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.【详解】解:(1)两个正方形面积之和为:2×8=16(cm2),∴拼成的大正方形的面积=16(cm2),∴大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2x•x=14,解得:x=2x,∴不存在长宽之比为2:1且面积为214cm的长方形纸片.【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键.3.(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x•2x=480,解得:因为片的长宽之比为2:3,且面积为480cm2.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.4.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片5.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m),4×20=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=300,解得:a,∵3a表示长度,∴a>0,∴a∴这个长方形场地的周长为 2(3a+5a)=16a(m),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二、解答题6.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∠HED,∴∠HEM=∠DEM=12∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=12∠AFE,即1(18010)132x x︒-=,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.7.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.8.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.9.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE +∠CDE =2∠ABF +2∠CDF =2(∠ABF +∠CDF ),由(1)得:因为AB ∥CD ,所以∠BED =∠ABE +∠CDE ,∠BFD =∠ABF +∠CDF ,所以∠BED =2∠BFD .(3)∠BED =360°-2∠BFD .图3中,过点E 作EG ∥AB ,则∠BEG +∠ABE =180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG +∠CDE =180°,所以∠BEG +∠DEG =360°-(∠ABE +∠CDE ),即∠BED =360°-(∠ABE +∠CDE ),因为BF 平分∠ABE ,所以∠ABE =2∠ABF ,因为DF 平分∠CDE ,所以∠CDE =2∠CDF ,∠BED =360°-2(∠ABF +∠CDF ),由(1)得:因为AB ∥CD ,所以∠BFD =∠ABF +∠CDF ,所以∠BED =360°-2∠BFD .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.10.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B , ∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180°∴∠BCF =135°-4a ,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.三、解答题11.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×2=72°,5故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.12.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断;(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值.【详解】解:(1)①∵∠BFD=60°,∠B=45°,∴∠BAD+∠D=∠BFD+∠B=105°,∴∠BAD=105°-30°=75°,∴∠BAD≠∠B,∴BC和AD不平行,故①错误;②∵∠BAC+∠DAE=180°,∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确;③若BC∥AD,则∠BAD=∠B=45°,∴∠BAE=45°,即AB平分∠EAD,故③正确;故答案为:②③;(2)相等,理由是:∵∠CAD=150°,∴∠BAE=180°-150°=30°,∴∠BAD=60°,∵∠BAD+∠D=∠BFD+∠B,∴∠BFD=60°+30°-45°=45°=∠C;(3)若AC∥DE,则∠CAE=∠E=60°,∴∠EAB=90°-60°=30°;若BC∥AD,则∠B=∠BAD=45°,∴∠EAB=45°;若BC∥DE,则∠E=∠AFB=60°,∴∠EAB=180°-60°-45°=75°;若AB∥DE,则∠D=∠DAB=30°,∴∠EAB=30°+90°=120°;若AE∥BC,则∠C=∠CAE=45°,∴∠EAB=45°+90°=135°;综上:∠EAB 的度数可能为30°或45°或75°或120°或135°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题.13.(1)见解析;(2)见解析;(3)见解析;.【分析】(1)过点C 作,得到,再根据,,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据(2)结论得到∠D解析:(1)见解析;(2)见解析;(3)见解析;2α.【分析】(1)过点C 作//CG DF ,得到DFE FCG ∠=∠,再根据90BCF ∠=︒,90∠+∠=︒ABC DFE ,得到ABC BCG ∠=∠,进而得到//CG AB ,最后证明//DF AB ; (2)先证明90ACB DEF ∠+∠=︒,再证明90ACB ACE ∠+∠=︒,得到DEF ACE ∠=∠,问题得证;(3)根据题意得到DFE DEF α∠=∠=,根据(2)结论得到∠DEF =∠ECA =α,进而得到=90BC AC A B α=∠︒-∠,根据三角形内角和即可求解.【详解】解:(1)过点C 作//CG DF ,DFE FCG ∴∠=∠,BC MN ⊥,90BCF ∴∠=︒,90BCG FCG ∴∠+∠=︒,90BCG DFE ∴∠+∠=︒,90ABC DFE ∠+∠=︒,ABC BCG ∴∠=∠,//CG AB ∴,//DF AB ∴;(2)解:ABC ACB ∠=∠,DEF DFE ∠=∠,又90ABC DFE ∠+∠=︒,90ACB DEF ∴∠+∠=︒,BC MN ⊥,90BCM ∴∠=︒,90ACB ACE ∴∠+∠=︒,DEF ACE ∴∠=∠,//DE AC ∴;(3)如图三角形DEF 即为所求作三角形.∵DFE α∠=,∴DFE DEF α∠=∠=,由(2)得,DE ∥AC ,∴∠DEF =∠ECA =α,∵90ACB ACE ∠+∠=︒,∴∠ACB =90α︒-,∴ =90BC AC A B α=∠︒-∠,∴∠A =180°-A ABC CB -∠∠=2α.故答案为为:2α.【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.14.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.15.(1)2α;(2)EF ⊥PQ ,见解析;(3)∠NEF =∠AMP ,见解析【分析】1)如图①,过点P 作PR ∥AB ,可得AB ∥CD ∥PR ,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF =解析:(1)2α;(2)EF ⊥PQ ,见解析;(3)∠NEF =12∠AMP ,见解析【分析】1)如图①,过点P 作PR ∥AB ,可得AB ∥CD ∥PR ,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF =180°,进而可得EF 与PQ 的位置关系; (3)结合(2)和已知条件可得∠QNE =∠QEN ,根据三角形内角和定理可得∠QNE =12(180°﹣∠NQE)=1(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可2得结论.【详解】解:(1)如图①,过点P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如图②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;∠AMP,理由如下:(3)如图③,∠NEF=12由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=12(180°﹣∠NQE)=12(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣12(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+3 2α=12α=12∠AMP.∴∠NEF=12∠AMP.【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键.四、解答题16.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE=14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE∠=14°∠的大小不变.DAE理由:∵ AD平分∠ BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键. 17.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.。
七年级数学压轴题培优试卷
1. 已知等差数列{an}中,a1=3,公差d=2,则第10项a10的值为()A. 23B. 21C. 19D. 172. 若m、n是方程x^2-2x+1=0的两根,则m+n的值为()A. 2B. 1C. 0D. -23. 在△ABC中,∠A=45°,∠B=90°,∠C=45°,则AB的长度是AC的()A. 1/√2B. √2C. 2D. 14. 已知二次函数y=ax^2+bx+c(a≠0)的图像开口向上,且顶点坐标为(1,-2),则a的值为()A. 1B. -1C. 2D. -25. 下列函数中,是反比例函数的是()A. y=x^2B. y=2x+1C. y=1/xD. y=x^3二、填空题(每题5分,共25分)6. 已知等差数列{an}中,a1=5,公差d=3,则第10项a10的值为______。
7. 若m、n是方程x^2-2x+1=0的两根,则m+n的值为______。
8. 在△ABC中,∠A=45°,∠B=90°,∠C=45°,则AB的长度是AC的______。
9. 已知二次函数y=ax^2+bx+c(a≠0)的图像开口向上,且顶点坐标为(1,-2),则a的值为______。
10. 下列函数中,是反比例函数的是______。
三、解答题(每题10分,共30分)11. (10分)已知等差数列{an}中,a1=3,公差d=2,求第10项a10。
12. (10分)若m、n是方程x^2-2x+1=0的两根,求m+n的值。
13. (10分)在△ABC中,∠A=45°,∠B=90°,∠C=45°,求AB的长度是AC的长度。
14. (15分)已知等差数列{an}中,a1=1,公差d=3,求前10项的和S10。
15. (15分)已知二次函数y=ax^2+bx+c(a≠0)的图像开口向上,且顶点坐标为(1,-2),求该函数的解析式。
七年级数学培优试卷答案
1. 下列各数中,有理数是()A. √3B. πC. -1/2D. 0.101001001…答案:C解析:有理数包括整数和分数,其中分数可以表示为两个整数的比。
在给出的选项中,只有-1/2是分数,因此选C。
2. 若a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. 2a < 2bD. a^2 < b^2答案:A解析:由不等式的性质,如果两边同时加上或减去同一个数,不等号的方向不变。
因此,A选项正确。
3. 下列各组数中,成比例的是()A. 2, 4, 8, 16B. 3, 6, 9, 12C. 1, 2, 3, 4D. 0, 0, 0, 0答案:D解析:成比例意味着比值相等。
在给出的选项中,只有D选项中的四个数都是0,比值都是0,因此选D。
4. 下列各图中,是圆的是()A. 正方形B. 等腰三角形C. 等边三角形D. 椭圆答案:D解析:圆的定义是平面上到一个固定点距离相等的点的集合。
在给出的选项中,只有椭圆符合这个定义,因此选D。
5. 若一个长方形的长是6cm,宽是4cm,那么它的面积是()A. 10cm²B. 12cm²C. 24cm²D. 36cm²答案:C解析:长方形的面积计算公式是长乘以宽。
因此,6cm乘以4cm等于24cm²,选C。
6. -3的相反数是______,3的绝对值是______。
答案:3,3解析:一个数的相反数是指与这个数相加等于0的数,因此-3的相反数是3。
一个数的绝对值是指这个数去掉符号的值,所以3的绝对值是3。
7. 如果a = 2,那么a² - a的值是______。
答案:2解析:将a的值代入表达式,得到2² - 2 = 4 - 2 = 2。
8. 若m和n是方程2m + 3n = 12的解,那么m和n的可能值是______。
人教版七年级数学培优试卷
人教版七年级数学培优试卷一、选择题(30分)1.直角梯形ABCD 在直角坐标系中的位置如图,若AD=5,A 点坐标为(-2,7),则D 点坐标为( )A.(2,2)B.(2,12)C.(3,7) D (7,7)2. 在平面直角坐标系中,点(25)A ,与点B 关于y 轴对称,则点B 的坐标是( ) A .(52)--, B .(25)--, C .(25)-, D .(25)-,3.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ) A.43- B.43C.34D.34-4.如图,用8块相同的长方形地砖拼成一个矩形,则每个长方形地砖的面积是( ).A.200cm 2B.300 cm 2C.600 cm 2D.2400 cm 25. 如图,矩形ABCD 的边长为16,宽为12,BD=20,沿着对角线BD 剪开,得两个三角形,将这两个三角形拼出各种凸四边形,设这些四边形中周长最大为m ,周长最小为n ,则m+n 的值为( )A.120B.128C.136D.1446、如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80 cm 2、100 cm 2,且甲容器装满水,乙容器是空的。
若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8 cm ,求甲的容积为何?( )A 1280cm 3B 2560cm 3C 3200cm 3D 4000cm 340cm 甲 乙二、填空题(30分)7.如图,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=740,那么吸管与易拉罐下部夹角∠2= 度. 8.如果2|2|(3)0x x y -+-+=,那么2()x y +的值为 .9.若1233211115,7,x y z x y z x y z++=++=++=则 . 10.如图△ABC 中,∠A=800,剪去∠A 后,得到四边形BCED ,则∠1+∠2= .11. 如图,梯形ABCD 被对角线分为4个小三角形,已知△AOB 和△BOC 的面积分别为25cm 2和35cm 2,那么梯形的面积是 cm 2.12.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )A .50°B .30°C .20°D .15°三、解答题(60分)13.已知,A 、B 、C 、O 四点的坐标分别是(5,3)(5,4)(6,2)(0,0),(1)请建立平面直角坐标系并画出四边形ABCO(2)求出四边形ABCO 的面积14.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队8700元;乙、丙两队合做10天完成,厂家需支付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的23,厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说时理由.15.深受海内外关注的沪杭磁悬浮交通项目近日获得国务院批准,沪杭磁悬浮线建成后,分为中心城区段与郊区段两部分,其中中心城区段的长度为60千米,占全长的40%,沪杭磁悬浮列车的票价预定为0.65元/千米~0.75元/千米,请你估计沪杭磁悬浮列车全程预定票价的范围.16.某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元,若要求每种广告播放不少于2次.问:(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放收益大?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学培优试题
一、选择题:
1、若m 、n 均为正整数,多项式x m +y n +3m+n 的次数应当是( )
A 、m
B 、n
C 、m+n
D 、m 、n 中较大的数
2.已知单项式214823647x y a b a b --与的和是单项式,则代数式44459(1)142y x x ⎛⎫⎛⎫-⋅-- ⎪ ⎪⎝
⎭⎝⎭ 的值为( )
A.0
B.1
C.-1
D.以上结果都不对
3.若使(ax 2-2xy+y 2)-(-x 2+bxy+2y 2)=5x 2-9xy+cy 2永远成立,则a,b,c 依次为( )
A.4,-7,-1
B.-4,-7,-1
C.4,7,-1
D.4,7,1
4.对有理数x,y 定义运算*,使x*y=a y x +b+1,若1*2=869,2*3=883,则2*9=( )
A.1888
B.1889
C.1890
D.1891
5、去括号正确的是( )
A 、c b a a c b a a +--=+--22)(
B 、1065)53(25+-+=--+a a a a
C 、a a a a a a 3
23)23(31322--=-- D 、b a a b a a +-=---2323)]([ 6.A 表示三次多项式,B 表示四次多项式,则A +B 表示( )
(A )七次多项式 (B )四次多项式
(C )四次多项式或单项式 (D )一次多项式
二、填空题:
7、已知:2,3a c b a =
=,则c b a c b a -+++的值为 ______________. 8、已知12--=ay y A ,12322--+=y ay y B ,且多项式B A -2的值与字母y 的取值无关,
求a 的值为______________.
9、已知,0)1(32=++-b a 代数式
22m a b +-的值比m a b +-21的值多1,求m 的值为______________.
10.如果x 4+y 4=25,x 2y -xy 2=-6,则x 4-y 4+3xy 2-x 2y -2xy 2+2y 4= 。
11、若31<<a ,则化简|3||1|a a -+-的结果为______________.
12.某商品提价25%后,为了恢复原价,再降价x%,则x=___________.
13.若P=a 2+3ab+b 2,Q=a 2-3ab+b 2,则代数式P-[Q-2P-(-P-Q)]=________.
14.已知三个数的平均值是a,其中一个数为b,则其余两个数的平均值是______(用含a,b 的
代数式表示),若a=-3,b=2,则其余两个数的平均值是________.
15.已知a=3b ,c=5a ,则代数式
c
b a
c b a -+++的值等于 。
三、解答题
16化简下列各式
(1) ⎥⎦
⎤⎢⎣⎡----222222)41(2123x x y x y x y x ;2、a -(5a -3b)+(2b -a) (3) (8a -6b )-(4a -5b )+(3a -2b ); 4)]2)321
(5[322x x x x +---
5、3n -[5n +(3n -1)] (6) )(3
2)(41)(32)(2y x y x y x y x +++++-+ 17先化简,后求值.332143642222----+-c c c c c c ,其中3-=c .
.
18、已知:5,14=-=+xy y x ,求)]65(8[)76(x y xy x y xy +--++的值
19.先化简,再求值. (1)13-(x 2y 2-xy+3)+2[x 2-
12(xy-2x+y-1)]+3x-1,其中x=-4,y=3;
(2)2(2a-b)2-
12(2a+b)+3(2a-b)2+2(2a+b)-13,其中a=32,b=-2.
20.(6分)某同学做一道数学题,误将求“A-B ”看成求“A+B ”, 结果求出的答案是3x 2-2x+5.
已知A=4x 2-3x-6,请正确求出A-B 。
21、一位同学做一道题:“已知两个多项式A 、B ,计算2A+B ”.他误将“2A+B ”看成“A+2B ”,
求得的结果为7292+-x x ,已知232-+=x x B ,求正确答案。
22.如果单项式2a mx y 与235a nx
y --是关于x 、y 的单项式,且它们是同类项. (1)求2002(722)
a -的值. (2)若2a mx y 23
5a nx y --=0,且xy ≠0,求2003(25)m n -的值. 23.多项式5x 2y+7x 3-2y 3与另一多项式的和为3x 2y-y 3,求另一多项式.
24.)有理数a 、b 、c 在数轴上对应点为A 、B 、C,其位置如图所示, 试去掉绝对值符号并合
并同类项: │c │-│c+b │+│a-c │+│b+a │.
25.(本题满分14分)
提示“用整体思想解题:为了简化问题,我们往往把一个式子看成一个数(整体).”
试按提示解答下面问题.
(1)若代数式2x 2+3y 的值为-5,求代数式6x 2+9 y +8的值.
(2)已知A +B =3x 2-10.
5x +1,A -C =-2x +3x 2-5,求当x =2时B +C 的值.
26.红做一道数学题“两个多项式A 、B ,B 为6542--x x ,试求A+B 的值”。
小红误将
A+B 看成A -B ,结果答案(计算正确)为121072++-x x .
(1)试求A+B 的正确结果;
(2)求出当x =3时A+B 的值.。