lcd数显温度万年历电波钟
C语言Lcd1602万年历闹钟Proteus仿真单片机毕业课程电子设计
C语言Lcd1602万年历闹钟Proteus仿真单片机毕业课程电子设计
C语言Lcd1602万年历闹钟Proteus仿真单片机设计
AT89C51+Lcd1602+DS1302+独立按键+蜂鸣器
Lcd1602万年历闹钟。
时间信息来自DS1302,显示采用
Lcd1602,蜂鸣器提供闹音和按键提示音。
液晶上面显示年月日时分秒星期以及闹钟时间。
有时间调节和闹钟调节,可以调节年月日时分秒星期信息以及闹钟时间。
具体介绍如下。
1.做好的仿真图,如下图所示。
2.启动仿真后,先在液晶屏显示系统信息,然后在第二屏显示需要的万年历闹钟信息。
如下图所示!
3.通过单片机右侧的三个按键,即可设置闹钟。
如下图所示。
4.通过单片机左侧的四个按键,来设置年月日时分秒星期的值。
设置时,参数闪烁,同时会有按键提示音。
5.本设计默认套餐1,具体套餐详情请看下面的发货清单。
如需要其它套餐,请联系客服询问。
详情请:点击此处。
带温度计的万年历
设计课题题目: 带温度计的万年历一、设计任务与要求1. 显示准确的北京时间(时、分、秒)及公历日期显示功能(年、月、日);2. 可通过按键切换年、月、日及时、分、秒的显示状态;3. 可随时可以调校年、月、日或时、分、秒;4. 可每次增减一进行时间调节,也可快速增减进行时间调节;5.可显示环境温度。
二、系统设计方案方案一、用主芯片为AT89C51的单片机控制实现,使用单片机内部的定时计数器实现时间的设定,使用按键进行时间的调整和定时,按键有蜂鸣器提示,温度传感器使用DALLAS 公司生产的单总线式数字温度传感器,它具有微型化、低功耗、高性能、抗干扰能力强、易配处理器等优点。
显示时间和温度使用数码管显示。
方案二、用主芯片为STC89C52的单片机控制实现,为了满足单片机系统的实时控制的需求,采用实时钟芯片DS1302,使用按键进行时间的调整和定时,温度传感器使用 DS18B20。
显示时间和温度使用LCD1602显示。
方案一片内定时器会导致计时节拍的时间误差,当进行年、月、日的日历计时,定时中断误差扥积累就会很大。
使用片内定时器进行计时的时候,单片机始终要处于工作状态。
才能维持计时时间,一旦停机或进入待机状态,开机后,计时时间就需要重新设定。
为了满足单片机系统的实时钟需求,本设计采用的是方案二,系统框图如图2-1所示。
图2-1三、单元电路分析与设计1. 原理分析 1.1主控制器单片机STC89C52 具有低电压供电和体积小等特点,如图3-1所示。
1.2晶振电路AT89S52引脚XTAL1和XTAL2与晶体振荡器及电容C1、C2按图3-2所示方式连接。
晶振、电容C1/C2及片内与非门(作为反馈、放大元件)构成了电容三点式振荡器,振荡信号频率与晶振频率及电容C1、C2的容量有关,但主要由晶振频率决定,范围在0~33MHz 之间,电容C1、C2取值范围在5~30pF 之间。
根据实际情况,本设计晶振选择频率为12MHZ ,电容选择30pF 如图3-2。
网易lcd钟说明书
网易lcd钟说明书1、修改时间和日期:按下设置移动按钮,钟面年份开始闪烁,再按设置移动按钮,月份开始闪烁;再按设置移动按钮,日期开始闪烁;再按设置移动按钮,小时开始闪烁,按下修改按钮,可向上增加时间;再按设置移动按钮,分钟数字开始闪烁,按下修改按钮,可向上增加分钟。
2、完成调整后,按下退出按钮,就进入正常显示:各种电子钟设置方法基本相似,有五个按钮的,修改有上调、下调两个按钮。
万年历显示信息分上下两部分,屏幕上半部分固定显示时间,下半部分轮流显示日期、星期、温度、农历日期以及24节气。
信息轮流显示的时间间隔固定为5秒,不可调整。
万年历配备两组闹钟。
系统有备用电池,在断电的情况下依然可以保证正确计时,保持时间视电池电量而定,通常短时间断电不会出现时间丢失的情况。
3、电子钟日历调整:如果是万年历那种,侧面有四个按键,从上到下叫ABCD,先按住A一会儿,表盘年月日星期等开始闪动。
哪个闪动,按B就是往上加数字,按C就是往下减,以此类推都可以调整了,调整完不动它,过一会恢复正常走时了。
4、电子钟时间调整:先按一下“调整”按钮,数字开始闪动。
想调哪一个数就多按几次,按到的这个数就会闪动。
再用“上调”、或者“下调”来调整。
在正常的显示下,按一下“闹钟”按钮,会在“开”和“关”之间转换。
按一下“喇叭”按钮,会在“开”和“关”的功能切换。
最后按复位。
5、先按一下“设置”键:进入时间设置状态,同时年份“闪烁”,可按“上调”或“流水(下调)”键修改年份,修改好后按“设置”键将闪烁位移到公历“月”,按“上调”或“流水(下调)”键修改月份;用同样的方法可对日、时、分、秒进行设置;星期、农历月、日将自动跟随公历的变化而变化。
6、再按“设置”或“退出”:退出时间设置,回到正常时间状态。
LCD显示电子时钟设计
LCD显示电子时钟设计LCD显示电子时钟是一种以液晶显示技术为基础的电子时钟设计。
液晶显示器(Liquid Crystal Display,简称LCD)是指通过操控液晶分子的取向和透光性来显示图像的显示器,具有薄、轻、便携、低功耗、对环境光适应性强等特点,因此被广泛应用于各种电子设备中。
设计一个LCD显示电子时钟的目的是为了制作一个精确显示时间的时钟装置,并且通过液晶显示器来实时显示时间。
具体的设计思路如下:1.显示屏设计:选择一款适用的液晶显示屏,通过与微控制器连接来实时显示时间。
可以选择有背光功能的液晶显示屏,以便在光线较暗的环境中也可以清晰显示。
2.微控制器选择:选择一款适用的微控制器,来控制液晶显示器的驱动和时间的计算。
常用的微控制器有PIC、AVR等,可以根据需求选择性能和功能适配的型号。
3.时钟电路设计:通过时钟电路提供准确的时间信号,并连接到微控制器中,用于计时和更新时间。
时钟电路可以通过晶振或者RTC(实时时钟芯片)实现。
4.按键输入设计:设计一组按键接口,用于调整和设置时间。
通过按键,可以实现时间的调整、闹钟设置、12/24小时制切换等功能。
5.动态电源设计:由于时钟是一个长时间运行的装置,因此需要设计一个适合的动态电源电路,以保证电源的稳定和可靠性。
可以选择使用电池供电,以应对停电等特殊情况。
6.温度补偿设计:由于液晶显示器的性能受环境温度的影响较大,可以采用温度传感器来感知环境温度,并通过微控制器对温度进行补偿,以提高LCD显示器的准确性。
7.其他功能设计:根据实际需求,可以增加其他功能模块,如闹钟、报时、温湿度检测、闪烁灯效果等。
总结起来,设计一个LCD显示电子时钟需要考虑液晶显示屏、微控制器、时钟电路、按键输入、动态电源、温度补偿等方面的因素。
通过合理的设计和电路连接,可以实现一个功能齐全、精确显示时间的电子时钟。
智能时钟万年历(详细电路图)
《嵌入式课程设计》讲义项目1 智能数字万年历一.项目指标分析项目指标要求如下:1. 显示年、月、日、时、分、秒和星期。
2. 实时显示温度。
3. 可手动调整时间。
4. 采用LCD显示。
基于以上要求,核心控制芯片选用STC89C51;时钟芯片选用DS1302;温度传感器选用DS18B20;液晶屏选用LCD1602;设置按键,以便于调整时间。
二.电路原理系统电路功能图如图1所示:图1 智能数字万年历电路功能图由图1可知,P2口控制LCD的数据端;P3.5、P3.6和P3.7控制着LCD的片选、读/写和寄存器选择信号;可调电阻RP2用于调节屏的显示对比度。
P3.4是温度传感器DS18B20的1-wire接口,即片选、时钟和数据信号均由P3.4口控制。
P0.5、P0.6和P0.7是时钟芯片DS1302的SPI接口,为使信号控制更稳定,这三个接口上都上拉了10KΩ电阻;为获得精准的时钟信号,选用频率为32.768KHz的外部晶振对DS1302提供振荡信号。
P0.0-P0.3控制着四个按键,以便于调整时间。
三.程序设计基于这个项目,程序的设计可分成各芯片驱动程序设计和控制算法程序两部分。
1.各芯片的驱动程序设计在写驱动程序时,首先通读芯片手册,以掌握主要技术指标;然后可按照以下3个步骤进行:(1)分清楚各芯片的通信属于哪种接口方式,例如:时钟芯片DS1302按照SPI 接口进行通信;温度传感器DS18B20按照1-wire接口进行通信;液晶屏LCD1602采用常规的并行数据传输方式。
(2)仔细分析芯片时序图,弄清楚片选信号是高电平有效还是低电平有效;数据是在时钟信号的上升沿还是下降沿时打入;数据前还是时钟前等。
(3)将功能程序函数化、驱动程序模块化。
2.控制算法程序设计这里的算法主要集中在如何设置按键识别程序,即便于调整时间,又不影响液晶屏的显示。
这里,提供两种思想以便参考。
(1)循环扫描方式流程图图2 循环扫描方式流程图(2图3 状态机方式流程图将图2和图3比较起来看,两种方式的最大差别在于“10ms消抖时间如何度过?”。
(19)LCD显示数字体温计
2010年01月07日~01月09日方案设计
2010年01月10日~01月13日电路原理图
2010年01月14日~01月16日PCB图,整理设计说明书
2010年01月17日设计答辩与考核
系主任审查意见:
签字:
年月日
(3)电路原理图及PCB图。
课程设计任务书
4.主要参考文献:
(1)童诗白.模拟电子技术基础.北京:高等教育出版社,2002
(2)张建华.数字电子技术.北京:机械工业出版社,2004
(3)陈汝全.电子技术常用器件应用手册.北京:机械工业出版社,2005
(4)毕满清.电子技术实验与课程设计.北京:机械工业出版社,2005
(2)学习掌握单线数字温度传感器DS18B20的工作原理及应用;
(3)设计基于单片机控制LCD显示体温的工作原理图及PCB版图;
(4)整理设计内容,编写设计说明书。
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:
(1)理解设计流程和工作原理;
(2)课程设计说明书;
中北大学
课程设计任务书
2009/2010学年第1学期
学院:
电子与计算机科学技术学院
专业:
学生姓名:
学号:课程设计题目:起迄日期:2010年01月04日~2010年01月17日
课程设计地点:
电子科学与技术系机房
指导教师:
侯 卓
系主任:
任勇峰
下达任务书日期:2010年01月01日
课程设计任务书
1.设计目的:
(1)掌握电子电路的一般设计方法和设计流程;
(2)学习简单电路系统设计,掌握Protel99的使用方法;
功能完整的1602LCD时钟实验
功能完整的1602LCD时钟实验摘要本设计基于单⽚机技术原理,以单⽚机芯⽚STC89C52作为核⼼控制器,通过硬件电路的制作以及软件程序的编制,设计制作出⼀个多功能数字时钟系统。
单⽚机扩展的LCD显⽰器⽤来显⽰年、⽉、⽇、时、分、秒计数单元中的值。
整个设计包括两⼤部分: 硬件部分和软件部分,以单⽚机为核⼼, 配以⼀定的外围电路和软件。
硬件是整个系统的基础, 软件部分则要合理、充分地⽀持和使⽤系统的硬件, 从⽽完成系统所要完成的任务。
本设计采⽤LCD液晶显⽰,电路简单使⽤⼴泛。
该时钟系统主要由时钟模块、闹钟模块、液晶显⽰模块、键盘控制模块以及信号提⽰模块组成。
能够准确显⽰时间(显⽰格式为年:⽉:⽇:时时:分分:秒秒,24⼩时制),可随时进⾏时间调整,具有闹钟时间设置、闹钟开/关、⽌闹功能。
设计以硬件软件化为指导思想,充分发挥单⽚机功能,⼤部分功能通过软件编程来实现,电路简单明了,系统稳定性⾼。
单⽚机在这种情况下诞⽣了基于单⽚机电⼦时钟。
关键词:单⽚机 LCD1602 数字钟This design based on the single chip microcomputer principle, taking single-chip chip STC89C52 as core controller, through the hardware circuit and software production procedure formulation, designed and produced a multi-function digital clock system. SCM extended LCD display used to display date and time, minutes and seconds counting unit of values. The whole design includes two parts, hardware and software of, based on singlechip, match with certain peripheral circuit and software. Hardware is based in the whole system, the software part then be reasonable and fully support and use the system hardware, thus completing system to complete the task. This design USES the LCD, simple circuit is widely used. This clock system mainly by the clock module, alarm module, LCD module, keyboard control module and signal hint module. To accurately display the time (display format for years: month: day: always: component: seconds seconds, 24-hour system), available for time to adjust, with alarm time setting, alarm clock on/off, stop joking function. Design with hardware and software into guiding ideology, give full play to the SCM functions, most functions through software programming realize, circuit straightforward, stability of the system is high. SCM in this case was born based on single-chip electronic clock. Keywords: SCM LCD1602 digital clock前⾔数字钟是采⽤数字电路实现对时,分,秒数字显⽰的计时装置,⼴泛⽤于个⼈家庭,车站, 码头办公室等公共场所,成为⼈们⽇常⽣活中不可少的必需品,由于数字集成电路的发展和⽯英晶体振荡器的⼴泛应⽤,使得数字钟的精度,远远超过⽼式钟表, 钟表的数字化给⼈们⽣产⽣活带来了极⼤的⽅便,⽽且⼤⼤地扩展了钟表原先的报时功能。
JJY60电波钟表万年历
10mln
Bmin
4mln
2
m Jn
1
mln
F*I
P。一P5.i^&
PAl:mH自口#撒☆=∞h“0n栅“h删h)mod
2
。*:=m“。 0∞:#&_日PO-P3
FRM鲫,SU2:★月Ⅱ
r一”:mm*asm。pA2:!篙::i。“4“一“““””“…1…”“ 哑;=0正自#・=1m目#
JJY60编码格式
即200ms±lOOms、500ms±lOOms、800ms±1COrns均
图3焊接完的电路板正面
图4焊接完的电路板反面
图5上芯片的电路板
图6所用的电波钟表模块
图7液晶屏排针正视图
图8液晶屏排针背视图
图9固定天线
图fO安装支架
图11组装完成效果图
2011
万方数据
06I电于葺咋l 55
认为是正常编码.超出此范围即认定误码。
电波钟表是一种通过接受国家授时中心的无线信号 以确保时间准确性的计时工具。由于.目前我国BPC 低频时码尚未公开,我们只能制作接收日本JJY60信 号的电波钟表。日本JJ6。发射台位于日本福冈(北 纬33。28’.东经140。51’)发射频率60kHz..发射功率 50kW,有效覆盖半径15001<m。编码格式以1分钟为 1帧,每秒接收一位信息.每秒开始高振幅的时长代表 不同编码:保持100%高振幅O 8s后转为10%低振幅 02s表示0码.保持高振幅05s后转为低振幅05s表 示1码.保持高振幅0 2s后转为低振幅08s表示P码。
LED有规律的秒闪一发表示接收正常。正常接收
时.液晶屏秒后面分别显示每秒的码元和闰秒的正负; 公历日期后显示帧开始和上一帧接收是否成功。如果用 电池供电.可以接收.而用市电不能接收一般是电源滤 波不足造成的.可以加大各滤波电容试试.本装置采用
LCD电子时钟的设计
东北石油大学课程设计课程单片机课程设计题目单片机控制的LCD时钟设计院系电气信息工程学院测控系专业班级学生姓名学生学号指导教师2011年4月6日东北石油大学课程设计任务书课程单片机课程设计题目单片机控制的LCD时钟设计专业姓名学号一、任务设计一款基于STC89C52RC单片机的LCD数字时钟,实现显示当前时间以及具有调整日期与时间的功能。
二、设计要求[1] 使用集成数字电路或单片机作为主控制芯片。
[2] 使用LCD来显示现在的时间,显示格式为:上行显示:年-月-日;下行显示:时时:分分:秒秒。
[3] 使用时钟芯片DS1302实现时钟定时。
[4]具有调整日期与时间的功能。
[5] 写出详细的设计报告。
[6] 给出全部电路和源程序。
三、参考资料[1] 求是科技. 单片机典型模块设计实例导航. 北京:人民邮电出版社. 2005.8[2] 徐淑华, 程退安等.单片微型机原理及应用. 哈尔滨:哈尔滨工业大学出版社. 2005.1[3] 孙余凯. 精选实用电子电路260例. 北京:电子工业出版社. 2007.6[4] 殷春浩, 崔亦飞. 电磁测量原理及应用. 徐州:中国矿业大学出版社. 2003.7[5] 《LCD1602A数据手册》[6] 《DS1302数据手册》完成期限2011.3.28至2011.4.8指导教师专业负责人2011年3月28 日目录第1章绪论....................................................31.1 STC89C52RC单片机概述...............................................31.2 LCD概述............................................................31.3 DL1302简介.........................................................41.4 本设计任务.........................................................4 第2章总体方案论证与设计......................................52.1显示部分...........................................................52.2数字时钟...........................................................52.3温度采集...........................................................62.4总体硬件组成框图...................................................6 第3章系统硬件设计............................................73.1 STC89C52RC单片机最小系统...........................................73.2 温度测量模块.......................................................73.3 时钟模块...........................................................83.4 LCD液晶显示模块....................................................83.5 键盘模块...........................................................93.6 整体电路...........................................................9 第4章系统的软件设计.........................................114.1主程序设计........................................................114.2时间设定程序流程..................................................114.3温度测量流程图..............................................12 第5章系统调试与测试结果分析.................................145.1 使用的仪器仪表....................................................145.2 系统调试..........................................................145.3 测试结果..........................................................14 结论..........................................................15参考文献......................................................16 附录1 程序....................................................17附录2 仿真效果图..............................................27第1章绪论在新的世纪我们已经步入了第二个十年,随着全球经济的复苏和发展,由于在世界范围内人类需求的巨大释放,以及消费结构的升级,同时传统能源的稀缺以及带来的环境的破坏,都将带来新一轮的科技革命的巨变。
基于51单片机的12864液晶显示的万年历
附录程序
/*****************说明*********************************** 基于 51 单片机的 12864 液晶显示的万年历
版权所有,如需转载请通知本人,不得用于商业用途 ,仅限学习交流之用
*****************************************************************/
3
图-1 主控制系统
2.3.2 时钟电路模块的设计 DS1302 是一种高性能、低功耗、带RAM的实时时钟电路,它可以对年、月、日、周日、
时、分、秒进行计时,具有闰年补偿功能,工作电压为2.5V~5.5V。采用三线接口与CPU进 行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。DS1302内部有一 个31×8的用于临时性存放数据的RAM寄存器。DS1302是DS1202的升级产品,与DS1202兼容, 但增加了主电源/后背电源双电源引脚,同时提供了对后背电源进行涓细电流充电的能力。
//延时 1MS/次
unsigned char
{
sec,min,hour,day,month,year,cen,week,
unsigned char i;
next,aa,bb,cc,dd,mm,temp0,LunarMonth,
while(--a)
LunarDay,LunarYear;
{
int temp;
9三三系统的软件设计系统的软件设计3131程序流程框图程序流程框图图图aa主程序流程图主程序流程图10图b计算阳历程序流程图计算阳历程序流程图1112图图cc时间调整程序流程图时间调整程序流程图yynnyynnyy图图dd设置温度报警闹钟的数据保存到设置温度报警闹钟的数据保存到at24c02at24c02中中是否进入温度报警上下限温度设置设置是否进入设置闹钟时间设置报警温度上下限开始设置闹钟的时间开始报警闹钟的开关是否开起at24c02存设置的功能保蜂鸣器开启闹钟报警功能开启结束设置13五五作品功能实现作品功能实现通过硬件的焊接与程序的编写本电子万年历终于完成了实现的功能如下
带有温度显示和液晶显示器的实时时钟方案设计书
河北联合大学综合性课程设计报告学院名称:专业名称:课设题目:带有温度显示和液晶显示器的实时时钟设计学生姓名:学号:同组人:指导教师:完成时间:设计目标:设计基于单片机的具有液晶显示器的实时时钟,能够通过液晶显示器正确显示当前时间,包括年,月,日,星期,时,分,秒。
并且能够通过按键对系统的时间进行修改设定;能够显示当前的室温。
研究内容:学习EDA软件Proteus的使用,能够利用Proteus软件画出电路图并实现仿真。
学习电子系统设计步骤,按步骤完成电子系统的概要设计、选型、详细设计,系统测试仿真。
设计带有温度显示基于单片机具有液晶显示功能的实时时钟,编写程序,并利用proteus软件进行模拟仿真。
研究方法:绘制原理图及电路图,利用软件环境编程调试。
实验步骤:1、打开Keil软件,新建一个工程文件,选择好芯片,并记得在“Options for Target 1”的Output选项中,将Create HEX Fil选项勾起来。
2、将编写的程序保存成“.C”的形式3、编译保存好的C文件,并根据提示修改程序中的错误,直到编译成功为止4、打开proteus软件,画出实验电路图5、在89C51中,载入原来已生成的HEX文档6、按下运行键,对Proteus进行软件仿真,观察运行结果原理结果及分析一、设计方案原理与设计特点分析电子钟总的设计模块:各个模块电路原理分析:1、DS1302时钟采集模块:1.1电路原理图:1.2DS1302分析:首先DS1302是DALLAS公司推出的涓流充电时钟芯片。
内含有一个实时时钟/日历和31字节静态RAM通过简单的串行接口与单片机进行通信实时时钟/日历电路提供秒分时日日期月年的信息每月的天数和闰年的天数可自动调整时钟操作。
DS1302芯片广脚介绍:X1、X2为32.768KHz晶振管脚。
GND 为地。
RST复位脚。
I/O数据输入/输出引脚。
SCLK串行时钟。
Vcc1,Vcc2电源供电管脚。
单片机的LCM1602液晶显示温度与万年历显控制
毕业设计报告(论文)报告(论文)题目:基于单片机的LCM1602液晶控制——温度与万年历显示设计作者所在系部:电子工程系作者所在专业:作者所在班级:作者姓名:作者学号:指导教师姓名:完成时间: 2011年 6 月 9 日院教务处制电子工程系毕业设计(论文)任务书指导教师:教研室主任:系主任:摘要论文的研究工作是以液晶屏显示技术为背景展开的,并且详细介绍了通过MCS-51单片机控制LCM1602液晶的显示情况,以软件形式对系统进行控制,使得系统控制更具灵活与方便。
本文在深入分析LCD显示技术的基础上,重点解析了LCM显示的单片机控制技术,以及LCD显示在各种电子显示中的优势,同时阐述了其在日常显示系统中的应用;并且以Proteus与Keil uVision4软件为基础,编写了MCS-51单片机对LCM1602显示控制的软件,绘制其原理图,并使用Proteus软件与Keil uVision4软件建立联合仿真。
论文主要论述了原理图各个模块的作用,控制软件的各个模块的编程。
关键词液晶显示技术LCM1602 MCS-51单片机Proteus Keil uVision4目录第1章绪论 (1)1.1课题背景及主要技术国内外研究概况 (1)1.2LCM1602显示控制系统简介 (2)1.3课题的建立以及本文完成的主要工作 (3)第2章开发工具软件简介 (4)2.1K EIL U V ISION4软件简介 (4)2.2P ROTEUS软件简介 (4)2.3K EIL U V ISION4与P ROTEUS软件联合仿真 (5)2.4小结 (5)第3章 LCD显示控制技术 (6)3.1LCD显示技术的发展 (6)3.2LCM1602显示控制技术及其体系结构 (7)3.2.1 LCM1602模块简介 (8)3.2.2 LCM1602模块内部结构 (9)3.2.3 LCM1602控制指令 (10)3.3小结 (12)第4章系统硬件概况 (13)4.1系统概况 (13)4.2功能模块 (13)4.2.1 MCS-51单片机最小系统模块 (14)4.2.2 温度采集模块 (14)4.2.3 蜂鸣器报警模块 (15)4.2.4 万年历调节设置模块 (16)4.2.5 LCM1602显示模块 (16)4.2.6 电源模块 (17)3.3小结 (17)第5章软件控制系统概况 (18)5.1程序流程概况 (18)5.2万年历显示控制模块 (18)5.2.1 流程图 (18)5.2.2 源程序代码 (19)5.3温度显示控制模块 (19)5.3.1 程序流程 (19)5.3.2 源程序代码 (19)5.3.3 主程序 (19)5.4小结 (20)第6章课题特点 (21)6.1LCM模块的应用 (21)6.2程序结构化与模块化设计 (21)6.3抗干扰技术 (21)第7章结论 (23)7.1调试联合仿真 (23)7.2仿真结果 (23)7.3小结 (23)致谢 (24)参考文献 (25)附录 (26)基于单片机的LCM1602液晶控制——温度与万年历显示设计第1章绪论1.1 课题背景及主要技术国内外研究概况自20世纪80年代起,显示设备经历着传统工艺的改良、新工艺的发展、成熟的优胜劣汰。
显示可调闹钟万年历设计
带温度显示可调闹钟万年历摘要本设计由数据显示模块、温度采集模块、时间处理模块和调整设置模块四个模块组成。
系统最大的特点是体现了较强的人机交互和独立的模块化程序设计。
温度采集选用DS18B20芯片,数据显示采用1602A液晶显示模块,在第一行显示年月日、星期以及当前的状态,第二行显示温度和时间,合理的利用液晶显示区域。
51主芯片利用定时中断产生时间,控制着液晶的显示更新、温度的实时变化以及按键的读取处理,而对于闹钟,实际上就是时间里的一个嵌套程序。
时间和闹钟的值由按键调整设置,采用通用的二十四小时制。
该电路采用51单片机作为核心,功耗小,能在3V的低压工作,电压可选用3~5V电压供电。
综上所述此万年历具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,符合电子仪器仪表的发展趋势,具有广阔的市场前景。
关键字:万年历;温度计;闹钟;液晶显示一、方案设计与论证根据要求,系统分为四个模块进行方案设计:1.数据显示模块方案一:数据采集处理后采用六位数码管动态扫描,循环依次显示年月日(如09.01.01)、当前时间(如12.00.00)和温度星期(如+23.5_1),数码管用74LS164芯片驱动,硬件电路复杂且显示略显混乱,在软件方面,扫描部分由于要显示的数据太多而显的不清晰。
方案二:考虑到要显示的内容颇多,故运用1602A显示实时数据,第一行显示状态以及年月日星期(如S 2009—01—01 THU),第二行显示温度和实时时间(22.0C12:00:00),在处理按键设置时,第二行暂时屏蔽温度的显示而显示设置的内容。
这样虽然在程序方面多了1602A的一些初始化和读写子函数的定义,但程序的模块化却更加的清楚。
而且采用1602A LCM的液晶显示模块后不仅满足了大量数据的显示,,系统的硬件电路变的十分简单清晰明朗。
本设计采用了这种方案。
2 温度采集模块采用常用的温度采集芯片DS18B20单线数字温度传感器进行温度的采集。
带有温度显示和液晶显示器的实时时钟设计
sbit T_CLK = P1^6; /*实时时钟时钟线引脚*/
sbit T_IO = P3^5; /*实时时钟数据线引脚*/
sbit T_RST = P1^7; /*实时时钟复位线引脚*/
sbit E=P2^7;//1602使能引脚
sbit RW=P2^6;//1602读写引脚
3、proteus是一个非常好用的仿真软件,其具有强大的电路原理图绘制功能,且可以实现模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统仿真、键盘、LCD系统仿真等多种功能;和keil联合使用时可以检测所编写的程序的正确与否。将keil和proteus联合起来使用是实现电子设计制作的初步阶段,可避免在实际的硬件操作中因为电路原理图或向单片机烧录的程序有误而造成的难以修改的为题。
3、掌握了Proteus的使用方法,从实际操作中认识到Proteus在仿真方面的优越性,激发了自己学习Proteus的兴趣;
4、因为自己要修改程序,所以单单花费在程序分析的时间就很多,为了更好的理解程序,我把每句主要程序的后面都注释了该语句的意思,详情可以见程序清单,发现注释语义的工作量也是非常大的。写实验报告时,每个模块的流程图都是自己画的,用WORD文档画图真的很麻烦,而且不是很美观。因为时间比较仓促,流程图写的条理性不够,不过相信以后多多练习,就可以做得更好。
2、按键处理模块
2.1按键连线图
从左到右依次是:进位键,数字加,数字减,退出
Mode模式键
2.2按键扫描子程序流程图:
否否否否
是是是是是
否
否
是是
2.3加减键处理子程序流程图
否
是
否
是
课程设计(论文)基于lcd液晶显示的多功能数字钟的设计(附pcb图及电路原理图)
目录1前言 (1)2总体方案设计 (2)2.1设计内容 (2)2.2设计内容 (2)2.3方案论证 (3)2.4方案选择 (4)3单元模块设计 (5)3.1各单元模块功能介绍及电路设计 (5)3.1.1 温度采集电路 (5)3.1.2 DS1302时钟电路 (5)3.1.3 串行通信接口电路 (6)3.1.4 USB连接电路 (6)3.1.5 按键电路 (7)3.1.6液晶显示显示电路 (7)3.2特殊器件介绍 (7)3.2.1 STC89C52单片机芯片 (7)3.2.2 DS1302介绍 (8)3.2.3 温度传感器DS18B20 (9)3.2.4 液晶显示LCD1602 (9)4软件设计 (10)4.1软件选择 (10)4.2软件设计流程 (10)4.2.1 温度采集流程 (11)4.2.2 日期数据处理流程 (12)5系统的仿真及调试 (13)5.1系统仿真 (13)5.2硬件调试 (13)5.3软件调试 (14)6结论 (16)7总结与体会 (17)7.1设计小结 (17)7.2设计收获及改进 (17)7.3致谢 (17)8参考文献 (18)附录: (19)1前言单片机是指一个集成在一块芯片上的完整计算机系统。
尽管他的大部分功能集成在一块小芯片上,但是它具有一个完整计算机所需要的大部分部件:CPU、内存、内部和外部总线系统,目前大部分还会具有外存。
同时集成诸如通讯接口、定时器,实时时钟等外围设备。
而现在最强大的单片机系统甚至可以将声音、图像、网络、复杂的输入输出系统集成在一块芯片上。
单片机也被称为微控制器(Microcontroller),它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
概括的讲:一块芯片就成了一台计算机。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
单片机诞生于20世纪70年代末,经历了SCM、MCU、SOC三大阶段。
STC单片机完全兼容51单片机,并有其独到之处,其抗干扰性强,加密性强,超低功耗,可以远程升级,内部有专用复位电路,价格也较便宜,由于这些特点使得 STC 系列单片机的应用日趋广泛。
LCD12864液晶显示电子钟设计
LCD12864液晶显示电子钟设计
介绍:
设计目标:
设计一个能够实时显示时间和日期的电子钟,能够精确地获取当前的时间,并对用户的操作作出相应的响应。
设计原理:
该电子钟设计采用了单片机ATmega16作为核心,配合RTC(实时时钟)模块,通过控制液晶显示屏来显示时间和日期。
硬件设计:
1.电源电路:使用直流电源电压为5V,通过稳压芯片将输入电压稳定在5V。
2.单片机电路:将ATmega16与晶振、复位电路、电源电路等连接起来。
3.RTC电路:通过连接RTC芯片和单片机,实现对实时时钟的读取和控制功能。
4.液晶显示屏电路:将液晶显示屏与单片机进行连接,通过单片机控制液晶显示屏的显示。
软件设计:
1.初始化:对单片机和RTC进行初始化设置。
2.获取时间:从RTC读取当前时间和日期。
3.显示时间:将获取到的时间和日期分别显示在液晶显示屏的相应位置。
4.操作功能:通过按键控制,实现对时间和日期的调整和设置功能。
设计步骤:
1.确定电路设计需求和所需元器件。
2.搭建硬件电路,完成电路连接。
3.使用相关软件进行单片机和RTC的编程设置。
4.测试整个电路是否能够正确工作,如对时间进行调整并观察液晶显示屏的显示是否准确。
5.根据需求进行适当的优化和完善设计。
总结:。
基于单片机的多功能LCD时钟
基于单片机的多功能LCD时钟
该时钟的设计思路是通过单片机控制液晶显示器,实时更新时间、日期、温度等信息;同时,结合外部输入信号,实现闹钟功能。
首先,该时钟通过单片机内部定时器实现时间的计时。
通过精确定时器,可以实现秒、分、时的显示和更新。
单片机内部具有RTC(Real-
Time Clock)模块,可实现对日期和时间的实时监控。
其次,该时钟通过温度传感器获取环境温度,并通过单片机控制液晶
屏实时显示。
温度传感器可以是热敏电阻、热敏电容等。
另外,该时钟具有闹钟功能,用户可以设置闹钟时间。
当时间到达设
定的闹钟时间时,时钟会发出报警声音,提醒用户。
此外,该时钟还可以显示日历。
通过单片机计算当前日期,并显示在
液晶屏上。
时钟基于单片机的控制,具有灵活性高、功能强大、可靠性较好等优点。
其通过外设接口与用户进行交互,使得用户操作简单、方便。
整个时钟的设计和制作过程分为硬件设计和软件设计两个部分。
其中,硬件设计包括电路原理图设计、PCB布局设计、外设选型等;软件设计则
包括单片机程序设计、液晶显示程序设计、闹钟功能实现等。
总结起来,基于单片机的多功能LCD时钟是一种功能强大的电子时钟,通过单片机控制液晶显示器实现时间、日期和温度的显示和更新,同时结
合闹钟功能,提供给用户全方位的时间与日期信息。
课程设计之LCD显示数字时钟设计
课程设计之LCD显示数字时钟设计一、课程目标知识目标:1. 学生能理解LCD显示数字时钟的基本原理,掌握电子元件的功能和使用方法。
2. 学生能描述数字时钟的组成,包括时钟芯片、LCD显示屏、电阻、电容等基本元件。
3. 学生能运用所学知识,分析并解释LCD显示数字时钟的电路图。
技能目标:1. 学生能通过实际操作,学会正确焊接电子元件,搭建LCD显示数字时钟电路。
2. 学生能运用编程软件,编写控制LCD显示数字时钟的程序。
3. 学生能通过调试,解决LCD显示数字时钟中的常见问题,确保其正常运行。
情感态度价值观目标:1. 学生在课程学习中,培养对电子制作的兴趣和热情,提高创新精神和动手能力。
2. 学生通过团队协作,培养沟通、交流和合作的能力,增强团队意识。
3. 学生在掌握电子技术知识的过程中,认识到科技对生活的影响,提高社会责任感和使命感。
课程性质:本课程为实践性较强的电子技术课程,结合理论知识与实践操作,培养学生动手能力和创新能力。
学生特点:学生处于高年级阶段,具备一定的电子技术基础,对实践操作有较高的兴趣和热情。
教学要求:教师需关注学生的个体差异,提供个性化的指导,鼓励学生积极参与实践,注重培养学生的实际操作能力和问题解决能力。
同时,关注学生的情感态度价值观的培养,提高学生的综合素质。
通过课程目标的分解,使学生在知识、技能和情感态度价值观方面取得具体的学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 电子元件基础知识:介绍LCD显示屏、时钟芯片、电阻、电容等基本元件的工作原理和功能。
- 教材章节:第二章 电子元件基础- 内容列举:LCD显示屏原理、时钟芯片特性、电阻和电容的分类及应用。
2. 数字时钟原理与设计:分析数字时钟的组成、工作原理,讲解设计方法。
- 教材章节:第三章 数字电路设计- 内容列举:时钟芯片的接口电路、LCD显示接口电路、数字时钟整体设计。
3. 焊接技术:教授焊接工具的使用方法,指导学生进行电子元件的焊接。
基于液晶显示的万年历
基于液晶显示的万年历毕业设计(论文)报告题目基于液晶显示的万年历系别专业班级学生姓名学号指导教师2013年4 月基于液晶显示的万年历摘要:本设计应用AT89S52芯片作为核心,采用C语言进行编程,实现以下功能:小时、分、秒、年、月、日、星期的显示和实时温度检测。
该设计的电子时钟系统由时钟电路、LCD显示电路、按键调整电路和温度检测电路四部分组成。
使用时钟芯片DS1302完成时钟日期的功能,以LCD1602为显示器,同时利用温度传感器DS18B20测量周围环境温度,并且可以依靠按键随时对日期时间进行调整。
我们共设计四个按键,一个模式键,也就是我们用来选定被修改的数字的,两个调整键,一个“加”键和一个“减”键,当按下模式键,选定要调整的数字的时候,“加”、“减”可以帮我们调到所需的状态,还有一个复位键,显示精度为1秒。
设计还提供三位实时温度检测并显示,其显示精度为0.1℃。
关键词:AT89S52、时钟日历芯片DS1302、温度传感器DS18B20、LCD1602目录前言 (1)第一章方案选择与万年历研究情况 (2)1.1 方案选择 (2)1.1.1时钟芯片选择 (2)1.1.2键盘选择 (3)1.1.3显示模块选择 (3)1.2电子万年历的研究情况 (4)第二章主要硬件描述 (5)2.1 AT89S52 (5)2.1.1主要性能 (5)2.1.2引脚说明 (5)2.2 LCM1602 (8)2.2.1工作原理 (8)2.2.2端口引脚第二功能 (9)2.2.3管脚功能 (10)2.3 芯片DS1302 (11)2.3.1工作原理 (11)2.3.2引脚功能及结构 (12)2.4 数字温度传感器DS18B20 (12)2.4.1DS18B20工作原理 (12)2.4.2DS18B20 引脚定义 (13)第三章硬件设计与实现 (14)3.1 单片机最小系统的设计 (14)3.2 时钟电路的设计 (15)3.3 温度采集模块的设计 (15)3.4 LCDM1602显示模块设计 (16)第四章系统软件设计与实现 (17)4.1主程序设计 (17)4.2实时时钟日历子程序设计 (17)4.3环境温度采集子程序设计 (18)4.4按键子程序设计 (20)第五章测试结果分析与结果 (21)5.1 测试结果分析 (21)5.2 测试总结 (21)结束语 (22)致谢 (23)参考文献 (24)附录一:原理图 (25)附录二:源程序 (26)前言万年历,就是记录一定时间范围内(比如100年或更多)的具体阳历与阴历的日期的年历, 方便有需要的人查询使用.万年只是一种象征,表示时间跨度大.这次设计通过对万年历系统的设计, 详细介绍AT89S52单片机应用中的按键处理,数码管显示原理,动态和静态显示原理,定时中断,A/D转换等原理.该系统能够显示年,月,日,小时,分钟,秒,星期,农历,温度,通过按键可以修改时间等功能.此系统结构简单,功能齐全,具有一定的推广价值。
多功能电子万年历
用户可以根据自己的需求,调节闹 钟的音量大小,确保及时唤醒。
温度显示功能
01
02
03
温度传感器
多功能电子万年历内置温 度传感器,可以实时显示 室内温度,方便了解室内 环境温度情况。
温度单位切换
用户可以根据自己的需求 ,在摄氏度与华氏度之间 自由切换温度显示单位。
温度预警
根据用户设定的温度范围 ,多功能电子万年历可以 发出预警声音或提示信息 ,提醒您注意温度变化。
课外活动安排
多功能电子万年历可以记录学生 的课外活动安排,如社团活动、 义工活动等,方便学生合理安排 时间。
学习备忘录
多功能电子万年历可以作为学生 的学习备忘录,记录学习笔记、 心得体会等,方便学生随时回顾 和总结。
06
产品未来展望
技术创新方向
智能化升级
引入人工智能技术,实现万年历的语音交互 、智能推荐等功能,提升用户体验。
功能丰富
除了基本的日期和时 间显示外,还具备闹 钟、计算器、备忘录 等多种实用功能。
易于操作
配备触摸屏或按键操 作,简单易懂,方便 用户使用。
耐用性强
采用高品质材料制造 ,经久耐用,适合家 庭和办公场所使用。
产品的重要性
提高生活品质
多功能电子万年历可以提醒用 户重要日期和时间,避免错过
重要事件,提高生活品质。
计时的时间范围。
倒计时提醒
02
在倒计时结束之前,多功能电子万年历会发出提醒声音或提示
信息,避免错过重要时刻。
倒计时进度显示
03
多功能电子万年历会实时显示倒计时的剩余时间,让您可以随
时掌握时间进度。
03
产品使用说明
操作界面说明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外观尺寸:29cm(宽)*18.5cm(高)
可挂可摆,背面有挂孔,可挂在墙上,也可以安装随机配送的支架摆放在台面上。
电子说明书地址:/item.htm?spm=a1z09.5.0.4 0&id=16362908718
功能特点:
1、时间显示:时:分:秒,12/24小时制可选
2、日历显示:日/月
3、星期显示:英文简写
4、温度显示:摄氏或华摄,范围:0℃-50℃(32℉-122℉),分辨率:0.1℃。
5、闹铃功能:可设置1个闹铃时间。
6、特殊日期提醒功能:可设置三个特殊日期提醒。
使用电源:两节AA电池(不配送电池),超省电,两节电池可使用一年以上。
使用说明:
一、信号自动同步:
当时钟正确装上电池后,稍等几秒,自动开始接收日本发射的无线电校时信号,接收过程中屏幕右上角显示一个闪动的信号接收塔标识。
当接收到正确的时间信号后,接收塔标识停止闪动并自动同步时间和日历信息,时钟每天会定时进行接收,无须人工干预。
如果接收不成功,时钟仍可以作为一个高精度石英钟使用。
时钟在接收信号的过程(接收塔标识闪动)中无法进行其他功能的操作,如果需要进行其它设置或取消接收,须按下‘+’键退出接收状态。
为了达到最好的接收效果,应将时钟远离其它用电器至少在1-2米以上,并可以适当转动时钟位置以获取最佳接收效果。
二、信号手动同步:
在正常的时钟显示模式,长按‘+’键,强制进入信号接收状态,此时收塔标识闪动,接收过程与自动同步一样。
三、手动设定时钟、日历:
在正常的时钟显示模式,长按‘CLK/CAL’键,进入时间日历设置界面,当前设置项目闪动,通过短按‘+,-’键调整数值,再短按‘CLK/CAL’确认并进入下一设置项目。
设置项目顺序:12/24时制—小时—分钟—年—月—日—时区。
四、每日闹钟设置:
在正常的时钟显示模式,长按‘ALARM’键,进入闹铃设置界面,通过短按按‘+,-’键输入每天的闹铃时间,最后按‘ALARM’键确认。
在正常的时钟显示模式,短按‘-’键可以开启和关闭闹铃功能,当闹铃响时,按任意键都可以关闭闹铃。
五、特殊日期提醒设置:
这个特殊的功能允许您针对不同的事件输入任何三个特殊的日期和时间,比如生日、结婚纪念日等。
当到达设定日期时间后,闹铃就会持续响一分钟并且液晶屏会微弱闪烁。
可以输入最大3999天、最小1天进行倒计时。
在正常的时钟显示模式,长按‘SDA’键进入日期设置界面,短按‘+,-’键选择设置第几个特殊日子,然后短按‘SDA’键确认,再短按‘+,-’键设置年、月、日、时、分,最后按‘SDA’键确认。
六、选择显示天数或温度模式:
在正常的时钟显示模式,短按‘SDA’键选择温度、特殊日子天数或温度和天数的循环显示模式。
简易操作说明:(中国版本)
上面的设置太复杂了?操作麻烦?没关系!买家收到时钟之后只要按以下两个简单步骤设置就可以。
1、正确装上符合要求的电池;
2、挂或摆放好时钟,等待时钟自动接收或停止自动接收之后长按“+”键强制接收即可。
关于电波钟的一些问题:
1、接收范围。
低频电波对时信号采用长波进行传送,长波传送的好处是距离远,并且可以通过电离层返射进行超长距离传送。
一般发射半径1500公里内是信号能保证接收的距离,超过1500公里信号就会较弱,但仍可以在干扰较小的夜间进行接收,同时通过电离层进行反射传送的信号,距离可以达到2000公里甚至更远。
所以我国只建有一个发射台即可基本上覆盖全国范围。
2、接收不到信号怎么办?
对时信号在传送过程中,很容易受到干扰,这是技术上的缺陷,无论是日本信号还是中国信号均存在这种问题,一般来说凌晨时分干扰较小,接收成功率会较高,所以时钟自动接收都安排在凌晨时分进行,每天进行一次接收校准,确保时间准确无误。
如果无法对时,可以尝试更换时钟摆放位置、方向,或者选择在深夜进行接收。
城市高楼大厦内由于信号屏蔽,可能造成接收困难,可以尝试在阳台、窗口等处进行接收。
时钟采用了高精度晶振,即使没有接收到对时信号,本身走时精度也达到月误差少于15秒的国标。
所以,无须每天都保证接收成功也可以获得较一般石英钟更精确的时间。
3、关时时间精度。
对时电波经过传送到接收,再程序处理更新,有一定延时,一般延时会在1秒内。
所以时钟在对时成功后,时间即为标准的北京时间,误差1秒内。
可与电脑网络对时时间进行对比(建议到中国科学院国家授时中心/进行时间对比),网络传送也会有延时,但误差很小。
勿与电视或收音机对时时间对比,因为这些时间一般误差较大。