基质辅助激光解析电离飞行时间质谱
一、基质辅助激光解吸电离飞行时间质谱仪操作规程

一、基质辅助激光解吸电离飞行时间质谱仪操作规程一. 开机1. 开主机总电源至ON。
2. 开主机正面有钥匙的开关至ON(顺时针)。
3. 开计算机及显示器,启动FlexControl软件。
4. 等待源高真空达到3×10-6mbar,如达不到该数值,检查是否有漏气发生。
5. 进入日常操作。
二. 关机1.将靶退出。
2.在FlexControl界面的Spectrometer关掉高压(按“OFF”)。
3.关闭所使用的软件,关闭计算机。
4.关主机正面有钥匙的开关至OFF(逆时针)。
5.关主机总电源至OFF。
三.日常操作1.打开FlexControl进入仪器控制界面。
2.确认真空度为10-7mbar或稍低。
3.通过界面Carrier▲或主机正面的Load EJECT开关,将样品靶放入仪器,等待约2分钟,调整好靶位。
在此过程中不应操作软件或硬件,以确保仪器通讯畅通。
4.根据测量目的选择测量方法⑴分子量测定:根据分子量大小选择相应的线性测量方法和仪器校正方法。
(2) 肽质量指纹谱测量:根据所需测量的肽谱范围选择相应的反射测量方法和仪器校正方法。
⑶根据需要选择正离子或负离子测量方法和仪器校正方法。
⑷如果进行串联质谱分析,则选择LIFT方法。
5.选择适当的仪器参数6.测量⑴.手动测量a.选择好待测样品的靶位及相应参数后,按 Start开始测量。
b.根据图谱的质量按Add添加或按Clear Sum删除图谱。
c.按Save As保存图谱。
注:在测量过程中可随时调整激光能量和靶位置以获得最佳信噪比和分辨率。
⑵.自动测量a.按菜单AutoXecute,再按Select选择一个Sequence文件名。
b.按Edit编辑待测样品,用Sample position 的Sample依次选定靶位后按Add 添加到Edit AutoXecute Sequence中。
c.按AutoXecute Method选择Calibration或样品测量方法。
jeol基质辅助激光解吸电离离子源飞行时间质谱

jeol基质辅助激光解吸电离离子源飞行时间质谱是一种先进的质谱技术,它结合了基质辅助激光解吸电离(MALDI)和飞行时间质谱(TOF-MS)两种技术的优势,能够在分析生物大分子和其他复杂样品时提供高灵敏度和高分辨率的数据。
在MALDI-TOF-MS中,样品与基质混合后通过激光辅助电离,产生一系列的离子,这些离子在一个电场中被加速到一定能量后,根据其质荷比分别飞行到检测器,通常基于TOF-MS的仪器会有高质量的检测结果。
针对这一主题,我们将深入探讨jeol基质辅助激光解吸电离离子源飞行时间质谱的原理、应用及优势,并探讨其在生物医学研究、生物技术领域的重要意义。
我们将对该技术的未来发展和趋势进行分析和展望,以帮助您更全面地了解jeol基质辅助激光解吸电离离子源飞行时间质谱。
理解jeol基质辅助激光解吸电离离子源飞行时间质谱的原理对于深入探讨这一主题至关重要。
这种技术利用了MALDI和TOF-MS两种技术的优势,MALDI能够提高大分子的离子化率,TOF-MS能够提供高分辨率和高灵敏度的分析结果。
jeol基质辅助激光解吸电离离子源飞行时间质谱可以在保证数据质量的提高分析的速度和效率。
我们将深入探讨jeol基质辅助激光解吸电离离子源飞行时间质谱在生物医学研究和生物技术领域的应用。
这种技术在生物医学研究中可以用于蛋白质组学和代谢组学的分析,能够帮助科学家更好地理解疾病的发病机制、开发新的药物或者诊断方法。
在生物技术领域,jeol基质辅助激光解吸电离离子源飞行时间质谱也能够用于生物药物的质量控制和分析,可以提高生物药品的质量和安全性。
我们还将重点分析jeol基质辅助激光解吸电离离子源飞行时间质谱的优势,比如高分辨率、高灵敏度、高通量等特点,以及与其他质谱技术的比较。
这可以帮助您更好地了解jeol基质辅助激光解吸电离离子源飞行时间质谱在分析复杂样品时的优势和局限性。
通过对jeol基质辅助激光解吸电离离子源飞行时间质谱的未来发展和趋势进行分析和展望,我们可以帮助您更好地把握这一技术的发展方向和未来的应用前景,为您在相关领域的研究和应用提供更多的启发和帮助。
基质辅助激光解吸电离质谱技术

基质辅助激光解吸电离质谱技术
基质辅助激光解吸电离质谱技术(MALDI-TOF)是一种分析生物
分子的强大工具。
它已经在蛋白质、核酸和其他生物分子分析方面得
到广泛应用。
下面将从以下四个方面介绍MALDI-TOF技术的原理、
优点和应用。
一、原理
MALDI-TOF技术基于激光的原理,将样品与基质的混合物直接离子化,负离子和正离子由离子源加速器加速并分离,形成离子束,然后质量
分析器通过测量离子的飞行时间确定其质量。
该技术的核心基质辅助
激光解吸(MALDI)利用吸收激光能量的基质辅助离子化样品,以便
于其在质谱仪中分析。
二、优点
1.高灵敏度和快速分析速度
2.允许复杂混合物的分析
3.适合大分子分析
4.样品制备简单,并且适合高通量分析
三、应用
1.蛋白质质量分析
MALDI-TOF技术被广泛用于蛋白质质量分析,如蛋白质组学研究、酶学、蛋白质结构与功能研究等领域。
2.核酸分析
MALDI-TOF技术已用于分析DNA序列,RNA序列、突变筛查等应用。
3.药物筛选
MALDI-TOF技术可以被用于药物筛选研究,例如药物的质量控制和药
物代谢动力学等。
4.食品安全
MALDI-TOF技术可以基于蛋白质和碳水化合物分析技术来鉴定、检测
和鉴别食品中的致病菌和其他食品中的杂质。
四、结论
MALDI-TOF是一种革命性分析技术,已被广泛应用于多个领域,包括
蛋白质质量分析、核酸分析、药物筛选和食品安全等。
由于它的快速、高灵敏度和不依赖于基础知识的可靠性,它被证明是高通量分析的方
法选择之一。
基质辅助激光解吸电离飞行时间质谱

基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS) 技术的主要特点是,先通过PCR扩增目标序列,然后加入snp序列特异延伸引物,在SNP 位点上,延伸1个碱基。
将制备的样品分析物与芯片基质共结晶,将该晶体放入质谱仪的真空管, 而后用瞬时纳秒(10-9s) 强激光激发,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,核酸分子就会解吸附并转变为亚稳态离子,产生的离子多为单电荷离子,这些单电荷离子在加速电场中获得相同的动能,进而在一非电场漂移区内按照其质荷比率加以分离,在真空小管中飞行到达检测器。
MALDI产生的离子常用飞行时间(Time-of-Flight,TOF)检测器来检测,离子质量越小,就越快到达。
理论上讲,只要飞行管的长度足够,TOF检测器可检测分子的质量数是没有上限的。
MassARRAY SNP 检测的质谱范围为5000 to 8500 Da。
主要用途: 1.对生物大分子物质分子量的测定; 2.对蛋白质进行高通量的鉴定; 3.对有机小分子化合物分子量的测定; 4.对寡核苷酸的分析; 5.对基因的单核苷酸多态性的分析仪器类别:0303071402 /仪器仪表/成份分析仪器/质谱仪指标信息: 1.质量数测定范围最高可达40万Da以上; 2.检测灵敏度范围:10-15~10-18摩尔; 3.质量准确度可达5ppm; 4.分辨率右达2万。
附件信息:配有源后衰变装置,可对多肽、蛋白质的序列进行分析机组简介:基质辅助激光角吸附电离飞行时间质谱(MALDI-TOF-MS Reflex Ⅲ):具有操作简单、快速、谱图直观、能耐受一定浓度的盐和去垢剂等特点,特别适合于混合多肽、蛋白、寡核苷酸的精确质量数测定,其测定质量数范围最高可达40万Da以上,灵敏度可达10-15~10-18摩尔,质量准确度5ppm。
配有源后衰变(post-sourc e decay, PSD)装置,计算机自动联机检索系统。
基质辅助激光解吸电离飞行时间质谱微生物鉴定系统性能验证方案的建立

基质辅助激光解吸电离飞行时间质谱微生物鉴定系统性能验证方案的建立徐蓉;慎慧;黄媛媛;何丽华;倪丽君;郭建;吴文娟【摘要】目的建立基质辅助激光解吸电离飞行时间质谱系统(MALDI-TOF MS)在常规临床微生物鉴定中的性能验证方法,指导临床实验室规范微生物鉴定程序.方法选取标准菌株、质控菌株和临床菌株共115株,包含革兰阳/阴性球菌30株、革兰阳/阴性杆菌31株、真菌30株,厌氧菌、苛养菌各12株,所有菌株均经Vitek Compact鉴定和/或细菌16S rDNA、真菌ITS DNA测序分析验证.任意选择3种MALDI-TOF MS微生物鉴定系统厦门质谱、布鲁克质谱、安图质谱,采用检测系统推荐方法进行菌株鉴定,进行准确度验证试验.精密度验证:选取标准菌株和临床菌株10株,1位操作者使用3个检测系统对10株菌株分别进行质谱鉴定3次,连续鉴定3 d;3位操作者使用3个检测系统对10株菌株每d分别进行质谱鉴定3次,连续鉴定3 d,从而验证鉴定结果的重复性.结果厦门质谱、布鲁克质谱、安图质谱对标准/质控菌株(除外厌氧菌)的鉴定符合率为100%;对临床菌株的属水平鉴定符合率为100%;对革兰阴/阳性杆菌的种水平鉴定符合率分别为100%、100%、96.77%;对革兰阳性球菌的种水平鉴定符合率分别为96.67%、96.67%、100%;对真菌的种水平鉴定符合率均为90%一致;对苛养菌的种水平鉴定符合率均为100%;对厌氧菌鉴定符合率为91.67%种水平一致.精密度验证试验结果重复性100%.结论 3种MALDI-TOF MS系统在革兰阳/阴性球菌、革兰阳/阴性杆菌、真菌、苛养菌鉴定的准确度和精密度符合要求,验证通过.本文建立的微生物鉴定质谱仪性能验证方案可满足综合性医院临床微生物实验室常规鉴定基本要求.【期刊名称】《临床检验杂志》【年(卷),期】2018(036)010【总页数】5页(P783-787)【关键词】基质辅助激光解吸电离飞行时间质谱;性能验证;微生物鉴定【作者】徐蓉;慎慧;黄媛媛;何丽华;倪丽君;郭建;吴文娟【作者单位】上海市临床检验中心临床微生物室,上海200126;同济大学附属东方医院南院检验科,上海 200123;同济大学附属东方医院南院检验科,上海 200123;同济大学附属东方医院南院检验科,上海 200123;同济大学附属东方医院南院检验科,上海 200123;同济大学附属东方医院南院检验科,上海 200123;同济大学附属东方医院南院检验科,上海 200123【正文语种】中文【中图分类】R446.520世纪90年代末,基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,MALDI-TOF MS)成功应用于微生物菌种鉴定并得到迅猛发展。
基质辅助激光解析电离飞行时间质谱MALDI-TOF-MS

基质辅助激光解析电离飞⾏时间质谱MALDI-TOF-MS MALDI-TOF-MS(基质辅助激光解析电离飞⾏时间质谱)是近年来发展起来的⼀种新型的简单⾼效软电离⽣物质谱仪。
质谱分析法主要是通过对样品的离⼦的质荷⽐的分析⽽实现对样品进⾏定性和定量的⼀种⽅法。
因此,质谱仪都必须有电离装置把样品电离为离⼦,有质量分析装置把不同质荷⽐的离⼦分开,经检测器检测之后可以得到样品的质谱图,由于有机样品,⽆机样品和同位素样品等具有不同形态、性质和不同的分析要求,所以,所⽤的电离装置、质量分析装置和检测装置有所不同。
但是,不管是哪种类型的质谱仪,其基本组成是相同的。
都包括离⼦源、质量分析器、检测器和真空系统。
以某种⽅式使⼀个有机分⼦电离、裂解,然后按质荷⽐(m/z)⼤⼩把⽣成的各种离⼦分离,检测它们的强度,并将离⼦按其质荷⽐⼤⼩排列成谱,这种分析研究的⽅法叫做质谱图,质谱的最⼤⽤途之⼀是可以测定未知物的分⼦量(质谱能通过检测分⼦离⼦的质荷⽐获得分⼦量),并可以确定化合物的分⼦式(可通过碎⽚离⼦的质荷⽐的强度推测有机物的结构。
这相当于⼀个精巧的花瓶被打碎了,如果我们仔细地收集和归属这些碎⽚,然后将碎⽚拼构起来,就可以使花瓶复原。
花瓶好⽐有机物的分⼦,打碎花瓶犹如使分⼦电离、裂解。
收集和归属碎⽚就像是按质荷⽐分离、记录离⼦。
⽽将碎⽚重拼花瓶的过程,相当于通过解析谱图得到有机物结构的过程。
由于各种有机物都有其特定的、可以重复的质谱图,⽽且⼈们对质谱裂解过程的研究中已经发现了⼀些普遍适⽤的裂解规律,这为质谱⽤于有机物结构分析提供了可靠的基础)。
飞⾏时间质谱仪Time of Flight Mass Spectrometer (TOF) 是⼀种很常⽤的质谱仪。
这种质谱仪的质量分析器是⼀个离⼦漂移管。
由离⼦源产⽣的离⼦加速后进⼊⽆场漂移管,并以恒定速度飞向离⼦接收器。
离⼦质量越⼤,到达接收器所⽤时间越长,离⼦质量越⼩,到达接收器所⽤时间越短,根据这⼀原理,可以把不同质量的离⼦按m/z值⼤⼩进⾏分离。
MALDI-TOF MS(基质辅助激光解吸电离飞行时间质谱)培训预习提纲

【MALDI-TOF MS】(基质辅助激光解吸电离飞行时间质谱)培训预习提纲一仪器概况仪器名称:基质辅助激光解析电离-飞行时间质谱仪Matrix Assisted Laser Desorption Ionization-Time of Flight Mass SpectrometerMALDI-TOF公司:美国应用生物系统Applied Biosystem型号:Voyager DE-STR特点:DE Delayed Extraction 延迟引出PSD:Post Source Decay 源后裂解技术指标:Mass AccuracyLinear Mode, External Calibration:≤±0.05% for angiotensin[1,296.6853] and myoglobin [16,952.5].∙Reflector Mode, External Calibration:≤±0.008% for ACTH 18-39 [m/z 2,565.1989].≤±0.005% for E.coli thioredoxin [m/z 1,1674.4] ±0.005% for ACTH 18-39Mass Resolution:∙Reflector Resolution:≥20,000 for insulin (m/z 5,734).≥12,000 for ACTH clips.∙Linear Resolution:≥3,000 angiotensin.≥3,500 for ACTH 18-39 [m/z2,465.1989].≥1,000 for myoglobin (m/z 16,952).≥100 for BSA (m/z 66,431).Sensitivity:∙Routine detection of 5 fmol of neurotensin with a signal to noise ration (S/N) >80:1.Post-Source Decay Mass Accuracy:∙≤0.2 with default calibration.应用:MALDI-TOF仪器作为一种可以确定大分子精确分子量的工具,可以对纳米材料、生物材料,高分子聚合物等的分子量及聚合度进行测定及碎片结构定性,有机合成反应的质量评价,蛋白质、多肽、核酸、寡糖等生物分子的分子质量测定, 蛋白质、多肽酶解产物肽图谱测定, 蛋白质、多肽的氨基酸顺序分析。
纳米材料辅助负离子激光解吸电离-飞行时间质谱分析小分子研究进展

纳米材料辅助负离子激光解吸电离-飞行时间质谱分析小分子研究进展张晓娜;牛家华;卢明华;蔡宗苇【摘要】基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF MS)作为一种软电离质谱技术,目前已被广泛用于蛋白质、多肽、核酸、聚合物等大分子分析.由于传统有机化合物基质在低相对分子质量(小于700 Da)区域的干扰,该技术在小分子物质分析方面受到很大限制.为克服传统有机化合物基质在低相对分子质量区域的干扰,近年来以纳米材料为代表的无机基质材料备受关注.相对传统有机化合物基质或纳米材料正离子模式,基于纳米材料的负离子激光解吸电离(LDI)有效避免了正离子模式下一种化合物会产生多种加合物的问题,具有图谱简单易于解析、灵敏度高、重现性好等优点.该文综述了近5年来纳米材料负离子LDI-TOF MS技术在小分子分析方面的研究进展,以期拓展该技术在小分子分析方面的应用.【期刊名称】《色谱》【年(卷),期】2016(034)011【总页数】5页(P1017-1021)【关键词】纳米材料;激光解吸电离;飞行时间质谱;小分子;综述【作者】张晓娜;牛家华;卢明华;蔡宗苇【作者单位】河南大学化学化工学院,河南开封475004;河南大学化学化工学院,河南开封475004;河南大学化学化工学院,河南开封475004;环境与生物分析国家重点实验室,香港浸会大学化学系,香港999077【正文语种】中文【中图分类】O658基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF MS)作为一种软电离质谱技术,目前已被广泛用于蛋白质、多肽、核酸、聚合物等大分子分析。
由于具有分析速度快、灵敏度高、样品需求量少、样品制备简单和对样品纯度要求不高等优点,该技术已成为现代分析特别是生物分析领域不可或缺的研究工具。
传统MALDI-TOF MS中常用的基质是有机小分子化合物(例如2,5-二羟基苯甲酸(DHB)、芥子酸(SA)、α-氰基-4-羟基肉桂酸(CHCA)等),基质与被分析物形成共结晶,通过在分析过程中吸收激光能量再传递给被分析物的形式激发被分析物。
一、基质辅助激光解吸电离飞行时间质谱仪操作规程

一、基质辅助激光解吸电离飞行时间质谱仪操作规程一. 开机 1. 开主机总电源至ON。
2. 开主机正面有钥匙的开关至ON顺时针。
3. 开计算机及显示器启动FlexControl软件。
4. 等待源高真空达到3×10-6mbar如达不到该数值检查是否有漏气发生。
5. 进入日常操作。
二. 关机1将靶退出。
2在FlexControl界面的Spectrometer关掉高压按“OFF”。
3关闭所使用的软件关闭计算机。
4关主机正面有钥匙的开关至OFF逆时针。
5关主机总电源至OFF。
三日常操作1 打开FlexControl 进入仪器控制界面。
2 确认真空度为10-7mbar或稍低。
3 通过界面Carrier▲或主机正面的Load EJECT开关将样品靶放入仪器等待约2分钟调整好靶位。
在此过程中不应操作软件或硬件以确保仪器通讯畅通。
4 根据测量目的选择测量方法⑴分子量测定根据分子量大小选择相应的线性测量方法和仪器校正方法。
2 肽质量指纹谱测量根据所需测量的肽谱范围选择相应的反射测量方法和仪器校正方法。
⑶根据需要选择正离子或负离子测量方法和仪器校正方法。
⑷如果进行串联质谱分析则选择LIFT方法。
5 选择适当的仪器参数6 测量⑴手动测量a 选择好待测样品的靶位及相应参数后按Start开始测量。
b 根据图谱的质量按Add添加或按Clear Sum删除图谱。
c 按Save As保存图谱。
注在测量过程中可随时调整激光能量和靶位置以获得最佳信噪比和分辨率。
⑵自动测量a 按菜单AutoXecute再按Select选择一个Sequence文件名。
b 按Edit编辑待测样品用Sample position 的Sample依次选定靶位?蟀碅dd添加到Edit AutoXecute Sequence中。
c 按AutoXecute Method选择Calibration 或样品测量方法。
d 按Edit设定激光能量、靶位移动、累加方法等参数并保存该参数。
利用基质辅助激光解析电离飞行时间质谱联合磁珠技术寻找乳腺癌血清蛋白标志物

【 摘要 】 目的 探 索乳腺癌 与乳腺 良性疾病和健康 人血清蛋 白质谱 表达差异 , 寻找具有鉴别 诊断
意 义的血清蛋 白标志物 。 方法 实验分为两大组 : 1 决策树模型组共 2 3例标本 , () 9 包括 3个亚组 , 分别 为乳腺癌组 10例标本 、 1 乳腺 良性疾病组 13例和健康组 7 1 0例 , 建立决策树 ( 乳腺癌诊断 ) 模型 ; 2 盲 () 法验证组共 3 4例标本 , 括 3个亚组分别为乳腺癌组 7例标本 、 包 乳腺 良性疾病组 1 3例及健康组 1 4例 , 进行盲筛验证决策树模型 。采用弱 阳离子磁珠 捕获乳腺 癌患者血 清 中的蛋 白, 用基质辅助 激光解析 使 电离飞行时间质谱 ( L I O — ) MA D— FMS 仪检测绘制蛋 白峰。应用 Bo akr zr T . T i re Wi d M 31软件和 Bo akr m a i re m Pt rsT . a en M 5 0软件分 析数据 。统计分析采用方差分析法和秩和检验法 。计算决策树模 型诊断 的准确 t 率以及盲法验证模 型诊 断乳腺癌 的敏感性和特异性 。 结果 在决策树模 型组 中检测到 了4 7个差异有统
Me ia ce cs e ig 1 0 3 dc lSin e ,B qn 0 7 0,C ia hn
Cr so d ga to: U in , — i 5 75 1 q.o or pn i u r S N Qa g Ema :5 4 7 @ qcm e n h l
【 bt c】 O jcv T p r t ie n epe i s f re s ns u m n aet wt A s at r be i t e oe le h dfet xr sn o i e m a ogptn i x o e fr s o o p tn i r i s h
Maldi-TOF-MS简介

Maldi-TOF-MS简介
Maldi-TOF-MS简介
中文名:基质辅助激光解吸电离飞行时间质谱
英文名:Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS)
特点:
测分子量时不依赖于标准样品
测得的是绝对分子量,而不是相对分子量,且精度高于光散射和膜渗透等方法能得到分子量分布,而不仅仅是一个平均值
能同时提供末端基信息
样品用量少,耗时少
用途:
●能用于共聚物和接枝聚合物等高分子的精准分子量测定
●聚醚多元醇、异氰酸酯类聚合物多聚体等的检测
●聚合物重复链段的检测判断以及末端基结构推断
●助剂等微量物质的检测。
基质辅助激光解析电离飞行时间质谱在动物病原菌检测中的应用

品进行致 病菌的检 测和鉴定 , 共检 出2 多种致 病菌, 0 并对这 些菌株 同时用传统生化鉴 定方法进 行确认 。 结果表 明MA DI OFMS L . . T 对 未知 细菌进行 鉴定, 较传统 方法更加 快速、 准确 , 而且可 以进行 高通 量检 测, 以广泛应 用于 口岸动物检疫 以及微生物检验 实验 可
d i u r t e d a n s si c o i l g c l a o ao i s Fu h r r ,a c mp rs n s o d t a h AL . 0F M S d tb s f a l q a a i i g o i n mi r b o o i a b r t re . r e mo e o ai o h we tt e M y n n l t h DIT aa a e o p t o e i a trab i y r f r n i gb c e i u t r d i u o n r a fe r e ib er s l a eM ALDIBit p r aa a e a g n cb c e i u l b e e cn a trac l e O c u t C o r h t e u n r y n mo er l l e u t t n t a sh h o y e tb s d
关键词 : 基质辅 助激光解吸电 离飞行 时间质谱 ; 动物致病菌 ; 测 检
中图分 类号 : 8 4 3 ¥ 5 .1 文献标识码 : 文章编号 :0 59 4 2 1 )20 2 .4 ¥ 5 . :8 26 4 A 10 .4X( 0 2 0 .0 20 Ap i a i n o a r x- ss e s rDe o p i n I ni a i n- m e plc to fM t i - As it d La e s r to o z to - Ti
基质辅助激光解吸电离飞行时间质谱在临床微生物鉴定中的应用

基质辅助激光解吸电离飞行时间质谱在临床微生物鉴定中的应用林豪芸;吴文苑【摘要】In recent years ,matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a new organic soft ionization mass spectrometry which can identify and classify microorganism by directly using the sam-ple itself or cultivate colonies on petri dish in a few minutes .This new and simple method reduces the cost of consumables and the time of diagnosis greatly .Its reliability and accuracy have been shown in many studies and different system devices have al-ready been on the market .In the near future ,MALDI-TOF MS will have a broader prospect .This mass spectrometry will be-come an effective and fast microbial identification technology to replace the conventional method .In this article ,we will review the principles of MALDI-TOF MS ,its development and application ,its advantages and shortcomings which compared with tra-ditional methods at the present stage ,and the emphasis will focus on the application characteristics of MALDI-TOF MS in mi-crobial systems .%基质辅助激光解吸/电离飞行时间质谱(Matrix-assisted laser desorption /ionization time-of-flight mass spectrom-etry ,MALDI-TOF MS)技术是近年发展起来的一种软电离新型有机质谱,它可以在几分钟内直接对平皿中或标本中的菌落进行鉴定。
基质辅助激光解析电离串联飞行时间质谱仪

《基质辅助激光解析电离串联飞行时间质谱仪的应用与发展》一、引言基质辅助激光解析电离串联飞行时间质谱仪(MALDI-TOF MS)是一种高级的质谱分析技术,它已经广泛应用于生物医学、化学和环境科学领域。
本文将从技术原理、应用前景以及发展趋势等方面进行深入探讨,以期为读者提供全面的了解。
二、基质辅助激光解析电离串联飞行时间质谱仪原理MALDI-TOF MS技术是将分析物作为样品与基质混合,并通过激光脉冲进行标记,然后通过电离作用形成离子。
这些离子在电场作用下被加速并以不同的速度飞行,最终通过飞行时间差异进行质量分析。
其原理简单清晰,可以快速、高效地进行多种样品的分析,是一种十分有价值的质谱分析技术。
三、基质辅助激光解析电离串联飞行时间质谱仪的应用1. 生物医学应用MALDI-TOF MS在生物医学领域的应用十分广泛,例如生物分子的鉴定和定量分析、蛋白质组学和代谢组学等研究。
其快速、高灵敏度的特点,使得它在疾病诊断、药物研发以及生物标记物检测等方面有着不可替代的地位。
2. 化学应用在化学领域,MALDI-TOF MS被广泛应用于高分子聚合物、药物分析、环境污染物检测等方面。
其高分辨率和高灵敏度的优势,为化学研究提供了重要的数据支持。
3. 环境科学应用在环境科学领域,MALDI-TOF MS技术可以用于大气、水体和土壤等环境中微量有机物和无机物的检测和分析,为环境监测和治理提供了重要的技术手段。
四、基质辅助激光解析电离串联飞行时间质谱仪的发展趋势随着科学技术的不断发展,MALDI-TOF MS技术也在不断完善和创新。
未来,我们可以预见到以下几个发展趋势:1. 提高分辨率和灵敏度:随着技术的进步,MALDI-TOF MS分辨率和灵敏度将不断提高,为更加精准的分析提供可能。
2. 多样化样品分析:未来的MALDI-TOF MS技术将可以处理更多种类的样品,包括生物分子、有机物、无机物等,从而更全面地应用于各个领域。
基质辅助激光解吸电离-飞行时间质谱法

基质辅助激光解吸电离-飞行时间质谱法-概述说明以及解释1.引言1.1 概述概述部分的内容:基质辅助激光解吸电离-飞行时间质谱法(MALDI-TOF MS)是一种重要的分析技术,广泛应用于生物大分子的定性和定量分析。
该技术的核心原理是利用基质分子将待测样品转化为易于电离的形式,然后通过激光瞬间加热样品,使其产生脱附电离。
接着,离子将通过飞行时间质谱仪进行质量分析,最终得到样品中分子的质谱图谱。
基质辅助激光解吸电离方法具有许多优势。
首先,它可以高效地电离生物大分子,包括蛋白质、核酸和糖类等。
其次,该方法能够在非破坏性条件下进行样品分析,使得样品的原始化学特性能够得到保留。
此外,MALDI-TOF MS还具备高灵敏度、高分辨率和高通量等特点,使其成为生命科学研究和临床诊断领域的重要工具。
然而,基质辅助激光解吸电离-飞行时间质谱法也存在一定的局限性。
首先,基质的选择对分析结果有重要影响,不同的基质适用于不同类型的待测分子。
其次,样品含有的杂质可能干扰质谱图谱的分析,因此需要进行样品前处理。
此外,对于高分子量的生物大分子,其离子化效率相对较低,因此需要使用较高能量的激光。
本文将着重介绍基质辅助激光解吸电离-飞行时间质谱法的原理、应用领域、优势和局限性,以及实验方法和步骤。
通过对该技术的深入了解,可以更好地理解和应用基质辅助激光解吸电离-飞行时间质谱法在生命科学和医学领域的潜力,为该领域的进一步研究和应用提供参考依据。
1.2文章结构文章结构部分的内容可以按照如下方式编写:文章结构:本文将按照以下结构来展开对基质辅助激光解吸电离-飞行时间质谱法的研究和应用进行探讨:首先,在引言部分概述了基质辅助激光解吸电离-飞行时间质谱法的背景和研究意义,以及文章将要讲述的内容。
接着,正文部分将从两个方面对基质辅助激光解吸电离进行探讨,即原理和应用领域。
在原理部分,将介绍基质辅助激光解吸电离的工作原理和相关理论基础;而在应用领域部分,将探讨基质辅助激光解吸电离在不同领域中的具体应用情况和研究进展。
基质辅助激光解析电离-飞行时间质谱

基质辅助激光解析电离-飞行时间质谱基质辅助激光解析电离-飞行时间质谱(MALDI-TOF MS)是一种生物分子分析技术。
它通过激光辅助基质过程,将生物大分子(如蛋白质、多肽、核酸等)与基质溶液混合后,使其在基质表面结晶,并把样品分子固定在基质晶面上。
然后用激光照射样品,使其产生电离,带电的分子离子被加速进入飞行管道,在高压电场中飞行,根据分子离子的分子量和电荷量比值来确定分子的质量。
这种技术由于具有高灵敏度、高分辨率、快速分析速度、不需要预处理等优点,被广泛应用于蛋白质组学、代谢组学、化合物分析、病毒检测等领域。
飞行时间质谱仪(MALDI-TOF)简介

铵 、 甲酸铵 、 乙 腈 、 三 氟 乙 酸 等都是用 于 纯 化样 品 的合适 试 剂 。 蛋 白质样 品纯 化后 , 应尽 可 能冻 检 测 项 目 : 蛋 白质 多 肽 核 酸 寡 糖 等 生 物 大 分 子 质 量 测 定 ; 蛋 白质 肽 酶 解 产 物 肽 图谱 测 定 ; 蛋 白质
( S N P s ) 的 分 析 检 测 , 可 区 分 和 鉴 别 相 对 分 子 质 量 遮 丑∞ Q左 右 ( 含 2 0 多 个 碱 基 仅 存 1 个 碱 基
掣嘉易荔亲 乎萎鑫易譬葬季昌霎翥鬻斓艨 装磊 褒鉴窨矗茎鎏要 裟莪 弄 诊 、 药物 靶 标 的寻 找 、 细 胞 调 控 分子 的鉴 别等领域铲餐霪鞠孽喾。 霄 前 , 在我 院已 开展 蛋 白质组 学研
的科 研 人 员 提 供一 系 列 完 整 技 术 服 务 ( 包 括 蛋 白提 取 、 定量 、 等 电 聚焦 、 S D S — P A G E 、 挖 点 、 酶 解 、 质谱鉴 定数据库查询 、 生 物信息学分析等 ) 。 全 年累计样品测试分析 2 0 0 0 多个 , 使用有效 机 时达 一 千 多 小 时 , 为重 庆市高校 5 0 余项 科研课 题 完成样 品测试 任务 , 被评 为重 庆市大型 仪器 应用优秀机组 。
合物等 。 被测 样 品 可 以 是单一 组 分也 可 以 是 多组 分 的 , 但样 品组 分越 多 , 谱 图就越 复杂 , 谱 图分
2 、
样 品的溶解性
被 测样 品必 须能 够溶 于适 当的溶剂 , 最好 是 未溶解 的 固体或纯 液体 。 若样 品
3 、
纯度
为取 得 高 质 量 的质谱 图 , 多肽 和 蛋 白质样 品应 避 免 含 氯 化 钠 、 氯化 钙 、 磷酸 氢钾 、 三
医用质谱仪 第2部分:基质辅助激光解吸电离飞行时间质谱仪》

医用质谱仪第2部分:基质辅助激光解吸电离飞行时间质谱仪》1. 引言1.1 概述本文旨在探讨医用质谱仪的新技术——基质辅助激光解吸电离飞行时间质谱仪。
随着科学技术的快速发展,医学领域对高效、准确的分析方法需求日益增长。
由于能够提供高分辨率和灵敏度的特点,质谱仪在医学研究中扮演着至关重要的角色。
并且,基质辅助激光解吸电离飞行时间质谱仪作为一种新型的质谱仪技术,具有很大的潜力来改善医学检测和诊断领域。
1.2 医用质谱仪简介医用质谱仪是一种利用精密仪器对物体中的化合物或化学组成进行分析和检测的设备。
其工作原理基于将样品中的化合物通过不同的离子化方式转变为离子后,再根据其质量-荷比(m/z)比值测定其相对含量或结构信息。
医用质谱仪常被应用于药物研发、生物医学研究、临床分析和环境监测等领域。
1.3 研究背景随着人们对疾病诊断和治疗的需求不断增加,医学领域对于高灵敏度、特异性和快速的检测方法的需求也在不断增长。
传统的质谱仪技术存在着一些局限性,如样品制备复杂、分辨率有限以及对高灵敏度样品的应用受到限制等。
为了克服这些问题,科学家们开发出了基质辅助激光解吸电离飞行时间质谱仪这一新技术。
本文将重点介绍基质辅助激光解吸电离飞行时间质谱仪的原理、应用范围和优势,并对其技术发展历程进行探讨。
通过实验数据的分析与讨论,我们将认识到该技术在医学领域中所展示出来的巨大潜力,并提供对未来发展方向的展望。
尤其是结合可持续发展理念,我们还将提出有关该技术在环境友好型方面的建议。
2. 正文:2.1 基质辅助激光解吸电离技术原理:基质辅助激光解吸电离(MALDI)是一种常用于医用质谱仪的重要技术。
它利用基质分子与待测样品分子相互作用,通过激光脉冲将基质分子和待测样品分子一起从固体表面解吸。
随后,脱落的分析物被基质分子带上,形成一个溶液中的复合物。
接着,激光瞬间加热复合物,使其发生飞行时间电离,并在高电场下进入飞行管道进行飞行时间测量。
malditof质谱原理

malditof质谱原理
MALDI-TOF质谱主要由两部分组成:基质辅助激光解吸电离离子源(MALDI)和飞行时间质量分析器(TOF)。
malditof质谱原理是不同的微生物样品与过量的基质溶液点在样品板上,溶剂挥发后形成样品与基质的共结晶,利用激光作为能量来源辐射结晶体,基质从激光中吸收能量使样本吸附,基质与样本之间发生电荷转移使得样本分子电离,样本离子在加速电场下获得相同的动能,经高压加速、聚焦后进入飞行时间质谱分析器进行质量分析,检测器检测到不同质荷比(m/z)的离子,并以离子质荷比为横坐标,以离子峰为纵坐标形成特异性的病原菌蛋白质组指纹图谱,进而与图谱库中进行对比,得到鉴定结果并最终确定细菌种类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基质辅助激光解析电离飞行时间质谱
基质辅助激光解析电离飞行时间质谱(MALDI-TOF)是一种常用的质谱技术,用于快速测定生物大分子(如蛋白质、多肽、核酸等)的分子质量。
它是通过将样品与一种基质混合,利用一束激光加热样品,使样品分子与基质分子结合形成固态分析物质。
然后,样品在外加电压的作用下被加速并离子化,离子根据其质荷比大小进入飞行时间质谱仪的飞行管道。
在飞行时间质谱仪中,离子在电场的作用下以不同速度飞行,速度与离子的质荷比成反比。
离子的到达时间会根据质量的差异而有所不同,根据离子到达探测器的时间差,可以计算出离子的飞行时间,从而得到离子的质量。
最终,质谱仪会将测得的质谱数据转化为质量谱图,显示出不同离子的相对丰度和质量。
MALDI-TOF技术具有以下特点:
1. 高分辨率:可以快速测定样品中分子的质量,且具有较高的质量分辨率。
2. 灵敏度高:可以对微量样品进行分析,检测到低浓度的分子。
3. 快速分析:样品准备简单,分析速度快,可以在短时间内得到结果。
4. 广泛适用:适用于生物大分子的分析,可以用于蛋白质组学、基因组学等领域的研究。
MALDI-TOF技术在生物医学研究、药物开发、临床诊断等领域得到广泛应用,对于快速、准确、高通量的分析有着重要意义。