硫酸工业 环境保护

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硫酸工业环境保护

复习重点

1.接触法制硫酸的生产过程和化学原理。

2.保护环境

难点聚焦

一、接触法制硫酸的原理、过程及典型设备

1.三种原料:硫铁矿(FeS2)、空气、水。

利用接触法制硫酸一般可以用硫黄、黄铁矿、石膏、有色金属冶炼厂的烟气(含一定量的SO2)等。其中用硫黄作原料成本低、对环境污染少。但我国硫黄资源较少,主要用黄铁矿(主要成分为FeS2)作生产硫酸的原料。

2.三步骤、三反应:

(1)4FeS2 +11O2=== 2Fe2O3+8SO2(高温)

(2)2 SO2+ O2≒ 2 SO3(催化剂,加热),(3)SO3+ H2O === H2SO4

3.三设备:(1)沸腾炉(2)接触室(3)合成塔

4.三原理:化学平衡原理、热交换原理、逆流原理。

(1)增大反应物浓度、增大反应物间接触面积,能提高反应速率并使化学平衡向正反应方向移动,以充分提高原料利用率。

(2)热交换原理:在接触室中生成的热量经过热交换器,传递给进入接触室的需要预热的混合气体,为二氧化硫的接触氧化和三氧化硫的吸收创造了有利条件。

(3)逆流原理:液体由上向下流,气体由下向上升,两者在逆流过程中充分反应。

接触法制硫酸的原理、过程及典型设备

三原料三阶段三反应(均放热)三设备三净化

黄铁矿或S 造气

4FeS2+11O2== 2Fe2O3+8SO2(高

温)或S+O2=SO2

沸腾炉除尘

空气接触氧化2 SO2 + O2≒ 2 SO3

(催化剂)

接触室(含热

交换器)

洗涤

98.3%浓硫酸三氧化硫

吸收

SO3+ H2O === H2SO4 吸收塔干燥

5.应用化学反应速率和化学平衡移动原理选择适宜条件

二氧化硫接触氧化的反应是一个气体总体积缩小的、放热的反应。

一、温度

二氧化硫接触氧化是一个放热的可逆反应,根据化学平衡理论判断,温度较低对反应有利。但是,温度较低时,反应速率低,考虑催化剂在400∽500℃活性最大,在实际生产中,选定400~500℃作为操作温度,这时反应速率和二氧化硫的转化率都比较理想。

二、压强

二氧化硫接触氧化是一个气体总体积缩小的可逆反应,根据化学平衡理论判断,加压对反应有利。但是,在常压、400~500℃时,二

氧化硫的转化率已经很高,加压必须增加设备,增大投资和能量消耗,故在实际生产中,通常采用常压操作,并不加压。

三、二氧化硫接触氧化的适宜条件

常压、较高温度(400~500℃)和催化剂

6.接触法制硫酸中应注意的几个问题

(1)依据反应物之间的接触面积越大反应速率越快的原理,送进沸腾炉的矿石要粉碎成细小的矿粒,增大矿石跟空气的接触面积,使之充分燃烧。

(2)依据增大廉价易得的反应物的浓度,使较贵重的原料得以充分利用的原理,采用过量的空气使黄铁矿充分燃烧。

(3)通入接触室的混合气体必须预先净化,其原因是:炉气中含有二氧化硫、氧气、氮气、水蒸气以及砷、硒化合物、矿尘等。砷、硒化合物和矿尘等会使催化剂中毒;水蒸气对生产和设备有不良影响。因此,炉气必须通过除尘、洗涤、干燥等净化处理。

(4)在接触室里装有热交换器,其作用是在二氧化硫接触氧化时,用放出的热量来加热未反应的二氧化硫和空气,充分利用热能,节约燃料。

(5)不能用水吸收三氧化硫而用98.3%的浓硫酸,若用水或稀硫酸吸收,容易形成酸雾,且吸收速度慢。

二、有关计算

1.物质纯度、转化率、产率的计算

(1)物质纯度(%)=不纯物质中含纯物质的质量÷不纯物质的总质量×100%

(2)原料利用率(%)=实际参加反应的原料量÷投入原料总量×100% (或转化率)

(3)产率(%)=实际产量÷理论产量×100%

(4)化合物中某元素的损失率=该化合物的损失率

2.多步反应计算

(1)关系式法:先写出多步反应的化学方程式,然后找出反应物和生成物之间物质的量(或质量)之比,列出关系式,即可一步计算。

(2)元素守衡法:找出主要原料和最终产物之间物质的量的对应关系。找出此关系的简便方法,就是分析原料与产物之间所含关键元素原子个数关系,如: FeS2~2H2SO4, S~H2SO4。

若已知(欲求)FeS2含量,用前面的关系式,若已知(欲求)S的含量,用后一关系式,且二氧化硫转化率、三氧化硫吸收率均可折算成起始物FeS2(或S)进行计算。

1.环境保护与原料的综合利用

(1)注意科学实验与实际生产的区别

在科学实验中,为了探索某个重要的原理或实现某个重要的反应,可以不惜大量的时间和资金。而化工生产必须在遵循科学原理、实现某个反应的基础上,着重考虑综合经济效益,最大限度地提高劳动生产率、降低成本、保护生态环境,为国民经济部门提供质优价廉的化工产品,以达到优质高效的目的。

(2)硫酸生产中的“三废”处理

硫酸厂的尾气必须进行处理,因为烟道气里含有大量的二氧化硫气体,如果不加利用而排空会严重污染空气。

1) 尾气吸收

A.用氨水吸收,再用H2SO4处理:SO2+2NH3+H2O=(NH4)2SO3

(NH4)2SO3+H2SO4=(NH4)2SO4+SO2↑+H2O

②用Na2SO3溶液吸收:Na2SO3+SO2+H2O=2NaHSO3

③用NaOH溶液吸收,再用熟石灰和O2处理;(此方法反应复杂,

还可能发生其他反应)

SO2+ NaOH = NaHSO3 NaOH +NaHSO3= Na2SO3+ H2O

Na2SO3+Ca(OH)2= CaSO3↓+ 2NaOH 2 CaSO3 + O2= 2CaSO4

2)污水处理

硫酸厂废水中含硫酸,排放入江河会造成水体污染。通常用消石灰处理:Ca(OH)2+ H2SO4=CaSO4+2H2O。生成的硫酸钙可

制建材用的石膏板。

3)废热利用

硫酸工业三个生产阶段的反应都是放热反应,应当充分利用放出的热量,减少能耗。

第一阶段黄铁矿燃烧放出大量的热,通常在沸腾炉处设废热锅炉,产生的过热蒸汽可用于发电,产生的电能再供应硫酸生产使用(如矿石粉碎、运输,气流、液流等动力用电)。

第二阶段二氧化硫氧化放热可用于预热原料气,生产设备叫热交换器,原料气又将三氧化硫降温,再送入吸收塔。

4)废渣的利用

黄铁矿的矿渣的主要成分是Fe2O3和SiO2,可作为制造水泥的原料或用于制砖。含铁量高的矿渣可以炼铁。

工业上在治理“三废”的过程中,遵循变“废”为宝的原则,充分利用资源,以达到保护环境的目的。

2.能量的充分利用

许多化学反应是放热反应。化工生产中应充分利用反应热,这对于降低成本具有重要意义。硫酸厂生产中的反应热得到充分利用后,不仅不需要由外界向硫酸厂供应能量,而且还可以由硫酸厂向外界输出大量能源。在硫酸生产过程中使用的热交换器就是利用了反应所放出的热量来加热二氧化硫和氧气的混合气体,以节约能源。

相关文档
最新文档